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Abstract: We introduce a novel History-Aware VErifier (HAVE) to disambiguate
uncertain scenarios online by leveraging past interactions. Robots frequently en-
counter visually ambiguous objects whose manipulation outcomes remain uncer-
tain until physically interacted with. While generative models alone could theo-
retically adapt to such ambiguity, in practice they obtain suboptimal performance
in ambiguous cases, even when conditioned on action history. To address this,
we propose explicitly decoupling action generation from verification: we use an
unconditional diffusion-based generator to propose multiple candidate actions and
employ our history-aware verifier to select the most promising action by reason-
ing about past interactions. Through theoretical analysis, we demonstrate that
employing a verifier significantly improves expected action quality. Empirical
evaluations and analysis across multiple simulated and real-world environments
including articulated objects, multi-modal doors, and uneven object pick-up con-
firm the effectiveness of our method and improvements over baselines. Our project
website is available at: https://liy Ishu.github.io/HAVE_CoRL25/.
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1 Introduction

In the real world, objects that appear visually similar can exhibit vastly different physical behaviors.
A closed door might look identical regardless of whether it opens by pushing or pulling, and two
boxes with the same outward appearances may demand different manipulation strategies depending
on how their inside contents are distributed. A visual policy without history-based adaptation, no
matter how large, would struggle to disambiguate such cases. When encountering a new object, we
want a robot system to explore in a trial-and-error manner, observe the outcomes of its interactions,
and adapt its strategy accordingly. Our goal is to enable this kind of history-aware disambiguation,
where the robot continuously updates its internal model to improve future behavior.

Ideally, we can achieve this adaptation simply with a history-conditioned generator policy. How-
ever, our experiments with a history-conditioned diffusion model led to suboptimal performance.
Indeed, recent work has demonstrated the theoretic and empirical difficulty of training a policy (via
supervised fine-tuning) under settings in which the ground-truth solution traces are heterogeneous
for the same input [1]. This prior work demonstrates (theoretically and empirically) the benefits of
instead using verifier-based methods, even with learned rewards.

Inspired by this work, we propose, for ambiguous object manipulation, to train a history-aware ver-
ifier that takes in the history interactions and estimates a reward for action proposals sampled from
a probabilistic action generator. We demonstrate, theoretically and empirically, the benefits of this
approach compared to using only a history-conditioned generator policy. We show theoretically that
using any better-than-random-chance verifier to select an action proposed by a generator policy can
improve the policy performance. We also demonstrate the effectiveness of our approach in different
simulation and real world environments with fundamental ambiguity including opening ambiguous
articulated objects, ambiguous doors, and picking up objects with an uneven mass distribution. We
also perform ablations and analysis to better understand the importance of various design choices of
our proposed method. The contributions of our paper include:
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(1) A novel verifier structure that reasons about past interactions for disambiguation.

(2) Theoretical analysis of using a verifier to select actions.

(3) Simulated and real world experiments in multiple environments with fundamental ambigui-
ties, such as opening ambiguous articulated objects, ambiguous doors, and lifting objects with
uneven mass distributions.

2 Problem Statement and Assumptions

In this paper, we aim to tackle the problem of learning a policy in a Partially Observable Markov
Decision Process (POMDP), in which the agent does not observe the true state but instead receives
an observation that provides partial information about the state. In such a case, the history of obser-
vations and actions with the environment is essential for being able to estimate the true underlying
state of the environment, which is important for effective decision-making. Therefore, leveraging
past interactions—both successful and failed—can help an agent make more informed decisions.

Formally, the environment is characterized by a distribution over POMDPs. More concretely, con-
sider a POMDP defined over a state space S, an action space A, and an obervation space O, with
a transition function 7 : § x A — A(S), where A(S) denotes the set of probability distributions
over S, and T (s’ | s,a) denotes the probability of transitioning to state s’ after taking action a
in state s. For each POMDP, assume that the (unknown) transition function 7 is sampled from a
distribution P over possible transition dynamics, that is, 7 ~ P7. For example, consider a family
of door-opening tasks, where the agent cannot determine from a single observation o € O whether
a door should be pushed or pulled. However, through interactions with the environment, the agent
can use the history of observations and actions to implicitly infer the underlying transition dynamics
of the current instance of the POMDP. Our task for the agent to use this history of observations and
actions to discover the optimal policy for each POMDP.

3 Related Works

Interactive Perception: Prior works have explored how to use interactions to actively acquire in-
formative observations to infer about hidden physical properties or dynamics in various robotics
contexts [2, 3] from articulation [4] to deformable objects [5]. More recently, in-context learning
methods have been used to adapt robot behavior online by conditioning on recent interactions [6, 7]
through reinforcement learning [8, 9] or directly modeling simulation parameters [10]. Our work
builds on this idea, introducing a generator-verifier system that decomposes policy generation and
verification, and explicitly evaluates action candidates using prior interactions, enabling efficient
and robust online disambiguation in ambiguous, multi-modal settings.

Generation-Verification Paradigm: Many recent advances in machine learning build on a
generation-verification paradigm, from adversarial learning in a GAN [11], a policy generator
and reward model in reinforcement learning and RLHF [12, 13, 14, 15], to test-time scaling in
LLMs [16, 17, 18, 19, 20, 1]. Many of these work [1, 21, 15] stress the importance of veri-
fication model from different theoretical views. In parallel, some safety-focused approaches in
robotics [22, 23, 24, 25, 26, 27] have adopted a similar structure with a nominal generator / pol-
icy and a verifier / filter to ensure constraint satisfaction at runtime. Aligning with these prior ideas
on a high level, we focus on the theoretical explanation and experimental analysis on the benefit of
a system with both a generator and a verifier.

4 Theoretical Motivation

The main idea behind our approach is as follows: Given an (unobserved) state space of S, an obser-
vation space O, and an action space of A, our proposed framework consists of a generative policy
ma : O x A — [0,1] that models the distribution of actions given an observation, and a verifier
(or learned reward function) V' : O x A — R that evaluates each of the proposed actions and out-
puts an estimated (scalar) reward for each one. During inference, we sample a batch of IV actions
{ai,...,an} from the generator, a; ~ mg(s). We predict the reward of each sampled action with
the verifier V' (a;) and then execute the action with the highest estimated reward. Below we present
some theoretical justifications for this approach.



4.1 Generation-Verification Gap

Our approach is inspired by the theoretical result of Setlur et al. [1], which describes a setting in
which the correct solution traces for a given input are hetereogeneous (as defined in Property 5.2
in Setlur et al. [1]). This situation is analogous to our setting in which there is a partially observed
environment; in such a case, there will be diverse optimal actions for the same observation (in which
the true optimal action depends on the unobserved ground-truth state of the environment).

Setlur et al. [1] then show that, in such cases, training a generative policy to imitate a hetereogeneous
expert dataset will induce a reward gap of €2 <U€ V1/ n) , where n is the amount of expert data, and

0. is variance describing the heterogeneity in the expert solution traces (Theorem 5.4). In our
problem setting (Sec. 2), the ground-truth differs given the same partial observation due to different
underlying transition function, leading to a large o.. On the other hand, they show that if we train a
verifier to fit the reward terms in the expert dataset, we can achieve an expected error that contracts
at a rate of Oy (H/n) (Proposition 5.5), where H is the horizon length. Therefore we can see that
using a verifier is asymptotically more data-efficient as the reward gap contracts with the scale of
1/n while the reward gap in the generation model only contracts with a scale of y/1/n.

4.2 Verifier-based Selection

Our manipulation framework uses a verifier to select the best action sampled from an action genera-
tor, compared to just sampling from the generator once. Below we provide a theoretical justification
for this idea. In the below analysis, we use the simplified “non-contextual” setting in which the
generator and verifier are not conditioned on the state. Consider a task with binary rewards. The
generator ¢ represents a distribution over the action space A C R™ where we can sample actions
from, the ground truth reward model Ry : A — {0, 1} maps actions ¢ € A to binary rewards, and
the verifier V' : A — {0, 1} maps actions a € A to estimated binary rewards. In reality, both the
generator and the verifier are trained models that make errors with some probability. We thus make
the following assumptions:

1. The accuracies of the generator and the verifier are independent.

2. The generator has probability pg of sampling an action with reward 1:
P(Ry(a) =1]a~7g) =pa.

3. The verifier has probability py of predicting the correct reward for any action:
P (V(a) = Ry(a)) = pv, Va € A.

We compare the expected reward of 2 methods:

* Method 1: Sample one action from the generator: apaive ~ 7G-

e Method 2: Sample N actions a1, ...,ax from the generator and use the verifier to choose the
action with the largest estimated reward: ayyer = a4+, Where ¢* = arg max;e(1,... N} Vay). If
multiple actions have the same highest score predicted by the verifier, randomly pick one of them.

For Method 1, the expected reward can be computed as: |E [ Ry (@naive)] = pa X 1+(1—pa) x0 = pa

For Method 2, the expected reward can be computed as: E [Rg(awner)] = (1 — (1 — Q)N) belv 4

(1- Q)N%_Cgv), where Q = P (V(a) =1) = (1 — pc)(1 — pv) + pepyv. Then we can prove
(refer to the Appendix A.1 for full proof) that with N > 1 and py > 0.5, we have E [Rg[(aw/ver)] >
E [Rg(@naive)]. This demonstrates that our verifier is expected to be useful as long as it has an
accuracy greater than 50%. As a numerical example, if we let N = 2, pg = py = 0.9, we have
E [Rgi(anaive)] = 0.9 and E [Ryi(awner)] = 0.97, meaning that the failure rate (the probability of
executing an action with 0 reward) is reduced from 10% to 3% even with only one extra sample.
See Appendix A for theory the independence assumption, extension to continuous rewards, and
numerical examples for both discrete and continuous cases.

5 Method

Based on the above motivation, we construct our method, which consists of an unconditional
diffusion-based generator and a history-aware verifier. We demonstrate in our experiments that
such an architecture leads to much better performance than a history-conditioned diffusion model
without a verifier, as also suggested by the above theoretical analysis.



Given the action generator Gy, at each timestep ¢, we sample action proposals a§0)7 . ,aiNfl)

based on the current observation o;. The history-aware verifier V then outputs corresponding scores

51(50) ceey SENfl) for the proposed actions, considering the history of past actions and their outcomes,
(00,a0,.-.,0¢t—1,at—1,0¢). Finally, we select and execute the action with the highest estimated
score aﬁ”, where i = arg max; S,E’). Below we describe the details of our approach.

5.1 Dataset Generation

We desire for our method to be able to quickly adapt its future actions after performing either high-
reward or low-reward actions and observing the results. Thus, we generate an offline dataset for
training where each sample consists of a history sequence and an action proposal set. We generate
each history sequence by either sampling a random action (most likely leading to a failure) or using
the ground truth action (obtained using privileged knowledge in the simulator) at each step. The
action proposal set is constructed with the ground-truth action, random actions and history actions.
We label the score for each action proposal and history actions; see Appendix B.2 for details.

5.2 History-Aware Verifier

We assume that we are given an action proposal a as well as history actions and observations. Specif-
ically, to learn from history, we group the data based on the observation before an action and the
resulting observation after an action: {(0;—1, a;,0;),7 € [t — 1]}. We compute action embeddings
Eoction : A — R™ (where n is the encoded action’s feature dimension) to obtain an embedding
Gemb = FEaction (@) for the action proposal a as well as an embedding for each action in the action
history {@emp,; = Faction(@i),% € [t — 1]}. We also encode each pair of subsequent observations
Eups : O x O — R™ (where m is the observation feature dimension) to obtain observation embed-
dings: {f; = Eobs(0i—1,0i),1 € [t — 1]}. We then input the action embeddings for the proposal as
well as the history through an action transformer to receive an updated action proposal embedding
Ggmp, @nd new history action embeddings ag,,;, ;- We also input the observation embeddings into an
observation transformer to receive updated observation history embeddings f;. The action proposal
embedding Genp, is also passed through an unconditional action encoder to obtain an unconditional

evaluation of the proposed action without conditioning on history: ¥, = Fyncond(@emb) (used below).

Given a history of length ¢, we perform an explicit dot-product attention operation with &, as the
query (Q), action history embeddings {a__, ,}!_; as keys (K) and the observation history embed-

emb,
dings {f/}!_, as values (V): © = softmax ([QK ", ttgr] /v/di) [V, d.], where dj, is the dimension
of key embeddings, and [-, | denotes concatenation along the key/value dimension. Here piq, de-
notes a constant to represent the logit associated with the unconditional evaluation of the proposed
action & (without regard to the history), which we compute as a running mean of the QK7 logits
during training. The intuition behind this explicit attention layer is that we want the model to relate
the action proposal & (encoded as the query () = @, ) with similar actions in the history (encoded
as the keys K = {a/;;}) and refer to their action results (encoded as values V' = {f/}). The
unconditional logit ji4; and embedding ©,, exists to handle cases where there are no actions similar
to the proposal a in the history (or no actions in the history at all). Then the final embedding v
will go through a score decoder (small MLP with tanh on the output) to obtain a 1-dim logit as the
final output score: s = Dycore(0) € [—1,1]. We compare our proposed architecture to a monolithic
transformer in Sec. 6.3 and show improved performance with our approach.

During training, we supervise the final predicted score s for the action proposal, using an MSE loss
with the ground-truth scores (referred to as “Final Score Loss” in Fig. 1). We also supervise the
unconditional embedding ©,, and the action results history embeddings {f/}!_, by passing them
through the score decoder Dqcore and supervising them with ground truth rewards for corresponding
timestep (referred to as “Unconditional Score Loss” and “History Score Loss” respectively in Fig. 1).

5.3 Network Architecture

We represent actions as dense action fields, where given a point cloud {p;}, and an action point p
and direction d, the dense action field is the point cloud with 3 extra channels to represent the action,
calculated as {d; : d * exp{—c * ||p; — p||3} where c is a scaling constant. This representation also
makes actions state-aware, enabling reasonable understanding about relationships between actions



executed in different states. We hypothesize that this dense action representation is easier to process
than a sparse action representation, as indicated by our ablation experiments. We then encode this
dense action representation demb ; = Eaciion(a;) using a PointNet++ [28] point cloud encoder.
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Figure 1: HAVE Architecture: the proposed and history actions are encoded through a PointNet++
for 3D geometric understanding, and self-attention layers for sequential reasoning. History results
are encoded similarly. Together they pass through an explicit attention layer to obtain the final score.

We represent the observation encoder Foys(0;—1, 0;) as follows: First, we compute the flow from
each point in observation 0;_1 to the corresponding location of that point in observation o;, which
we refer to as the “Observation Flow.” In training we use the ground-truth flow, and at test time we
use a state-of-the-art 3D point tracker [29]. We then create a point cloud with 3 extra channels for
the 3D flow, which we also encode with a PointNet++ [28] point cloud encoder. We construct the
action generator similar to prior work [30], but without history injection; see Appendix B for details.

6 Experiments and Analysis

To evaluate our system’s capability to solve ambiguous robotics tasks, we carried out experiments in
3 different environments: opening general articulated objects, opening ambiguous doors, and lifting
objects with uneven mass distributions. We perform experiments both in simulation environments
and in a real-world robot setup. At inference time, the robot incrementally builds its history through
each interaction with the object.

6.1 Articulated Objects

Baselines: We compare our method to the following baselines: (1) FlowBot3D [31], (2) Flow-
BotHD [30] with and without “CC” (the heuristic consistency check in FlowBotHD that filters the
proposed actions), (3) Generator Only: unconditional diffusion without a verifier, (4) Conditional
Generator: conditional diffusion that takes in the same history interaction information as the verifier,
we use classifier-free guidance [32] for conditioning (see Appendix C.5 for architecture details, and
E.5 for different cfg scales). For all baselines and our own policy, we train the action generator
with a training dataset augmented with fully closed object examples [30], and adopt the FlowBotHD
switch grasp policy to enable models to adapt from wrong grasp points (see Li et al. [30] for details).

Ablations: We also perform the following ablations to better understand the effect of our design
choices: (1) w/o History Score Loss: Train without the “History Score Loss” (see Sec. 5.2 and Fig-
ure 1); (2) w/o Uncond Score Loss: Train without the “Unconditional Score Loss” (see Sec. 5.2 and
Figure 1); (3) Sparse Action: rather than representing an action as a dense action field (Sec. 5.3),
we represent the action as a point cloud with only one action vector at the contact point; (4) Point
Cloud as Result: directly use point cloud sequence as action result without explicit extracting obser-
vation flow (Sec. 5.3). Please refer to Appendix C.3 for more details. As stated in Sec. 5.3, for the
observation encoder Eops(0;—1,0;) we compute the flow from each point in observation o;_1 to the
corresponding location of that point in observation o;. The ablations all use the ground-truth flow at
test time (obtained from the simulator), to give the ablations the best chance to succeed. For a fair
comparison, we show the performance of our method both using ground-truth flow (“HAVE (Ours)
+ GT obs flow”) as well as our method using estimated flow (“HAVE (Ours) + Estimated flow”)
using the 3D tracker DELTA [29].



6.1.1 General Articulated Objects in Simulation

We follow Li et al. [30] and split PartNet-Mobility into train and test instances, and construct a
simulation environment with a suction gripper. We initialize each object at a fully closed state,
and the task of the policy is to fully open the objects. In Table 1, we show the Failure Rate: the
percentage of objects that are opened less than 90% within 30 steps. Given the stochasticity in the
generative model, we test each object 5 times. We also report experiments with the split following
Eisner et al. [31] where we hold-out 10 categories during training and test on them (Appendix D.1) .

Comparing the failure rate from our policy and the baselines, we can see that HAVE (Ours) reduces
the failure rate by about 6x (from 13% to 2%) compared to FlowBot3D [31], about 10x (from 20% to
2%) compared to using a history-conditioned generative model without a verifier, and about 3x (from
6% to 2%) compared to FlowBotHD [30] even with the heurisitc consistency check (CC) policy.
This validates the idea that using a generator to mimic a heterogeneous dataset is not sufficient for
optimal performance without a verifier.

Ablation Analysis: Our ablation analysis reveals the benefit of each of our design choices. Using
a sparse action representation instead of a dense action field (Sparse Action) decreases the perfor-
mance most. Using point cloud sequences without extracting observation flows (Point Cloud as
Result) also underperforms using explicit observation flow. Training without the “History Score
Loss” or the “Unconditional Score Loss” leads to a slight performance drop, indicating that super-
vising the history observation and the unconditional action embedding benefits the model.

AV(;(AVG*E ﬁghﬁ%@%% FEOBGEMmM=& [
Baselines

FlowBot3D| 134 | 57 |53 00 0.0 40 40 00 00 0.0 3.8 20.045.0 100.0 10.0 0.0 0.0 0.0 53 0.0 20.0 51.4

FlowBotHD (w/o CC)| 21.9 | 11.1 |21.3 5.0 2.5 28.0 14.0 20.0 8.0 0.0 6.2 20.0 20.0 20.0 38.0 33.3 48.6 10.0 6.1 0.0 80.0 57.1
FlowBotHD (w/CC)| 62 | 29 |13 50 0.0 0.0 0.0 10.0 00 0.0 0.5 200 0.0 0.0 200 6.7 5.7 100 2.0 0.0 0.0 429
Generator Only| 22.8 | 13.6 |49.3 15.0 0.0 16.0 40 0.0 8.0 2.0 10.2 20.0 25.0 100.0 16.0 50.0 2.9 0.0 9.0 0.0 90.0 40.0
Conditional Diffusion| 19.7 | 12.6 {24.0 10.0 0.0 4.0 8.0 40.0 4.0 16.0 9.4 20.0 60.0 0.0 18.0 20.0 34.3 15.0 7.4 0.0 30.0 74.3
Ours

HAVE (Ours) + GT obs flow| 2.5 | 2.3 [0.0 00 0.0 40 0.0 0.0 0.0 0.0 22 20.0 00 0.0 0.0 33 00 00 25 0.0 0.0 17.1
133 00 00 40 00 0.0 2.0 0.0 54 20.0250 200 0.0 33 0.0 0.0 53 0.0 10.0 25.7

HAVE (Ours) + Estimated obs flow| 6.7 | 5.6
Ours (Oracle)
HAVE (Ours) + Oracle Sampler| 1.7 ‘ 1.1 ‘0.0 00 00 0.0 00 00 00 00 05 200 50 00 00 00 00 00 2.0 00 00 57
Ablations

w/o Unconditional Score Loss| 3.2 | 29 [0.0 0.0 0.0 40 0.0 00 0.0 00 2.6 20.0100 0.0 00 67 0.0 0.0 41 0.0 100 17.1
w/o History Score Loss| 3.0 | 3.0 |0.0 0.0 0.0 80 0.0 0.0 0.0 0.0 3.0 200 0.0 00 0.0 33 0.0 0.0 45 0.0 100 114

Point Cloud as Result| 8.3 | 4.1 |00 0.0 0.0 0.0 80 0.0 0.0 0.0 1.3 20.050.0 0.0 10.0 10.0 57 0.0 3.7 0.0 0.0 57.1

Sparse Action| 9.1 | 3.7 /0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 200 10.0 1000 0.0 33 0.0 0.0 53 0.0 20.0 20.0

Table 1: Failure Rate % (]): Lower is better. AVG, = average over categories, AVG; = average over
all samples. All 22 categories are treated as train categories, and we test on unseen instances. We
run each object for 30 steps in simulation, and 30 samples are given for the verifier to choose from
at each step. We see HAVE’s overall performance increase compared with baselines and ablation
choices, as well as a more balanced ability across categories. Icon-to-text correspondence in Fig. 16.

6.1.2 Multimodal Doors in Simulation

To further test our method’s performance in an ambiguous setting, we also create a multimodal
dataset in simulation with doors from PartNet-Mobility. We create multiple duplicates of each door
with the same geometry but different joint positions and rotation directions (corresponding to 4 dif-
ferent opening directions - push left, push right, pull left, and pull right). For doors with handles,
we create 2 duplicates with handles (varying whether the door is push or pull), and we create 4
duplicates with the handle removed. In Figure 2, we show an example of a multi-modal door in
simulation. In addition to Failure Rate we also compute the Mean steps to Open (the steps taken
to open the door to 5%) as a metric of efficiency of disambiguating different modes with exploration.
From Figure 2, we can see that our method significantly improves the performance (reduces the fail-
ure rate and step number) on ambiguous doors compared to prior approaches and ablations (except
for the minor design variant “w/o Unconditional Score Loss”), further validating our approach.

6.1.3 Real World Ambiguous Door

We apply our method in the real world on a custom-made multi-modal door, similar to the multi-
modal door used in Li et al. [30]. To manipulate this object, we use a Franka Emika Panda Robot
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Figure 2: Multi-modal Door Dataset Performance: The left plot shows an example of a con-
structed multi-modal door in simulation with the same geometry but different opening directions.
The right bar plot demonstrates the efficacy metric Failure Rate and the efficiency metric Steps to
Open from which we can see our method’s improvements over baselines and ablation architectures.

with a Schmalz Cobot Pump as an end effector. We give each policy a maximum of 5 steps to
succeed; see Appendix D.3 for further details. We can see from Figure 3 that HAVE (Ours) has a
greater success rate over the different modes with a lower number of mean steps to open.

Success Rate (1) o Mean Steps to Open ()
Baseline (FlowBot3D)
35 == Ours (HAVE)
l ' l 30
!! ; 10

/ *\ Push-L Push-R Pull-L Pull-R Push-L Push-R Pull-L Pull-R
Figure 3: Real World Ambiguous Door Performance: The left side is the visual appearance of the
ambiguous door and the 4 modes it opens. We collect 5 trials for each mode. From the bar plot we
can see that HAVE demonstrates a more stable and efficient opening process.
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6.2 Uneven Object Pick-up

The task is to lift objects with unevenly distributed mass (unknown mass center). We constructed
a simulation environment with a Franka gripper equipped with a spatula, along with an ambiguous
rod dataset (one rod, but different mass centers) and an unseen object dataset (unseen sizes of rods,
and diverse objects), see Appendix D.2 for details. In both cases, positions for the centers of mass
are uniformly sampled along the object’s length. We train on the ambiguous rod dataset and evaluate
on both datasets to demonstrate the model’s capability and generalization ability.

Rod ‘ Unseen Fadhure) 1' Model Actions vs. Possible Action Rang:j“-mijT?::Luz:f:\l::sv:un HAVE (our:»wwmm —
FlowBot3D | 41.2 36.8 ~— 04 04
FlowBotHD (w/o CC) | 36.5 37.6 , 1
Generator Only | 36.7 36.8 Success AR %
Conditional Diffusion | 30.6 | 31.9 ol 0 .
HAVE + Uncond (Ours) | 32.9 345 = L - o
HAVE + Cond (Ours) | 29.4 28.1 v - - < - - T 5 3
Oracle Sampler | 4.8 24.5 step step

Table 2: Failure Rate % given Figure 4: Visualization of action sequence (dots) and theoretical
maximum steps on Ambigu- center of mass range (bars): “Conditional Diffusion” takes 5 steps
ous Rod dataset and Unseen to succeed, while HAVE (Ours) takes only 3 steps and each attempt
dataset (|): Lower is better.  is within the theoretical center of mass range.

In Table 2, we show the Failure Rate %: the percentage of objects failed to be lifted within 5 steps,
defined as those with a tilt angle exceeding 0.01 radians or an increase in the vertical distance of the
center of mass less than 0.01 meters. Each object is tested 5 times in the ambiguous rod dataset and
3 times in the unseen dataset. At each step, the verifier is given 20 action proposals. From Table 2,



we can see that on both the ambiguous rod and the unseen dataset, adding HAVE (Ours) as a veri-
fier decreases the failure rate compared to only using either unconditional generator or conditional
generator and other three baselines. Unlike in more complex environments like articulated objects,
HAVE performs well with both generator types, likely due to a simpler action space. Figure 4 shows
an example visualization of the “Conditional Diffusion” model (left) compared to our model’s out-
put (right); we show the theoretical upper and lower bounds of the rod’s center of mass after each
attempt (the tilting direction at each step indicates whether the selected point is on the left / right
side of the mass center) as bars, and the predicted positions by the model as scatter points.

6.3 Analysis

Architecture. We compare our architecture with a
vanilla transformer baseline where the action tokens 100 e i e
(Gembs {@empi}i_1) and observation tokens ({f;}i_;) | mHAVE + est. Vanilla + est.
are concatenated correspondingly and processed by self-
attention layers (see Appendix C.4). Specifically, we
demonstrate each model’s robustness to noisy estimation
in the Observation Flow (Sec. 5.3) in all three articulated ]
object environment (Fullset, Multi-modal door, and Held- | Be
out). Figure 5 shows that both models perform similarly
using the ground-truth flow; however, using estimated 00+
flows (from the DELTA 3D tracker [29]) hurts the per-
formance of the vanilla transformer more than our archi- Figure 5: Comparison between Vanilla
tecture (HAVE). This validates the benefit of our archi- Transformer and HAVE: Robustness
tectural design. Our intuition is that our design forces the to noisy observation flow.

model to learn the relationship between query and history

actions, making our model more robust to noise.

Robustness to Noisy Flow Estimates

16.1%

Success rate T
°
®
]

17.6%
Full Dataset Door Held-out

Number of samples: We analyze the sample efficiency of our verifier by conducting ablations on
how many samples we generate for the verifier to choose from for each step. From Figure 6, we can
see that by sampling 5 samples, the performance is already greatly improved, which demonstrates
the efficiency of incorporating a verifier. We also plot the time cost measured with 1 RTX4090 GPU
on the left to demonstrate the time required to generate and evaluate multiple samples.

Sample Time w.r.t Sample Count Failure Rate w.r.t Sample Count (Full Dataset) Door Held-out
Generator —e— HAVE (Ours) 06
2.01 —®— Verifier 0.20 Oracle Verifier
FlowBot3D (Baseline) 05 04
15 2015 \ 204 8
= k: s —e— HAVE (Ours) 03
g I} © o Oracle Verifier @
£ 1o 2 010 2 FlowBot3D (Baseline) | 2 o,
5 T 5 O
e e e
02
03 0.05 0.1 —e— HAVE (Ours)
01 Oracle Verifier
00 seses—e———* FlowBot3D (Baseline)

T T T T g g y T T T y g 0.0 T T T y g 0.0 T g g T
0 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 10 20 30 40 50
Sample Count Sample Count Sample Count Sample Count

Figure 6: Time and Accuracy vs Number of Samples: On the left, we plot the time used for gener-
ator and verifier w.r.t the number of generated samples (with verifier history length = 5); On the right,
we plot the failure rate w.r.t sample count, comparing HAVE with an oracle verifier (which always
selects the best sample from a given batch). See Appendix C.1 for details for oracle experiments.

7 Conclusion

In this work, we present HAVE, a novel history-aware verifier that reasons over past interactions to
guide action selection in ambiguous manipulation tasks. By leveraging a verifier to select among
sampled proposals, our method significantly improves efficacy and efficiency compared to base-
line approaches. We provide both theoretical analysis and empirical validation across a range of
simulated and real-world environments, demonstrating the benefits of our approach in handling fun-
damental ambiguities in manipulation. We hope that our findings can help inspire more adaptive,
history-aware manipulation paradigms through combining generation and verification.



8 Limitations

While our history-aware verifier demonstrated great improvements over baselines in various settings,
the current generation-verification pipeline’s performance is still strictly bounded by the expressive-
ness of the generator: if none of the generator’s proposals are good, the verifier won’t be able to
make improvements. Furthermore, our training data generation relies on per-task defined score and
privileged knowledge about the ground-truth action, typically obtained from simulation. This level
of supervision may not be practically available for a diverse range of objects in real-world scenar-
ios. In future work, we hope to further explore how the verifier can be used to actively improve the
quality of the generator’s generation, and how to learn score without privileged supervision.
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A Theoretical Motivation

A.1 Discrete Reward with Independent Generator Verifier Accuracies

Let a ~ m¢ be an action sampled from the generator, pi be the probability of the generated action
having reward 1. Let Ry (a) € {0, 1} be the ground-truth reward (i.e., whether the action is good or
bad), and V' (a) € {0, 1} be the verifier output.

We define:
pe = P(Ry(a) =1 | an~7g)
pv =P (V(a) = Rg(a))
that is, pg is the probability the generator generates a good action, and py is the probability the

verifier predicts the correct reward given an action, independent of the ground truth action reward
(We will show extension without this independence assumption in Theory A’).

We assume that p € (0, 1), meaning that the generator does not always generate correct / incor-
rect action proposals; otherwise, the performance will be deterministic and a verifier would not be
needed.
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Theorem A. Given pe € (0,1), N > 1, then E [Ry(awper)] > E [Ryt(@naive)] <= pv > 0.5
Proof.
The expected reward of naive sampling from generator: [E [Ry((@naive)] = pa X 14+(1—pa) %0 = pg.
The expected reward of the selected action using the verifier is:
B[Ry (awper)] = P(3i; V(ai) = 1) - E[Rg(a) | V(a) = 1]
+ P(Vi, V(a;) =0) - E[Rg(a) | V(a
PR=1,V=1)

0]

— (-0 =5,
P(R=1,V =0)

where @ = P (V(a) = 1) = (1 — pg)(1 — pv) + pgpy. and
P(R=1,V=1)=pg-pv, PR=1,V=0) =ps-(1—py).

Substituting into the expression, we get:

E[Rgt(aw/ver)] = (1 - (1 - Q)N) : ng)V + (1 - Q)N ’ ]%75)‘/)

We will first prove E[ Ry (awner)] > E[Rgi(@naive)] = py > 0.5, and show that each step is reversible
to prove the other direction.

IE[}zgt(awlver)} > E[Rgt(anaiVE)] =DG-

divide by Ny PV N 1—pv

Rewriting and simplifying:

=g G-V - 1

= (B o)+ [Ba-or ra-mn-0¥] >0
= (1) +0-@¥ B - >0
o () -ar i w--a]
o (5o 1-5)

= (B -1 n-a-* >0

Since pg € (0,1), we have Q € (0,1), then 1 — (1 — Q)N =1 > 0, so the inequality holds if and
only if:

p—v>1 = py>Q.

Q

13



Substituting the expression for Q:
pv > pepv + (1 —pe)(1 —pv),

Rearranging:
pv —pepv > (1 —pe)(1 —pv),
— pv(1—pg) > (1—-pe)(l—py).

Since pg € (0, 1), we can divide both sides by 1 — p¢, yielding:
py >1—py <~ py > 0.5.

Since all of the above steps are reversible, we prove that the verifier improves the expected reward
over naive sampling if and only if pyy > 0.5.

Therefore, when the verifier has better than random accuracy py > 0.5, the overall expected reward
is improved. This theory demonstrates the effect of our generator-verifier system.

Numerical Analysis: We also demonstrate the expected reward as a function of the number of
samples N for different values of pg and py in Fig. 7. We plot the simulated results where we
simulate 10k trials, within each trial we sample N samples and simulate the ground truth and verifier
reward with ps and py. We can see even a very biased generator (pg = 0.2) can be significantly
improved by a good verifier (pyy = 0.9) to almost 3x accuracy with only 10 samples.

Expected Reward vs. Sample Number (pG=0.2) Expected Reward vs. Sample Number (pG=0.5) Expected Reward vs. Sample Number (pG=0.8)

-=- pV =06 (theory) --- pV = 0.8 (theory)
® pV=06(sim ® pV =08 (sim) AT U e00-0-9-0-0-0-000-9¢
09 -== pV = 0.7 (theory) pV = 0.9 (theory) 0 g-e 8809l gys-oe-e-e-0-0
: p .
@ pV=07(sim pV = 0.9 (sim) ;;:r . ® vy -
0.8 T R A ’ 4
o
&
po7 T e-e-eet8 ol ot yeb oo
5 |
2 i
o o ) .
x 06 o ) .Y
o %
a 7]
Sos o e 2 S Y 4
2 FEE R A -9 A <
o] 4
0.4 o
v 4,...14‘-0'1-***1”11
03 ./,‘ === pV=0.6(theory) --- pV = 0.8 (theory) === pV =0.6(theory) --- pV = 0.8 (theory)
Y ew oo SUPAN | ® DV =06 (sim) ® pV =08 (sim) ® pV=06(sim) ® pV =08 (sim)
% -== pV = 0.7 (theory) pV = 0.9 (theory) -== pV = 0.7 (theory) pV = 0.9 (theory)
024 ® pV=0.7(sim) pV = 0.9 (sim) e pv=0.7(sim) pV = 0.9 (sim)
12345678 91011121314151617181920 12345678 91011121314151617181920 12345678 91011121314151617181920
N (Number of Samples) N (Number of Samples) N (Number of Samples)

Figure 7: Expected and Simulated Reward w.r.t. Sample Number: We can see the expected and
simulated improvements the verifier introduces with different generator and verifier accuracy.

A.2 Discrete Reward with Dependent Generator Verifier Accuracies

We can also extend the theory to cases where the generator and the verifier is not independent. In
the binary reward setting, dependence implies that the accuracy of the verifier differs depending on
whether the generated action is good or bad, that is, py1 = P(V(a) = Rg(a) | Rg(a) = 1) and
pvo = P(V(a) = Ryi(a) | Ry(a) = 0). Below we show our theory can be extended to this case.

Let a ~ 7 be an action sampled from the generator, pg be the probability of the generated action
having reward 1. Let Ry (a) € {0, 1} be the ground-truth reward (i.e., whether the action is good or
bad), and V' (a) € {0, 1} be the verifier output.

We define:

pc =P(Ry(a) =1 | a~7g)

pvi =P (V(a) = Ry(a) = 1| Ru(a) = 1)

pvo = P(V(a) = Rg(a) = 0| Ru(a) = 0)
that is, pg is the probability the generator generates a good action, and the verifier’s accuracy is
dependent on the generation quality (ground truth reward of the action), py/; is the probability the

verifier predicts 1 given the action is good, and pyq is the probability the verifier predicts 0 given
the action is bad.

14



Thm. A’. Given p; € (0,1), N > 1, then E[Rgi(awner)] > E[Rgt(@naive)] <= pv1 + pvo > 1.
Proof.
The expected reward of naive sampling from generator: E [Ry(anaive)] = pa X 1+ (1—pa) X0 = pa
The expected reward of the selected action using the verifier is:
E[Rg(awner)] = P(3i, V(a;) = 1) - E[Rg(a) | V(a) = 1]
+ P(Vi, V(a;) =0) - E[Rg(a) | V(a) = 0]
P(R=1,V =1)

= (=08 =5y
P(R=1,V =0)
+a-Qt P(V =0)
where
Q=P\V(a)=1)=pg-pvi+ (1 —pac)-(1-pvo),
and

PR=1,V=1)=pc-pvi, P(R=1V=0)=ps-(1-py1).
Substituting into the expression, we get:
1—
B{R(awna)] = (1= (1= Q)%) - P 4 (1 - @ 2B,

We will first prove E[Ry(awner)] > E[Rgt(anaive)] = pv1 + pvo > 1, and show that each step is
reversible to prove the other direction.

E[Rgl(aw/ver)] > E[Rgt(anai\@)] =DPaG-

divide by Ny Pvi N 1—pv1
— (1-(1-Q) )'?4’(1*@) 100 > 1.

Rewriting and simplifying (omitting steps similar with proof of Theory A):

(1-(1-QM) -2 -y . L221oy

Q 1-Q
= (1-0-QY) TG+ )1 -QN 1
— (pcvgl—]951(1—42)1\’)+(1—le)(1—Q)N—1>1
=g G- ) (1= QN >
bvi 1 \N-1
<:><Q 1)[1 (1-Q)V '] >o.

Since pg € (0,1), we have Q € (0,1), then 1 — (1 — Q)N =1 > 0, so the inequality holds if and
only if:

iy — >0

Q

Substituting the expression for Q:
pv1 > pepvi + (1 —pa)(1 = pvo),
Rearranging:

pvi —pepvi > (1 —pa)(1 — pvo),
= pri(l —pg) > (1 —pa)(1 — pvo).
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Since pg € (0, 1), we can divide both sides by 1 — p¢, yielding:

pvi>1—pyg < pvi+pyvo>1

Since all of the above steps are reversible, we prove that the verifier improves the expected reward
over naive sampling if and only if py1 + pyo > 1.

A.3 Continuous Reward

We now extend the theoretical analysis to continuous rewards. Consider a task where the ground
truth reward function Ry : A — R that assigns real-valued rewards. The generator G produces
actions a € A such that Ry (a) follows a distribution with mean p1; and variance 0. The verifier
V : A — R provides scores for a given action. We make the following assumptions:

» Assumption 1: The generator’s reward follows a normal distribution X = Rg(a) ~
N (/’LGa Ué)

* Assumption 2: The verifier’s score satisfies: Y = V' (a) = X (a) + ¢, where € ~ N (0, 0%,)
and is independent of X, therefore Y ~ N (uc, 02 + o%).

We compare the expected reward of 2 methods:

* Method 1 (Naive Sampling): Sample 1 action ane ~ G, the expected reward is
E [Rgt(anaive)] = HG-

e Method 2 (Verifier Selection): Sampling N actions and selecting awwer =
arg max; V (a;). We denote the expected reward as E[Rg¢ (awner)] = pc + Aver-

We denote X(y) as the maximum ground truth reward of the N samples: X(y) =
max{X1, Xo,..., Xn}, where X; = Rg;(a;). We also define Y| ) as the maximum verifier’s reward
of the N samples: Y{ ) = max{Y1,Ya,...,Yn}, where Y; = V'(a;).

Following results derived from Extreme Value Theory on normal variables (Theorem 1.5.3 in Lead-
better et al. [33] and Theorem 5.1 from DasGupta et al. [34]), we first approximate E[Z( N)] where
Z(n) is the maximum reward of N samples from a standard normal distribution N/ (0, 1):

Inln N + In(47) vy
E[Z ~V2InN — +
12w 2v/2In N V2In N

EY(n)] = ne + /o2 +op - ElZ(n)]

Given Assumptions 1 and 2, X and Y obey a bivariate normal distribution with correlation p:
Cov(X,Y)=E[X (X +¢)] — E[X]E[X +¢]

= (E[X*]+ E[Xd ) - E[X](E[X]+ E[¢])
= E[X]E[¢]=0 ey

=E[X?] -E[X]? = 0.

_ Cou(X,Y) o2 B og
ox,0y oG oL +oZ \Joi +ol
Therefore the conditional expectation for X given Y is E[X|Y = y| = px + ox p 55 = pg +

02 /(0 + o) * (y — pc), Therefore we have:
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Aver = Eyy, [E[X |Y =Y(w)]] — ne (aw of total expectation over Y(x))

2
O-G .
= —~2 _ (E[Y, — substitute £|X | Y =
0_%+0_‘2/( [ (N)] MG) (u 1t [ | y])
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We provide numerical simulation results to visualize and validate the approximation: at each trial,
we sample N samples from N (u¢, 0% ), and add a verifier noise to each sample € ~ N(0,0%),
and record the difference (improvement) of the reward of the sample with the largest verifier score
and the reward of the first sample. Then we plot the simulated average improvement over 10k
trials with the theoretical approximation against different N, o, and oy in Fig. 8. We can see
the theoretical approximation stays close to the simulation data and is intuitively interpretable. As
N grows, E[Zn)] ~ v2In N, so the gain increases with the number of samples, in proportion to

v21In N. For fixed verifier noise oy, the prefactor o2,/ /oé + 0\2, grows nearly linearly in o once
oc > oy, meaning a wider ground-truth reward spread yields almost proportional extra potential
benefit from the verifier. Conversely, as the verifier uncertainty oy increases, the same prefactor
decays like 1/0y meaning that the improvement brought by verifier decays inversely proportional
tooy.

Improvement vs N Improvement vs 6_G Improvement vs o_V
2.251 | == simulation 231 == —e— Simulation
2.001 6+ === Approximation 2.24 === Approximation
€ 1.754 €5 2214
£ g g
$ 1.501 £ 41 £ 2.0
> > >
2 1.25 234 2 194
Q Q Q
£ 1,00 E 29 E 189
0.75 —e— Simulation 14 1.7+
0.501 Approximation o] 1.64
0 20 40 60 80 100 0.0 0.5 1.0 15 2.0 2.5 3.0 0.2 0.4 0.6 0.8 1.0
Number of candidates (N) Reward Std Dev (0_G) Verifier Noise Std Dev (o_V)

Figure 8: Simulation Results (Normal Reward): We plot the simulated improvements and the
theoretical improvements against different IV, o, and oy . The default values for parameters that
are fixed are N = 50, o = 1.0, and o = 0.5.

We also numerically simulate improvements with different continuous reward distribution and veri-
fier model apart from the bivariate normal definition above:

Gaussian Mixture Reward We simulate the situation where the reward of the generator’s propos-
als follows a gaussian mixture model distribution p(z) = 0.5 x N'(=0.5,02) + 0.5 x N'(0.5,0%)
(e.g. when the generator can generate multiple action modes with equal possibilities, like push and
pull a door). We plot the improvements against N, o and oy in Fig. 9.

Uniform Reward We simulate the situation where the reward of the generator’s proposals follows
a uniform distribution U(0, 1) (e.g. when the generator can generate various actions with equal
possibilities), and plot the improvements against N and oy in Fig. 10. We can see that the with
about 10 samples the improvement is beginning to become significant.

Verifier Pairwise Accuracy We also demonstrate the effect of verifier against verifier pairwise ac-
curacy: P (V(a) > V(D) | Rgi(a) > Rgi(b)) = pv. This measure removes the assumption that the
verifier is an unbiased estimation of the ground truth reward. We simulate with reward distribution
of U(0, 1) and plot the improvements against N and py in Fig. 11. We can see that with py > 0.6
there is a significant improvement.

Using the above theoretical and numerical analysis, we see the improvements of the method that
uses the verifier together with the generator (compared to only using the generator) across various
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Figure 9: Simulation Results (Gaussian Mixture Model Reward): We plot the simulated im-
provements and the theoretical improvements against different IV, o and oy . The default values
for parameters that are fixed are N = 20, o = 1.0 and oy = 0.5.
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Figure 10: Simulation Results (Uniform Reward): We plot the simulated improvements and the
theoretical improvements against different NV, and oy. The default values for parameters that are
fixed are N = 20 and oy = 0.5.

reward distributions, both discrete and continuous, validating the soundness and efficacy of our
generator-verifier approach.

B Method Details

B.1 Action Generator

Following Li et al. [30], we construct our ac-
tion generator with a PointNet++ [28] encoder e )

Eo and a Diffusion Transformer (DiT) [35] de- S Pomntiet
noiser Dg as shown in Fig. 12. We remove
the positional encoding in original DiT because
point clouds are unordered. Given the current

z
x
=)

observation point cloud 0 € RV*3, and anoisy ~~ nx3 Nx3

dense 3D articulation flow (defined in Eisner Nxd

et al. [31]) anoisy € RY*3, we first use the - . o ,
PointNet++ encoder to encode the noisy action L e Diffusion Transformer MR

Without Positional Embedding

into a point-wise embedding (R *?, where b is

the embedding dimension). Then we input the  Diffusion Head
per-point features into a Diffusion Transformer
(DiT) to predict the noise € to denoise from the
noisy action field.

In our setting, we use N = 1200, d = 128. And the size of DiT is depth = 5, hidden size = 128, and
4 heads. We train with learning rate = le-4, AdamW optimizer with weight decay = le-5, batch size
= 32 and train for 400 epochs.

Figure 12: Action Generator Architecture

From 3DAF to Dense Action Field The generator generates 3DAF to provide flexibility of se-
lecting grasp points, and we by default choose the point with the largest magnitude as the action
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Figure 11: Simulation Results (w.r.t. Verifier Pairwise Accuracy): We plot the simulated im-
provements and the theoretical improvements against different IV, and py . The default values for
parameters that are fixed are N = 20 and py = 0.8.

point (which means the largest articulation leverage as illustrated in Eisner et al. [31]), and the cor-
responding flow as the action direction. The action is then transformed into a dense action field for
verifier evaluation. The verifier takes in dense action field because of (1) generating random actions
for training is more intuitive compared with generating random flows that needs specification of an
articulation, (2) action is a more generalizable concept and representation.

For the uneven object pick-up task, we cannot directly apply articulation flow representation due to
the lack of hinge mechanism for articulated objects. Instead, our generator represents each surface
point by a “pick-up flow” vector: its direction is normal to the object’s surface (vertical), and its
magnitude equals the point’s distance from the object’s center of mass. We then define leverage
analogously, selecting the action point as the location with the smallest pick-up flow magnitude.

B.2 Dataset Details

We sample 200 history trajectories for each object in the dataset with various length (range of 1 to 30
for articulated objects and 1 to 10 for uneven object pick-up), and for each trajectory, we include 10
random actions along with ground truth actions and transformed history actions (actions are trans-
formed to the current state, e.g. if the history action is based on closed doors while the current state
is an open door, the history action point and direction will be transformed to the corresponding open
angle). We simulate each action to collect corresponding ground truth reward labels to supervise
training.

Ground truth rewards The ground truth reward are defined according to task goal: for opening
articulated objects, the reward is defined as the relative amount the action opens the door against
the ground-truth action at the same state; for uneven object lifting, the reward is the signed distance
between the lift point and the mass center.

B.3 Model Details
For action and action result sequential reasoning module, we each use 4 layers of self-attention with
4 heads, and the action and action result embedding dimensions are both 128. We sample 1200

points for each point cloud during training and inference. We train the scoring module for 50 epochs
(or early stop at convergence) using AdamW optimizer with Ir = le-4.

C Baseline and Ablation Details
In this section, we describe the architecture of our baselines and ablations in details.

C.1 Oracle Experiments
We include two types of oracle experiments for better understanding of the model’s performance: (1)

Oracle Sampler: We always append the ground truth action into the action proposals; this experiment
aims to test the verifier’s ability with optimal generator; (2) Oracle Verifier: We always choose
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the closest-to-ground-truth action from the batch when selecting from the action proposals; this
experiment aims to test the upper limit of using a verifier on the current generator.

C.2 Sparse Action

In the Sparse Action ablation, instead of representing an action as a dense action field (Sec. 5.3), we
represent the action as a sparse action field where only the contact point has nonzero values: given a
point cloud {p; }, and an action point p and direction d, the sparse action field is the point cloud with
3 extra channels to represent the action, calculated as {d; : d x 1(p; = p)}. We keep the exact same
architecture, but force the first downsampling layer to sample the contact point to prevent complete
information loss due to downsampling.

C.3 Point Cloud as Result

In the Point Cloud as Result ablation, instead of explicitly extracting observation flow from the ob-
servation pairs before and after an action, we directly encode and pass the observations sequence to
a self-attention layer to extract corresponding features as shown in Fig. 13. This gives the model
all the information needed to complete the task. The model would need to understand the move-
ments between frames implicitly, unlike our architecture that explicitly computes the flow between
observations. The other parts of the architecture are kept the same as HAVE.

Action Proposal History Actions
Action Result
Encoder | Encoder
MLP
Self-Attention Uncond Self-Attention

Score
Encoder

Score

Cross-Attention Decoder

Mo fo B f.

Figure 13: Point Cloud as Result (Ablation) Architecture: We pass the observations sequence
directly through a self-attention layer without extracting observation flow from observation pairs.

(@ @B @)

| | |

Softmax
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C.4 Vanilla Transformer

In the Vanilla Transformer ablation in Sec. 6.3, instead of encoding actions and results indepen-
dently and using an explicit dot-product attention layer to reason about the action proposal, in this
ablation we concatenate the encoded action features with corresponding result features, and use
an end-to-end transformer to predict the final score as shown in Fig. 14. We first encode action
proposal @, history actions and results {(0;—1,a;,0;),4 € [t — 1]} in the same way as HAVE:
Gemb = Eaction(d)a {aemb,i = Eaction(ai)yi S [t - 1]}, {fz = 0bS(0i7170i)7i € [t - 1]} Then
we concatenate the corresponding actions and results {h; = concat(aes, fi),t € [t — 1]}. We
concatenate the action proposal embedding with an learnable token f to keep the same dimension
with {h;}: h = concat(Gemp, f) The sequence {il, ho, h1, ..., ht} is then passed through a trans-
former that produce embedding tokens for each timestep: {/’, h{y, h}..., b}, we take & = A’ as the
final score embedding for the action proposal, and pass through an MLP to obtain the final score
prediction.

We supervise the model with 2 losses, final score loss that compares the predicted score with the
ground truth score for the action proposal, and history score loss in an encoder-decoder manner
where we induce another MLP to decode the result features {f;} to scores and supervise with the
ground truth scores for history actions to encourage learning better representation of action results.
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Figure 14: Vanilla Transformer (Ablation) Architecture: We concatenate the PointNet++ en-
coded action features and result features and pass through an end-to-end transformer.

C.5 Conditional Diffusion

To compare HAVE with end-to-end history-aware conditional diffusion without verifier, we con-
struct a conditional diffusion structure merging the unconditional generator and the history-aware
verifier structure as shown Fig. 15. We separate the history-aware generator into a history encoder,
and a generator head. The history encoder takes in current observation / state, and the history actions
and results, and encodes everything into a history embedding representing the guidance information
obtained from history interactions. We use the vanilla transformer architecture in Appendix D.3
because instead of outputting a score for a specific action proposal, the history embedding should
include information about the possible action itself where the HAVE architecture focused on calcu-
lating a score is not directly applicable.

The history embedding will be added with diffusion timestep as a condition into the Diffusion Trans-
former denoiser through adalLN-Zero conditioning. We train the model with classifier-free guidance
style where we randomly drop out histories during training. When there is no history, the history
embedding will be replaced by a learnable token.

Current . .
Observation History Actions

W la (el (Mall oo 0w owoim

| Nx6
Observation Action Result
Encoder Encoder Encoder j \
L R

D m mom
i fo f1 fe

Step't

History
Embedding

Transformer

Generator

History Encoder

Figure 15: Conditional Diffusion Architecture: We first embed the histories and inject the embed-
ding as a condition into DiT in the denoiser.

D Experiment Results and Details

D.1 Held-out Articulated Categories

Following the protocol of Eisner et al. [31], we split PartNet-Mobility dataset [36] into 11 training
categories, and leave 10 categories entirely unseen. In Table 3, we report the failure rate on unseen
categories for each of the baselines and for our method. We provide the icon-to-text correspondence
in Fig. 16 for easier understanding of the corresponding categories. We observe significant perfor-
mance improvements with our method compared with baselines without a verifier. We underperform
FlowBotHD (w/CC) where it includes a heuristic that filters out actions that doesn’t obey with suc-
cessful history action movements. This consistency check in FlowBotHD is like a task-specific
ground truth verifier, and due to its heuristic design, it is not directly generalizable to other tasks
outside of articulated objects (e.g. in uneven objects pick-up, the important phase is to reason about
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failures where there is no successful history available). Instead, our verifier architecture provides a
generalizable insight and achieves comparable results. For ablations, we observe removing uncon-
ditional score loss slightly improves the performance. This indicates that whether or not supervise
the unconditional score is a minor design choice whose performance may vary across tasks.

e ve AE A m Ll &

Refrigerator Box Bucket Chair Dishwasher Door Oven Microwave Laptop Kettle

1 ¢ =M M™m&OD B =

Window Phone KitchenPot Safe Furniture Table Toilet TrashCan WashingMachine Stapler

| afEfe]
=

Figure 16: Articulated Objects Categories Legend: We show the icon-to-text correspondence for
better interpretation of the table.

AVG, |AVG, | ¥ g E BEgm=§ 1
Baselines

FlowBot3D| 39.6 | 29.4 (56.0 66.7 38.6 27.9 28.5 14.1 25.0 0.0 96.7 42.4

FlowBotHD (w/o CC)| 30.4 | 28.1 |46.7 6.7 13.8 37.9 6.7 45.9 31.0 0.0 73.3 42.4
FlowBotHD (w/ CC)| 14.8 | 10.9 {22.7 0.0 6.2 329 3.6 153 4.6 0.0 30.0 32.9
Generator Only | 44.4 | 25.0 |85.3 66.7 14.8 65.7 30.9 44.7 8.0 0.8 83.3 43.5

Conditional Diffusion| 53.4 | 41.2 [78.7 66.7 46.7 60.7 58.8 35.3 26.6 0.0 86.7 74.1

Ours

HAVE (Ours) + GT obs flow| 16.9 | 11.3 (44.0 13.3 0.5 13.6 17.6 27.1 3.2 0.0 10.0 40.0
HAVE (Ours) + DELTA| 21.5 | 14.1 |62.7 6.7 2.4 20.0 20.6 35.3 4.2 0.0 23.3 40.0
Ours (Oracle)

Oracle Sampler| 12.2 | 9.5 |30.7 0.0 2.4 10.7 11.517.7 24 0.0 3.3 429

Oracle Verifier| 14.4 | 9.2 [58.7 6.7 1.0 10.7 6.1 23.5 24 0.0 3.3 31.2

Ablations

w/o Unconditional Score Loss| 16.1 | 10.6 [60.0 6.7 1.0 143 7.9 27.1 2.6 0.0 3.3 38.2
w/o History Score Loss| 18.1 | 10.6 {52.0 0.0 0.5 12.1 9.1 294 2.2 0.0 36.7 38.8
Point Cloud as Result| 23.5 | 13.0 {62.7 6.7 3.8 19.3 12.1 33.0 2.6 0.0 56.7 38.2
Sparse Action| 22.7 | 12.5 |72.0 33.3 1.9 15.0 9.1 282 3.1 0.8 23.3 40.6

Table 3: Failure Rate % () on Held-out Categories: Lower is better. AVG, is the category-wise
average, AVG; is sample-wise average. HAVE provides substantial improvements over baselines
without a verifier.

D.2 Uneven Object Pick-up

We constructed the training ambiguous rod dataset with 17 rod replicates of the same size and
assigned the mass center randomly across the rod length. For the unseen test dataset, we included
40 rods (with sizes and mass centers different from training dataset), 20 complex bookmarks, 20
irregular bookmarks, and 20 knives of various lengths, widths, and heights. Examples of the visual
appearances of each categories are shown in Fig. 17.

D.3 Real-World Ambiguous Door

To show HAVE’s ability to transfer to real world scenarios, we visualize the process of two real
world trials. We plot the sampling distribution from the generator, the average verifier score for
each mode, and the 95% confidence interval to demonstrate how the generator and the verifier work
together. In Fig. 18, the door is configured to be opened by pull right (opens from the front right),
and the model first tries push left (push is also executed by pull from the back) which does not
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Figure 17: Uneven Object Dataset Examples: From left to right, we show examples of the visual
appearance of rod, knife, complex bookmark and irregular bookmark in our uneven object dataset.

move the door. For the next step, the sampled batch from the generator has a similar distribution
because the observation is similar. Despite being frequently generated by the generator, the failure
mode (push left) receives consistently low scores (low mean and very small confidence interval).
The verifier ends up choosing the correct action (pull right) among the three remaining actions and
opens the door.

Step 1 Step 2

erator Sample Frequency
Generator Sample Frequency

Gene

count
A A meanzoswa | o

o i
Push left Pushright  Pullleft  Pull right F 5 Push left Pushright Pullleft  Pull right

MR <.
’V 5 7 Open

Push Left Pull right

Initial State

Figure 18: Real World Analysis (Example 1): HAVE suppresses the failure mode “push left”
despite it being frequently generated from the generator and opens the door.

In Fig. 19, the door is configured to open by pull left. The first two steps are similar, except that
the pull right action opens the door for a small amount. Then given the slightly opened door, the
generator is also biased towards the correct mode based on the geometry, and the verifier assigns
higher scores for actions that are not failures before, together results in the correct open mode. This
demonstrates that with verifier and generator working together, we are effectively utilizing both
geometric and history cues towards a successful decision.

step 1 step2 step3

| I n 2
‘ e BS | : = I a |
13 No Movement ) v Open
/ . M
*,“ - 3 4 | ]

Push Left Pull right Pull left

Figure 19: Real World Analysis (Example 2): HAVE takes 3 steps to explore towards the correct
open action without repeating failure modes.
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D.4 Generation-Verification for Hierarchical Policy Learning

Our idea of using a verifier in ambiguous settings can also be extended to other settings like hi-
erarchical policy learning pipeline. In this section, we utilize high-level sub-goal priors to guide
low-level policies to tackle benchmark robotic manipulation tasks in MimicGen [37] (Figure 20).

calaalad sl

> [ ,
. ) il
v &54d
(a) Square D2 (b) Nut Assembly DO (c) Threading D2

Figure 20: Experimental environments from MimicGen [37]: The left image in each sub figure
shows an initial state of the environment, and the right image shows the goal state.

Sub-goal Generation for Multi-stage Tasks. We consider manipulation tasks in MimicGen [37]
using a robot manipulator with 2-finger grippers. Given an expert demo trajectory 7 =
(s0, a0, 81,01, , ST), we define critical sub-goal frames ¢1,ta,- -+ , ¢ € {0,1,--- , T — 1} as the
time steps when the robot gripper switches from open state to closed state or from closed to open.
For each time step between two critical sub-goal frames in the expert trajectory, i.e., t € [t;, ti+1),
we augment the data point by incorporating the robot gripper point cloud at the sub-goal frame ¢,
as the ground-truth sub-goal information for our hierarchical pipeline, i.e.,

D = {(st,at, P It € [ti tina) o' (1)
where P, is the robot gripper point cloud at time step ;1.

Hierarchical System Pipeline. The pipeline mainly consists of two critical parts: (a) High-level
sub-goal predictor takes visual observation as input and predicts the next sub-goal in the form of
gripper point clouds. (b) Low-level robot policy takes visual observation and sub-goal conditioning
as input and generates low-level robot action through diffusion process.

For high-level sub-goal generator, we follow the model backbone in TAX3D [38]. In training time,
the input of the model is current gripper point cloud and the full-scene point cloud. The ground-truth
target flow is the per-point displacement between the current gripper point cloud and the sub-goal
gripper point cloud. For each expert demo trajectory 7 = (sg, ag, $1,a1,--- ,ST), we create T
input-label paired data points for training the TAX3D model. During inference time, randomly
sampled displacements AX ~ N(0, I) are de-noised conditioned on current gripper features and
full-scene features. The final A X is predicted to displace the gripper into a sub-goal configuration.

For the low-level policy, we use a modified version of 3D Diffusion Policy (DP3) [39], which con-
sists of a point cloud encoder that encodes the point cloud observation into a latent embedding, and a
conditional denoising diffusion model that generates noise-free actions for execution. For the point
cloud encoder, we perform cross attention among full-scene point cloud, current gripper points and
sub-goal gripper points with Rotary Position Embedding [40].

Verifier as Sub-goal Selector. In this setting, high-level sub-goal prediction features implicit multi-
modality and ambiguity, due to the fact that the TAX3D model inputs are very similar near critical
sub-goal frames while target predictions switch from the previous sub-goal to the next stage. Take
Square D2 (Figure 20(a)) as an example, when the gripper is about to grasp the object, the high-
level prediction of sub-goal gripper points should switch from the object handle to the target peg.
To this end, we use a separately-trained verifier to select the best sub-goal prediction from multiple
TAX3D-generated high-level predictions.

More specifically, we use PointNet++ [28] as the model backbone and fit the model for binary
classification. In training time, we feed the network with positive demos that consist of full-scene
points and ground-truth sub-goal gripper points, and negative demos that consist of full-scene points
and randomly perturbed ground-truth sub-goal gripper points. In inference time, we use the model
to score TAX3D samples by passing in current full-scene points and predicted gripper points, and
then choose the one with the highest score as the high-level sub-goal prediction.

Results. We report the performance of the whole hierarchical pipeline with different high-level
conditions in Table 4. TAX3D refers to conditioning on TAX3D predictions with 1 sample, and
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TAX3D+ Verifier refers to sampling 5 TAX3D predictions and using the score predictor to select the
best sample as high-level guidance in inference. Generally, the verifier helps tackle ambiguity at
critical goal-switching frames and guides the low-level policy to better complete benchmark tasks.
This experiment supports our main idea of using a verifier for better action selection and demontrates
the insight’s generalization across tasks.

High-level Type | Square D2 Nut Assembly DO  Threading D2

TAX3D | 0.29£0.03 0.11+0.08 0.10+0.03
TAX3D+Verifier | 0.41+0.12 0.15+0.13 0.19+0.07

Table 4: Success Rate on MimicGen [37]: benchmark tasks (1). We train on 3 seeds for each task.

E Analysis

E.1 Verifier Performance w.r.t History Type

Failure History (Articulated objects) : On the multi-modal door dataset, we create failure inter-
action histories (observation flow is set to zeros to represent failure results) with different lengths and
failure modes and visualize the normalized scores predicted by the verifier in Fig. 21. We sample 20
actions (different contact point) from each mode (push left, push right, pull left, pull right). Given a
specific failure history sequence, we evaluate the sampled actions with the verifier and calculate the
normalized score, if the corresponding mode of the action appears in the history sequence, it will be
counted as the “failure modes”, and other actions are counted into “other modes”.

1-Step Failure History 2-Step Failure History 3-Step Failure History

H
o
Iy
o
-
o

History Length | Valid Rate
One step 99.79%
Two steps 97.47%
Three steps 99.01%

Table 5: Failure History
Analysis (Valid Rate): the L
top-selected actions almost — *°
always avoid repeating fail-

ures, indicating that failed ac-  Figure 21: Failure History Analysis (Average Scores): Verifier
tions are suppressed in later gcore analysis under different failure histories. Actions matching
selections. failure modes receive lower scores, showing the verifier’s ability to

learn from failure histories.
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We plot the distribution of normalized score (normalizedS to [0,1] range using min-max normal-
ization for better visualization) predicted for failure modes and other modes across different history
actions, and different doors in the multi-modal door dataset. We can see that on average the pre-
dicted scores for failure modes are lower than other modes. We also demonstrate in Table 5 the
percentage of the trials where the selected action (action with the highest score) among the 20 * 4
proposed actions lies in “other modes”. We observe almost 100% of the chosen actions avoid failure
actions, demonstrating HAVE'’s ability to understand failures and avoid repeating failures.

We also demonstrate detailed score predictions for each mode given one step failure history for 2
randomly selected doors in Fig. 22. We can see that the mode that has led to failure in the history is
suppressed by the verifier.

Success History (Articulated Objects) : To test the verifier’s ability to utilize success histories,
we demonstrate the verifier’s evaluation for actions under seriously occluded point clouds given a
successful history action. In Fig. 23, we give the verifier a successful history at 20 degrees, and
make it reason about occluded point clouds at around 80°. We first construct action batch with
the correct action direction but different action points, and plot the normalized score heatmap. We
can see that the verifier basically understands what is a better grasp point (larger leverage) despite
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Figure 22: Failure History Analysis (Examples): Verifier predictions for each mode under one-step
failure history on two example doors, showing score suppression of previously failed modes.

the point clouds are geometrically ambiguous. We then keep the action point the same (as the
top leverage point in ground truth), and rotate the ground truth action direction around the z-axis
(vertical to the ground), and plot their predicted normalized scores. We can see the scores are higher
when it is closer to the ground truth direction (closer to 0° and 360°). This experiment demonstrates
the verifier’s ability to refer to previous successful histories (even with large open angle difference
and thus very different point cloud) and reason about seriously occluded states with fairly precise
understanding of good action points and directions.

/ Normalized Score of Different Normalized Score of leferenl\

Contact Point Angle Deviation
10
os
Current o
Observation zoe
(Open 76°) i
02
00
"0 45 s0 135 180 225 270 315 30
e ‘angle ()
Verifier
Prediction
Normalized Score of Different Normalized Score of Different
i Contact Point Angle Deviation
10
Obiles:oari,'on History Action Current i o
© r\1/2(IJ“) (Ground Truth) Observation % o E 5o
pe (Open 80°) R X { foo
P 3
Seriously Occluded A :).'. } | =
* 9 ' Fy 02
£
o S

4 0 @ o 135 180 225 270 315 %60
4 angle ()

Figure 23: Successful History Analysis: Given a successful history, we use the verifier to evaluate
action proposals on a new state (geometrically very different from the history observation) of the
same object. (1) With a fixed ground-truth direction, the score heatmap for varying contact points
shows the verifier favors points with better leverage; (2) With a fixed optimal contact point, the
verifier scores different action directions, correctly assigning higher scores near the ground truth.

Failure History (Uneven Objects) We also demonstrate a similar learning from failure mecha-
nism for uneven object pick-up. During each pick-up attempt, the tilting direction of the object will
leak information about which side the center of mass lies on. Therefore, we can calculate a theo-
retical center of mass range at each step based on the previous histories. Like in Fig. 4, we plot the
ground truth center of mass as a horizontal line, the theoretical center of mass range as bars, and the
action point chosen at each step as scattered dots. The ideal behavior is that with history information,
the model can choose within the theoretical boundaries at each step and converge to the ground truth
position with fewer steps. In Fig. 24, we can see that HAVE’s choices lie within the theoretical range
at each step, and uses only half of the steps used by the generator. In comparison, the generator-only
method repeatedly fails regardless of valuable information from the history failures.
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Selected Action vs. Possible Action Range - Generator Only HAVE (Ours)
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Figure 24: Uneven Object Verifier Analysis (Example 1): HAVE narrows the action space each
step by leveraging information from failures, leading to a faster success.

Similarly in Fig. 25, the generator-only method breaks out of the theoretical boundary more often,
while ours mostly lies within the boundary with the third step being a slight violation. The visu-
alizations demonstrate HAVE’s ability to actually reason about history actions and extract useful
information from previous failures.
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Figure 25: Uneven Object Verifier Analysis (Example 2): HAVE learns from history, its selected
actions stay mostly within the theoretical range at each step.

E.2 Verifier Performance w.r.t History Length

We experiment in all three articulated objects environments with different maximum history K
length during inference time, where we only keep the most recent K step histories. As shown
in Fig. 26, we see that the improvement from using 1-step history to 5-step history is significant,
further increasing history length improves the performance in fullset and held-out categories, but in
a much smaller scale. The intuition behind this is that with a short history length, there might not be
enough context for the model to reason with to select the correct mode, but with a long history, the
information is often times redundant and harder to process and may induce instability.

E.3 HAVE with Conditional Generators

We compared the performance of HAVE when paired with either an unconditional or a conditional
diffusion generator. As shown in Fig. 27, using an unconditional generator with HAVE consistently
yields better results in environments with complex action spaces, such as for articulated objects. A
potential reason is that the unconditional generator is more expressive and captures a wider range of
actions. In contrast, the conditional generator, which is trained to reduce ambiguity, is more likely
to experience mode collapse, limiting the verifier’s ability to assist. For environments where the
generator is less confident, as with held-out categories, it tends to generate more diverse modes,
allowing the verifier to improve performance more significantly compared with other environments.
Finally, in the simpler ”"Uneven Objects” environment, the conditional generator’s history-aware
structure allows it to model the action distribution more effectively, leading to better performance.
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Figure 26: Max History Length Analysis: Performance improves with longer history up to a point,
but excessive context can introduce redundancy and instability.
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Figure 27: Performance of HAVE with Unconditional and Conditional Generators: The better
expressiveness of the unconditional generator allows HAVE to achieve best performance on complex
tasks like * Articulated Objects’, while conditional generator achieves better performance for simpler
tasks where the action space is less varied.

E.4 Classifier Guidance

With a diffusion-based generator and a verifier, the most intuitive way is to directly apply the classi-
fier guidance [41] to the generation process. Therefore we also experiment with classifier guidance
to compare with our proposed method HAVE. Because we generate 3D Articulation Flow [31] and
verify the dense action field (Sec.5.3), we transform the noisy articulation flow prediction { f; } from
each step to a dense action field {d;} to pass through the verifier: We first compute a weighted av-
erage of the noisy flow to obtain a global direction f, and a weighted grasp center p from the point
cloud, both using flow magnitudes || f;|| as weights. Then we use these point and action direction to
create the dense action field following the magnitude decaying equation from Sec.5.3. This process
is differentiable and therefore the verifier’s gradients over the initial articulation flow generation can
be calculated - we then use the gradients for classifier guidance.

We can see from Fig. 28 the classifier guidance offers a minor performance improvement, and has a
big gap with HAVE. One possible reason is that even though classifier guidance provides gradients
over intermediate states, these gradients can be misleading: the transformation from noisy flow f; to
a clean dense action field d; may distort the gradient signal, and even without this transformation, the
intermediate noisy flows themselves are out-of-distribution for the verifier, which is trained only on
clean data. In contrast, HAVE naturally reasons over history trajectories and scores action proposals,
offering a more reliable and effective approach for selecting good actions.
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Figure 28: Classifier Guidance Performance: We plot the Success Rate (1) with and without
classifier guidance, and compare them with HAVE.

E.5 CFG scale for Conditional Diffusion

We tried different classifier-free guidance scale at test time for the conditional diffusion baseline as
shown in Fig. 29. In the figure, we plot Normalized Distance (the normalized distance to being
fully open, as used in Eisner et al. [31]) against different classifier-free guidance scale. From the
curves, we see that the best performance is achieved with classifier-free guidance scale of 0.5 or 1.0
(varies across tasks), but the overall performance is about the same. This indicates that the current
conditional diffusion structure is not understanding the histories well, demonstrating that training
a history-aware conditional diffusion model is practically harder and less efficient than training a
verifier.
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Figure 29: Classifier-Free Guidance Scale Analysis: We plot the Normalized Distance (1) against
different classifier-free guidance scale, and the performance of HAVE and FlowBot3D as reference.

E.6 Generalization with Different Verifier Capacity

We test the generalization ability of the verifier and analyze whether overfitting occurs by comparing
training and test metrics. As shown in Table 6, the verifier demonstrates strong generalization to
unseen instances and reasonable generalization to unseen categories, though performance drops
more in the latter case—where overfitting is most noticable.

Table 6: Overfitting Analysis (Failure Rate %; Averaged across class)
General Doors Held-out Uneven

Train set 1.84 2.96 3.69 12.20
Test set 2.26 16.77 16.92 12.93

To investigate how model capacity contributes to this, we varied the transformer size and compared
the failure rates on train and unseen categories in Table 7. We use 4 attention heads, 4 attention

29



layers and 256 as feature dimension for the final model. We found that a larger model (8 attention
heads, 6 attention layers, and feature dimension as 512) slightly improves training accuracy but hurts
generalization, suggesting it may be too large for the task and leads to overfitting. A smaller model
(2 attention heads, 2 attention layers, and feature dimension as 256) performs comparably on unseen
categories, suggesting that model capacity has limited impact and our chosen size is appropriate for
the task.

Table 7:  Capacity Analysis on Held-Out (Failure Rate %); Metric presented as
AVGsample(AVGclass)

Original Smaller Bigger

Train categories 2.49 (3.69) 2.86 (3.37) 2.16 (2.54)
Unseen categories  11.31 (16.92) 11.03 (18.58) 12.70 (20.57)
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