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ABSTRACT

Long-range sequence processing poses a significant challenge for Transformers
due to their quadratic complexity in input length. A promising alternative is
Mamba, which demonstrates high performance and achieves Transformer-level
capabilities while requiring substantially fewer computational resources. In this
paper we explore the length-generalization capabilities of Mamba, which we find
to be relatively limited. Through a series of visualizations and analyses we iden-
tify that the limitations arise from a restricted effective receptive field, dictated
by the sequence length used during training. To address this constraint, we intro-
duce DeciMamba, a context-extension method specifically designed for Mamba.
This mechanism, built on top of a hidden filtering mechanism embedded within
the S6 layer, enables the trained model to extrapolate well even without additional
training. Empirical experiments over real-world long-range NLP tasks show that
DeciMamba can extrapolate to context lengths that are significantly longer than
the ones seen during training, while enjoying faster inference. We will release our
code and models.

1 INTRODUCTION

Lengthy sequences, which can span up to millions of tokens, are common in real-world applications
including long books, high-resolution video and audio signals, and genomic data. Consequently,
developing Deep Learning (DL) sequence models capable of effectively managing long contexts is
a critical objective. Transformers (Vaswani et al., 2017), despite their current dominance in general
DL tasks, still face challenges in processing long sequences. Specifically, their quadratic complexity
in sequence length makes them computationally demanding, restricting the ability to train them over
long sequences and very large datasets.

In recent years, substantial efforts have been made in order to tackle this challenge. The most
significant advancements include efficient implementations that increase the model’s context length
during training (Dao et al., 2022; Liu et al.), and context-extension methods (Chen et al., 2023b;
Peng et al., 2023b) designed to effectively expand the context after training. However, recent studies
suggest that long-range processing is still an unresolved problem (Li et al., 2024a; Liu et al., 2024a).
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Figure 1: Improving Mamba Extrapolation with DeciMamba. We present a novel decimation
mechanism tailored for Mamba. With our method Mamba is able to process sequences that are sig-
nificantly longer than the ones trained on while enjoying reduced inference costs. (Left) Document
Retrieval. (Right) Passkey Retrieval. In all plots, the purple line shows the training sequence length.
Results are shown for DeciMamba-130M.
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One promising approach in this domain is the development of attention-free networks with sub-
quadratic complexity, which can be trained more efficiently over long sequence data. In a recent line
of works (Gu et al., 2021; Gu et al.; Gupta et al., 2022), the family of state-space layers has been
introduced. These layers can be seen as theoretically grounded linear RNNs that can be efficiently
computed in parallel via convolutions, thanks to a closed-form formulation of their linear recurrent
rule. A recent advancement by Gu & Dao (2024) presented Mamba, which builds on top of an
expressive variant of SSMs called Selective State-Space Layers (S6). These layers match or exceed
the performance of Transformers in several domains, such as NLP (Pióro et al., 2024; Wang et al.,
2024), image classification (Zhu et al.; Liu et al., 2024b), audio processing (Shams et al., 2024),
genomic data (Schiff et al., 2024), and more.

In this paper, we first explore the length-generalization abilities of Mamba and identify that they are
relatively limited. Although Mamba layers are theoretically capable of capturing global interactions
at the layer level, we show, through a series of visualizations, analyses, and empirical measures, that
the main barrier is Mamba’s implicit bias towards sequence lengths that were seen during training,
a phenomenon that we call ‘limited effective receptive field’ (ERF). Next, based on the assumption
that long-context data is usually sparse, we present DeciMamba, the first context-extension method
specifically designed for S6. Our method relies on a dynamic data-dependent pooling method that
utilizes a hidden filtering mechanism intrinsic to the Mamba layer. We leverage this mechanism to
introduce a global compression operator, which expands Mamba’s ERF by discarding unimportant
tokens before the S6 layer. In particular, we interpret the norms of the per-token selective recurrent
gate (∆t) as indicators of each token’s importance. This metric allows us to identify the top-k
most impactful tokens, enabling direct application of the SSM to these tokens only. The proposed
method (Figure 5) significantly increases the effective context length of Mamba by several orders of
magnitude while requiring a smaller computational budget.

Our main contributions encompass the following three aspects: (i) identify that Mamba has limited
length-extrapolation capabilities via thorough experiments in controlled environments. (ii) Through
a series of visualizations, analyses, and empirical measures, recognize that although Mamba can
theoretically capture global interactions via the recurrent state, its limited ERF prevents significant
length-extrapolation; (iii) building on this insight, introduce DeciMamba, the first context-extension
technique specifically designed for Mamba models. This approach leverages an existing filtering
mechanism embedded within the S6 layer. As illustrated in Fig. 1, our method effectively enhances
Mamba’s length-extrapolation abilities, and is applicable to real-world long-context NLP tasks.

2 PRELIMINARIES

Long-range models evolve in two main directions: (i) adapting transformers, the most dominant ar-
chitecture today, to be more suitable for such tasks; (ii) developing architectures with sub-quadratic
complexity in sequence length such as Hyena (Poli et al., 2023), RWKV (Peng et al., 2023a),
Hawk (De et al., 2024), xLSTM (Beck et al., 2024), and Mamba, the focus of our paper.

Mamba. Given an input sequence U = (u1, u2, . . . , uL) ∈ RL×d of length L such that ui ∈ Rd, a
Mamba block with d channels is built on top of the S6 layer via the following formula:

G = σ(Linear(U)), X = Conv1D(Linear(U)),

Y = S6(X), O = Y ⊗G, (1)

where G represents the gate branch, ⊗ is elementwise multiplication, σ is the SILU activation,
Linear and Conv1D are standard linear projection and 1-dimensional convolution layers. The S6
layer is based on a time-variant SSM, which can be elaborated by the following recurrent rule:

ht = Ātht−1 + B̄txt, yt = Ctht, (2)
where X = (x1, x2, . . . , xL) is the input sequence of a representative channel, Āt ∈ RN×N ,
B̄t ∈ RN×1, and Ct ∈ R1×N are the system, input, and output discrete time-variant matrices,
respectively. S6 conditions the discrete time-variant matrices based on the input as follows:

∆t = Sft(S∆Xt), Bt = SBXt, Ct = (SCXt)
T

Āt = exp(A∆t), B̄t = Bt∆t (3)

such that ∆t is the discretization step, Sft represents the softplus function, and S∆, SB , SC are
linear projection layers. Ali et al. (2024) demonstrated that S6 layers, similar to attention models,
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can be interpreted as data-controlled linear operators. Specifically, the S6 layer computation can be
represented using the following linear operator α, controlled by the input (via Eq. 3):

Y = αX, αi,j = Ci

(
Πi

k=j+1Āk

)
B̄j (4)

y1
y2
...
yL

 =


C1B̄1 0 · · · 0

C2Ā2B̄1 C2B̄2 · · · 0
...

...
. . . 0

CLΠ
L
k=2ĀkB̄1 CLΠ

L
k=3ĀkB̄2 · · · CLB̄L



x1

x2

...
xL

 (5)

In this formulation, each output yi is a weighted sum of all inputs, where the ‘attention weights’ of
all inputs xj , i.e., the set {αi,j}Lj=1, is data-driven. We utilize this perspective to further investigate
the effective receptive field of Mamba layers.

Context Extension & Length Extrapolation. Several methods were proposed to enhance the ef-
fective context length of transformers and improve their extrapolation over longer sequences. Press
et al. demonstrated that models built on top of original sinusoidal, rotary (Su et al., 2024), and T5
bias (Raffel et al., 2020) positional encoding have poor length generalization. It proposed to miti-
gate this issue by incorporating distance-based linear biases into the attention matrix for promoting
locality . Kazemnejad et al. (2024) showed that transformers without positional encoding (NoPE)
exhibit better length extrapolation capabilities in downstream tasks. Recently, CoPE (Golovneva
et al., 2024) utilized context-aware positional encoding and Peng et al. (2023b); Chen et al. (2023a)
suggested post-training positional interpolation.

A recent direction involves architectural modifications to pre-trained models followed by short fine-
tuning. It includes LongLora (Chen et al., 2023b), which proposes shifted sparse attention, and
Landmark Attention (Mohtashami & Jaggi, 2023), which applies attention in chunks and inserts
global unique tokens into the input sequences between those chunks. Our work focuses on taking
such an approach for Mamba models, rather than transformers. More related work is in App. C.

We note that in order to assess the long range performance of the model, in our experiments we
measure perplexity only on the farthest labels of the context window, causing the perplexity values
to be larger than their typical values (usually, all tokens in the context window are aggregated).
Lastly, we refer to appendix A.9, where we motivate the study of Long Context LLMs in parallel to
Retrieval Augmented Generation (RAG).

3 EXTRAPOLATION LIMITATIONS OF MAMBA

In this section we explore the length-generalization capabilities of Mamba models. Specifically,
we assess the limited effective receptive field (ERF) of S6 layers, a phenomenon that leads to poor
information propagation when processing sequences that are longer than the ones trained on. For
a detailed description of the ERF, we refer the reader to Appendix C.3. Consequently, we develop
methods to measure the portion of the context utilized by the model, and show that it is dictated by
the training sequence lengths.

We start by visualizing Mamba’s hidden attention (Eq. 4, 5) during extrapolation. In Fig. 2 (left,
center) we display the attention matrices of layer 17 of Mamba-130M while evaluating sequences
of length 2K and 16K (the model trained on the Passkey Retrieval task with sequence lengths of 2K).
Notice that while the attention is very dense for the 2K sequence (no extrapolation), the attention
for the 16K sequence (extrapolation x8) is much more sparse, and its elements vanish as we move
towards the lower rows. This exhibits a limited ERF, as information from the first tokens in the
sequence does not propagate to the final tokens in the output sequence.

Measuring ERFs via Mamba Mean Distance. To quantify how well Mamba utilizes the context
during inference, we introduce a quantitative measure called ‘Mamba Mean Distance’. This measure
is analogous to the receptive field in CNNs and the attention mean distance in transformers described
by Dosovitskiy et al. (2020). For a causal transformer model, the attention mean distance for the
i-th output token is computed by:

E
j≤i

d(i, j) =
∑
j≤i

Ãi,j ⊗ (i− j) , (6)

3
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Figure 2: Detecting and Quantifying Limited ERFs. (Center, Left) Recordings of Mamba Atten-
tion Matrices with and without extrapolation (Mamba-130m, layer 17, trained on seq. lengths of
2k). Mamba unintentionally learns a limited ERF during training (highlighted by the dashed rect-
angle) which disrupts its extrapolation abilities. (Right) Quantifying Mamba’s Information Loss by
Measuring

∑L
k=2 ∆k Divergence. To show Mamba’s sensitivity to increasing context lengths we

measure the first occasion of information loss, as described in Sec.3. We observe that in the most
semantic layers (16 and 17, see Passkey Retrieval in Sec. 5)

∑L
k=2 ∆k diverges exponentially fast,

causing a fast decay in its respective attention value, leading to limited ERFs like in the center image.

where Ã is the normalized attention matrix that defines a probability distribution over the distances
for various tokens. We tailored this measure to S6 by leveraging the implicit attention representation,
which we normalize using the following function:

N(x1, · · · , xL)j =
|xj |∑L
k=1 |xk|

. (7)

As we are usually interested in the last tokens, and as we will see shortly, they are the first to suffer
from this phenomenon, we find that it is sufficient to compute our metric for the last token only:

E
j≤L

d(L, j) ≈
∑
j≤L

N(α)L,j ⊗ (L− j). (8)

Fig. 3 visualizes this measure by presenting the ‘Mamba Mean Distance’ for different hidden at-
tention matrices, depicted by the horizontal distance between the red line and the main diagonal.

Figure 3: Mamba Mean Distance. Each panel contains an attention matrix along with its cor-
responding ’Mamba Mean Distance’, depicted by the horizontal distance between the red diagonal
line and the main diagonal. The matrices are extracted from a pre-trained model of size 2.8B, trained
on the Pile dataset (Gao et al., 2020).

By introducing an empirical measure for Mamba’s ERF, we can explore it more robustly. Fig. 4
portrays the relationship between the input context length and the Mamba Mean Distance. Here,
Mamba-based language models with 80M parameters are trained across various context lengths for
next-token prediction on the WikiText-103 benchmark (Merity et al., 2016). We average the Mamba
Mean Distance over all channels and layers using 100 test examples. More details on Mamba Mean
Distance are in Appendix A.8. Surprisingly, in the left panel of Fig. 4, we see that the Mamba Mean
Distance increases with context length. Although it does grow, it is hard to tell whether the growth is
proportional to the growth in context length. Therfore, in the right panel, we normalize the Mamba
Mean Distance by the sequence length during inference, revealing the exact proportion of context
utilized in practice. It is now evident that the context utilization drops dramatically as the evaluated
context length increases.
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Figure 4: Mamba Mean Distance Quantifies Effective Context Utilization. (Left) Mamba Mean
Distance as a function of the context length during inference, for various training context lengths.
(Right) Same, but normalized by the training context length.

To identify the internal mechanism that leads to this behavior, we return to the analytic expression
of Mamba’s hidden attention defined in Eq. 5. We observe that the product of transition matrices∏i

k=j+1 Āk includes more elements as the sequence length L increases, and can be written for the
j’th element in the last row as:

L∏
k=j+1

Āk =

L∏
k=j+1

exp(A∆k) = exp(A

L∑
k=j+1

∆k) (9)

We note that this product always converges since ∆t ≥ 0 and A[i, i] < 0 by design. Yet, if it
converges too fast, the attention element will collapse undesirably. To measure the attention ele-
ments’ collapse we focus on attention element αL,1 due to the following reasons: (i) we are usually
interested in the information at the end of the sequence; (ii) this element is the first in the row to
collapse, capturing the first occasion of information loss because

∑L
k=2 ∆k ≥

∑L
k=j+1 ∆k for all

L− 1 ≥ j ≥ 1, and A is always negative, so the power of its exponent will always be the smallest.
As can be seen in Eq. 9, the only input-length dependent value is

∑L
k=2 ∆k. Therefore, in Fig. 2

(right), we compute it for varying input lengths L during inference (per layer, averaged over the
channels dimension). As can be seen in the figure, the values of

∑L
k=2 ∆k start small and increase

exponentially fast in layers 16 and 17, which are the most global layers (Fig. 12). This aligns with
the observations in Fig. 2 (left, center) - since these layers require a large ERF, the fast collapse of
the attention elements restricts global information propagation, leading to distorted performance. In
the other layers, the values of

∑L
k=2 ∆k start large and grow linearly. Since these layers perform

local processing (diagonal attention matrices), the fast decay is desired.

To conclude, the limited length-generalization abilities arise due to decay rates A and ∆t sums
(Eq. 9) that are sufficient for the training data of length Ltrain, but not flexible enough to provide
effective length-extrapolation for lengths Leval > Ltrain. As the transition matrix product con-
verges too fast, we observe a collapse of the attention matrix, specifically in regions that convey
information from the beginning of the sequence to its end.

4 METHOD: DeciMamba

In Sec. 3 we identified that for a pre-trained model, the ERF of Mamba is dictated by the context
size used during training Ltrain. This creates a blind spot for sequences that exceed Ltrain, as
dependencies originating in the far input segments are not captured by the model, resulting in poor
length generalization. To solve this problem we propose embedding a filtering mechanism within
the pre-trained Mamba layers, with no need to re-train the model. The mechanism’s core task is
to reduce the amount of tokens that the S6 layer processes, and it does so by discarding tokens of
fewer importance. The method is described in Fig. 5 and Alg. 1. It encapsulates three aspects:
(i) Decimation Strategy, (ii) Decimation Rate, and (iii) Decimation Scope. We refer the reader to
Appendix A.6 where we further discuss each hyperparameter’s role and selection strategy.

Decimation Strategy (The Role of ∆t) To pool the most relevant tokens, we must assign each
token a relative importance score. We select the ∆t parameter as a proxy for this score and motivate

5
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Figure 5: DeciMamba: (Left) Schematic overview of DeciMamba. (Middle) By carefully inspect-
ing the recurrent view of Mamba, we revealed the implicit filtering mechanism embedded in the
recurrent gate and controlled by ∆. (Right) We visualize the DeciMamba model, illustrating the
decimation ratio and scope. The grey lines represent the sequence length at the input and output of
each layer, and layers with empirically long ERFs are decimated.

our choice by explaining its operation. First, we apply the SSM parametrization to Eq. 2:

ht = Ātht−1 + B̄txt = eA∆tht−1 +∆tBtxt. (10)
Notice that when ∆t → 0 the layer discards the input token and preserves the previous hidden state.
When ∆t > 0 the hidden state ‘attends’ the input token (the attention is proportional to ∆t) and
adds it to an attenuated version of the previous hidden state (this attenuation is also proportional to
∆t). We note that this is always the case because ∆t ≥ 0 and A[i, i] < 0 by design. Hence, ∆t

can be interpreted as the controller of the recurrent gate, determining which tokens should impact
future tokens. The final importance score for each token is the mean value over all channels of its
respective ∆t parameter. Note that this selection induces a small interference in Mamba’s operation,
as Mamba already attempts to ignore input tokens with small ∆t.

Decimation Ratio For each decimating layer s, we propose to keep the Top-Ps tokens with the
largest importance scores, where Ps decreases gradually as we go deeper into the network according
to the following formula:

Ps = Lbase · βs, β ∈ (0, 1), Lbase ∈ N, (11)
where β, Lbase are hyper-parameters representing a decay factor that controls the decimation rate
(as we progress in depth) and the maximal length of the sequence after the first decimating layer.
Sec. D further discusses the selected pooling strategy.

Decimation Scope (Layer Selection) We turn to describe the decimation scope, which defines
which layers should use the embedded decimation mechanism. We begin by explaining the guiding
principles behind our method, followed by the criteria that reflects those principles. Our goal is to
expand the ERF of a pre-trained Mamba model. Traditionally, DL models focus on various scales
of token interactions at different layers. Therefore, a natural design choice is to decimate layers
that already focus on long-range dependencies. This approach can potentially increase their ability
to learn global dependencies without negatively impacting the layers that are associated with short-
term features. As a criterion for measuring the scale embedded within each layer, we measure the
ERF of Mamba based on the Mamba Mean Distance defined in Eq. 8. We thus select the layers with
the highest Mamba Mean Distance, with the number of selected layers being a hyper-parameter.
Note that we perform the decimation only in the Mamba encoder. Section D demonstrates that its
use in the decoder leads to a negligible improvement and thus not required.

Inference Efficiency Mamba can be computed in parallel with a prefix-scan or step-by-step like
RNNs. For efficient inference, the context is processed in parallel mode (pre-fill), and then the
response is generated via auto-regressive decoding in recurrent mode. DeciMamba performs pooling
only during the pre-fill phase, leveraging the parallel mode to compute the global pooling operation
efficiently. During decoding, Mamba and DeciMamba have identical forms (no pooling).

Complexity In the parallel view of Mamba, the time complexity for processing a sequence of
length L, is O(L logL). In DeciMamba, we first compute the delta-based importance score for each

6
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Algorithm 1 Decimated SSM
Require: x : (B − Batch size, L− Tokens, D − Channels)
1: A : (D,N)← Parameter
2: B : (B,L,N)← SB(x)
3: C : (B,L,N)← SC(x)
4: ∆ : (B,L,D)← τ∆(Parameter + S∆(x))
5: ∆P ← Top-P(|∆|).indices
6: ∆, A,B,C, x← ∆[∆P ], A[∆P ], B[∆P ], C[∆P ], x[∆P ]
7: A,B : (B,L,D,N)← discretize(∆, A,B)
8: return y : (B,L,D)← SSM(A,B,C)(x)

token, identify the top-P elements, and then apply S6 to those P elements. This results in an overall
complexity of O(L+ P logP ). We ignore the complexity of selecting the top-P elements (which is
O(L logP )) since this computation does not depend on the state size N or the number of channels
H, making it negligible compared to the other operations in both Mamba and DeciMamba.

5 EXPERIMENTS

We evaluate DeciMamba as a context-extension approach across multiple tasks. First, we demon-
strate the long-range understanding and retrieval capabilities of our method in the NLP domain.
Next, we assess the retrieval capabilities of our method using the Passkey-Retrieval task and exam-
ine its language modeling capabilities over PG-19. Finally, we analyze and measure DeciMamba’s
inference efficiency and provide ablation studies to support our claims.

LongBench This benchmark contains a variety of zero-shot long context tasks, such as: Sin-
gle/Multi Document QA, Summarization, Coding, etc. We evaluate an instruction-tuned Mamba-
2.8b (model: ‘xiuyul/mamba-2.8b-zephyr’ from huggingface) with and without DeciMamba (Zero-
Shot) and report the results in Table 1. 0-4k, 4-8k, 8k+ are the scores for each context length
group in LongBench-E, LB is the LongBench score, and ‘N/A’ means that the task does not ex-
ist in LongBench-E. In almost all tasks, DeciMamba improves the performance of the model for
all context lengths. Most noticeable are the improvements at 4-8k, where Mamba starts suffering
from ERFs, while DeciMamba extends its performance significantly. E.g. in TriviaQA we improve
the LB result from 3.93 to 12.61, a performance gain of 220%, and improve each context length
group by 24% (0-4k), 150% (4-8k), and 152% (8k+) respectively. Despite the improvement, when
DeciMamba is applied to zero-shot scenarios it does not completely prevent degradation when the
context length increases, motivating future research of this behavior. See A.3 for more details.

Table 1: LongBench. The results are for an instruction-tuned Mamba-2.8b model with and without
DeciMamba (Zero-Shot). Avg Len = Average Length in words.

Type (Metric) Benchmark Avg
Len

Mamba DeciMamba
0-4k 4-8k 8k+ LB 0-4k 4-8k 8k+ LB

MultiDoc-QA (F1) 2wikimqa 4887 7.04 1.58 0.6 3.92 11.54 6.2 3.08 9.06
MultiDoc-QA (F1) Hotpotqa 9151 4.7 1.18 0.18 1.45 8.29 3.75 3.19 4.46
MultiDoc-QA (F1) Musique 11214 N/A N/A N/A 0.85 N/A N/A N/A 1.73
SingleDoc-QA (F1) Narrative QA 18409 N/A N/A N/A 0.87 N/A N/A N/A 1.74
SingleDoc-QA (F1) Qasper 3619 6.91 4.4 1.36 5.97 8.75 9.2 2.41 8.91
SingleDoc-QA (F1) Multifield QA 4559 18.26 5.71 2.45 11.16 26.05 13.67 4.63 18.58
Summarizing (Rouge-L) GovReport 8734 24.76 10.9 5.2 9.84 27.4 19.38 7.81 14.86
Summarizing (Rouge-L) QMSum 10614 N/A N/A N/A 8.18 N/A N/A N/A 7.08
Summarizing (Rouge-L) MultiNews 2113 24.58 9.79 5.34 23.15 25.45 17.2 4.43 24.58
Few-Shot (F1) TriviaQA 8209 10.38 5.59 4.11 3.93 12.9 14.02 10.36 12.61
Few-Shot (Rouge-L) SAMSum 6258 9.58 7.07 7.76 8.56 9.17 6.76 6.88 7.34
Few-Shot (Accuracy) TREC 5177 0.0 0.0 0.0 0.5 1.0 0.0 0.0 0.5
Code (Edit Sim) LCC 1235 8.12 5.61 4.17 8.13 9.4 14.25 7.63 8.67
Code (Edit Sim) RepoBench-p 4206 7.52 5.74 4.63 7.15 10.08 10.49 6.86 10.96
Synthetic (Accuracy) Passage Count 11141 2.0 0.0 0.0 0.0 3.0 0.0 0.0 0.5
Synthetic (Accuracy) Passage Ret. en 9289 0.0 0.0 0.0 0.0 9.0 1.0 0.0 1.5
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Document Retrieval In this task the model receives a query and Ndocs randomly assorted doc-
uments, and its objective is to return the id of the document that holds the answer to the query.
Our data is sampled from SQuAD v2 (Rajpurkar et al., 2018). We train both Mamba-130m and
DeciMamba-130m to retrieve out of Ndocs = 11 documents (about 2k tokens), and evaluate their
performance with Ndocs ∈ [11, 300] (2k to 60k tokens). The results are presented in Fig. 1 (left).
While Mamba is able to retrieve until Ndocs = 40 documents, it suffers from a sharp decline when
the amount of documents is further extended. On the contrary, DeciMamba is able to extrapolate
to sequences that are more than x25 times longer than the ones seen during training (∼ 250 docu-
ments), and does so without any additional computational resources.

Multi-Document QA. Next, we stay in a setting similar to Sec. 5 (Document Retrieval), yet increase
the level of difficulty by asking the model to answer the query in free text (instead of retrieving the
id of the most relevant document). We train Mamba-130m and DeciMamba-130m on the same
dataset and present the F1 score between the generated response and the ground truth answers in
Tab. 2. As in the previous task, when the amount of documents is close to the amount trained
on, the models perform quite similarly, with a slight advantage towards DeciMamba. When the
document amount significantly increases we can see that DeciMamba develops a clear advantage.
Yet, this time, due to the task’s difficulty, its performance decays as well. Note that Mamba’s and
DeciMamba’s performance is relatively modest compared to prior work due to the use of smaller
models, which limits the presented text generation capabilities.

Table 2: Multi-Document QA. The table holds the F1 score between the ground truth annotations
and the predictions of Mamba-130m and DeciMamba-130m (+Deci) across different number of
documents. Both models were trained using 11 documents.

# Docs 5 10 20 40 60 80 100 120 140 160

Mamba 23.5 25.3 22.8 23.6 25.8 19.3 7.5 4.1 1.1 0.6
+Deci 25.6 26.2 24.4 25.3 22.74 19.1 18.1 12.9 10.0 5.0

Passkey Retrieval. We fine-tune Mamba-130M and DeciMamba-130M to retrieve a random 5-digit
code hidden in a random location within a contiguous 2K token sample from Wiki-Text (Merity
et al., 2016). To test the models’ extrapolation abilities, during inference we increase the sequence
lengths exponentially from 1K to 128K and record their performance for a variety of passkey loca-
tions within the context. Full implementation details are in Appendix A.1. As can be seen in Fig. 1
(right), DeciMamba-130m significantly increases the extrapolation abilities of Mamba-130m from
16K to 128K, when trained on sequence lengths of 2k tokens only. Interestingly, we identify that
the ∆t values in Layer 16 of Mamba-130m capture the exact location of the passkey, as can be seen
in Fig. 10. Using this finding, we display the distortion caused to the embedded sequence due to the
ERF in Fig. 11. Tokens at locations < 10k have meaningful ∆t values, yet tokens at locations >
10k have noisy ∆t’s, possibly due to the poor information flow caused by the limited ERF.

Language Modeling Following Chen et al. (2023b); Mehta et al. (2022), we evaluate our method
on long-range language modeling using the PG-19 dataset in both zero-shot and fine-tuned regimes.

Zero-Shot. We test our method on the test set of PG-19 using the larger Mamba models (1.4b, 2.8b)
in Fig. 6 (right). We observe that the selectivity scores learned during pre-training are quite effective
and extend the context naturally without any training for both models. Furthermore, our method can
maintain the low perplexity achieved in the short-context region. In the ablations section we further
discuss our proposed decimation mechanism and show its benefit w.r.t other alternatives.

Fine-Tuning. We display DeciMamba’s performance on PG-19 perplexity in Fig. 6 (left). We train
both Mamba-130M and DeciMamba-130M with a sequence length of 2K and test their extrapolation
abilities. The full training details can be found in Sec. A.4 in the appendix. While Mamba can ex-
trapolate to context lengths that are at most x5 times longer than the training sequences, DeciMamba
can extrapolate to sequences that are about x20 times longer, without any additional computational
resources. Furthermore, we plot a lower bound by calculating the perplexity of a Mamba-130M
model that was trained on the same context length it evaluates on (each point on the green curve is
a different model). We observe that DeciMamba is close to the lower bound and diverges from it
quite slowly, while utilizing significantly less computational resources. Nevertheless, for train se-
quences longer than 30K the ‘lower bound’ models reach an Out Of Memory (OOM) error (Nvidia
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RTX-A6000, 48GB of RAM), which is caused by Mamba’s O(L) training complexity. This further
emphasizes the importance of good extrapolation abilities when scaling to longer sequences.
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Figure 6: Perplexity Over PG-19 Test Set. (Left) The dashed purple line shows the train sequence
length for Mamba-130m and DeciMamba-130m. Each point on the green curve shows a different
Mamba-130m model trained on the respective context length (Ltrain = Leval); for Ltrain > 30K
an Out Of Memory (OOM) error occurs. (Right) Zero-Shot perplexity comparison.
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Figure 7: Ablation Studies. (Left) Model sensitivity to decimation layer selection. We show the
score achieved by DeciMamba-130M in the Passkey Retrieval task when trained on sequences of
length 2K. Each point on the graph is a model’s score, while decimating from layer ’Min Decimat-
ing Layer’ to layer 20. (Right) A Zero-Shot perplexity measurement comparing between different
pooling mechanisms: ours (based on ∆t), random and max-norm pooling.

Comparison With Transformers. We evaluate equivalent Transformer models from the Pythia
suite (Biderman et al., 2023) on the experiments described above. We find that vanilla Transformers
have inferior length generalization abilities compared to Mamba. Full results are in Appendix A.5.

Inference Efficiency. We benchmark both DeciMamba and Mamba with a Nvidia RTX A6000
GPU and compare their inference speeds for the Passkey Retrieval task. From Table 3 it is evident
that DeciMamba is twice faster than the baseline Mamba model, which is expected. This is because
the decimation is performed at layer 12 (out of 24 layers in total), hence only half of the blocks
process the whole context length L. The other half processes the decimated sequence (of length
P << L), resulting in a negligible computation time. Table 10 (Appendix) shows that per block,
DeciMamba does not induce an additional computational overhead when compared to Mamba (first
two rows). In addition, we can see that the computation time becomes negligible for blocks that are
placed after the first DeciMamba block (rows three and four), no matter the input context length.

Ablation study The ablation studies can be found in Appendix D. Briefly, these studies examine
three key aspects: layer selection, pooling strategy, and decimation mechanism. For layer selection,
it seems that the choice of the first decimating layer significantly affects performance, with layer 12
yielding the best results in a Passkey Retrieval task. The pooling strategy study compares a Top-Ps
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Table 3: Inference Efficieny. Inference time (seconds) of the entire model, benchmarked on Nvidia
RTX A6000 GPU. DeciMamba is about twice as fast when compared to Mamba.

Model Context Length

8K 16K 32K 64K 128K 256K 512K

Mamba-130m 0.17 0.3 0.69 1.27 2.12 4.03 8.17
DeciMamba-130m 0.14 0.19 0.31 0.59 1.08 2.01 4.22

approach with a Top-K% approach, demonstrating that the former is more effective in extending
the model’s extrapolation abilities. The decimation mechanism study compares various pooling
methods, where ∆t-based pooling performs best, though max-norm pooling also shows promise.
Lastly, in Appendix A.7, we highlight factors that significantly contribute to DeciMamba’s success.

6 CONCLUSIONS

In this paper, we explore the length-extrapolation abilities of S6 layers. Our first contribution is
the characterization of the ERF of S6. This characterization reveals that the ERF of Mamba is
significantly constrained by the context length during training, which is counterintuitive given that
Mamba theoretically has an unbounded receptive field due to its recurrent selective memory. Based
on these insights, we develop DeciMamba, a unique data-dependent compression operator that is
built on two key insights: (i) There exists a hidden filtering mechanism within the Mamba layer,
manifested by the selective time-steps ∆t, which can be interpreted as the controller of the recurrent
gate. (ii) Long-range and short-range interactions between tokens are captured by different layers in
the model, which can be identified using our Mamba Mean Distance metric. Note that DeciMamba
can be used in scenarios beyond the ones presented in the paper. For example, Appendix B.1 shows
that it can be efficiently employed also in the case of multi-turn dialogue. Looking ahead, we plan to
explore different transformer context-extension methods, including length-extrapolation PE (Press
et al.; Golovneva et al., 2024), hierarchical models, and architectural improvements (Sun et al.,
2022). Furthermore, while the techniques described in this paper are designed for Mamba models,
a detailed discussion on extending our proposed methods to other models such as Griffin can be
found in Appendix E. Finally, we will further use our Mamba Mean Distance Metric to investigate
the mechanism which leads to limited ERFs in Mamba.

7 LIMITATIONS

Similar to other context-extension methods, our model modifies a pretrained Mamba model but does
not propose an improved Mamba architecture to address the underlying issue. Despite empirical
evidence demonstrating the effectiveness of our decimation-based method in capturing long-range
interactions and its efficiency, the approach can be suboptimal. For example, pooling and com-
pression methods may miss critical information in challenging scenarios. Therefore, designing an
improved Mamba variant with enhanced length-generalization abilities that can effectively capture
global interactions within a single layer (without pooling the sequence) is an important next step.

8 REPRODUCEABILITY STATEMENT

First, we provide the source code used for the key experiments. Second, in appendix A we provide
full configurations for all experiments including instructions on how to train and evaluate the models.
We also explicitly state all used datasets, models and hardware, and describe the data processing
pipeline and exact metrics used in each experiment.

9 ETHICS STATEMENT

This work analyzes and improves the performance of large language models (LLMs) for long context
understanding, which is crucial when deploying them in real-world systems. This improvement is
anticipated to have a positive impact on the use of LLMs in society. However, we acknowledge
that LLMs could propagate biases. We emphasize the necessity of further research into these biases
before our work can be applied reliably beyond the research environment.
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A EXPERIMENTAL DETAILS

All model checkpoints are taken from the Hugging Face Model Hub1:

• state-spaces/mamba-130m

• state-spaces/mamba-370m

• state-spaces/mamba-790m

• state-spaces/mamba-1.4b

• state-spaces/mamba-2.8b

• iuyul/mamba-2.8b-zephyr

Our code is based on the official Mamba implementation.2

A.1 PASSKEY RETRIEVAL

Each model is trained for 5 epochs with a learning rate of 1e-4, gradient clipping of 1, batch size of
32 (used batch accumulation) and AdamW optimizer (Kingma & Ba, 2017) with weight decay of
0.1. In each epoch the models train over 6144 sequences of length 2K. For DeciMamba-130M we
use L base = 2K, β = 0.5, decimating layers = [13, ..., 21],min seq len = 20. Our code is
built over an existing version of BABILong (Kuratov et al., 2024).

A.2 DOCUMENT RETRIEVAL

We train each model with data from SQuAD v2 (Rajpurkar et al., 2018), which provides ex-
amples in the form of (Query, Document, Answer). Our training samples have the following
form: Ndocs×<Document>; <Answer>, where <Document> can be either the golden doc-
ument (which holds the answer to the query) or one of Ndocs − 1 randomly sampled documents.
<Answer> holds the id of the golden document. In our setting Ndocs = 12, the order of the doc-
uments is random, and the query and respective document id are appended to the beginning of each
document. During Evaluation we use the same setting but vary the value of Ndocs, between 12 and
300. We note that the length of an average document in SQuAD is a bit smaller than 200 tokens, so
our average training sample has about 2,200 tokens, and the evaluation samples vary between 2,200
tokens to 60,000 tokens. We train for one epoch with 300 steps, use a learning rate of 1e-4, gradient
clipping of 1, batch size of 64 (used batch accumulation) and AdamW optimizer with weight decay
of 0.1. We found that the optimal decimation parameters are decimation layer = 12, Lbase=2000
during training and Lbase=4000 during evaluation. We intentionally decreased Lbase during train-
ing so the model could experience decimation during the training period (Ltrain was a bit higher
than Lbase), because otherwise the training of DeciMamba and Mamba would have been identical.
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Figure 8: Pooling Strategy Ablation - Results. The figure compares two pooling strategies, Top-Ps

(ours) and Top-K%. As shown, the Top-K% approach lags behind the Top-Ps approach, demon-
strating that our strategy allows the model to extrapolate to significantly longer sequences. Results
are for Mamba-130m.

1https://www.huggingface.co/models
2https://github.com/state-spaces/mamba
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2K Input
Tokens

32K Input
Tokens

Layer 17

1K

65

65

1K
Figure 9: Pooling Strategy Ablation. Top-K% pooling leads to a limited ERF in layer 17. The size
of the attention map is affected by the input sequence length: for Leval = 2K layer 17 will process
65 tokens (left) and for Leval = 32K it will process 1K tokens (right). Since Ltrain = 2K, layer 17
has only seen training sequences of length 65, therefore suffers from an ERF when Leval increases
(right, dashed orange shape).

A.3 LONGBENCH

We use the ‘iuyul/mamba-2.8b-zephyr’ instruction-tuned model from huggingface. deci-
mation layer = 28. Lbase varies between different benchmarks, between 2000 to 2800.

A.4 PG-19 PERPLEXITY

We train each model on a total of 100M tokens with a learning rate of 1e-4, gradient clipping of
1, batch size of 250 (used batch accumulation) and AdamW optimizer with weight decay of 0.1.
During training we sample a single window from each example and train on it (For the extrapolating
models the window length is 2K, for the lower bound models the window length is equal to the
context length trained on). During evaluation, for each example we evaluate 10 windows with a
maximal constant stride. We evaluate only the last 100 labels in each window, which represent the
extrapolation abilities of the model at sequence lengths in the range of [ctx len − 100, ctx len],
providing an approximation to the model’s performance at the wanted ctx len. For DeciMamba-
130M we use L base = 2K, β = 0.83, decimating layers = [12, ..., 20],min seq len = 20.
During evaluation we keep the same parameters except setting L base = 8K. Additionally, in this
specific task DeciMamba was trained with a similar, yet not identical, Language Modeling (LM)
loss. We break the labels sequence (length = 2K) into two chunks. The first 1K labels are trained
conditionally on the first 1K tokens of the sequence (like vanilla LM). The last 1K labels are trained
conditionally on the whole sequence (2K), and DeciMamba was configured to compress the first
1K input tokens. This way we are able to train DeciMamba to compress context while training on
each label in the sequence, making the training much more efficient. We also experimented with
chunking the labels into more than two chunks, but only experienced a slowdown in computation
while achieving similar performance. For the lower bound models we had to reduce the amount
of training steps in order to constrain the training to 100M tokens. Specifically, for each context
length, we followed the following formula: num of steps = 100M/(batch size ∗ ctx len) =
100M/(250 ∗ ctx len). For the 1.4b model we used Layer 12 for decimation and Lbase = 4000.
For the 2.8b model we used Layer 22 for decimation and Lbase = 4000.

A.5 COMPARISON WITH TRANSFORMERS

We find that vanilla Transformers of equivalent size (trained on the same dataset with a similar
training recipe), have inferior length generalization abilities compared to Mamba. This is evident in
all long-context tasks tested (Tables 4, 5, 6).
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Table 4: Comparison With Transformers - Passkey Retrieval. The setting is the same as in
AppendixA.1. All models were trained on sequences of length 2k. For each context length we test
performance for 5 different needle locations, and report the success rate (between 0 and 1). ✓stands
for 100% success, ✗ for 0% success.

Context Length 1K 2K 4K 8K 16K 32K 64K 128K
Pythia-160M ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Mamba-130M ✓ ✓ ✓ ✓ 0.8 ✗ ✗ ✗

DeciMamba-130M ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5: Comparison With Transformers - Multi-Document Retrieval. The setting is the same
as in AppendixA.2. All models were trained on sequences of length 2k (10 documents). For each
context length we test performance for 100 different queries and report the success rate (between 0
and 1).

Context Length 10 20 40 60 80 100 120 140 160 180 200 250 300
Pythia-160M 0.69 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Mamba-130M 0.59 0.61 0.41 0.06 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

DeciMamba-130M 0.70 0.70 0.53 0.48 0.51 0.58 0.67 0.68 0.73 0.60 0.61 0.53 0.21

Table 6: Comparison With Transformers - Zero-Shot Perplexity. The setting is the same as in
Appendix A.4. All models were pre-trained on sequences of length 2k (we remind that DeciMamba
is applied directly without any tuning). inf replaces any perplexity result larger than 100.

Context Length 1K 2K 4K 8K 10K 20K 30K 40K 50K 60K 70K 80K
Pythia-2.8B 10.24 9.96 inf inf inf inf inf inf inf inf inf inf
Mamba-2.8B 9.39 9.17 11.6 inf inf inf inf inf inf inf inf inf

DeciMamba-2.8B 9.39 9.17 11.98 14.58 14.73 17.17 19.83 22.2 24.89 27.57 27.89 27.43
Pythia-1.4B 11.64 11.32 inf inf inf inf inf inf inf inf inf inf
Mamba-1.4B 10.51 10.31 10.5 14.43 18.4 inf inf inf inf inf inf inf

DeciMamba-1.4B 10.51 10.31 10.5 14.13 14.5 18.33 23.54 26.82 28.97 30.56 29.97 29.28

For LongBench, the equivalent Transformer model (Pythia-2.8B) repeatedly causes an OOM error
on our GPU (A6000, 48GB of RAM).

A.6 HYPERPARAMETER SELECTION

In practice, Lbase is the only parameter we sweep. We typically scan 3 or 4 values that are similar in
magnitude to the context length used during training (Ltrain). The reason for selecting Lbase close
to Ltrain originates from an assumption on the long-context data: short training sequences and long
evaluation sequences have similar information content and differ mainly by the amount of noise in
the sequence. Under this assumption, there are at most Ltrain important tokens; hence, it makes
sense to pool this number of tokens, regardless of the amount of noise. We find this assumption
quite reasonable for many long-context tasks, such as retrieval, multi-document question answering,
and next-token prediction. For example, in multi-document retrieval/QA, only one document is
relevant to the query, regardless of how many random documents we append to the context. Another
example is next-token prediction, which is usually very local and does not benefit much from global
interactions. Another reason for selecting Lbase close to Ltrain is that there are no ERF issues when
processing sequences of length Ltrain, as the global layers (starting from the first decimation layer)
are trained on sequences of the same length.

Regarding the number of layers to decimate and the decay rate (β): The main goal of these parame-
ters is to improve efficiency, not performance. Both parameters introduce the option to compress the
sequence further by applying additional DeciMamba layers. We emphasize that this has negligible
effects on performance, as shown in the sweeps below for the passkey retrieval task (Tables 7, 8).
In addition, this is supported by other results, such as Multi-Document Retrieval and LongBench,
which were run with this option disabled.
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Table 7: Decay Rate (β) Sweep. BL is the performance of the baseline Mamba model. The setting
is the same as in AppendixA.1. We use Lbase = 2000 and 9 decimation layers (13-21).

β BL 1 0.75 0.5 0.25
Success Rate 0.55 1.0 0.975 0.975 0.975

Table 8: Number of Decimation Layers Sweep. BL is the performance of the baseline Mamba
model. The setting is the same as in Appendix A.1. We use Lbase = 2000 and β = 0.5 .

# of Deci Layers BL 1 2 3 4 5 6 7 8 9
Success Rate 0.55 1.0 0.975 0.925 0.925 0.975 0.925 0.95 0.95 0.975

A.7 FACTORS THAT AFFECT THE SUCCESS OF DECIMAMBA

We identify two main factors that significantly contribute to the success of DeciMamba.

Tasks in which limited ERF is the bottleneck: Since DeciMamba is a context-extension
method, it primarily enhances the model’s abilities in tasks where a long context is the main barrier,
rather than in other aspects of NLP such as reasoning abilities, domain knowledge, and syntactic
and semantic understanding. For example, Mamba is not able to solve the Long ListOps task (Tay
et al., 2020) (Section 2.2.1), even in short context. When applying DeciMamba, there is no change
in performance, as can be seen in Table 9

Table 9: Long ListOps. BL is the performance of the baseline Mamba model. DeciMamba com-
presses the context by using different values of Lbase, but is unable to improve performance. We
follow the setting in Amos et al. (2024), where pre-training is applied on the downstream task data
followed by fine-tuning on the downstream task. The average sequence length is 2K tokens.

Lbase BL 1K 1.5K 2K
Success Rate 0.19 0.19 0.19 0.19

Tasks with Sparse Data Content: By design, the pooling operator discards most of the tokens
in long sequences. This is effective, for example, in information retrieval tasks, because it helps
overcome the limited ERF issue while keeping the important information intact. However, this
approach may not work as well for tasks that assign similar importance to most of the tokens - e.g.,
Long ListOps.

Finally, we emphasize that the limited ERF phenomenon, which is studied in our work, is not related
to the state size, as it occurs even in tasks that require minimal memorization, such as Passkey
Retrieval. The study in Arora et al. (2024) (Section 3.1 and Figures 2,3) investigates the relationship
between the hidden state size and performance. One interesting finding is that the hidden state’s
capacity can be reached even with short sequences. This suggests that the state size limits the
information density of the context, rather than its length (although in many tasks the two correlate).

A.8 JUSTIFICATION FOR MAMBA MEAN DISTANCE

We are aware of two main approaches for measuring the ERF of Mamba and Attention models: (i)
via the attention mean distance or our analogy of Mamba Distance (Eq. 10), and (ii) by measuring
the gradient norms over the entire model, which was employed for transformers in Chi et al. (2022)
and very recently applied to Mamba models (Jafari et al., 2024) (section 6). The main drawback of
the second approach is that it measures the ERF in the context of gradients, which are significantly
influenced by the type of loss function, task, and label, complicating the analysis. Additionally,
while the first method can be applied to a single layer or a set of layers, the second method be-
comes less straightforward when applied to a subset of layers, requiring additional considerations
and design choices, such as whether to normalize gradients, the use of gradients instead of relevance
scores, and the computation of gradients only for attention blocks that learn token interactions or
also consider linear and normalization layers. Due to its flexibility and simplicity, as well as being
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Figure 10: Demonstrating the ‘Importance-Scoring’ Abilities of ∆t. We evaluate Mamba-130M
on the Passkey Retrieval task, and record the values of ∆t for all channels of layer 16. Each pair of
images is identical, except that the left one marks the location of the passkey with a dashed pink line.
The horizontal and vertical axes indicate the token number and the channel respectively. As can be
seen from the two cases examined above, the ∆t activation captures the needle location successfully,
demonstrating the effectiveness of its ‘importance scoring’ mechanism.

Figure 11: Measuring the Effects of Limited ERFs. We show the ∆t values across the channels
for layer 16 in the Mamba-130M model, examined on different context lengths. The horizontal and
vertical axes indicate the token number and the channel respectively. As can be observed from the
results above, the passkey can be detected clearly until the ERF ends (for t > 10K).

more popular (several examples are Vig & Belinkov (2019); Dosovitskiy et al. (2020); Raghu et al.
(2021)), we chose the first method.

A.9 WHY USE LONG CONTEXT LLMS INSTEAD OF RETRIEVAL AUGMENTED GENERATION?

Performance-wise, recent studies do not show a conclusive advantage of RAG over Long Context
LLMs: Li et al. (2024b), Xu et al. (2024). Interestingly, the common conclusion of all these studies
(and others, such as Anthropic’s Contextual Retrieval) is that when combined, RAG and Long-
Context LLMs have a synergistic effect which improves performance even more. Moreover, each
study proposes a different way of combining RAG and Long Context LLMs (directly, switching be-
tween RAG and Long Context, augmenting the retriever chunks, etc.) - showing that further research
in each area alone, or combined, has potential for an overall improvement in LLM performance.

B ADDITIONAL EVALUATIONS

B.1 MULTI-TURN DIALOGUE

To show that DeciMamba is capable of performing tasks with complicated inference, we test it
over the well known multi-turn dialogue benchmark MT-Bench (Zheng et al., 2023). In each round
the model is asked to answer a question (1st Turn), responds, and is then asked to answer another
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Figure 12: Normalized Mamba Attention Map. Displayed in log scale for each layer of the
Mamba-130M model.

question (2nd Turn) that relates to the first question, and responds to it as well. Then, a GPT-4 judge
scores the responses on a scale from 1 to 10 (1-poor, 10-good). The average scores for each turn are
displayed:

Model 1st Turn 2nd Turn
Mamba 4.5 3.4
DeciMamba 4.4 3.4

By applying a simple inference scheme (append the previous dialogue to the context before each
turn) we can see that DeciMamba does not limit the original Mamba model, even in tasks that require
more sophisticated inference. Here, we again use the ‘iuyul/mamba-2.8b-zephyr’ instruction-tuned
model from huggingface.

C OTHER RELATED WORK

C.1 LONG RANGE TRANSFORMERS.

Transformers have emerged as highly effective models for various tasks, yet their widespread adop-
tion has been constrained by their limited long-range modeling capabilities. Thus, applying trans-
formers effectively to long-range data remains a central challenge in DL, particularly in NLP. A
primary factor in this challenge is that the effective context of transformers is dominated by the
context observed during training, which is limited because training LLMs on datasets with billions
of tokens across lengthy sequences is computationally demanding. Hence, three main approaches
have been developed to tackle this problem: (i) creating efficient variants of transformers that al-
low an increase in the length of sequences during training. (ii) Context extension methods, which
enable training on short sequences and evaluation on long sequences, and finally, (iii) hierarchical
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models that rely on pooling, chunking, and compression. Despite these extensive efforts, several re-
cent studies indicate that high-quality handling of long text remains an unresolved issue (Liu et al.,
2024a; Li et al., 2024a).

C.2 EFFICIENT TRANSFORMERS.

Over the years, many approaches have been proposed for making transformers more efficient (Tay
et al., 2022; Fournier et al., 2023). The two most prominent directions are hardware-aware im-
plementations such as flash-attention (Dao et al., 2022; Dao, 2023) and ring-attention (Liu et al.),
which accelerate computations over long sequences by several orders of magnitude. Additionally,
developing efficient attention variants with sub-quadratic complexity has become very popular. Two
notable examples are Linformer (Wang et al., 2020), which utilizes a low-rank attention matrix, and
Performer (Choromanski et al., 2020), a variant that approximates the attention operator through a
kernel function.

C.3 EFFECTIVE RECEPTIVE FIELD (ERF)

The Receptive Field (RF) (LeCun et al., 1998) of a neuron refers to the region of the input space
that influences the neuron’s output. In traditional CNNs, the RF captures how the area of influence
expands as the neuron’s depth increases. However, in modern architectures like transformers, which
process the entire input context at each layer and can theoretically model interactions between any
parts of the input, the concept of RF becomes less informative. In these models, the theoretical
receptive field is maximal, rendering the term ambiguous.

To address this, the ERF offers a more practical measure by quantifying the empirical sensitivity of a
model to different input regions. The ERF highlights where the model actually focuses its attention
and depends not only on the architecture but also on the data and training process. The seminal work
on Vision Transformer (ViT) (Dosovitskiy et al., 2020) and Vig & Belinkov (2019) introduced the
concept of attention mean distance to measure the ERF, as detailed in Equation 6. Building upon
this, we extend the measurement to Mamba layers in Eq. 8, allowing us to effectively estimate their
ERF.

D ABLATIONS

Layer Selection We ablate our layer selection methodology, as it has significant affect on the
model’s performance (Figure 7, left). Each point on the curve represents the score achieved by a
DeciMamba-130M model in the Passkey Retrieval task when trained on sequences of length 2K.
The only difference between the models is the first decimating layer (x axis). We see that when
the decimating layer is too shallow (e.g. layer 8), the model fails completely. As we increase the
minimal decimating layer we observe a large increase in performance, until reaching the climax
at layer 12. This result aligns with the fact that the ∆t distribution is farther from 0 in Mamba’s
early layers (all tokens are important). We hypothesize that the tokens still don’t have a strong
representation at this stage, hence it makes less sense to decimate w.r.t their ∆t value. After layer 12
the performance of DeciMamba starts to drop, and stabilizes at the vicinity of the baseline Mamba
model. At this region we start decimating too late, as some long-dependency layers suffer from
ERFs when processing the longer Passkey Retrieval sequences. The final layers (21-23) also have
larger ∆t values, so they should not be decimated as well. We hypothesize that these layers ’decode’
the processed embeddings back into token distributions, so the intermediate representations are yet
again not fit for semantic decimation.

Pooling Strategy We show the importance of the proposed Top-Ps pooling strategy in the follow-
ing ablation study. Suppose we select a different pooling strategy, Top-K%, which keeps the top
K% tokens with the largest mean ∆t values (over the channels dimension). We train a DeciMamba-
130m model for the Passkey Retrieval task on sequences of length Ltrain = 2K, with K = 50%
and decimation layers [12,...,20]. As can be seen in Fig. 8 (Appendix), Top-K% extends Mamba’s
extrapolation abilities from 8K to 32K, yet does not do as well as Top-Ps which extends to 128K.
While Top-K% decimation decreases the sequence length greatly (the output is x512 times shorter),
during extrapolation each SSM layer still faces input sequences that are much longer than the ones
it has seen during training, as demonstrated in Fig. 9. We further explain this result; During train-
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Table 10: Inference Time Per Block. In milliseconds, benchmarked on Nvidia RTX A6000 GPU.
DeciMamba and Mamba blocks have a similar processing time. Notice how the processing time
drops for blocks that are placed after a DeciMamba block, no matter the input sequence length.

Model Context Length

8K 16K 32K 64K 128K 256K 512K
Mamba Block 3.2 6.1 11.6 22.7 52.5 95.9 204
DeciMamba Block 3.3 6.1 11.8 23.1 45.9 93.1 188
Mamba Following DeciMamba 1.6 1.6 1.5 1.9 1.8 1.9 2.4
DeciMamba Following DeciMamba 1.3 1.4 1.5 1.5 1.5 1.5 1.5

ing Layer 17 saw sequences of length 65 (Ltrain = 2K, followed by a decimation rate of 50%
in each layer from layer 12). During inference it sees sequences of lengths 65 and 1002 (where
Leval = 2K, 32K, left and right images, respectively). Since the sequence length at layer 17 of the
latter (1K) is much longer than the one it saw during training (65), the extrapolation is limited by an
ERF (right image, dashed orange shape). This shows the importance of keeping the lengths of the
inputs to each decimating SSM layer similar to the ones seen during training, as done by Top-Ps.

Decimation Mechanism. To emphasize the benefit of pooling w.r.t the values of ∆t, we examine
two additional decimation mechanisms: max-norm decimation (tokens with maximal norm are kept)
and random decimation (tokens are randomly kept). We equip Mamba-1.4b with each of the dec-
imation mechanisms (decimation layer = 12, Lbase = 8000), and compare each model’s zero-shot
perplexity in Fig. 7 (right). Max-norm pooling achieves a similar trend to ∆t pooling (DeciMamba),
yet performs somewhat worse. The result suggests that ∆t is a better candidate for pooling, but also
shows that the token’s norm also holds some information about its importance. We hypothesize
that a method that combines both might achieve better performance than any one alone, but leave
this question open for future work. Random pooling induces strong distortion to the embedded se-
quence, yet achieves better perplexity for longer contexts. This surprising result demonstrates how
sensitive Mamba is to limited ERFs - in longer sequences, it is actually better to randomly decimate
the sequence rather than process its full length.

Adding Pooling to the decoder. We turn to test whether it is required to add our pooling strategy
to the decoder as well. We tested this on the longest generation task in LongBench: GovReport.
It involves summarizing long documents with an average length of 10,000 tokens. The additional
decimation during decoding was performed by iteratively combining prefill and decoding for each
generated chunk, where the chunk size is 50 tokens. Table 11 presents the results and shows that
adding decoding pooling has a negligible effect on performance.

A possible explanation for the limited impact of adding decimation to the decoder is that despite
being long (about 500 tokens), the generated summaries are relatively short compared to the number
of tokens that cause limited ERFs (it needs to be longer than the context length used to train Mamba).
Thus, the above suggests that decimation is not needed in the decoder. Note also that while in
GovReport the generated responses are relatively long, for most of the remaining 15 long-context
tasks in LongBench, such as Multi-Document QA, the model is required to generate only 10 to 30
tokens per answer. Therefore, pooling is not required in their decoding as well.

Clearly, if a new task emerges where the number of generated tokens is larger than the ERF, it might
be useful to add pooling to the decoder.

Table 11: GovReport: Long Summary Generation With and Without Decoding Decimation. LB is
LongBench; 0-4k, 4-8k, 8k+ are the three LongBench-e context length groups; and +DD is Deci-
Mamba with additional Decoding Decimation.

Model LB 0-4k 4-8k 8k+
Mamba 9.8 24.8 10.9 5.2
DeciMamba 14.9 27.4 19.4 7.8
DeciMamba + DD 14.7 26.6 18.4 8.14
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E EXTENSIONS TO OTHER MODELS

While this paper focuses on exploring the length-generalization abilities and introducing the first
context-extension method specifically designed for Mamba models, our proposed techniques are
broadly applicable to other architectures. First, the Mamba Mean Distance metric can be generalized
to other models that rely on implicit attention. Examples include HGRN (Eq. 5 in Qin et al. (2024)),
Griffin (Eq. 14 in De et al. (2024)), RWKV (Eq. 18 in Zimerman et al. (2024)), and others. These
tools can provide valuable insights into the ERF of these models, offering a deeper understanding of
their length-generalization behavior. Furthermore, the entire context-extension technique introduced
in Sec. 4 can be adapted for other models. Specifically, models with per-token data-dependent
recurrent gates can leverage these gates to compute token importance scores, enabling a decimation
strategy during pre-fill. For instance, in Griffin, the recurrent gate rt (Eq. 1 in De et al. (2024) can
be used to assign token importance scores, facilitating an effective decimation strategy. Similarly,
in HGRN and GLA, the recurrent gate λt (Eq. 2 in Qin et al. (2024)) and Gt (Eq. 3 in Yang
et al. (2023)) accordingly can be interpreted as token importance measures, allowing our approach
to be extended to design context-extension techniques for these architectures. By extending these
techniques, we provide a foundation for exploring length-generalization in various sequence models.
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