
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DECIMAMBA: EXPLORING THE LENGTH EXTRAPO-
LATION POTENTIAL OF MAMBA

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-range sequence processing poses a significant challenge for Transformers
due to their quadratic complexity in input length. A promising alternative is
Mamba, which demonstrates high performance and achieves Transformer-level
capabilities while requiring substantially fewer computational resources. In this
paper we explore the length-generalization capabilities of Mamba, which we find
to be relatively limited. Through a series of visualizations and analyses we iden-
tify that the limitations arise from a restricted effective receptive field, dictated
by the sequence length used during training. To address this constraint, we intro-
duce DeciMamba, a context-extension method specifically designed for Mamba.
This mechanism, built on top of a hidden filtering mechanism embedded within
the S6 layer, enables the trained model to extrapolate well even without additional
training. Empirical experiments over real-world long-range NLP tasks show that
DeciMamba can extrapolate to context lengths that are significantly longer than
the ones seen during training, while enjoying faster inference. We will release our
code and models.

1 INTRODUCTION

Lengthy sequences, which can span up to millions of tokens, are common in real-world applications
including long books, high-resolution video and audio signals, and genomic data. Consequently,
developing Deep Learning (DL) sequence models capable of effectively managing long contexts is
a critical objective. Transformers (Vaswani et al., 2017), despite their current dominance in general
DL tasks, still face challenges in processing long sequences. Specifically, their quadratic complexity
in sequence length makes them computationally demanding, restricting the ability to train them over
long sequences and very large datasets.

In recent years, substantial efforts have been made in order to tackle this challenge. The most
significant advancements include efficient implementations that increase the model’s context length
during training (Dao et al., 2022; Liu et al.), and context-extension methods (Chen et al., 2023b;
Peng et al., 2023b) designed to effectively expand the context after training. However, recent studies
suggest that long-range processing is still an unresolved problem (Li et al., 2024a; Liu et al., 2024a).

50 100 150 200 250 30010
Num Of Docs

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Train Length

Document Retrieval Over SQuAD
DeciMamba-130M
Mamba-130M

1K 2K 4K 8K 16K 32K 64K 128K
Context Length [Tokens]

0

0.25

0.5

0.75

1Pa
ss

ke
y

De
pt

h
[%

]

Tr
ai

n
Le

ng
th

Mamba

1K 2K 4K 8K 16K 32K 64K 128K
Context Length [Tokens]

0

0.25

0.5

0.75

1 Tr
ai

n
Le

ng
th

DeciMamba

Figure 1: Improving Mamba Extrapolation with DeciMamba. We present a novel decimation
mechanism tailored for Mamba. With our method Mamba is able to process sequences that are sig-
nificantly longer than the ones trained on while enjoying reduced inference costs. (Left) Document
Retrieval. (Right) Passkey Retrieval. In all plots, the purple line shows the training sequence length.
Results are shown for DeciMamba-130M.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

One promising approach in this domain is the development of attention-free networks with sub-
quadratic complexity, which can be trained more efficiently over long sequence data. In a recent line
of works (Gu et al., 2021; Gu et al.; Gupta et al., 2022), the family of state-space layers has been
introduced. These layers can be seen as theoretically grounded linear RNNs that can be efficiently
computed in parallel via convolutions, thanks to a closed-form formulation of their linear recurrent
rule. A recent advancement by Gu & Dao (2024) presented Mamba, which builds on top of an
expressive variant of SSMs called Selective State-Space Layers (S6). These layers match or exceed
the performance of Transformers in several domains, such as NLP (Pióro et al., 2024; Wang et al.,
2024), image classification (Zhu et al.; Liu et al., 2024b), audio processing (Shams et al., 2024),
genomic data (Schiff et al., 2024), and more.

In this paper, we first explore the length-generalization abilities of Mamba and identify that they are
relatively limited. Although Mamba layers are theoretically capable of capturing global interactions
at the layer level, we show, through a series of visualizations, analyses, and empirical measures, that
the main barrier is Mamba’s implicit bias towards sequence lengths that were seen during training,
a phenomenon that we call ‘limited effective receptive field’ (ERF). Next, based on the assumption
that long-context data is usually sparse, we present DeciMamba, the first context-extension method
specifically designed for S6. Our method relies on a dynamic data-dependent pooling method that
utilizes a hidden filtering mechanism intrinsic to the Mamba layer. We leverage this mechanism to
introduce a global compression operator, which expands Mamba’s ERF by discarding unimportant
tokens before the S6 layer. In particular, we interpret the norms of the per-token selective recurrent
gate (∆t) as indicators of each token’s importance. This metric allows us to identify the top-k
most impactful tokens, enabling direct application of the SSM to these tokens only. The proposed
method (Figure 5) significantly increases the effective context length of Mamba by several orders of
magnitude while requiring a smaller computational budget.

Our main contributions encompass the following three aspects: (i) identify that Mamba has limited
length-extrapolation capabilities via thorough experiments in controlled environments. (ii) Through
a series of visualizations, analyses, and empirical measures, recognize that although Mamba can
theoretically capture global interactions via the recurrent state, its limited ERF prevents significant
length-extrapolation; (iii) building on this insight, introduce DeciMamba, the first context-extension
technique specifically designed for Mamba models. This approach leverages an existing filtering
mechanism embedded within the S6 layer. As illustrated in Fig. 1, our method effectively enhances
Mamba’s length-extrapolation abilities, and is applicable to real-world long-context NLP tasks.

2 PRELIMINARIES

Long-range models evolve in two main directions: (i) adapting transformers, the most dominant ar-
chitecture today, to be more suitable for such tasks; (ii) developing architectures with sub-quadratic
complexity in sequence length such as Hyena (Poli et al., 2023), RWKV (Peng et al., 2023a),
Hawk (De et al., 2024), xLSTM (Beck et al., 2024), and Mamba, the focus of our paper.

Mamba. Given an input sequence U = (u1, u2, . . . , uL) ∈ RL×d of length L such that ui ∈ Rd, a
Mamba block with d channels is built on top of the S6 layer via the following formula:

G = σ(Linear(U)), X = Conv1D(Linear(U)),

Y = S6(X), O = Y ⊗G, (1)

where G represents the gate branch, ⊗ is elementwise multiplication, σ is the SILU activation,
Linear and Conv1D are standard linear projection and 1-dimensional convolution layers. The S6
layer is based on a time-variant SSM, which can be elaborated by the following recurrent rule:

ht = Ātht−1 + B̄txt, yt = Ctht, (2)
where X = (x1, x2, . . . , xL) is the input sequence of a representative channel, Āt ∈ RN×N ,
B̄t ∈ RN×1, and Ct ∈ R1×N are the system, input, and output discrete time-variant matrices,
respectively. S6 conditions the discrete time-variant matrices based on the input as follows:

∆t = Sft(S∆Xt), Bt = SBXt, Ct = (SCXt)
T

Āt = exp(A∆t), B̄t = Bt∆t (3)

such that ∆t is the discretization step, Sft represents the softplus function, and S∆, SB , SC are
linear projection layers. Ali et al. (2024) demonstrated that S6 layers, similar to attention models,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

can be interpreted as data-controlled linear operators. Specifically, the S6 layer computation can be
represented using the following linear operator α, controlled by the input (via Eq. 3):

Y = αX, αi,j = Ci

(
Πi

k=j+1Āk

)
B̄j (4)

y1
y2
...
yL

 =

C1B̄1 0 · · · 0

C2Ā2B̄1 C2B̄2 · · · 0
...

...
. . . 0

CLΠ
L
k=2ĀkB̄1 CLΠ

L
k=3ĀkB̄2 · · · CLB̄L

x1

x2

...
xL

 (5)

In this formulation, each output yi is a weighted sum of all inputs, where the ‘attention weights’ of
all inputs xj , i.e., the set {αi,j}Lj=1, is data-driven. We utilize this perspective to further investigate
the effective receptive field of Mamba layers.

Context Extension & Length Extrapolation. Several methods were proposed to enhance the ef-
fective context length of transformers and improve their extrapolation over longer sequences. Press
et al. demonstrated that models built on top of original sinusoidal, rotary (Su et al., 2024), and T5
bias (Raffel et al., 2020) positional encoding have poor length generalization. It proposed to miti-
gate this issue by incorporating distance-based linear biases into the attention matrix for promoting
locality . Kazemnejad et al. (2024) showed that transformers without positional encoding (NoPE)
exhibit better length extrapolation capabilities in downstream tasks. Recently, CoPE (Golovneva
et al., 2024) utilized context-aware positional encoding and Peng et al. (2023b); Chen et al. (2023a)
suggested post-training positional interpolation.

A recent direction involves architectural modifications to pre-trained models followed by short fine-
tuning. It includes LongLora (Chen et al., 2023b), which proposes shifted sparse attention, and
Landmark Attention (Mohtashami & Jaggi, 2023), which applies attention in chunks and inserts
global unique tokens into the input sequences between those chunks. Our work focuses on taking
such an approach for Mamba models, rather than transformers. More related work is in App. C.

We note that in order to assess the long range performance of the model, in our experiments we
measure perplexity only on the farthest labels of the context window, causing the perplexity values
to be larger than their typical values (usually, all tokens in the context window are aggregated).
Lastly, we refer to appendix A.9, where we motivate the study of Long Context LLMs in parallel to
Retrieval Augmented Generation (RAG).

3 EXTRAPOLATION LIMITATIONS OF MAMBA

In this section we explore the length-generalization capabilities of Mamba models. Specifically,
we assess the limited effective receptive field (ERF) of S6 layers, a phenomenon that leads to poor
information propagation when processing sequences that are longer than the ones trained on. For
a detailed description of the ERF, we refer the reader to Appendix C.3. Consequently, we develop
methods to measure the portion of the context utilized by the model, and show that it is dictated by
the training sequence lengths.

We start by visualizing Mamba’s hidden attention (Eq. 4, 5) during extrapolation. In Fig. 2 (left,
center) we display the attention matrices of layer 17 of Mamba-130M while evaluating sequences
of length 2K and 16K (the model trained on the Passkey Retrieval task with sequence lengths of 2K).
Notice that while the attention is very dense for the 2K sequence (no extrapolation), the attention
for the 16K sequence (extrapolation x8) is much more sparse, and its elements vanish as we move
towards the lower rows. This exhibits a limited ERF, as information from the first tokens in the
sequence does not propagate to the final tokens in the output sequence.

Measuring ERFs via Mamba Mean Distance. To quantify how well Mamba utilizes the context
during inference, we introduce a quantitative measure called ‘Mamba Mean Distance’. This measure
is analogous to the receptive field in CNNs and the attention mean distance in transformers described
by Dosovitskiy et al. (2020). For a causal transformer model, the attention mean distance for the
i-th output token is computed by:

E
j≤i

d(i, j) =
∑
j≤i

Ãi,j ⊗ (i− j) , (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

16K Tokens2K Tokens

2K

2K

16K
16
K

2K 4K 8K 16K 32K
Context Length

100

101

102

103

104

Su
m

 V
al

ue
 [L

og
 S

ca
le

]

Longest Delta Sum

0
4
10
14
16
17
19
20
23

Figure 2: Detecting and Quantifying Limited ERFs. (Center, Left) Recordings of Mamba Atten-
tion Matrices with and without extrapolation (Mamba-130m, layer 17, trained on seq. lengths of
2k). Mamba unintentionally learns a limited ERF during training (highlighted by the dashed rect-
angle) which disrupts its extrapolation abilities. (Right) Quantifying Mamba’s Information Loss by
Measuring

∑L
k=2 ∆k Divergence. To show Mamba’s sensitivity to increasing context lengths we

measure the first occasion of information loss, as described in Sec.3. We observe that in the most
semantic layers (16 and 17, see Passkey Retrieval in Sec. 5)

∑L
k=2 ∆k diverges exponentially fast,

causing a fast decay in its respective attention value, leading to limited ERFs like in the center image.

where Ã is the normalized attention matrix that defines a probability distribution over the distances
for various tokens. We tailored this measure to S6 by leveraging the implicit attention representation,
which we normalize using the following function:

N(x1, · · · , xL)j =
|xj |∑L
k=1 |xk|

. (7)

As we are usually interested in the last tokens, and as we will see shortly, they are the first to suffer
from this phenomenon, we find that it is sufficient to compute our metric for the last token only:

E
j≤L

d(L, j) ≈
∑
j≤L

N(α)L,j ⊗ (L− j). (8)

Fig. 3 visualizes this measure by presenting the ‘Mamba Mean Distance’ for different hidden at-
tention matrices, depicted by the horizontal distance between the red line and the main diagonal.

Figure 3: Mamba Mean Distance. Each panel contains an attention matrix along with its cor-
responding ’Mamba Mean Distance’, depicted by the horizontal distance between the red diagonal
line and the main diagonal. The matrices are extracted from a pre-trained model of size 2.8B, trained
on the Pile dataset (Gao et al., 2020).

By introducing an empirical measure for Mamba’s ERF, we can explore it more robustly. Fig. 4
portrays the relationship between the input context length and the Mamba Mean Distance. Here,
Mamba-based language models with 80M parameters are trained across various context lengths for
next-token prediction on the WikiText-103 benchmark (Merity et al., 2016). We average the Mamba
Mean Distance over all channels and layers using 100 test examples. More details on Mamba Mean
Distance are in Appendix A.8. Surprisingly, in the left panel of Fig. 4, we see that the Mamba Mean
Distance increases with context length. Although it does grow, it is hard to tell whether the growth is
proportional to the growth in context length. Therfore, in the right panel, we normalize the Mamba
Mean Distance by the sequence length during inference, revealing the exact proportion of context
utilized in practice. It is now evident that the context utilization drops dramatically as the evaluated
context length increases.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: Mamba Mean Distance Quantifies Effective Context Utilization. (Left) Mamba Mean
Distance as a function of the context length during inference, for various training context lengths.
(Right) Same, but normalized by the training context length.

To identify the internal mechanism that leads to this behavior, we return to the analytic expression
of Mamba’s hidden attention defined in Eq. 5. We observe that the product of transition matrices∏i

k=j+1 Āk includes more elements as the sequence length L increases, and can be written for the
j’th element in the last row as:

L∏
k=j+1

Āk =

L∏
k=j+1

exp(A∆k) = exp(A

L∑
k=j+1

∆k) (9)

We note that this product always converges since ∆t ≥ 0 and A[i, i] < 0 by design. Yet, if it
converges too fast, the attention element will collapse undesirably. To measure the attention ele-
ments’ collapse we focus on attention element αL,1 due to the following reasons: (i) we are usually
interested in the information at the end of the sequence; (ii) this element is the first in the row to
collapse, capturing the first occasion of information loss because

∑L
k=2 ∆k ≥

∑L
k=j+1 ∆k for all

L− 1 ≥ j ≥ 1, and A is always negative, so the power of its exponent will always be the smallest.
As can be seen in Eq. 9, the only input-length dependent value is

∑L
k=2 ∆k. Therefore, in Fig. 2

(right), we compute it for varying input lengths L during inference (per layer, averaged over the
channels dimension). As can be seen in the figure, the values of

∑L
k=2 ∆k start small and increase

exponentially fast in layers 16 and 17, which are the most global layers (Fig. 12). This aligns with
the observations in Fig. 2 (left, center) - since these layers require a large ERF, the fast collapse of
the attention elements restricts global information propagation, leading to distorted performance. In
the other layers, the values of

∑L
k=2 ∆k start large and grow linearly. Since these layers perform

local processing (diagonal attention matrices), the fast decay is desired.

To conclude, the limited length-generalization abilities arise due to decay rates A and ∆t sums
(Eq. 9) that are sufficient for the training data of length Ltrain, but not flexible enough to provide
effective length-extrapolation for lengths Leval > Ltrain. As the transition matrix product con-
verges too fast, we observe a collapse of the attention matrix, specifically in regions that convey
information from the beginning of the sequence to its end.

4 METHOD: DeciMamba

In Sec. 3 we identified that for a pre-trained model, the ERF of Mamba is dictated by the context
size used during training Ltrain. This creates a blind spot for sequences that exceed Ltrain, as
dependencies originating in the far input segments are not captured by the model, resulting in poor
length generalization. To solve this problem we propose embedding a filtering mechanism within
the pre-trained Mamba layers, with no need to re-train the model. The mechanism’s core task is
to reduce the amount of tokens that the S6 layer processes, and it does so by discarding tokens of
fewer importance. The method is described in Fig. 5 and Alg. 1. It encapsulates three aspects:
(i) Decimation Strategy, (ii) Decimation Rate, and (iii) Decimation Scope. We refer the reader to
Appendix A.6 where we further discuss each hyperparameter’s role and selection strategy.

Decimation Strategy (The Role of ∆t) To pool the most relevant tokens, we must assign each
token a relative importance score. We select the ∆t parameter as a proxy for this score and motivate

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: DeciMamba: (Left) Schematic overview of DeciMamba. (Middle) By carefully inspect-
ing the recurrent view of Mamba, we revealed the implicit filtering mechanism embedded in the
recurrent gate and controlled by ∆. (Right) We visualize the DeciMamba model, illustrating the
decimation ratio and scope. The grey lines represent the sequence length at the input and output of
each layer, and layers with empirically long ERFs are decimated.

our choice by explaining its operation. First, we apply the SSM parametrization to Eq. 2:

ht = Ātht−1 + B̄txt = eA∆tht−1 +∆tBtxt. (10)
Notice that when ∆t → 0 the layer discards the input token and preserves the previous hidden state.
When ∆t > 0 the hidden state ‘attends’ the input token (the attention is proportional to ∆t) and
adds it to an attenuated version of the previous hidden state (this attenuation is also proportional to
∆t). We note that this is always the case because ∆t ≥ 0 and A[i, i] < 0 by design. Hence, ∆t

can be interpreted as the controller of the recurrent gate, determining which tokens should impact
future tokens. The final importance score for each token is the mean value over all channels of its
respective ∆t parameter. Note that this selection induces a small interference in Mamba’s operation,
as Mamba already attempts to ignore input tokens with small ∆t.

Decimation Ratio For each decimating layer s, we propose to keep the Top-Ps tokens with the
largest importance scores, where Ps decreases gradually as we go deeper into the network according
to the following formula:

Ps = Lbase · βs, β ∈ (0, 1), Lbase ∈ N, (11)
where β, Lbase are hyper-parameters representing a decay factor that controls the decimation rate
(as we progress in depth) and the maximal length of the sequence after the first decimating layer.
Sec. D further discusses the selected pooling strategy.

Decimation Scope (Layer Selection) We turn to describe the decimation scope, which defines
which layers should use the embedded decimation mechanism. We begin by explaining the guiding
principles behind our method, followed by the criteria that reflects those principles. Our goal is to
expand the ERF of a pre-trained Mamba model. Traditionally, DL models focus on various scales
of token interactions at different layers. Therefore, a natural design choice is to decimate layers
that already focus on long-range dependencies. This approach can potentially increase their ability
to learn global dependencies without negatively impacting the layers that are associated with short-
term features. As a criterion for measuring the scale embedded within each layer, we measure the
ERF of Mamba based on the Mamba Mean Distance defined in Eq. 8. We thus select the layers with
the highest Mamba Mean Distance, with the number of selected layers being a hyper-parameter.
Note that we perform the decimation only in the Mamba encoder. Section D demonstrates that its
use in the decoder leads to a negligible improvement and thus not required.

Inference Efficiency Mamba can be computed in parallel with a prefix-scan or step-by-step like
RNNs. For efficient inference, the context is processed in parallel mode (pre-fill), and then the
response is generated via auto-regressive decoding in recurrent mode. DeciMamba performs pooling
only during the pre-fill phase, leveraging the parallel mode to compute the global pooling operation
efficiently. During decoding, Mamba and DeciMamba have identical forms (no pooling).

Complexity In the parallel view of Mamba, the time complexity for processing a sequence of
length L, is O(L logL). In DeciMamba, we first compute the delta-based importance score for each

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Decimated SSM
Require: x : (B − Batch size, L− Tokens, D − Channels)
1: A : (D,N)← Parameter
2: B : (B,L,N)← SB(x)
3: C : (B,L,N)← SC(x)
4: ∆ : (B,L,D)← τ∆(Parameter + S∆(x))
5: ∆P ← Top-P(|∆|).indices
6: ∆, A,B,C, x← ∆[∆P], A[∆P], B[∆P], C[∆P], x[∆P]
7: A,B : (B,L,D,N)← discretize(∆, A,B)
8: return y : (B,L,D)← SSM(A,B,C)(x)

token, identify the top-P elements, and then apply S6 to those P elements. This results in an overall
complexity of O(L+ P logP). We ignore the complexity of selecting the top-P elements (which is
O(L logP)) since this computation does not depend on the state size N or the number of channels
H, making it negligible compared to the other operations in both Mamba and DeciMamba.

5 EXPERIMENTS

We evaluate DeciMamba as a context-extension approach across multiple tasks. First, we demon-
strate the long-range understanding and retrieval capabilities of our method in the NLP domain.
Next, we assess the retrieval capabilities of our method using the Passkey-Retrieval task and exam-
ine its language modeling capabilities over PG-19. Finally, we analyze and measure DeciMamba’s
inference efficiency and provide ablation studies to support our claims.

LongBench This benchmark contains a variety of zero-shot long context tasks, such as: Sin-
gle/Multi Document QA, Summarization, Coding, etc. We evaluate an instruction-tuned Mamba-
2.8b (model: ‘xiuyul/mamba-2.8b-zephyr’ from huggingface) with and without DeciMamba (Zero-
Shot) and report the results in Table 1. 0-4k, 4-8k, 8k+ are the scores for each context length
group in LongBench-E, LB is the LongBench score, and ‘N/A’ means that the task does not ex-
ist in LongBench-E. In almost all tasks, DeciMamba improves the performance of the model for
all context lengths. Most noticeable are the improvements at 4-8k, where Mamba starts suffering
from ERFs, while DeciMamba extends its performance significantly. E.g. in TriviaQA we improve
the LB result from 3.93 to 12.61, a performance gain of 220%, and improve each context length
group by 24% (0-4k), 150% (4-8k), and 152% (8k+) respectively. Despite the improvement, when
DeciMamba is applied to zero-shot scenarios it does not completely prevent degradation when the
context length increases, motivating future research of this behavior. See A.3 for more details.

Table 1: LongBench. The results are for an instruction-tuned Mamba-2.8b model with and without
DeciMamba (Zero-Shot). Avg Len = Average Length in words.

Type (Metric) Benchmark Avg
Len

Mamba DeciMamba
0-4k 4-8k 8k+ LB 0-4k 4-8k 8k+ LB

MultiDoc-QA (F1) 2wikimqa 4887 7.04 1.58 0.6 3.92 11.54 6.2 3.08 9.06
MultiDoc-QA (F1) Hotpotqa 9151 4.7 1.18 0.18 1.45 8.29 3.75 3.19 4.46
MultiDoc-QA (F1) Musique 11214 N/A N/A N/A 0.85 N/A N/A N/A 1.73
SingleDoc-QA (F1) Narrative QA 18409 N/A N/A N/A 0.87 N/A N/A N/A 1.74
SingleDoc-QA (F1) Qasper 3619 6.91 4.4 1.36 5.97 8.75 9.2 2.41 8.91
SingleDoc-QA (F1) Multifield QA 4559 18.26 5.71 2.45 11.16 26.05 13.67 4.63 18.58
Summarizing (Rouge-L) GovReport 8734 24.76 10.9 5.2 9.84 27.4 19.38 7.81 14.86
Summarizing (Rouge-L) QMSum 10614 N/A N/A N/A 8.18 N/A N/A N/A 7.08
Summarizing (Rouge-L) MultiNews 2113 24.58 9.79 5.34 23.15 25.45 17.2 4.43 24.58
Few-Shot (F1) TriviaQA 8209 10.38 5.59 4.11 3.93 12.9 14.02 10.36 12.61
Few-Shot (Rouge-L) SAMSum 6258 9.58 7.07 7.76 8.56 9.17 6.76 6.88 7.34
Few-Shot (Accuracy) TREC 5177 0.0 0.0 0.0 0.5 1.0 0.0 0.0 0.5
Code (Edit Sim) LCC 1235 8.12 5.61 4.17 8.13 9.4 14.25 7.63 8.67
Code (Edit Sim) RepoBench-p 4206 7.52 5.74 4.63 7.15 10.08 10.49 6.86 10.96
Synthetic (Accuracy) Passage Count 11141 2.0 0.0 0.0 0.0 3.0 0.0 0.0 0.5
Synthetic (Accuracy) Passage Ret. en 9289 0.0 0.0 0.0 0.0 9.0 1.0 0.0 1.5

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Document Retrieval In this task the model receives a query and Ndocs randomly assorted doc-
uments, and its objective is to return the id of the document that holds the answer to the query.
Our data is sampled from SQuAD v2 (Rajpurkar et al., 2018). We train both Mamba-130m and
DeciMamba-130m to retrieve out of Ndocs = 11 documents (about 2k tokens), and evaluate their
performance with Ndocs ∈ [11, 300] (2k to 60k tokens). The results are presented in Fig. 1 (left).
While Mamba is able to retrieve until Ndocs = 40 documents, it suffers from a sharp decline when
the amount of documents is further extended. On the contrary, DeciMamba is able to extrapolate
to sequences that are more than x25 times longer than the ones seen during training (∼ 250 docu-
ments), and does so without any additional computational resources.

Multi-Document QA. Next, we stay in a setting similar to Sec. 5 (Document Retrieval), yet increase
the level of difficulty by asking the model to answer the query in free text (instead of retrieving the
id of the most relevant document). We train Mamba-130m and DeciMamba-130m on the same
dataset and present the F1 score between the generated response and the ground truth answers in
Tab. 2. As in the previous task, when the amount of documents is close to the amount trained
on, the models perform quite similarly, with a slight advantage towards DeciMamba. When the
document amount significantly increases we can see that DeciMamba develops a clear advantage.
Yet, this time, due to the task’s difficulty, its performance decays as well. Note that Mamba’s and
DeciMamba’s performance is relatively modest compared to prior work due to the use of smaller
models, which limits the presented text generation capabilities.

Table 2: Multi-Document QA. The table holds the F1 score between the ground truth annotations
and the predictions of Mamba-130m and DeciMamba-130m (+Deci) across different number of
documents. Both models were trained using 11 documents.

Docs 5 10 20 40 60 80 100 120 140 160

Mamba 23.5 25.3 22.8 23.6 25.8 19.3 7.5 4.1 1.1 0.6
+Deci 25.6 26.2 24.4 25.3 22.74 19.1 18.1 12.9 10.0 5.0

Passkey Retrieval. We fine-tune Mamba-130M and DeciMamba-130M to retrieve a random 5-digit
code hidden in a random location within a contiguous 2K token sample from Wiki-Text (Merity
et al., 2016). To test the models’ extrapolation abilities, during inference we increase the sequence
lengths exponentially from 1K to 128K and record their performance for a variety of passkey loca-
tions within the context. Full implementation details are in Appendix A.1. As can be seen in Fig. 1
(right), DeciMamba-130m significantly increases the extrapolation abilities of Mamba-130m from
16K to 128K, when trained on sequence lengths of 2k tokens only. Interestingly, we identify that
the ∆t values in Layer 16 of Mamba-130m capture the exact location of the passkey, as can be seen
in Fig. 10. Using this finding, we display the distortion caused to the embedded sequence due to the
ERF in Fig. 11. Tokens at locations < 10k have meaningful ∆t values, yet tokens at locations >
10k have noisy ∆t’s, possibly due to the poor information flow caused by the limited ERF.

Language Modeling Following Chen et al. (2023b); Mehta et al. (2022), we evaluate our method
on long-range language modeling using the PG-19 dataset in both zero-shot and fine-tuned regimes.

Zero-Shot. We test our method on the test set of PG-19 using the larger Mamba models (1.4b, 2.8b)
in Fig. 6 (right). We observe that the selectivity scores learned during pre-training are quite effective
and extend the context naturally without any training for both models. Furthermore, our method can
maintain the low perplexity achieved in the short-context region. In the ablations section we further
discuss our proposed decimation mechanism and show its benefit w.r.t other alternatives.

Fine-Tuning. We display DeciMamba’s performance on PG-19 perplexity in Fig. 6 (left). We train
both Mamba-130M and DeciMamba-130M with a sequence length of 2K and test their extrapolation
abilities. The full training details can be found in Sec. A.4 in the appendix. While Mamba can ex-
trapolate to context lengths that are at most x5 times longer than the training sequences, DeciMamba
can extrapolate to sequences that are about x20 times longer, without any additional computational
resources. Furthermore, we plot a lower bound by calculating the perplexity of a Mamba-130M
model that was trained on the same context length it evaluates on (each point on the green curve is
a different model). We observe that DeciMamba is close to the lower bound and diverges from it
quite slowly, while utilizing significantly less computational resources. Nevertheless, for train se-
quences longer than 30K the ‘lower bound’ models reach an Out Of Memory (OOM) error (Nvidia

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

RTX-A6000, 48GB of RAM), which is caused by Mamba’s O(L) training complexity. This further
emphasizes the importance of good extrapolation abilities when scaling to longer sequences.

0 10K 20K 30K 40K 50K 60K 70K 80K
Context Length [Tokens]

0

10

20

30

40

50

60
Pe

rp
le

xi
ty

Train Length

OOM

Perplexity Over PG-19 Test Set

Mamba
DeciMamba
Mamba Full Length Training

0 10K 20K 30K 40K 50K 60K 70K 80K
Context Length [Tokens]

0

20

40

60

80

Pe
rp

le
xi

ty

Mamba-2.8B
DeciMamba-2.8B
Mamba-1.4B
DeciMamba-1.4B

Figure 6: Perplexity Over PG-19 Test Set. (Left) The dashed purple line shows the train sequence
length for Mamba-130m and DeciMamba-130m. Each point on the green curve shows a different
Mamba-130m model trained on the respective context length (Ltrain = Leval); for Ltrain > 30K
an Out Of Memory (OOM) error occurs. (Right) Zero-Shot perplexity comparison.

6 8 10 12 14 16 18 20
Min Decimating Layer

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

ke
y

Re
tri

ev
al

 S
uc

ce
ss

 R
at

e

Decimating Layers Selection Ablation
DeciMamba
Mamba

0 10K 20K 30K 40K 50K 60K
Context Length [Tokens]

0

20

40

60

80
Pe

rp
le

xi
ty

Mamba-1.4B
+ Max Norm Pool
+ Random Pool
+ t Pool (Ours)

Figure 7: Ablation Studies. (Left) Model sensitivity to decimation layer selection. We show the
score achieved by DeciMamba-130M in the Passkey Retrieval task when trained on sequences of
length 2K. Each point on the graph is a model’s score, while decimating from layer ’Min Decimat-
ing Layer’ to layer 20. (Right) A Zero-Shot perplexity measurement comparing between different
pooling mechanisms: ours (based on ∆t), random and max-norm pooling.

Comparison With Transformers. We evaluate equivalent Transformer models from the Pythia
suite (Biderman et al., 2023) on the experiments described above. We find that vanilla Transformers
have inferior length generalization abilities compared to Mamba. Full results are in Appendix A.5.

Inference Efficiency. We benchmark both DeciMamba and Mamba with a Nvidia RTX A6000
GPU and compare their inference speeds for the Passkey Retrieval task. From Table 3 it is evident
that DeciMamba is twice faster than the baseline Mamba model, which is expected. This is because
the decimation is performed at layer 12 (out of 24 layers in total), hence only half of the blocks
process the whole context length L. The other half processes the decimated sequence (of length
P << L), resulting in a negligible computation time. Table 10 (Appendix) shows that per block,
DeciMamba does not induce an additional computational overhead when compared to Mamba (first
two rows). In addition, we can see that the computation time becomes negligible for blocks that are
placed after the first DeciMamba block (rows three and four), no matter the input context length.

Ablation study The ablation studies can be found in Appendix D. Briefly, these studies examine
three key aspects: layer selection, pooling strategy, and decimation mechanism. For layer selection,
it seems that the choice of the first decimating layer significantly affects performance, with layer 12
yielding the best results in a Passkey Retrieval task. The pooling strategy study compares a Top-Ps

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Inference Efficieny. Inference time (seconds) of the entire model, benchmarked on Nvidia
RTX A6000 GPU. DeciMamba is about twice as fast when compared to Mamba.

Model Context Length

8K 16K 32K 64K 128K 256K 512K

Mamba-130m 0.17 0.3 0.69 1.27 2.12 4.03 8.17
DeciMamba-130m 0.14 0.19 0.31 0.59 1.08 2.01 4.22

approach with a Top-K% approach, demonstrating that the former is more effective in extending
the model’s extrapolation abilities. The decimation mechanism study compares various pooling
methods, where ∆t-based pooling performs best, though max-norm pooling also shows promise.
Lastly, in Appendix A.7, we highlight factors that significantly contribute to DeciMamba’s success.

6 CONCLUSIONS

In this paper, we explore the length-extrapolation abilities of S6 layers. Our first contribution is
the characterization of the ERF of S6. This characterization reveals that the ERF of Mamba is
significantly constrained by the context length during training, which is counterintuitive given that
Mamba theoretically has an unbounded receptive field due to its recurrent selective memory. Based
on these insights, we develop DeciMamba, a unique data-dependent compression operator that is
built on two key insights: (i) There exists a hidden filtering mechanism within the Mamba layer,
manifested by the selective time-steps ∆t, which can be interpreted as the controller of the recurrent
gate. (ii) Long-range and short-range interactions between tokens are captured by different layers in
the model, which can be identified using our Mamba Mean Distance metric. Note that DeciMamba
can be used in scenarios beyond the ones presented in the paper. For example, Appendix B.1 shows
that it can be efficiently employed also in the case of multi-turn dialogue. Looking ahead, we plan to
explore different transformer context-extension methods, including length-extrapolation PE (Press
et al.; Golovneva et al., 2024), hierarchical models, and architectural improvements (Sun et al.,
2022). Furthermore, while the techniques described in this paper are designed for Mamba models,
a detailed discussion on extending our proposed methods to other models such as Griffin can be
found in Appendix E. Finally, we will further use our Mamba Mean Distance Metric to investigate
the mechanism which leads to limited ERFs in Mamba.

7 LIMITATIONS

Similar to other context-extension methods, our model modifies a pretrained Mamba model but does
not propose an improved Mamba architecture to address the underlying issue. Despite empirical
evidence demonstrating the effectiveness of our decimation-based method in capturing long-range
interactions and its efficiency, the approach can be suboptimal. For example, pooling and com-
pression methods may miss critical information in challenging scenarios. Therefore, designing an
improved Mamba variant with enhanced length-generalization abilities that can effectively capture
global interactions within a single layer (without pooling the sequence) is an important next step.

8 REPRODUCEABILITY STATEMENT

First, we provide the source code used for the key experiments. Second, in appendix A we provide
full configurations for all experiments including instructions on how to train and evaluate the models.
We also explicitly state all used datasets, models and hardware, and describe the data processing
pipeline and exact metrics used in each experiment.

9 ETHICS STATEMENT

This work analyzes and improves the performance of large language models (LLMs) for long context
understanding, which is crucial when deploying them in real-world systems. This improvement is
anticipated to have a positive impact on the use of LLMs in society. However, we acknowledge
that LLMs could propagate biases. We emphasize the necessity of further research into these biases
before our work can be applied reliably beyond the research environment.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of mamba models, 2024.

Ido Amos, Jonathan Berant, and Ankit Gupta. Never train from scratch: Fair comparison of long-
sequence models requires data-driven priors, 2024. URL https://arxiv.org/abs/2310.
02980.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff, 2024. URL https://arxiv.org/abs/2402.18668.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023a.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023b.

Ta-Chung Chi, Ting-Han Fan, Alexander I Rudnicky, and Peter J Ramadge. Dissecting transformer
length extrapolation via the lens of receptive field analysis. arXiv preprint arXiv:2212.10356,
2022.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Quentin Fournier, Gaétan Marceau Caron, and Daniel Aloise. A practical survey on faster and
lighter transformers. ACM Computing Surveys, 55(14s):1–40, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Olga Golovneva, Tianlu Wang, Jason Weston, and Sainbayar Sukhbaatar. Contextual position en-
coding: Learning to count what’s important. arXiv preprint arXiv:2405.18719, 2024.

11

https://arxiv.org/abs/2310.02980
https://arxiv.org/abs/2310.02980
https://arxiv.org/abs/2402.18668
https://arxiv.org/abs/2304.01373

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-
vances in neural information processing systems, 34:572–585, 2021.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Farnoush Rezaei Jafari, Grégoire Montavon, Klaus-Robert Müller, and Oliver Eberle. Mambalrp:
Explaining selective state space sequence models. arXiv preprint arXiv:2406.07592, 2024.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. Advances
in Neural Information Processing Systems, 36, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack,
2024.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024a.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky. Retrieval aug-
mented generation or long-context llms? a comprehensive study and hybrid approach, 2024b.
URL https://arxiv.org/abs/2407.16833.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ringattention with blockwise transformers for near-
infinite context. In The Twelfth International Conference on Learning Representations.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024a.

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, 2024b.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language model-
ing via gated state spaces. arXiv preprint arXiv:2206.13947, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. arXiv preprint arXiv:2305.16300, 2023.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023a.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023b.

12

https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://arxiv.org/abs/2407.16833

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Maciej Pióro, Kamil Ciebiera, Krystian Król, Jan Ludziejewski, and Sebastian Jaszczur. Moe-
mamba: Efficient selective state space models with mixture of experts. arXiv preprint
arXiv:2401.04081, 2024.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations.

Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neural network for se-
quence modeling. Advances in Neural Information Processing Systems, 36, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks? Advances in neural information
processing systems, 34:12116–12128, 2021.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad, 2018.

Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
Caduceus: Bi-directional equivariant long-range dna sequence modeling. arXiv preprint
arXiv:2403.03234, 2024.

Siavash Shams, Sukru Samet Dindar, Xilin Jiang, and Nima Mesgarani. Ssamba: Self-supervised
audio representation learning with mamba state space model. arXiv preprint arXiv:2405.11831,
2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav
Chaudhary, Xia Song, and Furu Wei. A length-extrapolatable transformer. arXiv preprint
arXiv:2212.10554, 2022.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers, 2020. URL https://arxiv.org/abs/2011.04006.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Computing Surveys, 55(6):1–28, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language
model. arXiv preprint arXiv:1906.04284, 2019.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mambabyte:
Token-free selective state space model. In First Conference on Language Modeling, 2024. URL
https://openreview.net/forum?id=X1xNsuKssb.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian,
Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long context
large language models, 2024. URL https://arxiv.org/abs/2310.03025.

13

https://arxiv.org/abs/2011.04006
https://openreview.net/forum?id=X1xNsuKssb
https://arxiv.org/abs/2310.03025

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. In Forty-first
International Conference on Machine Learning.

Itamar Zimerman, Ameen Ali, and Lior Wolf. A unified implicit attention formulation for gated-
linear recurrent sequence models. arXiv preprint arXiv:2405.16504, 2024.

14

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

All model checkpoints are taken from the Hugging Face Model Hub1:

• state-spaces/mamba-130m

• state-spaces/mamba-370m

• state-spaces/mamba-790m

• state-spaces/mamba-1.4b

• state-spaces/mamba-2.8b

• iuyul/mamba-2.8b-zephyr

Our code is based on the official Mamba implementation.2

A.1 PASSKEY RETRIEVAL

Each model is trained for 5 epochs with a learning rate of 1e-4, gradient clipping of 1, batch size of
32 (used batch accumulation) and AdamW optimizer (Kingma & Ba, 2017) with weight decay of
0.1. In each epoch the models train over 6144 sequences of length 2K. For DeciMamba-130M we
use L base = 2K, β = 0.5, decimating layers = [13, ..., 21],min seq len = 20. Our code is
built over an existing version of BABILong (Kuratov et al., 2024).

A.2 DOCUMENT RETRIEVAL

We train each model with data from SQuAD v2 (Rajpurkar et al., 2018), which provides ex-
amples in the form of (Query, Document, Answer). Our training samples have the following
form: Ndocs×<Document>; <Answer>, where <Document> can be either the golden doc-
ument (which holds the answer to the query) or one of Ndocs − 1 randomly sampled documents.
<Answer> holds the id of the golden document. In our setting Ndocs = 12, the order of the doc-
uments is random, and the query and respective document id are appended to the beginning of each
document. During Evaluation we use the same setting but vary the value of Ndocs, between 12 and
300. We note that the length of an average document in SQuAD is a bit smaller than 200 tokens, so
our average training sample has about 2,200 tokens, and the evaluation samples vary between 2,200
tokens to 60,000 tokens. We train for one epoch with 300 steps, use a learning rate of 1e-4, gradient
clipping of 1, batch size of 64 (used batch accumulation) and AdamW optimizer with weight decay
of 0.1. We found that the optimal decimation parameters are decimation layer = 12, Lbase=2000
during training and Lbase=4000 during evaluation. We intentionally decreased Lbase during train-
ing so the model could experience decimation during the training period (Ltrain was a bit higher
than Lbase), because otherwise the training of DeciMamba and Mamba would have been identical.

1K 2K 4K 8K 16K 32K 64K 128K
Context Length [Tokens]

0

0.25

0.5

0.75

1Pa
ss

ke
y

De
pt

h
[%

]

Tr
ai

n
Le

ng
th

Mamba + Top-K%

1K 2K 4K 8K 16K 32K 64K 128K
Context Length [Tokens]

0

0.25

0.5

0.75

1 Tr
ai

n
Le

ng
th

Mamba + Top-Ps

Figure 8: Pooling Strategy Ablation - Results. The figure compares two pooling strategies, Top-Ps

(ours) and Top-K%. As shown, the Top-K% approach lags behind the Top-Ps approach, demon-
strating that our strategy allows the model to extrapolate to significantly longer sequences. Results
are for Mamba-130m.

1https://www.huggingface.co/models
2https://github.com/state-spaces/mamba

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2K Input
Tokens

32K Input
Tokens

Layer 17

1K

65

65

1K
Figure 9: Pooling Strategy Ablation. Top-K% pooling leads to a limited ERF in layer 17. The size
of the attention map is affected by the input sequence length: for Leval = 2K layer 17 will process
65 tokens (left) and for Leval = 32K it will process 1K tokens (right). Since Ltrain = 2K, layer 17
has only seen training sequences of length 65, therefore suffers from an ERF when Leval increases
(right, dashed orange shape).

A.3 LONGBENCH

We use the ‘iuyul/mamba-2.8b-zephyr’ instruction-tuned model from huggingface. deci-
mation layer = 28. Lbase varies between different benchmarks, between 2000 to 2800.

A.4 PG-19 PERPLEXITY

We train each model on a total of 100M tokens with a learning rate of 1e-4, gradient clipping of
1, batch size of 250 (used batch accumulation) and AdamW optimizer with weight decay of 0.1.
During training we sample a single window from each example and train on it (For the extrapolating
models the window length is 2K, for the lower bound models the window length is equal to the
context length trained on). During evaluation, for each example we evaluate 10 windows with a
maximal constant stride. We evaluate only the last 100 labels in each window, which represent the
extrapolation abilities of the model at sequence lengths in the range of [ctx len − 100, ctx len],
providing an approximation to the model’s performance at the wanted ctx len. For DeciMamba-
130M we use L base = 2K, β = 0.83, decimating layers = [12, ..., 20],min seq len = 20.
During evaluation we keep the same parameters except setting L base = 8K. Additionally, in this
specific task DeciMamba was trained with a similar, yet not identical, Language Modeling (LM)
loss. We break the labels sequence (length = 2K) into two chunks. The first 1K labels are trained
conditionally on the first 1K tokens of the sequence (like vanilla LM). The last 1K labels are trained
conditionally on the whole sequence (2K), and DeciMamba was configured to compress the first
1K input tokens. This way we are able to train DeciMamba to compress context while training on
each label in the sequence, making the training much more efficient. We also experimented with
chunking the labels into more than two chunks, but only experienced a slowdown in computation
while achieving similar performance. For the lower bound models we had to reduce the amount
of training steps in order to constrain the training to 100M tokens. Specifically, for each context
length, we followed the following formula: num of steps = 100M/(batch size ∗ ctx len) =
100M/(250 ∗ ctx len). For the 1.4b model we used Layer 12 for decimation and Lbase = 4000.
For the 2.8b model we used Layer 22 for decimation and Lbase = 4000.

A.5 COMPARISON WITH TRANSFORMERS

We find that vanilla Transformers of equivalent size (trained on the same dataset with a similar
training recipe), have inferior length generalization abilities compared to Mamba. This is evident in
all long-context tasks tested (Tables 4, 5, 6).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Comparison With Transformers - Passkey Retrieval. The setting is the same as in
AppendixA.1. All models were trained on sequences of length 2k. For each context length we test
performance for 5 different needle locations, and report the success rate (between 0 and 1). ✓stands
for 100% success, ✗ for 0% success.

Context Length 1K 2K 4K 8K 16K 32K 64K 128K
Pythia-160M ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Mamba-130M ✓ ✓ ✓ ✓ 0.8 ✗ ✗ ✗

DeciMamba-130M ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5: Comparison With Transformers - Multi-Document Retrieval. The setting is the same
as in AppendixA.2. All models were trained on sequences of length 2k (10 documents). For each
context length we test performance for 100 different queries and report the success rate (between 0
and 1).

Context Length 10 20 40 60 80 100 120 140 160 180 200 250 300
Pythia-160M 0.69 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Mamba-130M 0.59 0.61 0.41 0.06 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

DeciMamba-130M 0.70 0.70 0.53 0.48 0.51 0.58 0.67 0.68 0.73 0.60 0.61 0.53 0.21

Table 6: Comparison With Transformers - Zero-Shot Perplexity. The setting is the same as in
Appendix A.4. All models were pre-trained on sequences of length 2k (we remind that DeciMamba
is applied directly without any tuning). inf replaces any perplexity result larger than 100.

Context Length 1K 2K 4K 8K 10K 20K 30K 40K 50K 60K 70K 80K
Pythia-2.8B 10.24 9.96 inf inf inf inf inf inf inf inf inf inf
Mamba-2.8B 9.39 9.17 11.6 inf inf inf inf inf inf inf inf inf

DeciMamba-2.8B 9.39 9.17 11.98 14.58 14.73 17.17 19.83 22.2 24.89 27.57 27.89 27.43
Pythia-1.4B 11.64 11.32 inf inf inf inf inf inf inf inf inf inf
Mamba-1.4B 10.51 10.31 10.5 14.43 18.4 inf inf inf inf inf inf inf

DeciMamba-1.4B 10.51 10.31 10.5 14.13 14.5 18.33 23.54 26.82 28.97 30.56 29.97 29.28

For LongBench, the equivalent Transformer model (Pythia-2.8B) repeatedly causes an OOM error
on our GPU (A6000, 48GB of RAM).

A.6 HYPERPARAMETER SELECTION

In practice, Lbase is the only parameter we sweep. We typically scan 3 or 4 values that are similar in
magnitude to the context length used during training (Ltrain). The reason for selecting Lbase close
to Ltrain originates from an assumption on the long-context data: short training sequences and long
evaluation sequences have similar information content and differ mainly by the amount of noise in
the sequence. Under this assumption, there are at most Ltrain important tokens; hence, it makes
sense to pool this number of tokens, regardless of the amount of noise. We find this assumption
quite reasonable for many long-context tasks, such as retrieval, multi-document question answering,
and next-token prediction. For example, in multi-document retrieval/QA, only one document is
relevant to the query, regardless of how many random documents we append to the context. Another
example is next-token prediction, which is usually very local and does not benefit much from global
interactions. Another reason for selecting Lbase close to Ltrain is that there are no ERF issues when
processing sequences of length Ltrain, as the global layers (starting from the first decimation layer)
are trained on sequences of the same length.

Regarding the number of layers to decimate and the decay rate (β): The main goal of these parame-
ters is to improve efficiency, not performance. Both parameters introduce the option to compress the
sequence further by applying additional DeciMamba layers. We emphasize that this has negligible
effects on performance, as shown in the sweeps below for the passkey retrieval task (Tables 7, 8).
In addition, this is supported by other results, such as Multi-Document Retrieval and LongBench,
which were run with this option disabled.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Decay Rate (β) Sweep. BL is the performance of the baseline Mamba model. The setting
is the same as in AppendixA.1. We use Lbase = 2000 and 9 decimation layers (13-21).

β BL 1 0.75 0.5 0.25
Success Rate 0.55 1.0 0.975 0.975 0.975

Table 8: Number of Decimation Layers Sweep. BL is the performance of the baseline Mamba
model. The setting is the same as in Appendix A.1. We use Lbase = 2000 and β = 0.5 .

of Deci Layers BL 1 2 3 4 5 6 7 8 9
Success Rate 0.55 1.0 0.975 0.925 0.925 0.975 0.925 0.95 0.95 0.975

A.7 FACTORS THAT AFFECT THE SUCCESS OF DECIMAMBA

We identify two main factors that significantly contribute to the success of DeciMamba.

Tasks in which limited ERF is the bottleneck: Since DeciMamba is a context-extension
method, it primarily enhances the model’s abilities in tasks where a long context is the main barrier,
rather than in other aspects of NLP such as reasoning abilities, domain knowledge, and syntactic
and semantic understanding. For example, Mamba is not able to solve the Long ListOps task (Tay
et al., 2020) (Section 2.2.1), even in short context. When applying DeciMamba, there is no change
in performance, as can be seen in Table 9

Table 9: Long ListOps. BL is the performance of the baseline Mamba model. DeciMamba com-
presses the context by using different values of Lbase, but is unable to improve performance. We
follow the setting in Amos et al. (2024), where pre-training is applied on the downstream task data
followed by fine-tuning on the downstream task. The average sequence length is 2K tokens.

Lbase BL 1K 1.5K 2K
Success Rate 0.19 0.19 0.19 0.19

Tasks with Sparse Data Content: By design, the pooling operator discards most of the tokens
in long sequences. This is effective, for example, in information retrieval tasks, because it helps
overcome the limited ERF issue while keeping the important information intact. However, this
approach may not work as well for tasks that assign similar importance to most of the tokens - e.g.,
Long ListOps.

Finally, we emphasize that the limited ERF phenomenon, which is studied in our work, is not related
to the state size, as it occurs even in tasks that require minimal memorization, such as Passkey
Retrieval. The study in Arora et al. (2024) (Section 3.1 and Figures 2,3) investigates the relationship
between the hidden state size and performance. One interesting finding is that the hidden state’s
capacity can be reached even with short sequences. This suggests that the state size limits the
information density of the context, rather than its length (although in many tasks the two correlate).

A.8 JUSTIFICATION FOR MAMBA MEAN DISTANCE

We are aware of two main approaches for measuring the ERF of Mamba and Attention models: (i)
via the attention mean distance or our analogy of Mamba Distance (Eq. 10), and (ii) by measuring
the gradient norms over the entire model, which was employed for transformers in Chi et al. (2022)
and very recently applied to Mamba models (Jafari et al., 2024) (section 6). The main drawback of
the second approach is that it measures the ERF in the context of gradients, which are significantly
influenced by the type of loss function, task, and label, complicating the analysis. Additionally,
while the first method can be applied to a single layer or a set of layers, the second method be-
comes less straightforward when applied to a subset of layers, requiring additional considerations
and design choices, such as whether to normalize gradients, the use of gradients instead of relevance
scores, and the computation of gradients only for attention blocks that learn token interactions or
also consider linear and normalization layers. Due to its flexibility and simplicity, as well as being

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Demonstrating the ‘Importance-Scoring’ Abilities of ∆t. We evaluate Mamba-130M
on the Passkey Retrieval task, and record the values of ∆t for all channels of layer 16. Each pair of
images is identical, except that the left one marks the location of the passkey with a dashed pink line.
The horizontal and vertical axes indicate the token number and the channel respectively. As can be
seen from the two cases examined above, the ∆t activation captures the needle location successfully,
demonstrating the effectiveness of its ‘importance scoring’ mechanism.

Figure 11: Measuring the Effects of Limited ERFs. We show the ∆t values across the channels
for layer 16 in the Mamba-130M model, examined on different context lengths. The horizontal and
vertical axes indicate the token number and the channel respectively. As can be observed from the
results above, the passkey can be detected clearly until the ERF ends (for t > 10K).

more popular (several examples are Vig & Belinkov (2019); Dosovitskiy et al. (2020); Raghu et al.
(2021)), we chose the first method.

A.9 WHY USE LONG CONTEXT LLMS INSTEAD OF RETRIEVAL AUGMENTED GENERATION?

Performance-wise, recent studies do not show a conclusive advantage of RAG over Long Context
LLMs: Li et al. (2024b), Xu et al. (2024). Interestingly, the common conclusion of all these studies
(and others, such as Anthropic’s Contextual Retrieval) is that when combined, RAG and Long-
Context LLMs have a synergistic effect which improves performance even more. Moreover, each
study proposes a different way of combining RAG and Long Context LLMs (directly, switching be-
tween RAG and Long Context, augmenting the retriever chunks, etc.) - showing that further research
in each area alone, or combined, has potential for an overall improvement in LLM performance.

B ADDITIONAL EVALUATIONS

B.1 MULTI-TURN DIALOGUE

To show that DeciMamba is capable of performing tasks with complicated inference, we test it
over the well known multi-turn dialogue benchmark MT-Bench (Zheng et al., 2023). In each round
the model is asked to answer a question (1st Turn), responds, and is then asked to answer another

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 12: Normalized Mamba Attention Map. Displayed in log scale for each layer of the
Mamba-130M model.

question (2nd Turn) that relates to the first question, and responds to it as well. Then, a GPT-4 judge
scores the responses on a scale from 1 to 10 (1-poor, 10-good). The average scores for each turn are
displayed:

Model 1st Turn 2nd Turn
Mamba 4.5 3.4
DeciMamba 4.4 3.4

By applying a simple inference scheme (append the previous dialogue to the context before each
turn) we can see that DeciMamba does not limit the original Mamba model, even in tasks that require
more sophisticated inference. Here, we again use the ‘iuyul/mamba-2.8b-zephyr’ instruction-tuned
model from huggingface.

C OTHER RELATED WORK

C.1 LONG RANGE TRANSFORMERS.

Transformers have emerged as highly effective models for various tasks, yet their widespread adop-
tion has been constrained by their limited long-range modeling capabilities. Thus, applying trans-
formers effectively to long-range data remains a central challenge in DL, particularly in NLP. A
primary factor in this challenge is that the effective context of transformers is dominated by the
context observed during training, which is limited because training LLMs on datasets with billions
of tokens across lengthy sequences is computationally demanding. Hence, three main approaches
have been developed to tackle this problem: (i) creating efficient variants of transformers that al-
low an increase in the length of sequences during training. (ii) Context extension methods, which
enable training on short sequences and evaluation on long sequences, and finally, (iii) hierarchical

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

models that rely on pooling, chunking, and compression. Despite these extensive efforts, several re-
cent studies indicate that high-quality handling of long text remains an unresolved issue (Liu et al.,
2024a; Li et al., 2024a).

C.2 EFFICIENT TRANSFORMERS.

Over the years, many approaches have been proposed for making transformers more efficient (Tay
et al., 2022; Fournier et al., 2023). The two most prominent directions are hardware-aware im-
plementations such as flash-attention (Dao et al., 2022; Dao, 2023) and ring-attention (Liu et al.),
which accelerate computations over long sequences by several orders of magnitude. Additionally,
developing efficient attention variants with sub-quadratic complexity has become very popular. Two
notable examples are Linformer (Wang et al., 2020), which utilizes a low-rank attention matrix, and
Performer (Choromanski et al., 2020), a variant that approximates the attention operator through a
kernel function.

C.3 EFFECTIVE RECEPTIVE FIELD (ERF)

The Receptive Field (RF) (LeCun et al., 1998) of a neuron refers to the region of the input space
that influences the neuron’s output. In traditional CNNs, the RF captures how the area of influence
expands as the neuron’s depth increases. However, in modern architectures like transformers, which
process the entire input context at each layer and can theoretically model interactions between any
parts of the input, the concept of RF becomes less informative. In these models, the theoretical
receptive field is maximal, rendering the term ambiguous.

To address this, the ERF offers a more practical measure by quantifying the empirical sensitivity of a
model to different input regions. The ERF highlights where the model actually focuses its attention
and depends not only on the architecture but also on the data and training process. The seminal work
on Vision Transformer (ViT) (Dosovitskiy et al., 2020) and Vig & Belinkov (2019) introduced the
concept of attention mean distance to measure the ERF, as detailed in Equation 6. Building upon
this, we extend the measurement to Mamba layers in Eq. 8, allowing us to effectively estimate their
ERF.

D ABLATIONS

Layer Selection We ablate our layer selection methodology, as it has significant affect on the
model’s performance (Figure 7, left). Each point on the curve represents the score achieved by a
DeciMamba-130M model in the Passkey Retrieval task when trained on sequences of length 2K.
The only difference between the models is the first decimating layer (x axis). We see that when
the decimating layer is too shallow (e.g. layer 8), the model fails completely. As we increase the
minimal decimating layer we observe a large increase in performance, until reaching the climax
at layer 12. This result aligns with the fact that the ∆t distribution is farther from 0 in Mamba’s
early layers (all tokens are important). We hypothesize that the tokens still don’t have a strong
representation at this stage, hence it makes less sense to decimate w.r.t their ∆t value. After layer 12
the performance of DeciMamba starts to drop, and stabilizes at the vicinity of the baseline Mamba
model. At this region we start decimating too late, as some long-dependency layers suffer from
ERFs when processing the longer Passkey Retrieval sequences. The final layers (21-23) also have
larger ∆t values, so they should not be decimated as well. We hypothesize that these layers ’decode’
the processed embeddings back into token distributions, so the intermediate representations are yet
again not fit for semantic decimation.

Pooling Strategy We show the importance of the proposed Top-Ps pooling strategy in the follow-
ing ablation study. Suppose we select a different pooling strategy, Top-K%, which keeps the top
K% tokens with the largest mean ∆t values (over the channels dimension). We train a DeciMamba-
130m model for the Passkey Retrieval task on sequences of length Ltrain = 2K, with K = 50%
and decimation layers [12,...,20]. As can be seen in Fig. 8 (Appendix), Top-K% extends Mamba’s
extrapolation abilities from 8K to 32K, yet does not do as well as Top-Ps which extends to 128K.
While Top-K% decimation decreases the sequence length greatly (the output is x512 times shorter),
during extrapolation each SSM layer still faces input sequences that are much longer than the ones
it has seen during training, as demonstrated in Fig. 9. We further explain this result; During train-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 10: Inference Time Per Block. In milliseconds, benchmarked on Nvidia RTX A6000 GPU.
DeciMamba and Mamba blocks have a similar processing time. Notice how the processing time
drops for blocks that are placed after a DeciMamba block, no matter the input sequence length.

Model Context Length

8K 16K 32K 64K 128K 256K 512K
Mamba Block 3.2 6.1 11.6 22.7 52.5 95.9 204
DeciMamba Block 3.3 6.1 11.8 23.1 45.9 93.1 188
Mamba Following DeciMamba 1.6 1.6 1.5 1.9 1.8 1.9 2.4
DeciMamba Following DeciMamba 1.3 1.4 1.5 1.5 1.5 1.5 1.5

ing Layer 17 saw sequences of length 65 (Ltrain = 2K, followed by a decimation rate of 50%
in each layer from layer 12). During inference it sees sequences of lengths 65 and 1002 (where
Leval = 2K, 32K, left and right images, respectively). Since the sequence length at layer 17 of the
latter (1K) is much longer than the one it saw during training (65), the extrapolation is limited by an
ERF (right image, dashed orange shape). This shows the importance of keeping the lengths of the
inputs to each decimating SSM layer similar to the ones seen during training, as done by Top-Ps.

Decimation Mechanism. To emphasize the benefit of pooling w.r.t the values of ∆t, we examine
two additional decimation mechanisms: max-norm decimation (tokens with maximal norm are kept)
and random decimation (tokens are randomly kept). We equip Mamba-1.4b with each of the dec-
imation mechanisms (decimation layer = 12, Lbase = 8000), and compare each model’s zero-shot
perplexity in Fig. 7 (right). Max-norm pooling achieves a similar trend to ∆t pooling (DeciMamba),
yet performs somewhat worse. The result suggests that ∆t is a better candidate for pooling, but also
shows that the token’s norm also holds some information about its importance. We hypothesize
that a method that combines both might achieve better performance than any one alone, but leave
this question open for future work. Random pooling induces strong distortion to the embedded se-
quence, yet achieves better perplexity for longer contexts. This surprising result demonstrates how
sensitive Mamba is to limited ERFs - in longer sequences, it is actually better to randomly decimate
the sequence rather than process its full length.

Adding Pooling to the decoder. We turn to test whether it is required to add our pooling strategy
to the decoder as well. We tested this on the longest generation task in LongBench: GovReport.
It involves summarizing long documents with an average length of 10,000 tokens. The additional
decimation during decoding was performed by iteratively combining prefill and decoding for each
generated chunk, where the chunk size is 50 tokens. Table 11 presents the results and shows that
adding decoding pooling has a negligible effect on performance.

A possible explanation for the limited impact of adding decimation to the decoder is that despite
being long (about 500 tokens), the generated summaries are relatively short compared to the number
of tokens that cause limited ERFs (it needs to be longer than the context length used to train Mamba).
Thus, the above suggests that decimation is not needed in the decoder. Note also that while in
GovReport the generated responses are relatively long, for most of the remaining 15 long-context
tasks in LongBench, such as Multi-Document QA, the model is required to generate only 10 to 30
tokens per answer. Therefore, pooling is not required in their decoding as well.

Clearly, if a new task emerges where the number of generated tokens is larger than the ERF, it might
be useful to add pooling to the decoder.

Table 11: GovReport: Long Summary Generation With and Without Decoding Decimation. LB is
LongBench; 0-4k, 4-8k, 8k+ are the three LongBench-e context length groups; and +DD is Deci-
Mamba with additional Decoding Decimation.

Model LB 0-4k 4-8k 8k+
Mamba 9.8 24.8 10.9 5.2
DeciMamba 14.9 27.4 19.4 7.8
DeciMamba + DD 14.7 26.6 18.4 8.14

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E EXTENSIONS TO OTHER MODELS

While this paper focuses on exploring the length-generalization abilities and introducing the first
context-extension method specifically designed for Mamba models, our proposed techniques are
broadly applicable to other architectures. First, the Mamba Mean Distance metric can be generalized
to other models that rely on implicit attention. Examples include HGRN (Eq. 5 in Qin et al. (2024)),
Griffin (Eq. 14 in De et al. (2024)), RWKV (Eq. 18 in Zimerman et al. (2024)), and others. These
tools can provide valuable insights into the ERF of these models, offering a deeper understanding of
their length-generalization behavior. Furthermore, the entire context-extension technique introduced
in Sec. 4 can be adapted for other models. Specifically, models with per-token data-dependent
recurrent gates can leverage these gates to compute token importance scores, enabling a decimation
strategy during pre-fill. For instance, in Griffin, the recurrent gate rt (Eq. 1 in De et al. (2024) can
be used to assign token importance scores, facilitating an effective decimation strategy. Similarly,
in HGRN and GLA, the recurrent gate λt (Eq. 2 in Qin et al. (2024)) and Gt (Eq. 3 in Yang
et al. (2023)) accordingly can be interpreted as token importance measures, allowing our approach
to be extended to design context-extension techniques for these architectures. By extending these
techniques, we provide a foundation for exploring length-generalization in various sequence models.

23

	Introduction
	Preliminaries
	Extrapolation Limitations of Mamba
	Method: DeciMamba
	Experiments
	Conclusions
	Limitations
	Reproduceability Statement
	Ethics Statement
	Experimental Details
	Passkey Retrieval
	Document Retrieval
	LongBench
	PG-19 Perplexity
	Comparison With Transformers
	Hyperparameter Selection
	Factors That Affect the Success of DeciMamba
	Justification for Mamba Mean Distance
	Why use Long Context LLMs instead of Retrieval Augmented Generation?

	Additional Evaluations
	Multi-Turn Dialogue

	Other Related Work
	Long Range Transformers.
	Efficient transformers.
	Effective Receptive Field (ERF)

	Ablations
	Extensions to Other Models

