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ABSTRACT

Local learning, which trains a network through layer-wise local targets and losses,
has been studied as an alternative to backpropagation (BP) in neural computation.
However, its algorithms often become more complex or require additional hyperpa-
rameters because of the locality, making it challenging to identify desirable settings
in which the algorithm progresses in a stable manner. To provide theoretical and
quantitative insights, we introduce the maximal update parameterization (µP) in
the infinite-width limit for two representative designs of local targets: predictive
coding (PC) and target propagation (TP). We verified that µP enables hyperparam-
eter transfer across models of different widths. Furthermore, our analysis revealed
unique and intriguing properties of µP that are not present in conventional BP. By
analyzing deep linear networks, we found that PC’s gradients interpolate between
first-order and Gauss-Newton-like gradients, depending on the parameterization.
We demonstrate that, in specific standard settings, PC in the infinite-width limit
behaves more similarly to the first-order gradient. For TP, even with the standard
scaling of the last layer, which differs from classical µP, its local loss optimization
favors the feature learning regime over the kernel regime.

1 INTRODUCTION

Deep learning has achieved remarkable performance by building upon the backpropagation (BP)
algorithm and developing architectures specialized for it (Rumelhart et al., 1986; LeCun et al.,
1998; 2015). BP, however, is not always a suitable method for more general objectives, such
as biologically plausible computation (Lillicrap et al., 2020; Bredenberg et al., 2024) or efficient
distributed computation (Amid et al., 2022). A representative alternative is local loss optimization, a
type of credit assignment problem, in which loss functions are defined layer-wise, and targets are set
locally. The basic formulation involves performing regression on target signals at each layer to reduce
the global error across the entire network: Predictive Coding networks, usually referred to as PC,
generate their targets through the internal dynamics of inference (Whittington & Bogacz, 2017; Song
et al., 2020; Salvatori et al., 2023), while Target Propagation (TP) generates them using feedback
networks (Bengio, 2014; Lee et al., 2015; Ernoult et al., 2022).

In many cases, the use of local losses requires additional hyperparameters (HPs) and their careful
tuning, making the algorithm configuration significantly more complicated compared to that of BP.
For example, PC requires not only the usual HPs, such as learning rate and initialization of weight
parameters but also those for the inference phase, such as the initialization of the state and the
number of inference sequences. These HPs are primary considerations and have been reported as
critical for ensuring stable training behavior (Pinchetti et al., 2024; Alonso et al., 2024; Rosenbaum,
2022). A few analyses have succeeded in providing theoretical intuition for such local learning
algorithms by introducing specific conditions or additional corrections that bridge them to classical
optimization formulations (Song et al., 2020; Alonso et al., 2022; Meulemans et al., 2020). However,
such conditions are not always met in practice and may not be commonly shared across the entire
family of methods. To develop local learning that is more easily manageable across a broader range
of settings, it is promising to establish a theoretical foundation that enables the analysis of natural
learning dynamics under fewer constraints.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

For standard BP, deep learning theory offers insights into the universal properties of learning (Bahri
et al., 2020; Bartlett et al., 2021). A key research focus in this area is understanding learning in the
infinite-width limit, including studies on neural tangent kernel (NTK) and feature learning regimes
(Jacot et al., 2018; Chizat et al., 2019; Mei et al., 2018; Bordelon & Pehlevan, 2022b). In particular,
Yang & Hu (2021) provided a unified perspective on the parameterizations that realize these learning
regimes and proposed maximal update parameterization (µP) as a unique scaling of HPs, such as
random initialization and learning rates, that achieves feature learning in the infinite-width limit.
Building on this developing theoretical foundation, we expect to gain universal insight into local
learning, which has not yet been systematically analyzed.

In this work, we derive the µP for PC and TP and investigate hyperparameter transfer (the so-called
µTransfer) across different widths. Although µP for SGD has been previously derived, the µP
depends on the specific training algorithm, making it necessary to derive µP for each local learning
algorithm. Our contributions are summarized as follows:

• While it is known that PC inference trivially reduces to gradient computation of BP under
the fixed prediction assumption (FPA), a technical and heuristic condition, there is generally
no guarantee that PC will reduce to BP, making it highly non-trivial to identify its µP. We
first consider PC with a single sequential inference and reveal the µP even without FPA
(Theorem 4.1). We also empirically verify the µTransfer of learning rates, showing that the
optimal learning rate does not depend on the order of width.

• Second, for a more general context involving multiple inference sequences, we consider
the convergence of the inference phase. We find that, for deep linear networks, we can
explicitly obtain the local targets and losses at the fixed point of the inference, which depend
on inference step sizes (Theorem 4.2). Interestingly, it takes a similar form to the Gauss-
Newton (GN) gradient, but it can be reduced to the conventional first-order gradient descent
(GD) depending on the parameterization and step sizes. We find that the eventual gradient
is closer to GD for sufficiently wide neural networks under standard experimental settings
with µP. We also confirm that a larger inference step size, identified through this analysis,
enhances µTransfer of HPs.

• Finally, we derive µP for both TP and its variant difference target propagation (DTP)
assuming linear feedback networks (Theorem 5.1). We reveal a distinct property that differs
from BP and PC; the feedback network of (D)TP changes the preferable scale of the last
layer compared to the usual µP and causes the absence of the kernel regime. In this sense,
(D)TP favors feature learning more strongly than other learning methods.

Thus, this study provides a solid and qualitative foundation for the further development of local
learning schemes in large-scale neural networks in the future.

2 RELATED WORK

Local learning: Most research on local learning stems from the exploration of biologically plausible
learning (Lillicrap et al., 2020), with PC and TP following this line. As deep learning has evolved,
local learning has also begun to focus on large-scale networks, and some models have achieved
performances close to those trained with BP (Ernoult et al., 2022; Ren et al., 2023). Several algorithms
are inherently structured to resemble the BP chain (Akrout et al., 2019) or to estimate first-order
gradients (Scellier & Bengio, 2017). In contrast, PC relies on an inference phase, which essentially
infers the appropriate activation values for hidden layers, and TP uses a feedback network, both
of which are quite different from BP and seem to be fundamental designs for using local targets.
However, their optimization properties are still not well understood. Alonso et al. (2022) proposed a
modified PC as a proximal point algorithm (implicit SGD), though it requires additional corrections
and adaptive rescaling (Alonso et al., 2024). Innocenti et al. (2023) proposed an inference phase
computed by a GN method, but it requires a quadratic approximation of the local loss around a special
initialization. As discussed in the next section, bridging to such classical optimization requires strong
conditions that may deviate significantly from the original purpose and algorithm (Rosenbaum, 2022;
Meulemans et al., 2020).

Infinite width and µP: While the NTK regime guarantees the existence of learning dynamics in
the infinite-width limit and its global convergence, it reduces to just a kernel method (Jacot et al.,
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2018; Lee et al., 2019). To realize feature learning in the infinite-width limit, Yang & Hu (2021)
proposed µP, which is a non-trivial scaling of HPs with respect to the width. From a theoretical
perspective, this serves as a parameterization that enables the dynamics of feature learning, such
as those described by the mean-field regime (Mei et al., 2018) or the dynamical mean-field theory
(Bordelon & Pehlevan, 2022b). For more applications, µP or its extension has been validated across
various architectures (Yang et al., 2021; Vyas et al., 2023; Everett et al., 2024). It covers not only
the naive first-order gradient but also entry-wise adaptive optimizers such as Adam (Yang & Littwin,
2023) and second-order optimization methods like K-FAC (Ishikawa & Karakida, 2024). There
has been little previous work on the infinite-width analysis of local learning. Bordelon & Pehlevan
(2022a) formulated (direct) feedback alignment and (supervised) Hebbian learning using dynamical
mean-field theory, which are rather close to BP.

3 PRELIMINARIES

In this section, we summarize local learning and µP in an L-layer fully connected neural network f :

hl = ϕ (ul) , ul =Wlhl−1 (l = 1, . . . , L), (1)

where Wl ∈ RMl×Ml−1 are weight matrices, hl, ul ∈ RMl×N are activations and N is the number
of data samples, independent of the order of width Ml. We set the width of the hidden layers to
Ml =M for (l = 1, . . . , L− 1) for simplicity. To keep the notation concise, for non-linear networks,
we set ML = 1; however, we can easily generalize to ML = Θ(1). The activation function ϕ(·) is
usually assumed to be differentiable and polynomially bounded for some theoretical reasons within
the µP framework (Yang & Hu, 2021).

3.1 OVERVIEW OF LOCAL LEARNING

3.1.1 PREDICTIVE CODING

Predictive Coding (PC) updates both the states and weights to minimize the following free-energy
function (Whittington & Bogacz, 2017; Song et al., 2020; Salvatori et al., 2023):

F(v,W ) = γLL(y,WLϕ(vL−1)) +

L−1∑
l=1

γl
1

2
∥vl −Wlϕ(vl−1)∥2 . (2)

L denotes a loss function, and both mean squared error loss and cross-entropy loss are allowed in
theory and experiments unless an explicit assumption is stated. To distinguish the internal state from
the forward signal propagation ul, we denote this state as vl. Although this algorithm was originally
derived from the variational Bayes formulation, it has been extended beyond the scope of the original
framework, aiming instead to develop inference computations that work more effectively in practice.
PC is composed of two phases: an inference phase, in which the per-layer states vl are updated and a
learning phase, in which weights Wl are updated. Its update rule for the inference phase is given by

vl,s+1 = vl,s −
∂F
∂vl

= vl,s − γlel,s + γl+1ϕ
′ (vl,s) ◦W⊤

l+1el+1,s (l < L), (3)

where we define el,s := vl,s −Wlϕ(vl−1,s) and ◦ is the Hadamard product. From eq. (3), γl can be
regarded as a step size for the inference phase. The update rule for the learning phase is given by

Wl,t+1 =Wl,t − ηl
∂F
∂Wl

=Wl,t + ηlγlel,sϕ(vl−1,s)
⊤. (4)

Note that the inference time index s and the parameter update index t are distinct with s resetting to 0
at each t. We usually omit the step size γl in Eq. (S.6) in implementation. Generally, weights are
updated after multiple inference steps, while the incremental version of PC (iPC), which updates the
weights after just a single inference, has also been proposed (Salvatori et al., 2024b). The internal
state can be updated simultaneously across all layers or computed sequentially in a specified order.
In the first part of the next section, we focus on the Sequential Inference (SI) method, where el,s is
computed sequentially by propagating from the output layer to the input layer. For more details on
this difference, see Algorithm 1 in the Appendix.
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Empirically, to improve trainability, PC often relies on assumptions that are either rational or, at
times, unrealistic. One such reasonable assumption is the initialization method for vl,0, which is used
to improve the convergence (Song et al., 2020; Alonso et al., 2022; Rosenbaum, 2022):

Technique (i): Forward initialization (F-ini). At each training step t, vl,0 is initialized such that
vl,0 = ul,t , which ensures el,0 = 0.

Generally, the gradient computation of PC does not match that of BP. However, under F-ini and
SI, it reduces to BP by adopting the following rather technical assumption (Millidge et al., 2022b;
Rosenbaum, 2022):

Technique (ii): Fixed prediction assumption (FPA). Replace ϕ (vl−1,s) with ϕ (vl−1,0) during the
inference phase.

Under FPA, the inference is given by el,s+1 = (1 − γl)el,s + γl+1ϕ
′ (vl,0) ◦ W⊤

l+1el+1,s. By
substituting F-ini, one can easily verify that this sequential inference computes∇ul

L. In Section 4,
we reveal that the following scaling of γL with respect to the width M plays a fundamental role in
characterizing the feature learning of PC and a parameterization that enables stable learning even
without such heuristic techniques:

γL = γ′/M γ̄L (5)
with an exponent γ̄L and an uninteresting constant γ′ > 0. A more detailed overview of PC is
provided in the extended related work (Appendix.A.1.2).

3.1.2 TARGET PROPAGATION

In target propagation (TP), ĥL = hL − η̂∇hL
L is propagated through the feedback network, which

generates local targets ĥl as follows:

ĥl = gl(ĥl+1), gl(x) = ψ(Qlx) (l = 1, ..., L− 1), (6)

where Ql ∈ RMl−1×Ml are weight matrices, ψ(·) is an activation function of the feedback network.
We also analyze the Difference Target Propagation (DTP), a variant of TP, whose definition is
provided in the appendix. The feedback network is trained to minimize the following reconstruction
loss:

Lrec(Ql) = ∥gl (fl(hl−1))− hl−1∥2 , (7)
where fl(x) = ϕ(Wlx). TP updates the weights Wl to minimize the following local loss ∥el∥2 :=

∥ĥl−hl∥2. The gradient of this local loss provides the update rule for the learning phase as Wl,t+1 =
Wl,t − ηlϕ′(Wl,thl−1) ◦ elh⊤l−1. For a so-called invertible network, TP computes the Gauss-Newton
Target (GNT), i.e., eGNT

l = (δlδ
⊤
l + ρI)−1δleL where δl = ∇ul

uL is the BP signal (Meulemans
et al., 2020) 1 and eL = y− hL is the error vector. Note that the assumption of the invertible network
is restrictive because the invertible network requires invertible activation functions, regular weight
matrices, and the training tp converge to the solution of gl(ĥl+1) = f−1

l+1(ĥl+1) =W−1
l+1ϕ

−1(ĥl+1).
For general networks, (D)TP does not necessarily lead to the GNT.

Remark on a connection between PC and TP. Some previous studies have argued that PC yields
GNT-like solutions, and thus can be connected to TP (Alonso et al., 2022; Millidge et al., 2022a).
These works attempt to gain an intuitive insight from the fixed point equation for each layer:

h∗l =
(
W⊤

l+1Wl+1 + γl+1/γlI
)−1 (

W⊤
l+1h

∗
l+1 + γl+1/γlWlh

∗
l−1

)
, (8)

where h∗l means ϕ(v∗l ). For γl+1/γl ≪ 1, we approximate h∗l ≈ W †
l+1h

∗
l+1. If we multiply this

approximation across layers, the naive expectation is that h∗l ≈
∏L

i=l+1W
†
i e

∗
L, which corresponds to

the GNT for linear networks. Thus, we can intuitively see that the PC may be linked to the GNT,
although its exact connection requires careful limit operations across layers. Additionally, taking
the limits γl+1/γl ≪ 1 for all layers means the exponential decay of γl with depth, raising concerns
regarding its practical relevance. For γl = 1, Innocenti et al. (2024) has recently derived an explicit
formulation of the free energy at the fixed point using an unfolding calculation of a hierarchical
Gaussian model. This formulation shows that the obtained gradient differs from that of the exact
GNT, supporting the idea that the connection to GNT would be weak.

1The final gradient dF/dWl is equivalent to the special case of K-FAC (Martens & Grosse, 2015) where the
preconditioners are applied only to the backward signals.
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Table 1: Parameterization for weight initialization scale: bl and learning rate scale: cl. Predictive
Coding (PC) with γ̄L = 0 reduces to SGD’s µP, while one with γ̄L = −1 reduces to µP for Gauss
Newton Target (GNT). TP (Target Propagation) has the distinctive property of bL = 1/2.

Layer SP (Default) SGD (2021) GNT (2024) PC (New) TP (New)
Input (0, 0) (0,−1) (0, 0) (0,−γ̄L − 1) (0, 0)
Hidden (1/2, 0) (1/2, 0) (1/2, 1) (1/2,−γ̄L) (1/2, 1)
Output (1/2, 0) (1, 1) (1, 1) (1, 1) (1/2, 1)

3.2 µP AND LEARNING REGIMES

The abc-parameterization {al, bl, cl}1≤l≤L determines the scaling of weights and learning rates at
initialization. It scales the parameters by width as follows (Yang & Hu, 2021):

Wl = wl/M
al , wl ∼ N (0, σ′2/M2bl), ηl = η′l/M

cl . (9)

µP and its conditions: Consider the temporal change of ul by the parameter update:

∆ul,t := ul,t − ul,0 = Θ(1/Mrl) , (10)

where Θ(·) denotes the order with respect to the width and x = Θ(Ma) means
√
∥x∥2/M = Θ(Ma)

for x ∈ RM .The training dynamics and parameterization are referred to as stable when ul,0 neither
vanish nor explode as the network width increases and ∆hl,t do not explode as the network width
increases (Definition A.2). Yang & Hu (2021) introduced the following conditions and characterized
µP as a unique stable abc-parameterization under them:
Condition 3.1 (Wl updated maximally). ∆Wl,thl−1,t = Θ(1) where ∆Wl,t :=Wl,t −Wl,0.
Condition 3.2 (WL initialized maximally). WL,0∆uL−1,t = Θ(1).

These conditions imply rl = 0 for all layers and feature learning. In contrast to this feature
learning regime, the previous work refers rl<L > 0 and rL = 0 as the kernel regime. The NTK
parameterization corresponds to the kernel regime with rl<L = 1/2 Note that the original derivation
of the parameterization that satisfies the above conditions is based on the first (infinitesimal) one-step
update of the parameters (Yang & Hu, 2021; Ishikawa & Karakida, 2024) (see Section A.2). Our
work also follows the same approach.

µP for Gauss-Newton Target: The following work has recently derived the µP scaling, including
both first-order and second-order optimizations.
Proposition 3.3 (Ishikawa & Karakida (2024)). Consider the first one-step update by the GNT:
Wl,1 =Wl,0−ηlϕ′(Wl,thl−1)◦(δlδ⊤l +ρI)−eBδldiag(eL)h⊤l−1 where δl = ∇ul

uL and eL = y−hL.
In the infinite-width limit, this update admits the µP for feature learning at{

θ1 = eB − 1, θ1<l<L = eB , θL = 1

b1 = 0, b1<l<L = 1/2, bL = 1,
(11)

where θl := 2al + cl. We obtain µP of SGD for eB = 0, and that of GNT for eB = 1.

More precisely, we can also allow bL ≥ 1 for the feature learning regime. However such initialization
reduces to the case of bL = 1 in the next parameter update. Thus, we can summarize it as bL = 1.
The scaling of bL = 1 implies that a smaller initialization is required compared to the standard
parameterization (SP), which is PyTorch’s default, for sufficiently wide neural networks. It can also
be immediately verified that we can set al = 0 due to shift invariance without loss of generality. In
Table 1, we summarize the µP from previous work and our results obtained in the following sections.

4 FEATURE LEARNING OF PREDICTIVE CODING

4.1 µP OF PC WITH SINGLE-SHOT SEQUENTIAL INFERENCE

As noted in section 3.1.1, PC involves such techniques as F-ini, FPA and SI, which must be clearly
distinguished when deriving the µP. It is well-established that when F-ini, SI, and FPA are all assumed,
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Figure 1: µP enables the transfer of learning rates across widths. (Left) PC reduces to SGD when
F-ini, FPA, and SI are applied. In fact, using the µP of SGD, learning rates are successfully transferred
across different widths. (Right) Even without FPA, our µP of PC also allows µTransfer across widths.
In this case, inference is performed only once, and the difference in test accuracy between γ̄L = 0
and γ̄L = 1 is small. Both figures show results with a 3-layer MLP on FashionMNIST.

PC reduces to the gradient computation of BP, and the µP matches that of standard BP. Figure 1 shows
that when F-ini, FPA, and SI are applied, the µP of BP can be directly transferred to PC and leads to
learning rate transfer across width. However, this may not hold for general PC and BP as there is no
guarantee of their equivalence. To explore this, we first remove FPA. Although initialization (F-ini)
and sampling (SI) are inherently arbitrary, the justification for FPA is unclear from both machine
learning and biological perspectives. In PC without FPA, we find the µP as follows:

Theorem 4.1 (µP for PC (informal)). Let the inference step sizes be γl<L = Θ(1) and γL = γ′/M γ̄L

with a positive constant γ′. Consider the first one-step update of the learning parameters after a first
single-shot SI with F-ini. Then, PC admits the µP for feature learning at{

θ1 = −γ̄L − 1, θ1<l<L = −γ̄L ≥ 0, θl=L = 1, (θl = 2al + cl)

b1 = 0, bl<L = 1/2, bL = 1.
(12)

Rough sketch of the derivation. Section B.1 of the Appendix presents a detailed and comprehensive
derivation. It is based on the perturbation approach, which applies to general networks with nonlinear
activation functions. This method is inspired by the previous work that derived the µP by evaluating
Conditions 3.1 and 3.2 using the perturbations, such as ∂η′(∆Wl,1hl−1,1)

∣∣
η′=0

= Θ(1). This allows
for a systematic and transparent derivation. In PC, we extend the perturbation argument to the
inference step size and require

∂γ′∂η′(∆Wl,1hl−1,1)
∣∣
η′=γ′=0

= Θ(1), (13)

which is an example of Condition 3.1 for the hidden layer. Under the assumption of F-ini (el,0 = 0),
by putting δl = ∇ul

uL (l < L) and δL = y −WLvL−1,0, we obtain ul,1 − ul,0 = −∏L
i=l+1 γiδl,

and

el,1 = (ul,0 −
∏L

i=l+1
γiδl)− ϕ(Wl,0(ul−1,0 −

∏L

i=l
γiδl−1)). (14)

For the hidden layers, the perturbation term (13) becomes M−(θl+γ̄L)(−δl + ϕ′(Wlul−1,0) ◦
Wlδl−1)h

⊤
l−1,0hl−1,0 and we obtain θl + γ̄L − 1 + (aL + bL) = 0. We can similarly evaluate

the other layers. The last condition, bL = 1, comes from Condition 3.2. We can derive the NTK
parameterization of PC in the same way.

As Figure 1 demonstrates, the obtained µP supports µTransfer in PC without FPA. Note that µTransfer
is defined as satisfying both conditions: the optimal learning rate can be set independently of the order
of width, and the empirical rule that ‘wider is better’ holds (Yang et al., 2021). This means that the
optimal hyperparameters tuned for smaller-width models can be effectively re-used in larger-width
models. Additionally, consistent with previous work, we observed the empirical rule of “wider is
better” in µP (Yang et al., 2021), where test accuracy improves as the network width increases. The
derivation of µP through a one-step update can be immediately generalized to cross-entropy loss in
the same way as for µP of naive gradient descent. Thus, µTransfer can similarly be observed for
cross-entropy loss, as shown in Appendix (Figure S.5 ).
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Figure 2: (Left) Comparison of gradients with the analytical solution of a linear network. We
measured the cosine similarity between the gradients analytically derived in Theorem 4.2 and the BP
gradients or GN gradients for each layer. (a) γ̄L = 0 yields gradients closer to BP gradient (which
means SGD in this experiment) compared to γ̄L = −1. (b) As ML approaches 1, PC’s gradient
converges to BP’s. (c) As Ml increases, the PC gradient approaches BP’s. (Right) In a nonlinear
MLP, PC’s gradient also approaches BP’s when γ̄L = 0.

Thus far, when considering the parameter gradients, it appears that γ̄L as a free parameter can be
absorbed into the learning rate, allowing the feature learning dynamics to remain stable. However,
as the following analysis shows, γL modifies the preconditioning of the computed gradients, which
may influence µTransfer of both γL itself and the learning rate. The analysis also demonstrates the
validity of setting γl<L = Θ(1).

4.2 ANALYSIS WITH LINEAR NETWORK

In the previous section, we derived the µP under the assumption that inference is performed only
once using F-ini and SI. However, in practice, the inference phase typically involves multiple update
steps. To address this, we found that it is possible to explicitly derive the following general solutions
(fixed points) of the inference phase for linear networks. See Section B.2 for the derivation.

Theorem 4.2. Suppose an L-layered linear network and a mean squared error loss L(y,WLvL−1),
and put e∗l = v∗l −Wlv

∗
l−1, with ∗ denoting the fixed point of the inference process (3). The following

holds:

e∗l =
γL
γl
W⊤

L:l+1(I + Cγ(W ))−1(WL:1x− y), Cγ(W ) :=

L∑
i=2

γL
γi−1

WL:iW
⊤
L:i (15)

v∗l =Wl:1x+ (
γL
γl
W⊤

L:l+1 +

l−1∑
i=2

γL
γi−1

Wl:iW
⊤
L:i)(I + Cγ(W ))−1(y − f). (16)

and e∗L = y −WLv
∗
L−1 = (I + Cγ(W ))−1(WL:1x− y) where WL:i =WLWL−1...Wi.

From this general solution, we can also confirm the following property of the infinite width.

Corollary 4.3. Suppose the setting of Theorem 4.2, γl<L = Θ(1) and the weight is initialized with
µP i.e., aL + bL = 1. In the infinite-width limit, the PC’s gradient reduces to SGD for γL = Θ(1).
For γL = Θ(M), the preconditioner part Cγ remains of order 1.

The exact solutions e∗l provide much clearer insight into the gradient computation compared to Eq.
(8), which was previously argued but not explicitly solved. First, it becomes evident that PC does
not generally coincide with GNT. Consequently, PC is also generally different from TP. In fact, PC
coincides with GNT only for the input layer in a shallow network (i.e., L = 2), where the update
vector for PC corresponds to a GNT update with a damping term. Although PC does not entirely
coincide with GNT, it is noteworthy that the scaling of cl in µP for γ̄L = −1 matches that of GNT.
In contrast, for γ̄L = 0, the PC’s gradient aligns with the SGD. Because the preconditioner part
scales as Cγ = O(1/M) in the infinite-width limit, we observe that e∗l = δl, which reduces to the
SGD. Naturally, µP matches that of SGD in this case. Intuitively, γL reflects how effectively the
last layer’s error propagates downward. Like linear regression, the last layer’s inference solution
inherently involves an inverse matrix. Thus, when γL is larger than other γl values, the last layer’s
representation is computed first and propagated downward, making the solution resemble GNT.
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Figure 3: (Left) γ̄L = −1 steadily reduces the local loss as width increases. We observed the
inference loss in a randomly initialized linear network for various γ̄L. For γ̄L = −1, the inference
loss consistently decreases with increasing width. (Right) The "wider is better" trend holds for
µP with γ̄L = −1. With F-ini, this trend holds for µP regardless of the γ̄L value. However, without
F-ini, the benefits of γ̄L = −1 become particularly prominent.
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Figure 4: (Left) µP can transfer the learning rate across widths (without F-ini). We trained a
3-layer CNN on FashionMNIST with 100 inference iterations. Without F-ini, the stability of the
inference becomes more crucial. As a result, unlike the single-shot SI with F-ini shown in Figure 1,
the stability provided by γ̄L = −1 becomes critical. Note that additional experiments under different
settings, including those with VGG5 (Figure S.3 ) and cross-entropy loss (Figure S.5 ), are presented
in Section D.1.2 of the Appendix. (Right) ∆h remains consistent across widths during training.
We confirm that the condition ∆h = Θ(1) required by µP holds throughout the training.

Second, the order of e∗l in the analytical solution for the linear network matches the order of el,1
as derived in Theorem 4.1. Therefore, this theorem implies that in linear networks, the µP of PC
would remain unchanged regardless of the presence of F-ini or the number of inference iterations.
Moreover, as proved in Section B.2.2, the orders of e∗l and el,1 align only when γl<L = Θ(1). In
practical settings with multiple inferences, it is desirable for the µP to be consistent both after a single
inference and after the inference has fully converged. Therefore, setting γl<L = Θ(1) is reasonable.

Additionally, we found that the dimension of the last layer plays a key role in determining the
similarity between PC and BP. According to the solution for linear networks, when ML = 1, the
PC’s gradient aligns with SGD. Figure 2 shows numerical results confirming that for ML = 1, the
gradient direction always corresponds to SGD, and for Ml ≫ML = Θ(1), the gradient approaches
SGD as well. We observed that both GN and BP get much closer to each other for sufficiently large
widths. In other words, even when we realize GNT by setting γ̄L = −1, it has a quite close direction.
A detailed view of the cosine similarity at the large width is shown in Figure 2(c). This result seems
reasonable because in the context of second-order optimization, it has also been reported that GNT
tends to collapse into an identity matrix owing to damping (Benzing, 2022). In summary, while
PC’s gradient switches between SGD and GNT depending on the parameterization, it is important to
highlight that GNT behaves similarly to SGD in the infinite-width limit.

As a minor extension, we can also analyze the nudge-type loss of PC defined by Eq. (S.10) (Alonso
et al., 2022; Millidge et al., 2023; Pinchetti et al., 2024). In this case, the damping term I in Eq. (15),
is replaced by (1 + γ/β)I . Thus, the dependence on the parameterization remains essentially the
same as that of the naive PC. Further discussion on nudge-type PC can be found in Appendix B.2.3.

4.3 STABILITY OF INFERENCE PHASE

To ensure feature learning in SGD, the µP framework requires stable activations, i.e., ∆ul<L = Θ(1).
It seems natural to apply this requirement to the inference phase of PC. That is, let us suppose ul<L,s

8
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Figure 5: µP with γ̄L = −1 performs consistently well, regardless of γl. When γl is small
(γl = 0.01), µP with γ̄L = 0 performs poorly, while µP with γ̄L = −1 shows significantly better
performance. This difference is likely due to slower inference convergence in µP with γ̄L = 0. For
larger values of γl (γl = 1), both µP configurations exhibit high accuracy. However, for µP with
γ̄L = 0, γL does not transfer effectively across widths, whereas µP with γ̄L = −1 demonstrates the
successful transfer of γL across widths.

varies by Θ(1) during the inference. Note that in Eq.(3) atL−1, the feedforward signal from the lower
layer is γL−1eL−1,s = Θ(1), and the error feedback from the last layer is γLϕ′ (uL−1,s)◦W⊤

L eL,s =
Θ
(
1/M γ̄L+bL

)
. Both terms should be of order Θ(1) for the inference to successfully merge both

feedforward and feedback signals. When bL = 1, this condition requires γL = Θ(M), and we
can expect the local loss in the last layer eL to decrease most prominently during the inference.
Additionally for γl<L = Θ(1), the inference remains stable for layers l < L− 1. Empirical results
in Figure 3 (left) confirm that when γ̄L = −1, the inference loss decreases consistently as the width
increases, verifying that the “wider is better” hypothesis holds even in inference. This facilitates the
hyperparameter transfer of γL for the inference dynamics.

We also observe the benefits of using γ̄L = −1 for the parameter updates. Without F-ini, the
convergence of inference usually deteriorates for SP, making inference stability especially critical in
this scenario. As shown in Figure 3 (right), the “wider is better” trend holds with F-ini regardless of
γ̄L. However, without F-ini, this trend holds only when γ̄L = −1. Figure 4 demonstrates that the
µTransfer of the learning rate holds for γ̄L = −1. Additionally, Figure 5 indicates that γ̄L = −1 is
also preferable from the perspective of µTransfer of γL.

5 FEATURE LEARNING OF TARGET PROPAGATION

5.1 µP OF TP

As overviewed in Section 3.1.2, TP reduces to GNT in the highly restrictive case of invertible
networks. However, TP is not equivalent to GNT or BP in general cases (Meulemans et al., 2020;
Ernoult et al., 2022). While TP involves two networks trained using different manners, and one may
feel it challenging to obtain a stable parameterization for learning, we demonstrate that, under the
assumption that the feedback network uses a linear activation function ψ, we can systematically
derive µP for both TP and DTP.
Theorem 5.1 (µP for TP and DTP (informal)). Consider a linear feedback network. The forward
network is allowed to have nonlinear activation functions. After the first training phase of Ql, take
the first one-step update of W . Then, we obtain µP as follows:{

c1 = 0, c1<l<L = 1, cL = 1,

b1 = 0, b1<l<L = 1/2, bL = 1/2.
(17)

The derivation is presented in Section C.1. Note that the linear feedback network has trained weights
in a pseudo-inverse form, that is, Q∗

l = hl−1(h
⊤
l hl + µI)−1h⊤l . Stable parameterization can also be

discussed for the training of the feedback network. For further details, see Section C.2.

As demonstrated in Figure 6, using the µP for TP results in the µTransfer appropriately across widths.
Furthremore, Figure S.14 in Appendix tracks ∆hl during training. In µP, ∆hl remains consistent
across different widths, whereas in SP, ∆hl either diverges or diminishes as the width changes.
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Figure 6: (Left) µP can transfer the learning rate across widths in TP. (Right) TP does not
have kernel regime. We measured ωL = logM (∥WL,0∆hL−1,T ∥RMS/∥WL,0∥RMS∥∆hL−1,T ∥RMS)
across different parameterizations following Everett et al. (2024). In the infinite-width limit, ωL

converges to α. Therefore, in TP, where ωL remains fixed at 1/2 even as the width increases, the
kernel regime disappears.

5.2 DISAPPEARANCE OF THE KERNEL REGIME

It is notable that µP in the previous work of the gradient methods requires bL = 1; in TP, µP requires
bL = 1/2. For the usual gradient methods, a stable parameterization with bL = 1/2 leads to the
kernel regime. This raises the question: does a kernel regime exist in TP? Interestingly, in TP, the
kernel regime disappears (see Corollary C.1 for the details).

Rough sketch of derivation. Condition 3.2 must hold to achieve stable learning in the hidden layers.
Note that this condition is required in both the feature learning and kernel regimes. By expressing
∆hL−1 = Θ(1/Mr) , we obtain

aL + bL + r − α = 0. (18)
When the inner product WL∆hL−1 follows the Law of Large Numbers (LLN), α = 1, and when
it follows the Central Limit Theorem, α = 1/2 (Everett et al., 2024). Additionally, to prevent the
output of the last layer from exploding, it is necessary that hL = O(1), that is, aL + bL ≥ 1/2.
Consequently, r ≤ α− 1/2. In BP, the dependence between WL and ∆hL−1 results in α = 1 by the
LLN. We have r ≤ 1/2, allowing for the kernel regime. In contrast, in TP, updating the feedforward
network weights does not induce a dependence between WL and ∆hL−1, leading to α = 1/2. This
is because the gradient is computed based on the feedback weight Q∗

L = hL−1(h
⊤
LhL + µI)−1h⊤L ,

rather than WL. Consequently, r ≤ 0 and the kernel regime cannot be achieved in TP.

Figure 6 empirically confirms α = 1/2 in TP. TP seems to be the first example in the infinite-width
limit where bL = 1/2 induces feature learning.

6 CONCLUSION

In this work, we revealed µP for local loss optimization that can effectively scale toward the infinite
width in a stable manner, supported by our analysis of linear networks. Our study covers two of
the most fundamental settings: the local targets computed during the inference phase (i.e., PC) and
the feedback network (i.e., TP). Although neither method generally reduces to BP or GNT, making
gradient computation non-trivial, we identified the µP and highlighted its intriguing properties, such
as the gradient switching depending on the parameterization and the disappearance of the kernel
regime. Additionally, we empirically confirmed that the derived µP facilitates hyperparameter transfer
across widths.

Limitation and future direction. The derivation of µP assumes a one-step gradient and linear
networks, although this prerequisite is not unique to our work (Yang & Hu, 2021; Yang et al., 2024).
Ensuring the existence of feature learning dynamics for more general steps in the infinite width
limit would require the development of a tensor program. However, handling the dependencies
between variables that differ from standard BP, such as those arising from the inference phase and
feedback pass, is non-trivial and presents an interesting direction for future research. Additionally,
it would also be valuable to explore the learning dynamics of local learning and its convergence
properties by extending the infinite width theory or further analyzing linear networks. We believe
that understanding the universal behavior of large-scale limits will provide a foundation for the
development of more effective algorithms.
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Appendices
A EXTENDED BACKGROUND

A.1 EXTENDED RELATED WORK

Table S.1 : List of Abbreviations

Abbreviation Full Name Reference

BP BackPropagation -
SGD Stochastic Gradient Descent -
GNT Gauss Newton Target Proposition 3.3
µP Maximal Update Parameterization Definition A.5
NTK Neural Tangent Kernel -
HP HyperParameter -

PC Predictive Coding Section 3.1.1
F-ini Forward Initialization Technique i
FPA Fixed Prediction Assumption Technique ii

TP Target Propagation Section 3.1.2
DTP Difference Target Propagation Eq S.13

A.1.1 µP

While µP was introduced as a parameterization to induce a feature-learning regime in the infinite-
width limit for theoretical interest (Yang & Hu, 2021), one practical advantage highlighted by Yang
et al. (2021) is its ability to transfer the learning rate across different widths, a phenomenon they
experimentally validated. This phenomenon, known as µTransfer, has also been examined from a
theoretical perspective (Noci et al., 2024). Another notable advantage of µP is the improvement in
the scaling law exponent, which has been investigated both experimentally (Qiu et al., 2024) and
theoretically (Bordelon et al., 2024).

It is noteworthy that µP depends on the learning algorithm used and thus should be derived for
each specific method. The µP for Adam was introduced in Yang et al. (2021), with its theoretical
justification provided in Yang & Littwin (2023). For the second-order optimization, including the
Gauss-Newton algorithm, K-FAC, and Shampoo, the µP was derived in Ishikawa & Karakida (2024).
These works emphasize the importance of adjusting not only the learning rate but also the damping
term in second-order optimization using µP. Additionally, µP was derived for Adafactor in Everett
et al. (2024) and empirically demonstrated that the scaling of the ϵ term in Adam is also crucial in µP.

A.1.2 PREDICTIVE CODING

Recent progress in deep learning has largely been achieved by the success of backpropagation (Rumel-
hart et al., 1986; LeCun et al., 1998; 2015). This success has increased the interest in exploring
whether deep networks can also be trained using training algorithms other than backpropagation.
This includes exploration into biologically plausible training methods and the benchmarking of
local learning rules at modern scales networks on deep-learning benchmark datasets; equilibrium
propagation (Scellier & Bengio, 2017; Laborieux et al., 2021), target propagation (Bengio, 2014;
Lee et al., 2015), predictive coding (Whittington & Bogacz, 2017; Song et al., 2020; Salvatori et al.,
2023), and forward-forward algorithms (Ren et al., 2023).

Computation of predictive coding for supervised learning: Predictive coding was originally
introduced as an algorithm for solving inverse problems where the goal is to find the parameters
W that maximize the marginal likelihood p(vL;W ) where vL denotes a variable representing the
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network output and vL = x for the input data x (Rao & Ballard, 1999). In this inverse problem, we
consider latent variables vl (also referred to as causes) and a generative function g(vl|vl−1;Wl). If
we assume a hierarchical Gaussian generative model, the marginal probability of the causes is as
follows:

p (v0, . . . , vL;W ) = p(v0)

L∏
l=1

p(vl|vl−1;Wl) (S.1)

= N
(
v0, γ

−1
0 I

) L∏
l=1

N
(
Wlϕ(vl−1), γ

−1
l I

)
. (S.2)

Friston (2003) framed this inverse problem as an EM algorithm aimed at minimizing the following
variational free energy:

F = KL(q(v0, . . . , vL)∥p(v0, . . . , vL;W )), (S.3)
where q(v0, . . . , vL;W ) is a tractable posterior probability distribution for the EM algorithm. In
particular, the E-step, referred to as inference, minimizes variational free energy by causes vl, while
the M-step, referred to as learning, minimizes by parameters Wl. We usually apply a mean-field
approximation or a Laplace approximation to the tractable probability distribution (Friston, 2005;
Salvatori et al., 2024a;b). Under these formulations, we can derive the variational free energy for PC.

F =

L∑
l=1

γl
1

2
∥vl −Wlϕ (vl−1)∥2 . (S.4)

While predictive coding networks were originally discussed primarily in the context of generative
models for unsupervised learning, Whittington & Bogacz (2017) reformulated PC networks for
supervised learning and highlighted their potential for use in the context of deep learning. Specifically,
if we fix v0 = x and vL = y for data, this corresponds to supervised learning using the mean squared
loss.

Heuristic techniques in PC: After Whittington & Bogacz (2017), there has been an increasing
amount of studies evaluating the performance of PC networks as local learning on deep-learning
benchmark datasets (Salvatori et al., 2023; Pinchetti et al., 2024). They revealed that the original
implementation of PC networks is insufficient for achieving stable training performance, and heuristic
modifications have played an important role. For instance, Fixed Prediction Assumption (FPA) has
been introduced to achieve higher performance by approximating the gradient computation of PC
networks closer to that of BP (Millidge et al., 2022b; Rosenbaum, 2022). Under FPA, ϕ′ (vl,s) is
replaced with ϕ′ (vl,0), resulting in an inference phase given by

vl,s+1 = vl,s − γlel,s + γl+1ϕ
′ (vl,0) ◦W⊤

l+1el+1,s, (l < L) (S.5)
and a learning phase is given by

Wl,t+1 =Wl,t + ηlγlel,sϕ(vl−1,0)
⊤. (S.6)

Additionally, FPA is typically used with Forward Initialization (F-ini). In Forward Initialization,
the state vl,0 is initialized with the forward value ul,0. While F-ini has been implicitly utilized in
most studies on PC (Whittington & Bogacz, 2017; Song et al., 2020; Rosenbaum, 2022), its role was
explicitly highlighted in Alonso et al. (2022), where the authors compared the convergence with and
without F-ini.

Rosenbaum (2022) pointed out that when both F-ini and FPA are assumed, PC networks are entirely
reduced to BP and that if the algorithms are fully equivalent to BP, the advantages of biological
plausibility and local updates are lost. In this study, we aim to identify a parameterization that enables
stable local learning while maintaining distinctions from BP. By leveraging several recently developed
heuristics, we clarify the desirable scales for stable and efficient local learning.

Nudged PC: The design of loss functions in PC networks has also been a focus of algorithmic
improvements. In most of the ML research, classification tasks generally use cross-entropy loss
rather than mean squared loss. Accordingly, PC networks sometimes use cross-entropy loss as
well (Pinchetti et al., 2024). The free energy for a general loss function is given by

F = L(y,WLϕ(vL−1)) +

L−1∑
l=1

γl
1

2
∥vl −Wlϕ (vl−1)∥2 . (S.7)
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Algorithm 1 PC Algorithm (Simultaneous or Sequential inference)

1: for s = 1 to n do
2: eL,s ← ∇uL,s

L(WLϕL(uL−1,s), y)
3: for l = L− 1 to 1 do
4: el,s ← ul,s −Wlϕl−1(ul−1,s)
5: el+1,s ← ul+1,s+1 −Wl+1ϕl(ul,s) (Sequential Inference)
6: ul,s+1 ← ul,s − γlel,s + γl+1ϕ

′(ul,s) ◦W⊤
l+1el+1,s

7: end for
8: end for

and its update rule for the inference phase is given by

vl,s+1 = vl,s − γlel,s + γl+1ϕ
′ (vl,s) ◦W⊤

l+1el+1,s, (l < L) (S.8)

vL,s+1 = vL,s − γL
∂L
∂vL

. (S.9)

Furthermore, there are formulations of PC networks that incorporate the nudge term introduced in
equilibrium propagation (Scellier & Bengio, 2017). PC networks with a nudge term updates the state
vl and weights Wl to minimize the following free energy function (Alonso et al., 2022; Millidge
et al., 2023; Pinchetti et al., 2024):

F = βL(y, vL) +
L∑

l=1

γl
1

2
∥vl −Wlϕ (vl−1)∥2 . (S.10)

Here, β is a nudge coefficient parameter that covers some variants of the PC algorithms in the previous
work.

There are several possible orders for computing this inference (Alonso et al., 2024) as illustrated in
Algorithm 1. Specifically, el can be calculated sequentially from the output layer to the input layer, or
it can be updated synchronously across all layers simultaneously from the output to the input. While
the main text focuses on Sequential Inference (SI), where computations proceed layer-by-layer from
the output to the input, Predictive Coding with synchronous inference is also a valid approach worth
considering.

A.1.3 TARGENT PROPAGATION

Target propagation offers a learning rule that is more biologically plausible and easier for the brain
to implement compared to BP (Bengio, 2014). Specifically, it addresses the following two issues
inherent to BP (Meulemans et al., 2020).

1. Signed error transmission problem: BP propagates the error gradient to the lower layers,
whereas the brain propagates target values for the neurons (Lillicrap et al., 2020).

2. Weight transport problem: BP requires exact weight symmetry between the forward and
backward paths. However, the brain cannot transport weights (Grossberg, 1987; Akrout
et al., 2019).

Target propagation aims to address the two issues by:

1. Propagating the target value ĥL = hL − η̂∇hL
L instead of the error gradient ∇hL

L for
signed error transmission problem.

2. Utilizing a feedback network gl distinct from the feedforward network fl to propagate the
target value ĥL for weight transport problem.

The feedback network gl has the weights Ql distinct from those in the feedforward network.

ĥl = gl(ĥl+1), gl(x) = ψ(Qlx) (l = 1, ..., L− 1). (S.11)

Here, ψ denotes the activation function. While it is often the same as the activation function used in
the feedforward network, it is also possible to consider a different activation function. We set ψ = ϕ
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in experiments and assume ψ as the identity function only in Theorem 5.1. The feedback network is
trained to minimize the following reconstruction loss:

Lrec(Ql) = ∥gl (fl(hl−1 + ϵ))− hl−1 + ϵ∥2 , (S.12)

where ϵ is a small Gaussian noise to improve the robustness of the feedback network. Target
propagation attempts to approximate the inverse function of the feedforward network by learning the
feedback network through the optimization of this reconstruction loss.

Difference target propagation (DTP) is an improved methods of TP, which adjusts the propagation in
the feedback network as follows (Lee et al., 2015).

ĥi = gdiff
i

(
ĥi+1, hi+1, hi

)
= gi

(
ĥi+1

)
− (gi (hi+1)− hi) . (S.13)

In TP, the accumulation of the reconstruction error gi(fi(hi)) − hi during propagation pose an
obstacle to optimization. In DTP, subtracting (gi (hi+1)− hi) mitigates the accumulation of the
reconstruction error and improves the progress of learning.

As a side note, Meulemans et al. (2020) and Bengio (2020) pointed out that TP can be related to
the Gauss-Newton method for invertible networks. Additionally, Meulemans et al. (2020) proposed
Direct Difference Target Propagation so as to establish this correspondence even in non-invertible
networks under some infinitesimal conditions. Ernoult et al. (2022) reported that one can stabilize
TP by introducing the additional Local Difference Reconstruction Loss which makes the gradient
align more closely with Backpropagation rather than Gauss-Newton Targets. In our work, we aim to
clarify the fundamental properties of TP and DTP from the perspective of parameterization and do
not consider such additional conditions or loss functions.

A.2 DEFINITIONS FOR STABLE PARAMETERIZATION

As is common in the µP theory, we also assume that the firing activities are of order 1 at random
initialization:
Assumption A.1. ul,0, hl,0 = Θ(1) (l < L), f0 = uL,0 = O(1).

As shown in Theorem H.6 of Yang & Hu (2021), this assumption immediately leads to

a1 + b1 = 0, a1<l<L + b1<l<L = 1/2, aL + bL ≥ 1/2. (S.14)

In addition, the stability of learning is defined as follows (see Definition H.4 in Yang & Hu (2021) for
more detail):
Definition A.2 (Stability of learning). We say an abc-parameterization is stable if, for l < L and for
any fixed t ≥ 1,

∆hl,t = O(1), ∆ft = O(1), (S.15)
under Assumption A.1.

Condition S.15 ensures avoiding exploding dynamics with respect to the width, i.e., ∆hl,t =
O(1/Mk) with k < 0.

We follow the derivation based on the infinitesimal one-step update from random initialization (Yang
& Hu, 2021; Ishikawa & Karakida, 2024), which involves taking the limit of a sufficiently small
coefficient of the learning rate η′. This formulation clarifies the proof and enables the systematic
derivation of µP across various problems. In the infinitesimal formulation, Conditions 3.1 and 3.2 are
expressed as follows:
Condition A.3 (Wl updated maximally).

∂η′∆Wlhl−1,1

∣∣
η′=0

= Θ(1) (S.16)

where ∆Wl :=Wl,1 −Wl,0.
Condition A.4 (WL initialized maximally).

∂η′WL,0∆uL−1,1

∣∣
η′=0

= Θ(1). (S.17)
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As described in the previous work (Yang & Hu, 2021; Ishikawa & Karakida, 2024), Condition 3.1 (or
A.3) naturally appears from the expansion of Eq. (10) by the parameter update, yielding

∂η′∆Wlhl−1,1

∣∣
η′=0

= Θ(1/Mrl), (S.18)

for abc-parameterization. The stability requires
rl ≥ 0 (S.19)

and, in particular, feature learning is characterized by rl = 0. Condition 3.2 (or A.4) is required to
eliminate an uninteresting case in which the hidden layer provides no contribution to the network
output. Both NTK and feature learning regimes are characterized by this condition.

As is shown in Yang & Hu (2021), µP is the unique stable parameterization satisfying Condition A.3
for l ≤ L and Condition A.4 for WL. Thus, we can admit this characterization as a definition of µP.
Definition A.5 (µP). µP is the stable abc parameterization satisfying Condition A.3 for l ≤ L and
Condition A.4 for WL.

Note that Condition A.3 is required not only for hidden layers but also for the last layer. In the
previous work, this eliminates a trivial case of learning, i.e., ∆hL,t = O(1/Mk) with k > 0, where
the effect of learning vanishes.

B µP OF PREDICTIVE CODING

B.1 DERIVATION FOR PREDICTIVE CODING WITH SINGLE-SHOT SI

Theorem B.1 (Stable parameterization for PC). Set inference step sizes γl<L = Θ(1) and γL =
γ′/M γ̄L with a positive constant γ′. Suppose F-ini and single-shot sequential inference, and consider
a one-step update of parameters after the inference. For infinitesimal step sizes γ′L and η′, PC admits
the µP for feature learning at{

c1 = −γ̄L − 1, c1<l<L = −γ̄L, cl=L = 1,

b1 = 0, bl>L = 1/2, bl = 1.
(S.20)

Additionally, it admits the NTK parameterization at{
c1 = −γ̄L, c1<l<L = 1− γ̄L, cL = 1

b1 = 0, bl<L = 1/2.
(S.21)

Proof. Assuming F-ini, considering the single-shot SI for vl, we have

vl,1 = vl,0 + γl+1ϕ
′ (vl,0) ◦W⊤

l+1el+1,1 (S.22)

= vl,0 + γl+1ϕ
′ (vl,0) ◦W⊤

l+1(vl+1,1 −Wl+1hl,0) (S.23)

= vl,0 + γl+1ϕ
′ (vl,0) ◦W⊤

l+1(vl+1,1 − vl+1,0), (S.24)
for l < L where eL,0 = y −WLvL−1,0 =: δL. When the CE loss is used instead of MSE loss,
δL = y − f becomes δL = y − softmax(f), and the order analysis remains unchanged. To keep the
notation concise, we set ML = 1 in this proof. A generalization for ML = Θ(1) is possible. Next,
we define

δl<L := ∂uL/∂ul. (S.25)
Note that a batch gradient can be used with N training samples where N = O(1). One can regard vl
as an M ×N matrix in the derivation.

Using

vl,1 − vl,0 = −
L∏

i=l+1

γiδl, (S.26)

we have
el,1 := vl,1 − ϕ(Wlvl−1,1) (S.27)

= (ul,0 −
L∏

i=l+1

γiδl)− ϕ(Wl(ul−1,0 −
L∏
i=l

γiδl−1)) (S.28)
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for l = 1, ..., L− 1. Recall that vl,0 = ul,0 for F-ini. For l = L,

eL,1 := y −WLhL−1,1 (S.29)
= y −WLϕ(uL−1,0 − γLδL−1diag(δL)) (S.30)

where diag(x) denotes a diagonal matrix whose diagonal entries are given by x. The above equation
comes from

vL−1,1 = uL−1,0 −
γL
2
∇vL−1

∥y −WLhL−1∥2 (S.31)

= uL−1,0 − γLϕ′L−1 ◦W⊤
L δL = uL−1,0 − γLδL−1diag(δL). (S.32)

The first one-step update of the weight is expressed as

∆Wl,1 =
η′

M2al+cl
el,1h

⊤
l−1,1, (S.33)

In PC, in addition to the usual learning rate η, there also exists γ. Therefore, in addition to the
infinitesimal update of the learning rate η for the weight update, we also consider the infinitesimal
inference step size γL. By applying the perturbation of γL to Conditions A.3 and A.4, we derive

∆Ul + ∂γ′
L
∆Ul

∣∣
γ′
L=0

γ′L = Θ(1), (S.34)

∆VL + ∂γ′
L
∆VL

∣∣
γ′
L=0

γ′L = Θ(1) (S.35)

where we define
∆Ul := ∂η′∆Wl,1hl−1,s=1

∣∣
η′=0

, (S.36)

∆VL := ∂η′WL,0∆hl−1,s=1

∣∣
η′=0

. (S.37)

It is noteworthy that we retain the zero-th order terms, namely, ∆Ul and ∆Vl in the conditions. This
is because, even without the inference phase, parameter updates can progress while the internal states
remain at their initialization. Therefore, even if the maximalization of the order is less than Θ(1)
in the first-order perturbation terms, stable learning can still occur. Since µP aims to maximize the
order of updates as much as possible, we require the first-order terms of Eqs. (S.34,S.35) to be Θ(1)
whenever possible.

We introduce the following kernel matrix:

KA
l := h⊤l hl/M. (S.38)

For the random initialization Wl, from Eq. (S.14), we asymptotically obtain

KA
l = Θ(1), KA

L = Θ(1/M2(aL+bL)) (S.39)

in the infinite-width limit (Yang, 2020).

On Condition A.1.

(i) Case of 1 < l < L.

∂γ′
L
∆Ul

∣∣
γ′
L=0

= ∂

(
1

Mθl
el,s=1h

⊤
l−1,s=1hl−1,s=1

) ∣∣
γ′
L=0

(S.40)

=
1

Mθl
∂(el,s=1)h

⊤
l−1,s=1hl−1,s=1

∣∣
γ′
L=0

+
1

Mθl
el,s=1∂(h

⊤
l−1,s=1hl−1,s=1)

∣∣
γ′
L=0

=
1

Mθl
∂(el,s=1)

∣∣
γ′
L=0

h⊤l−1,s=0hl−1,s=0 (S.41)

=
1

Mθl+γ̄L−1
(−δl + ϕ′(Wlul−1,0) ◦Wlδl−1)K

A
l−1 (S.42)

where we used el<L,s=1

∣∣
γ′
L=0

= 0 and hl,s=1

∣∣
γ′
L=0

= hl,s=0. Since δl<L = Θ(WL) =

Θ(1/MaL+bL) and ∆Ul ∼Mθl+aL+bL−1, we have

∆Ul + ∂γ′
L
∆Ul

∣∣
γ′
L=0

γ′L ∼ 1/Mmin{θl+aL+bL−1,θl+γ̄L+aL+bL−1}. (S.43)
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The similarity symbol (“∼”) denotes that the left-hand side is of the same order as the right-hand
side. Note that if the first-order term becomes negligible, the contribution of the inference phase
disappears in the parameter update. To maximize the order of the first-order term, we require

γ̄L ≤ 0 (S.44)

and obtain
rl = θl + γ̄L + aL + bL − 1. (S.45)

(ii) Case of l = 1.

∂γ′
L
∆Ul

∣∣
γ′
L=0

= − 1

Mθl+γ̄L
δlK

A
0 . (S.46)

∼ 1/Mθ1+γ̄L+aL+bL (S.47)

Here, we used el<L,s=1

∣∣
γ′
L=0

= 0 and hl,s=1

∣∣
γ′
L=0

= hl,s=0. Similar to the case of 1 < l < L,
Condition (S.34) leads to γ̄ ≤ 0 and

rl = θ1 + γ̄L + aL + bL. (S.48)

(iii) Case of l = L.

∂γ′
L
∆UL

∣∣
γ′
L=0

(S.49)

=
1

MθL
∂(eL,s=1)h

⊤
L−1,s=1hL−1,s=1

∣∣
γ′
L=0

+
1

MθL
eL,s=1∂(h

⊤
L−1,s=1hL−1,s=1)

∣∣
γ′
L=0

(S.50)

=
1

MθL
∂(eL,s=1)

∣∣
γ′
L=0

h⊤L−1,s=0hL−1,s=0 +
1

MθL
eL,s=1∂(h

⊤
L−1,s=1hL−1,s=1)

∣∣
γ′
L=0

(S.51)

=
1

MθL+γ̄L−1
ϕ′(WLuL−1,0) ◦WLδL−1K

A
L−1 +

1

MθL
δL∂(h

⊤
L−1,s=1hL−1,s=1)

∣∣
γ′
L=0

(S.52)

=
1

MθL+γ̄L−1
ϕ′(WLuL−1,0) ◦WLδL−1K

A
L−1 +

2

MθL
δLh

⊤
L−1,s=1∂(hL−1,s=1)

∣∣
γ′
L=0

(S.53)

Note that from Eq. (S.30), we have

eL,s=1

∣∣
γ′
L=0

= −(WL(ϕ
′
L−1 ◦ δL−1)) ◦ δL/M γ̄L . (S.54)

Since eL,s=1

∣∣
γ′
L=0

= δL ̸= 0,

WL(ϕ
′
L−1 ◦ δL−1)) ◦ δL = Θ(1/M2(aL+bL)−1). (S.55)

For the second term in Eq. (S.53), we have

h⊤L−1,s=1∂(hL−1,s=1)
∣∣
γ′
L=0

= h⊤L−1,s=0∂ϕ(WL−1vL−2,1)
∣∣
γ′
L=0

(S.56)

= h⊤L−1(ϕ
′
L−1 ◦WL−1∂vL−2,1)

∣∣
γ′
L=0

(S.57)

= −γL−1

M γ̄L
h⊤L−1(ϕ

′
L−1 ◦WL−1δL−2) (S.58)

where we used vL−2,1 − vL−2,0 = −γL−1γLδL−2 from Eq. (S.26). Let us recall that a variable
without an index indicates the initial state at s = 0. The variable δL−1 includes WL whereas hL−1 is
independent of it. Therefore, by applying the Central Limit Theorem with respect to WL, we have

h⊤L−1,s=1∂(hL−1,s=1)
∣∣
γ′
L=0
∼ 1/M γ̄L+aL+bL−1/2. (S.59)

Then,
∂γ′

L
∆UL

∣∣
γ′=0

∼ 1/Mmin{θL+γ̄L+2(aL+bL)−2,θL+γ̄L+aL+bL−1/2}. (S.60)

In contrast, we have
∆UL ∼ 1/MθL−1. (S.61)
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Comparing the zero-th and first order terms (S.60,S.61), we obtain

min{θL − 1, θL + γ̄L + 2(aL + bL)− 2, θL + γ̄L + aL + bL − 1/2} = 0 (S.62)

Because aL + bL − 1/2 ≥ 0 from Eq. (S.14), we obtain

θL − 1 = 0. (S.63)

On Condition A.2.

∂γ′
L
∆VL

∣∣
γ′
L=0

=WL,0(ϕ
′(uL−1) ◦ ∂γ′

L
∂η′(∆WL−1,1hL−2,1)

∣∣
η′=0,γ′

L=0
)

= eM (δL−1 ◦
1

MθL−1
∂γ′(∆WL−1hL−2)

∣∣
γ′
L=0

) (S.64)

= Θ(1/MaL+bL+rL−1−1) (S.65)

where eM denotes an M -dimensional vector with all entries equal to 1. Note that the product with
eM means the summation over M .

Finally, from Conditions 1 and 2, the µP is given by

θ1 + γ̄L + aL + bL = 0 (l = 1), (S.66)
θl + γ̄L + aL + bL − 1 = 0 (1 < l < L), (S.67)
θL − 1 = 0 (l = L) (S.68)
aL + bL − 1 = 0, (S.69)

and γ̄L ≤ 0. That is, {
c1 = −γ̄L − 1, c1<l<L = −γ̄L ≥ 0, cl=L = 1,

b1 = 0, bl>L = 1/2, bl = 1.
(S.70)

The above µP case assumes al = 0. It is important to note that there is no issue in replacing cl with
θl = 2al + cl, which introduces an indeterminacy of al = al + α and cl = cl − 2α.

We can also derive the NTK parameterization, which is a commonly used term for the kernel regime
for rl<L = 1/2 (Yang & Hu, 2021):

θ1 + γ̄L + aL + bL = 1/2 (l = 1), (S.71)
θl + γ̄L + aL + bL − 1 = 1/2 (1 < l < L), (S.72)
θL − 1 = 0, (l = L) (S.73)
aL + bL − 1/2 = 0. (S.74)

It is noteworthy that the gradient computed by Eq. (S.28) differs from δl in standard SGD, implying
that the NTK matrix also deviates from ∇θf

⊤∇θf . Even in this case, the NTK regime can emerge
with a certain modified kernel composed of el and hl. A similar situation arises in the NTK regime
of second-order optimization (Karakida & Osawa, 2020). Although the preconditioner modifies the
NTK matrix, the linearization of the model still holds, allowing the emergence of the kernel regime.

B.2 FIXED POINTS OF PC IN LINEAR NETWORKS

B.2.1 PROOF FOR THEOREM 4.2

In this section, we analyze the fixed point of the inference phase using a linear network:

f(x) =WlWL−1...W1x. (S.75)

Even for linear networks, the properties of the fixed points have rarely been analyzed. An exception
is a recent study by Innocenti et al. (2024). They explicitly derived the free energy at a fixed point
to analyze the parameter loss landscape of a naive PC. However, their analysis uses an unfolding
calculation of a hierarchical Gaussian model to directly derive the free energy. Although this is an
elegant derivation, it is not a method for explicitly obtaining the fixed points themself. Additionally,
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since their proof is based on γ = 1, we need another method to determine the dependence on the
inference size. Here, we provide a derivation of the states at the fixed point that can be used more
generally for various inference sizes and add a nudge term (in Section B.2.3).

Proof . We consider the inference of naive PC:

F (v1, ..., vL) =
γL
2
∥y −WLvL−1∥2 +

L−1∑
l=1

γl
2
∥vl −Wlvl−1∥2. (S.76)

Taking ∂F
∂vl

= 0, we obtain the following fixed-point equations:

−γLW⊤
L (y −WLvL−1) + γL−1(vL−1 −WL−1vL−2) = 0, (l = L) (S.77)

−γlW⊤
l (vl −Wlvl−1) + γl−1(vl−1 −Wl−1vl−2) = 0, (1 < l < L) (S.78)

−γ2W⊤
2 (v2 −W2v1) + γ1(v1 −W1x) = 0 (l = 1). (S.79)

These equations are summarized in the following matrix form:
I O . . . . . . O

−W⊤
L I O . . . O

O −W⊤
L−1 I . . . O

...
. . . . . .

...
O . . . O −W⊤

2 I



γL−1e

∗
L−1

γL−2e
∗
L−2

...
γ2e

∗
2

γ1e
∗
1

 =


γLW

⊤
L e

∗
L

O
O
...
O

 (S.80)

where e∗l := v∗l −Wlv
∗
l−1 and e∗L := y −WLv

∗
L−1.

Here, we use the following lemma:
Lemma B.2. Define

AL :=


I O . . . . . . O

−W⊤
L I O . . . O

O −W⊤
L−1 I . . . O

...
. . .

. . .
...

O . . . O −W⊤
2 I

 . (S.81)

Its inverse matrix is given by

A−1
L =


I O . . . . . . O
W⊤

L I O . . . O
W⊤

L−1:L W⊤
L−1 I . . . O

...
. . .

. . .
...

W⊤
2:L . . . W⊤

2:3 W⊤
2 I

 . (S.82)

Proof. One can easily derive this inverse matrix. A simple derivation is achieved by induction. We
can express

AL =

[
I O
K AL−1

]
(S.83)

where K⊤ = [WL, O, ..., O]. Suppose that the inverse of AL−1 is given by Eq. (S.82). Then,

A−1
L =

[
I O

KA−1
L−1 A−1

L−1

]
. (S.84)

Since KA−1
L−1 = [WL,WL−1:L, ...,W2:L]

⊤, the inversion of AL is also given by Eq. (S.82).

By using Lemma B.2, we can transform Eq. (S.80) as follows:
e∗L−1
e∗L−2

...
e∗2
e∗1

 = γL


1

γL−1
W⊤

L e
∗
L

1
γL−2

W⊤
L−1:Le

∗
L

...

1
γ2
W⊤

2:Le
∗
L

 . (S.85)
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Although this equation can not be solved explicitly for v∗l−1, we can, nonetheless, solve it by summing
over e∗l as follows:

v∗L−1 −WL−1:1x (S.86)
= xe∗L−1 +WL−1e

∗
L−2 + · · ·+WL−1:2e

∗
1

= γL

(
1

γL−1
I +

1

γL−2
WL−1W

⊤
L−1 + · · ·+

1

γ1
WL−1:2W

⊤
L−1:2

)
W⊤

L e
∗
L. (S.87)

This leads to

v∗L−1 =

(
I +

γL
γL−1

W⊤
L WL +

γL
γL−2

WL−1W
⊤
L−1W

⊤
L WL + · · ·+ γL

γ1
WL−1:2W

⊤
L−1:2W

⊤
L WL

)−1

·
(
WL−1:1x+ γL

(
1

γL−1
I +

1

γL−2
WL−1W

⊤
L−1 + · · ·+

1

γ1
WL−1:2W

⊤
L−1:2

)
W⊤

L y

)
.

(S.88)

Set an ML ×ML matrix

Cγ(W ) :=

L∑
i=2

γL
γi−1

WL:iW
⊤
L:i. (S.89)

Then,

e∗L = y −WLv
∗
L−1 (S.90)

= y − (I + Cγ(W ))
−1

(WL:1x+ (I + Cγ(W )) y)

= (I + Cγ(W ))
−1

(y − f). (S.91)

Thus, at the fixed point, the local loss is explicitly obtained as

e∗l =
γL
γl
W⊤

L:l+1(I + Cγ(W ))−1(y − f). (S.92)

We can also obtain v∗l . From e∗1, we have

v∗1 =W1x+
γL
γ1
W⊤

L:2(I + Cγ(W ))−1(y − f). (S.93)

By induction, we have

v∗l = e∗l +Wlv
∗
l−1 (S.94)

=Wl:1x+

(
γL
γl
W⊤

L:l+1 +

l−1∑
i=2

γL
γi−1

Wl:iW
⊤
L:i

)
(I + Cγ(W ))−1(y − f). (S.95)

B.2.2 BALANCE CONDITION DETERMINING γl<L

Here, we consider the order of el,1 with respect to γl<L. For a linear network with one-shot SI, we
obtain

el,1 = −
L∏

i=l+1

γi(δl − γlWlδl−1) ∼ 1/Mmin(0,γ̄l)+
∑L

i=l+1 γ̄i (S.96)

In contrast, recall that the order of e∗l at the fixed point is

e∗l ∼ 1/M−γ̄l+min(0,γ̄l). (S.97)

Therefore, to satisfy el,1 ∼ e∗l , the following is necessary:
L∑

i=l+1

γ̄i = −γ̄l (S.98)

for all l < L. This is equivalent to γ̄l = 0 for all l < L. Thus, el,1 ∼ e∗l holds if and only if γ̄l<L = 0.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.2.3 NUDGED PREDICTIVE CODING

We can extend Theorem 4.2 to the nudged PC.
Theorem B.3. Suppose an L-layered linear network and put e∗l = v∗l −Wlv

∗
l−1, where ∗ denotes the

fixed point of the inference given by Eq. (S.10). The following holds:

e∗l = v∗l −Wlv
∗
l−1 =

γL
γl
W⊤

L:l+1

(
I +

γL
β
I + Cγ(W )

)−1

(WL:1x− y) (S.99)

e∗L = v∗L −WLv
∗
L−1 =

(
I +

γL
β
I + Cγ(W )

)−1

(WL:1x− y) (S.100)

where WL:i =WLWL−1...Wi.

Proof . Put

F (v1, ..., vL) = β∥y − vL∥2 +
L∑

l=1

γl
2
∥vl −Wlvl−1∥2. (S.101)

Taking ∂F
∂vl

= 0, we have

β(vL − y) + γL(vL −WLvL−1) = 0 (S.102)

−γlW⊤
l (vl −Wlvl−1) + γl−1(vl−1 −Wl−1vl−2) = 0 (1 < l ≤ L) (S.103)

−γ2W⊤
2 (v2 −W2v1) + γ1(v1 −W1x) = 0 (l = 1). (S.104)

Putting χ = vL − y, the system of equations can be written in a matrix form as follows:
I O . . . . . . O

−W⊤
L I O . . . O

O −W⊤
L−1 I . . . O

...
. . . . . .

...
O . . . O −W⊤

2 I




γLe
∗
L

γL−1e
∗
L−1

...
γ2e

∗
2

γ1e
∗
1

 =


−βχ∗

O
O
...
O

 . (S.105)

From Lemma B.2, the above equation is transformed into
e∗L

eL−1∗

...
e∗2
e∗1

 = −β


1
γL
χ∗

1
γL−1

W⊤
L χ

∗

...

1
γ1
W⊤

2:Lχ
∗

 . (S.106)

Take the following summation:

e∗L +WLe
∗
L−1 +WL−1e

∗
L−2 + · · ·+WL−1:2e

∗
1 = v∗L −WL:1x

= − β

γL
(I + Cγ(W ))χ∗. (S.107)

Thus, we can explicitly obtain vL as

v∗L =

(
β

γL
I +

β

γL
Cγ(W )

)−1(
WL:1x+

β

γL
(I + Cγ(W )) y

)
. (S.108)

Thus, χ can be written as follows:

χ∗ = y − v∗L (S.109)

= y −
(
β

γL
I +

β

γL
Cγ(W )

)−1(
WL:1x+

β

γL
(I + Cγ(W )) y

)
(S.110)

=

(
I +

β

γL
I +

β

γL
Cγ(W )

)−1

(y − f). (S.111)
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From the above, we conclude that

e∗l =
β

γl
W⊤

L:l+1

(
I +

β

γL
I +

β

γL
Cγ(W )

)−1

(y − f) (S.112)

=
γL
γl
W⊤

L:l+1

(
I +

γL
β
I + Cγ(W )

)−1

(y − f) (S.113)

at the fixed point.

C µP OF TARGET PROPAGATION

C.1 DERIVATION OF THEOREM 5.1.

Assume that the feedback network is linear: gl(x) = Qlx. Here, we consider a reconstruction loss
with L2 regularization:

L(Ql,s) = ∥Ql,sϕ(Wlhl−1)− hl−1∥2 + µl∥Ql,s∥2 (S.114)

with µl ≥ 0. Note that while some work adds noise to hl−1, it does not affect the order; therefore,
we will ignore it in this derivation. As described below, by taking the ridge-less limit of µ, we can
evaluate the parameterization of the original TP and Difference Target Propagation (DTP) in a clear
and unified manner. Considering the fixed point for QL, since ∂l(Ql)

∂Ql
= 0 holds, we have

Q∗
l = hl−1(h

⊤
l hl + µlI)

−1h⊤l (S.115)

where hl = ϕ(Wlhl−1). The feedback network is given by the network with Eq. (S.115). As a side
note, this weight is essentially the same as the pseudo-inverse weight, which is known as an extension
of the Hebbian weight (Kanter & Sompolinsky, 1987).

Local targets of DTP. DTP is an improved methods of TP, where ĥL is propagated as follows:

ĥi = gdiff
l+1

(
ĥl+1, hl+1, hl

)
= gl+1

(
ĥl+1

)
− (gl+1 (hl+1)− hl) . (S.116)

For the last layer, the error is given by

ĥL = hL + β(y − hL) (S.117)

For a linear feedback network, we have

ĥl = gl+1

(
ĥl+1

)
− (gl+1 (hl+1)− hl) (S.118)

= hl +Ql+1(ĥl+1 − hl+1) (S.119)

= hl +Ql+1((hl+1 +Ql+2(ĥl+2 − hl+2))− hl+1) (S.120)

= hl +Ql+1Ql+2(ĥl+2 − hl+2) (S.121)

= hl − β
L∏

i=l+1

QiδL. (S.122)

Therefore, at the equilibrium point for Ql, for l ≤ L− 2, we have

ĥl − hl = −β
L∏

i=l+1

Q∗
i δL (S.123)

= −βhl
L−1∏
i=l+1

(h⊤i hi + µlI)
−1h⊤i hi(h

⊤
LhL + µlI)

−1h⊤LδL (S.124)

= −βhl
L−1∏
i=l+1

(KA
i + µ′

iI)
−1KA

i (KA
L + µ′

LI)
−1h⊤LδL (S.125)
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where δL = ∂L/∂f and for l = L − 1, we have ĥL−1 − hL−1 = −βhL−1(K
A
L + µ′

LI)
−1h⊤LδL.

To avoid an uninteresting change of order, we introduce µl = µ′
l/M

µ̄l and require that it have
the same order as KA

l . This is essentially equivalent to the valid condition argued in Ishikawa &
Karakida (2024), which requires the damping term to have the same order as the preconditioner in the
second-order optimization. We note that we can take the ridge-less limit µ′

l → 0+ because KA
l (S.39)

is typically set to be regular at random initialization in the neural tangent kernel literature (Jacot et al.,
2018; Yang, 2020). For instance, this holds true for normalized input samples with ∥x∥ = 1.

Local targets of original TP. The signal propagation in the feedback network is

ĥl = Q∗
l+1 · · ·Q∗

LĥL (S.126)

= hl

L−1∏
i=l+1

(h⊤i hi + µiI)
−1h⊤i hi(h

⊤
LhL + µLI)

−1h⊤L (hL − βδL) (S.127)

→ hl − βhl
L−1∏
i=l+1

(KA
i )−1KA

i (KA
L )−1h⊤LδL (µ′

l → 0+). (S.128)

Thus, the target is reduced to essentially the same as that in DTP (S.125) and we can treat both in the
same manner.

On Condition A.1. The update for the last layer is identical to that of SGD with BP, thus

∂η′∆WLhL−1,1

∣∣
η′=0

= − 1

MθL−1
βδLK

A
L−1 (S.129)

Next, we consider the L− 1 layer.

∂η′∆WL−1hL−2,1

∣∣
η′=0

=
1

MθL−1
(ĥL−1 − hL−1)h

⊤
L−1hL−1 (S.130)

= − 1

MθL−1−1
βhL−1(h

⊤
LhL + µLI)

−1h⊤LδLK
A
L−1 (S.131)

= − 1

MθL−1−1
βhL−1(K

A
L + µ′

LI)
−1(KA

L −M−1h⊤Ly)K
A
L−1. (S.132)

Similarly, when ĥl − hl = −β
∏L

i=l+1QiδL, we have

∂η′∆Wlhl−1,1

∣∣
η′=0

=
1

Mθl
(ĥl − hl)h⊤l−1hl−1 (S.133)

= − 1

Mθl−1
βhl

L−1∏
i=l+1

(h⊤i hi + µiI)
−1h⊤i hi(h

⊤
LhL + µLI)

−1h⊤LδLK
A
l−1

(S.134)

= − 1

Mθl−1
βhl

L−1∏
i=l+1

(KA
i + µ′

iI)
−1KA

i (KA
L + µ′

LI)
−1(KA

L −M−1h⊤Ly)K
A
l−1

(S.135)

for l = 1, ..., L− 2. On the right-hand side, hL ∼ 1/MaL+bL−1/2, and from Eq. (S.39), we have

KA
L −M−1h⊤Ly ∼ max{1/M2(aL+bL), 1/MaL+bL+1/2} (S.136)

= 1/MaL+bL+1/2. (S.137)

In the last line, we used aL+bL ≥ 1/2. Here, from Assumption A.1, which states that aL+bL ≥ 1/2,
we obtain

rl =


θ1 − aL − bL + 1/2 (l = 1),

θl − 1− aL − bL + 1/2 (1 < l < L),

θL − 1 (l = L).

(S.138)

On Condition A.2.
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∂η′(WL,0∆hL−1,1)
∣∣
η′=0

=
1

MθL−1
WL,0diag(ϕ′L−1)(ĥL−1 − hL−1)h

⊤
L−2 (S.139)

= − 1

MθL−1−1
βhL(h

⊤
LhL + µ′

LI)
−1h⊤LδLK

A
L−2 (S.140)

= − 1

MθL−1−1
βhL(K

A
L + µ′

LI)
−1(KA

L −M−1h⊤Ly)K
A
L−2. (S.141)

Thus, its order is

∂η′(WL,0∆hL−1,1)
∣∣
η′=0

∼ 1/MθL−1−1+(aL+bL−1/2)−2(aL+bL)+(aL+bL+1/2) (S.142)

= 1/MθL−1−1=rL−1+(aL+bL)−1/2. (S.143)

Finally, from Conditions A.1 and A.2, the µP is given by

θ1 − aL − bL + 1/2 = 0 (l = 1), (S.144)
θl − aL − bL − 1/2 = 0 (1 < l < L), (S.145)
θL − 1 = 0 (l = L), (S.146)
aL + bL − 1/2 = 0. (S.147)

C.1.1 DISAPPEARANCE OF KERNEL REGIME

Corollary C.1. Stable learning satisfying Condition A.2 leads to rL−1 = 0 for TP and DTP.

Proof. From Eq. (S.143), we have

rL−1 + (aL + bL)− 1/2 = 0. (S.148)

From Eq. (S.14), aL + bL ≥ 1/2 and we have rL−1 ≥ 0. In contrast, from the stability of learning,
we have rL−1 ≤ 0. Thus, rL−1 = 0.

Note that, precisely speaking, rL−1 = 0 does not necessarily imply rl<L−1 = 0. However, it is often
considered unnatural (or uninteresting) to examine cases in which the progress of learning depends on
individual layers. Therefore, the µP typically assumes a uniform parameterization, meaning rl<L = r
(see Theorem G.4 of Yang & Hu (2021)). In this sense, rL−1 = 0 indicates the disappearance of the
kernel regime.

One might be surprised by the fact that bL = 1/2 is allowed in the feature learning and that the kernel
regime disappears. Note that the feedback weight in the last layer (S.115) essentially differs from
WL. The feedback weight recieves hL as input whereas Wl recieves hL−1. This makes

QL ∼ 1/M1/2−(aL+bL) (S.149)

WL ∼ 1/MaL+bL . The gradient is proportional to QL in TP and WL in BP. The feedback weight
contributes more significantly to TP’s gradient when aL + bL ≥ 1/2. This eventually makes the
index r of the hidden layer (S.138) get quite large even for aL + bL = 1/2. We also need to be
careful about the order of condition A.2 (S.143). Because the feedback weight (S.115) has a lower
alignment exponent (Everett et al., 2024), this causes the condition 2 of TP to be smaller than that of
SGD (or K-FAC), i.e., 1/MrL−1+(aL+bL)−1. Therefore, stable feature learning is possible even for
aL + bL = 1/2.

Remark on zero head initialization. Related to the size of bL, the parameter initialization with
bL > 1/2 (bL > 1 for SGD) reduces to the µP of bL = 1/2 (bL = 1 for SGD) because Wl,0 becomes
negligible compared to ∆Wl,0. To illustrate the intuition, let us introduce the case where the weight
of the last layer in a feedforward network is initialized as WL = O, that is, bL =∞.

In this case, only the last layer is updated during the first step because Q∗
L = O does not propagate

the local error to the downstream layers. After the first-step update, the weight is given by

WL,1 = − η′

MθL
δLh

⊤
L−1. (S.150)
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and Wl<L,1 =Wl<L,0. Thus,

∂η′∆Wlhl−1,1

∣∣
η′=0

= − 1

MθL
δLh

⊤
L−1hL−1 (S.151)

= − 1

MθL−1
δLK

A
L−1. (S.152)

and
hL,1 = Θ(1/MθL−1), KA

L = Θ(1/M2θL−1), (S.153)
Substituting these into Eqs. (S.132,S.135), we obtain

rl =


θ1 − θL + 1 (l = 1),

θl − θL (1 < l < L),

θL − 1 (l = L).

(S.154)

From Eq. (S.141),
∂η′(WL,0∆hL−1,1)

∣∣
η′=0

= Θ(1/MθL−1−1). (S.155)

Finally, Conditions A.1 and A.2 lead to
θ1 − (θL − 1) = 0 (l = 1), (S.156)
θl − 1− (θL − 1) = 0 (1 < l < L), (S.157)
θL − 1 = 0 (S.158)

Thus, the µP is the same as in the case of random head initialization.

C.2 STABLE PARAMETERIZATION FOR FEEDBACK NETWORK

The feedback network minimizes the following loss function:

L(Ql) =
1

2Ml−1
∥ϕ(Qlhl)− hl−1∥2. (S.159)

where dividing by ML−1 is to ensure that L(Ql) = Θ(1), which is the default setting in PyTorch.
We consider the parameterization in the feedback network:

Ql ∼ N (0, σ′2/M2q̄l), τl =
τ ′l
M τ̄l

, (S.160)

where τl denotes the learning rate for the feedback network.

To ensure that the update ∆Qlhl = Θ(1) holds, we have

∆Qlhl =
τ ′

M τ̄l+1
(ϕ(Qlhl)− hl−1)ϕ

′(Qlhl)h
⊤
l hl. (S.161)

Here, because h⊤l<Lhl<L = Θ(M) and h⊤LhL = Θ(1/M2bL−1), assuming ∆Qlhl = Θ(1/Mrl),
we obtain:

rl =

{
τ̄l (1 < l < L),

τ̄L + 2bL (l = L)
(S.162)

Therefore,
τ̄l<L = 0, τ̄L = −2bL. (S.163)

If we optimize the feedback network for one step, we have

Ql<L,1 = Ql<L,0 −
τ ′

M τ̄l+1
hl−1h

⊤
l ∼

1

Mmin(1,ql)
, (S.164)

QL,1 = QL,0 −
τ ′

M τ̄L+1
hL−1h

⊤
L ∼

1

Mmin(1/2−bL,qL)
. (S.165)

And,

Q∗
l<L = hl−1(h

⊤
l hl + µI)−1h⊤l ∼

1

M
, (S.166)

Q∗
L = hL−1(h

⊤
LhL + µI)−1h⊤L ∼

1

M1/2−bL
. (S.167)

Therefore, in this case, Ql,1 = Q∗
l holds when
q̄l<L ≥ 1, q̄L ≥ 1/2− bL. (S.168)
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Figure S.1 : During the
training of the linear net-
work, it converges to the an-
alytical solution. We trained
a 3-layer linear network using
synthetic data.
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Figure S.2 : AsML approaches 1, the update vector in PC
converges to that of BP. We conducted inference training on
a 3-layer linear network and measured the similarity between
PC and BP. The results demonstrate that PC approaches BP
as ML decreases and γ̄L increases.

D ADDITIONAL EXPERIMENTS

D.1 PREDICTIVE CODING

D.1.1 LINEAR NETWORK

In Figure S.1 , we measure the similarity of the inference vector with BP, GNT, and the analytical
solution. With fewer inference iterations, the model behaves more like BP; however, as the number of
iterations increases, the model converges toward the analytical solution. Furthermore, as the middle
layer width Ml increases, the gap between GNT and BP decreases. Figure S.2 further demonstrates
that reducing the output dimension ML brings the model closer to BP. However, increasing ML

moves the model away from BP, though this divergence is more gradual as γ̄L approaches zero.

D.1.2 ADDITIONAL EXPERIMENTS ON µ TRANSFER FOR PC

Architecture In the main text, we primarily focused on MLP and CNN. However, our µP is
architecture-independent. The results for VGG5 are presented in Figure S.3 . Furthermore, the
µTransfer observed in Figure 4 also holds for MLP, as demonstrated in Figure S.4 .

Loss Type In the main text, we mainly used mean squared error (MSE) loss. However, this can be
replaced with cross-entropy (CE) loss. As demonstrated in Figure S.5 , µP for PC also transfers the
learning rate across widths when using cross-entropy loss.

Optimizer In this paper, we primarily focus on weight updates using SGD. However, it is also
possible to update the weights using Adam instead of SGD. In this case, the corresponding µP is as
follows: {

b1 = 0, bl>1 = 1/2, bL = 1,

c1 = 0, cl>1 = 1.
(S.169)

For Adam, the scaling of bl and cl does not depend on γ̄L. Additionally, in Adam, the gradients
are normalized, which means that µP remains unchanged regardless of whether the gradients are
generated by BP or PC. When considering the stability of the inference, scaling with respect to γ̄L
can be treated in the same manner as in the case of SGD.

γ̄l<L = 0, γ̄L = 1. (S.170)

Train sample We reduced the number of training samples in most of the graphs for µTransfer. By
reducing the number of training samples, finite-width models are known to behave more similarly to
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Figure S.3 : In VGG5, the learning rate also transfers across widths. In SP, the optimal learning
rate shifts based on model width, whereas in µP, it remains fixed. Additionally, we trained with two
different γl values, and under µP (γ̄L = −1), the learning rate consistently transfers across widths,
regardless of γl. The model was trained for 40 epochs on 1024 samples from FashionMNIST.
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Figure S.4 : Without F-ini, µP with γ̄L = −1 transfers the learning rates across width also in
MLP. We trained 3-layer MLP on FashionMNIST without F-ini.
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Figure S.6 : µP with γ̄L = −1 can constantly transfer the learning rates across width We
confirmed µTransfer when training PC with Adam to update parameters in both MLP and CNN. In
the training of MLP without F-ini, we observe that µP with γ̄L = −1 consistently stabilizes training
and performs well. All experiments were conducted on FashionMNIST with 1024 samples.
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Figure S.7 : When training with Adam, muP with γ̄L = −1 transfer γL across width. We trained
a 3-layer MLP on FashionMNIST with Adam.
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Figure S.8 : The results of µP for PC are independent of the number of training samples. We
train a 3-layer MLP on FashionMNIST with full training samples. The stability of µP holds even
with all training samples.
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Figure S.9 : When evaluating the loss after inference, only µP with γ̄L = −1 satisfies the empir-
ical rule of “wider is better” Regardless of whether F-ini is applied, µP with γ̄L = −1 consistently
reduces the loss during inference with stability. We trained 3-layer MLP on FashionMNIST.

infinite-width models, as has often been seen in papers examining the theoretical aspects of feature
learning (Geiger et al., 2020; Ishikawa & Karakida, 2024). However, even when training on the full
dataset, µP remains stable across widths, as shown in Figure S.8 .

Inference Loss When considering the stability of inference, we can observe the loss before
updating the parameters after inference. As shown in Figure S.9 , when training a 3-layer MLP on
FashionMNIST, only µP with γ̄L = −1 consistently reduces the inference loss as the model width
increases.”

Base width and inference iterations In µ-transfer, some research set the width of the smaller
model used for tuning the learning rate, as the base width, denoted by M ′, and adjusts the learning
rate using ηl = η′l/(M/M ′)cl . As shown in Figure S.10 , the choice of M ′ (a smaller M ′) can
sometimes make µP with γ̄L = 0 more sensitive.

As shown in Figure S.11 , the shift in the optimal learning rate at γL = 0 with M ′ = 128 becomes
more evident as the number of inference iterations increases. This is likely because, with more
iterations, the dynamics of inference play a more critical role in weight updates. In summary, to
achieve stable µTransfer independent of the base width and the number of inference iterations, we
should use µP with γL = −1.

Sequential Inference and Synchronous Inference In the main text, we focused on Sequential
Inference, where ul is updated layer by layer, starting from the output layer. However, Synchronous
Inference, where all layers are updated simultaneously, can also be considered. For the differences
between Sequential Inference and Synchronous Inference, see Algorithm.1. As shown in Figure S.12
, since µP for PC is validated at fixed points, it is also applicable to Synchronous Inference.

Additional Experiments with Figure 3 Figure S.13 presents the results of the same experiment
shown in Figure 3 (Right), but with the CIFAR-10/CIFAR=100 dataset and the VGG5 model. It is
evident that even with CIFAR-10, CIFAR-100 and VGG5, µP achieves higher accuracy compared to
SP and NTK.
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Figure S.10 : When the base width M ′ is large, µP with γ̄L = 0 tends to fail with µtransfer. We
train a 3-layer MLP on FashionMNIST. This suggests that µP with γL = −1 should be used when
setting the base width, even with F-ini. The inference is performed for 100 iterations.
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Figure S.11 : µP with γ̄L = −1 maintains high inference stability and successfully performs
µ-transfer even with a large number of inference iterations. We conducted the experiment shown
in Figure S.10 with varying numbers of inference iterations. Even with a larger number of inference
iterations, µP with γL = −1 consistently transfers the learning rate across different widths.
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Figure S.12 : µP for PC also transfers learning rates across widths in synchronous inference.
µP for PC can also be applied in synchronous inference. Note that when the base width is set to 128,
as in SI, the learning rate does not transfer in µP with γ̄L = 0.
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CIFAR10/CIFAR100 and a VGG5 on the full FashionMNIST dataset. The "wider is better" principle
holds for µP.
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Figure S.14 : In Target Prop, using µP ensures that ∆hl remains consistent across widths. This
figure shows the RMS norm of ∆hl during training. For SP, ∆hl in the input layer diminishes as
the width increases, while ∆hl in the output layer diverges with increasing width. Consequently, the
training dynamics become unstable. In contrast, with µP, ∆hl remains consistent across different
widths in both the input and output layers.
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Figure S.15 : Learning rate transfer in Feedback networks. We demonstrate that the learning rate
in feedback networks transfers effectively across widths using toy data. Both the feedforward and
feedback networks include a Tanh/ReLU activation function following the linear layer.
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Figure S.16 : Learning rate transfer in Feedback networks (output layer). We show that the
learning rate in feedback networks transfers across widths using toy data. Unlike the hidden layers,
the learning rate in the output layer does not transfer under the default setting, which requires µP
scaling. Both the feedforward and feedback networks include a Tanh/ReLU activation function after
the linear layer.
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Figure S.17 : Even when training
the feedback network with DRL, µP
demonstrates greater stability com-
pared to SP. We trained a 3-layer
MLP on the FashionMNIST using DRL.
While SP exhibits a shift in the maxi-
mum learning rate as the model width
increases, µP consistently transfers the
optimal learning rates across different
widths.
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Figure S.18 : µP for TP remains stable regardless of the dataset or the number of training
samples. We trained a 3-layer MLP on both FashionMNIST and CIFAR-10 using the full training
samples. With µP, the learning rate successfully transfers across widths, ensuring that the maximum
learning rate remains consistent regardless of the model width.

D.2 TARGET PROPAGATION

D.2.1 ADDITIONAL EXPERIMENTS ON µTRANSFER FOR PC

Tenporal change of activation In Figure S.14 , we observed ∆h during the training of an MLP
on FashionMNIST. SP exhibits a dependency of ∆h on width, whereas µP demonstrates consistent
behavior, independent of width.

Feedback Network As discussed in Section C.2, stable parameterization is crucial not only for
feedforward but also for feedback networks. We verified this with µP, as shown in Figures S.15 and
S.16 .

DRL Meulemans et al. (2020) proposes the difference reconstruction loss (DRL) for constructing
feedback networks. In Figure S.17 , we empirically confirm that our µP works effectively with DRL
when training an MLP on FashionMNIST.

Training samples As with PC, in the case of TP, Figure 6 uses 1024 training samples. Similar
results were observed when using the full training dataset, as shown in Figure S.18 .
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E EXPERIMENTAL SETTINGS

Architecture and dataset We trained the following three models:

• MLP: We trained a 3-layer multilayer perceptron (MLP) with Tanh activation. The MLP
models do not include bias.

• CNN: We trained 3-layer CNN with Tanh activation. The models consist of a two-layer
convolutional layers and a linear layer. We trained with different hidden widths where the
width is proportional to the input dimension of the output layer. (For example, when the
width is set to 4, the input dimension of the final layer is 512.) Max pooling is applied after
the activation function.

• VGG5: We trained a VGG-like model consisting of 4 convolutional blocks and 3 linear
blocks, based on the structure described in (Pinchetti et al., 2024). When the width is set to
8, it matches the VGG5 model in Pinchetti et al. (2024), with the channel sizes being [128,
256, 512, 512].

Dataset and batch size. We used FahionMNIST and CIFAR-10 datasets without applying any data
augmentation. The settings for batch size and training samples were as follows:

• PC In the experiments on µTransfer, FashionMNIST was generally trained with 1024
training samples and a batch size of 1024, except for Figure S.8 . However, when training
VGG5, the batch size was reduced to 64 due to memory constraints. In the experiment
verifying the scaling of µP with respect to width (Figure 3), all training samples were used,
with a batch size of 1024.

• TP In Figures S.14 and 6, we trained 3-layer MLP using 1024 training samples. Note that
in Figure S.18 in the Appendix, FashionMNIST, and CIFAR-10 were trained using the full
datasets. For the activation function of feedback networks, the same activation function as
one used in the forward pass is utilized (i.e., ψ = ϕ).

Training recipe Weight decay was not applied during the parameter updates for feedforward
networks. For SGD, the momentum was set to 0.9, and for AdamW, the parameters (β1, β2) were set
to (0.9, 0.99).

• PC The reduction mode for the loss function was set to "sum" to align the order of all terms
in the free energy function.

• TP For feedback networks, weight decay was set to 10−4 and the learning rate for the target
was set to η̂ = 0.01. Before starting the main training, only the feedback network was
trained for 5 epochs with the feedforward network fixed.
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