
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOCAL LOSS OPTIMIZATION IN THE INFINITE WIDTH:
STABLE PARAMETERIZATION OF PREDICTIVE CODING
NETWORKS AND TARGET PROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Local learning, which trains a network through layer-wise local targets and losses,
has been studied as an alternative to backpropagation (BP) in neural computation.
However, its algorithms often become more complex or require additional hyperpa-
rameters because of the locality, making it challenging to identify desirable settings
in which the algorithm progresses in a stable manner. To provide theoretical and
quantitative insights, we introduce the maximal update parameterization (µP) in
the infinite-width limit for two representative designs of local targets: predictive
coding (PC) and target propagation (TP). We verified that µP enables hyperparam-
eter transfer across models of different widths. Furthermore, our analysis revealed
unique and intriguing properties of µP that are not present in conventional BP. By
analyzing deep linear networks, we found that PC’s gradients interpolate between
first-order and Gauss-Newton-like gradients, depending on the parameterization.
We demonstrate that, in specific standard settings, PC in the infinite-width limit
behaves more similarly to the first-order gradient. For TP, even with the standard
scaling of the last layer, which differs from classical µP, its local loss optimization
favors the feature learning regime over the kernel regime.

1 INTRODUCTION

Deep learning has achieved remarkable performance by building upon the backpropagation (BP)
algorithm and developing architectures specialized for it (Rumelhart et al., 1986; LeCun et al.,
1998; 2015). BP, however, is not always a suitable method for more general objectives, such
as biologically plausible computation (Lillicrap et al., 2020; Bredenberg et al., 2024) or efficient
distributed computation (Amid et al., 2022). A representative alternative is local loss optimization, a
type of credit assignment problem, in which loss functions are defined layer-wise, and targets are set
locally. The basic formulation involves performing regression on target signals at each layer to reduce
the global error across the entire network: Predictive Coding networks, usually referred to as PC,
generate their targets through the internal dynamics of inference (Whittington & Bogacz, 2017; Song
et al., 2020; Salvatori et al., 2023), while Target Propagation (TP) generates them using feedback
networks (Bengio, 2014; Lee et al., 2015; Ernoult et al., 2022).

In many cases, the use of local losses requires additional hyperparameters (HPs) and their careful
tuning, making the algorithm configuration significantly more complicated compared to that of BP.
For example, PC requires not only the usual HPs, such as learning rate and initialization of weight
parameters but also those for the inference phase, such as the initialization of the state and the
number of inference sequences. These HPs are primary considerations and have been reported as
critical for ensuring stable training behavior (Pinchetti et al., 2024; Alonso et al., 2024; Rosenbaum,
2022). A few analyses have succeeded in providing theoretical intuition for such local learning
algorithms by introducing specific conditions or additional corrections that bridge them to classical
optimization formulations (Song et al., 2020; Alonso et al., 2022; Meulemans et al., 2020). However,
such conditions are not always met in practice and may not be commonly shared across the entire
family of methods. To develop local learning that is more easily manageable across a broader range
of settings, it is promising to establish a theoretical foundation that enables the analysis of natural
learning dynamics under fewer constraints.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

For standard BP, deep learning theory offers insights into the universal properties of learning (Bahri
et al., 2020; Bartlett et al., 2021). A key research focus in this area is understanding learning in the
infinite-width limit, including studies on neural tangent kernel (NTK) and feature learning regimes
(Jacot et al., 2018; Chizat et al., 2019; Mei et al., 2018; Bordelon & Pehlevan, 2022b). In particular,
Yang & Hu (2021) provided a unified perspective on the parameterizations that realize these learning
regimes and proposed maximal update parameterization (µP) as a unique scaling of HPs, such as
random initialization and learning rates, that achieves feature learning in the infinite-width limit.
Building on this developing theoretical foundation, we expect to gain universal insight into local
learning, which has not yet been systematically analyzed.

In this work, we derive the µP for PC and TP and investigate hyperparameter transfer (the so-called
µTransfer) across different widths. Although µP for SGD has been previously derived, the µP
depends on the specific training algorithm, making it necessary to derive µP for each local learning
algorithm. Our contributions are summarized as follows:

• While it is known that PC inference trivially reduces to gradient computation of BP under
the fixed prediction assumption (FPA), a technical and heuristic condition, there is generally
no guarantee that PC will reduce to BP, making it highly non-trivial to identify its µP. We
first consider PC with a single sequential inference and reveal the µP even without FPA
(Theorem 4.1). We also empirically verify the µTransfer of learning rates, showing that the
optimal learning rate does not depend on the order of width.

• Second, for a more general context involving multiple inference sequences, we consider
the convergence of the inference phase. We find that, for deep linear networks, we can
explicitly obtain the local targets and losses at the fixed point of the inference, which depend
on inference step sizes (Theorem 4.2). Interestingly, it takes a similar form to the Gauss-
Newton (GN) gradient, but it can be reduced to the conventional first-order gradient descent
(GD) depending on the parameterization and step sizes. We find that the eventual gradient
is closer to GD for sufficiently wide neural networks under standard experimental settings
with µP. We also confirm that a larger inference step size, identified through this analysis,
enhances µTransfer of HPs.

• Finally, we derive µP for both TP and its variant difference target propagation (DTP)
assuming linear feedback networks (Theorem 5.1). We reveal a distinct property that differs
from BP and PC; the feedback network of (D)TP changes the preferable scale of the last
layer compared to the usual µP and causes the absence of the kernel regime. In this sense,
(D)TP favors feature learning more strongly than other learning methods.

Thus, this study provides a solid and qualitative foundation for the further development of local
learning schemes in large-scale neural networks in the future.

2 RELATED WORK

Local learning: Most research on local learning stems from the exploration of biologically plausible
learning (Lillicrap et al., 2020), with PC and TP following this line. As deep learning has evolved,
local learning has also begun to focus on large-scale networks, and some models have achieved
performances close to those trained with BP (Ernoult et al., 2022; Ren et al., 2023). Several algorithms
are inherently structured to resemble the BP chain (Akrout et al., 2019) or to estimate first-order
gradients (Scellier & Bengio, 2017). In contrast, PC relies on an inference phase, which essentially
infers the appropriate activation values for hidden layers, and TP uses a feedback network, both
of which are quite different from BP and seem to be fundamental designs for using local targets.
However, their optimization properties are still not well understood. Alonso et al. (2022) proposed a
modified PC as a proximal point algorithm (implicit SGD), though it requires additional corrections
and adaptive rescaling (Alonso et al., 2024). Innocenti et al. (2023) proposed an inference phase
computed by a GN method, but it requires a quadratic approximation of the local loss around a special
initialization. As discussed in the next section, bridging to such classical optimization requires strong
conditions that may deviate significantly from the original purpose and algorithm (Rosenbaum, 2022;
Meulemans et al., 2020).

Infinite width and µP: While the NTK regime guarantees the existence of learning dynamics in
the infinite-width limit and its global convergence, it reduces to just a kernel method (Jacot et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2018; Lee et al., 2019). To realize feature learning in the infinite-width limit, Yang & Hu (2021)
proposed µP, which is a non-trivial scaling of HPs with respect to the width. From a theoretical
perspective, this serves as a parameterization that enables the dynamics of feature learning, such
as those described by the mean-field regime (Mei et al., 2018) or the dynamical mean-field theory
(Bordelon & Pehlevan, 2022b). For more applications, µP or its extension has been validated across
various architectures (Yang et al., 2021; Vyas et al., 2023; Everett et al., 2024). It covers not only
the naive first-order gradient but also entry-wise adaptive optimizers such as Adam (Yang & Littwin,
2023) and second-order optimization methods like K-FAC (Ishikawa & Karakida, 2024). There
has been little previous work on the infinite-width analysis of local learning. Bordelon & Pehlevan
(2022a) formulated (direct) feedback alignment and (supervised) Hebbian learning using dynamical
mean-field theory, which are rather close to BP.

3 PRELIMINARIES

In this section, we summarize local learning and µP in an L-layer fully connected neural network f :

hl = ϕ (ul) , ul =Wlhl−1 (l = 1, . . . , L), (1)

where Wl ∈ RMl×Ml−1 are weight matrices, hl, ul ∈ RMl×N are activations and N is the number
of data samples, independent of the order of width Ml. We set the width of the hidden layers to
Ml =M for (l = 1, . . . , L− 1) for simplicity. To keep the notation concise, for non-linear networks,
we set ML = 1; however, we can easily generalize to ML = Θ(1). The activation function ϕ(·) is
usually assumed to be differentiable and polynomially bounded for some theoretical reasons within
the µP framework (Yang & Hu, 2021).

3.1 OVERVIEW OF LOCAL LEARNING

3.1.1 PREDICTIVE CODING

Predictive Coding (PC) updates both the states and weights to minimize the following free-energy
function (Whittington & Bogacz, 2017; Song et al., 2020; Salvatori et al., 2023):

F(v,W) = γLL(y,WLϕ(vL−1)) +

L−1∑
l=1

γl
1

2
∥vl −Wlϕ(vl−1)∥2 . (2)

L denotes a loss function, and both mean squared error loss and cross-entropy loss are allowed in
theory and experiments unless an explicit assumption is stated. To distinguish the internal state from
the forward signal propagation ul, we denote this state as vl. Although this algorithm was originally
derived from the variational Bayes formulation, it has been extended beyond the scope of the original
framework, aiming instead to develop inference computations that work more effectively in practice.
PC is composed of two phases: an inference phase, in which the per-layer states vl are updated and a
learning phase, in which weights Wl are updated. Its update rule for the inference phase is given by

vl,s+1 = vl,s −
∂F
∂vl

= vl,s − γlel,s + γl+1ϕ
′ (vl,s) ◦W⊤

l+1el+1,s (l < L), (3)

where we define el,s := vl,s −Wlϕ(vl−1,s) and ◦ is the Hadamard product. From eq. (3), γl can be
regarded as a step size for the inference phase. The update rule for the learning phase is given by

Wl,t+1 =Wl,t − ηl
∂F
∂Wl

=Wl,t + ηlγlel,sϕ(vl−1,s)
⊤. (4)

Note that the inference time index s and the parameter update index t are distinct with s resetting to 0
at each t. We usually omit the step size γl in Eq. (S.6) in implementation. Generally, weights are
updated after multiple inference steps, while the incremental version of PC (iPC), which updates the
weights after just a single inference, has also been proposed (Salvatori et al., 2024b). The internal
state can be updated simultaneously across all layers or computed sequentially in a specified order.
In the first part of the next section, we focus on the Sequential Inference (SI) method, where el,s is
computed sequentially by propagating from the output layer to the input layer. For more details on
this difference, see Algorithm 1 in the Appendix.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Empirically, to improve trainability, PC often relies on assumptions that are either rational or, at
times, unrealistic. One such reasonable assumption is the initialization method for vl,0, which is used
to improve the convergence (Song et al., 2020; Alonso et al., 2022; Rosenbaum, 2022):

Technique (i): Forward initialization (F-ini). At each training step t, vl,0 is initialized such that
vl,0 = ul,t , which ensures el,0 = 0.

Generally, the gradient computation of PC does not match that of BP. However, under F-ini and
SI, it reduces to BP by adopting the following rather technical assumption (Millidge et al., 2022b;
Rosenbaum, 2022):

Technique (ii): Fixed prediction assumption (FPA). Replace ϕ (vl−1,s) with ϕ (vl−1,0) during the
inference phase.

Under FPA, the inference is given by el,s+1 = (1 − γl)el,s + γl+1ϕ
′ (vl,0) ◦ W⊤

l+1el+1,s. By
substituting F-ini, one can easily verify that this sequential inference computes∇ul

L. In Section 4,
we reveal that the following scaling of γL with respect to the width M plays a fundamental role in
characterizing the feature learning of PC and a parameterization that enables stable learning even
without such heuristic techniques:

γL = γ′/M γ̄L (5)
with an exponent γ̄L and an uninteresting constant γ′ > 0. A more detailed overview of PC is
provided in the extended related work (Appendix.A.1.2).

3.1.2 TARGET PROPAGATION

In target propagation (TP), ĥL = hL − η̂∇hL
L is propagated through the feedback network, which

generates local targets ĥl as follows:

ĥl = gl(ĥl+1), gl(x) = ψ(Qlx) (l = 1, ..., L− 1), (6)

where Ql ∈ RMl−1×Ml are weight matrices, ψ(·) is an activation function of the feedback network.
We also analyze the Difference Target Propagation (DTP), a variant of TP, whose definition is
provided in the appendix. The feedback network is trained to minimize the following reconstruction
loss:

Lrec(Ql) = ∥gl (fl(hl−1))− hl−1∥2 , (7)
where fl(x) = ϕ(Wlx). TP updates the weights Wl to minimize the following local loss ∥el∥2 :=

∥ĥl−hl∥2. The gradient of this local loss provides the update rule for the learning phase as Wl,t+1 =
Wl,t − ηlϕ′(Wl,thl−1) ◦ elh⊤l−1. For a so-called invertible network, TP computes the Gauss-Newton
Target (GNT), i.e., eGNT

l = (δlδ
⊤
l + ρI)−1δleL where δl = ∇ul

uL is the BP signal (Meulemans
et al., 2020) 1 and eL = y− hL is the error vector. Note that the assumption of the invertible network
is restrictive because the invertible network requires invertible activation functions, regular weight
matrices, and the training tp converge to the solution of gl(ĥl+1) = f−1

l+1(ĥl+1) =W−1
l+1ϕ

−1(ĥl+1).
For general networks, (D)TP does not necessarily lead to the GNT.

Remark on a connection between PC and TP. Some previous studies have argued that PC yields
GNT-like solutions, and thus can be connected to TP (Alonso et al., 2022; Millidge et al., 2022a).
These works attempt to gain an intuitive insight from the fixed point equation for each layer:

h∗l =
(
W⊤

l+1Wl+1 + γl+1/γlI
)−1 (

W⊤
l+1h

∗
l+1 + γl+1/γlWlh

∗
l−1

)
, (8)

where h∗l means ϕ(v∗l). For γl+1/γl ≪ 1, we approximate h∗l ≈ W †
l+1h

∗
l+1. If we multiply this

approximation across layers, the naive expectation is that h∗l ≈
∏L

i=l+1W
†
i e

∗
L, which corresponds to

the GNT for linear networks. Thus, we can intuitively see that the PC may be linked to the GNT,
although its exact connection requires careful limit operations across layers. Additionally, taking
the limits γl+1/γl ≪ 1 for all layers means the exponential decay of γl with depth, raising concerns
regarding its practical relevance. For γl = 1, Innocenti et al. (2024) has recently derived an explicit
formulation of the free energy at the fixed point using an unfolding calculation of a hierarchical
Gaussian model. This formulation shows that the obtained gradient differs from that of the exact
GNT, supporting the idea that the connection to GNT would be weak.

1The final gradient dF/dWl is equivalent to the special case of K-FAC (Martens & Grosse, 2015) where the
preconditioners are applied only to the backward signals.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Parameterization for weight initialization scale: bl and learning rate scale: cl. Predictive
Coding (PC) with γ̄L = 0 reduces to SGD’s µP, while one with γ̄L = −1 reduces to µP for Gauss
Newton Target (GNT). TP (Target Propagation) has the distinctive property of bL = 1/2.

Layer SP (Default) SGD (2021) GNT (2024) PC (New) TP (New)
Input (0, 0) (0,−1) (0, 0) (0,−γ̄L − 1) (0, 0)
Hidden (1/2, 0) (1/2, 0) (1/2, 1) (1/2,−γ̄L) (1/2, 1)
Output (1/2, 0) (1, 1) (1, 1) (1, 1) (1/2, 1)

3.2 µP AND LEARNING REGIMES

The abc-parameterization {al, bl, cl}1≤l≤L determines the scaling of weights and learning rates at
initialization. It scales the parameters by width as follows (Yang & Hu, 2021):

Wl = wl/M
al , wl ∼ N (0, σ′2/M2bl), ηl = η′l/M

cl . (9)

µP and its conditions: Consider the temporal change of ul by the parameter update:

∆ul,t := ul,t − ul,0 = Θ(1/Mrl) , (10)

where Θ(·) denotes the order with respect to the width and x = Θ(Ma) means
√
∥x∥2/M = Θ(Ma)

for x ∈ RM .The training dynamics and parameterization are referred to as stable when ul,0 neither
vanish nor explode as the network width increases and ∆hl,t do not explode as the network width
increases (Definition A.2). Yang & Hu (2021) introduced the following conditions and characterized
µP as a unique stable abc-parameterization under them:
Condition 3.1 (Wl updated maximally). ∆Wl,thl−1,t = Θ(1) where ∆Wl,t :=Wl,t −Wl,0.
Condition 3.2 (WL initialized maximally). WL,0∆uL−1,t = Θ(1).

These conditions imply rl = 0 for all layers and feature learning. In contrast to this feature
learning regime, the previous work refers rl<L > 0 and rL = 0 as the kernel regime. The NTK
parameterization corresponds to the kernel regime with rl<L = 1/2 Note that the original derivation
of the parameterization that satisfies the above conditions is based on the first (infinitesimal) one-step
update of the parameters (Yang & Hu, 2021; Ishikawa & Karakida, 2024) (see Section A.2). Our
work also follows the same approach.

µP for Gauss-Newton Target: The following work has recently derived the µP scaling, including
both first-order and second-order optimizations.
Proposition 3.3 (Ishikawa & Karakida (2024)). Consider the first one-step update by the GNT:
Wl,1 =Wl,0−ηlϕ′(Wl,thl−1)◦(δlδ⊤l +ρI)−eBδldiag(eL)h⊤l−1 where δl = ∇ul

uL and eL = y−hL.
In the infinite-width limit, this update admits the µP for feature learning at{

θ1 = eB − 1, θ1<l<L = eB , θL = 1

b1 = 0, b1<l<L = 1/2, bL = 1,
(11)

where θl := 2al + cl. We obtain µP of SGD for eB = 0, and that of GNT for eB = 1.

More precisely, we can also allow bL ≥ 1 for the feature learning regime. However such initialization
reduces to the case of bL = 1 in the next parameter update. Thus, we can summarize it as bL = 1.
The scaling of bL = 1 implies that a smaller initialization is required compared to the standard
parameterization (SP), which is PyTorch’s default, for sufficiently wide neural networks. It can also
be immediately verified that we can set al = 0 due to shift invariance without loss of generality. In
Table 1, we summarize the µP from previous work and our results obtained in the following sections.

4 FEATURE LEARNING OF PREDICTIVE CODING

4.1 µP OF PC WITH SINGLE-SHOT SEQUENTIAL INFERENCE

As noted in section 3.1.1, PC involves such techniques as F-ini, FPA and SI, which must be clearly
distinguished when deriving the µP. It is well-established that when F-ini, SI, and FPA are all assumed,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

−22.5−20.0−17.5

log2 LR

50

60

70

80

T
es

t
A

cc
(w

F
P

A
)

SP

−20 −15 −10

log2 LR

muP for SGD

−22.5−20.0

log2 LR

20

40

60

80

T
es

t
A

cc
(w

/
o

F
P

A
)

SP

−15 −10

log2 LR

muP (γ̄L = 0)

−15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

Figure 1: µP enables the transfer of learning rates across widths. (Left) PC reduces to SGD when
F-ini, FPA, and SI are applied. In fact, using the µP of SGD, learning rates are successfully transferred
across different widths. (Right) Even without FPA, our µP of PC also allows µTransfer across widths.
In this case, inference is performed only once, and the difference in test accuracy between γ̄L = 0
and γ̄L = 1 is small. Both figures show results with a 3-layer MLP on FashionMNIST.

PC reduces to the gradient computation of BP, and the µP matches that of standard BP. Figure 1 shows
that when F-ini, FPA, and SI are applied, the µP of BP can be directly transferred to PC and leads to
learning rate transfer across width. However, this may not hold for general PC and BP as there is no
guarantee of their equivalence. To explore this, we first remove FPA. Although initialization (F-ini)
and sampling (SI) are inherently arbitrary, the justification for FPA is unclear from both machine
learning and biological perspectives. In PC without FPA, we find the µP as follows:

Theorem 4.1 (µP for PC (informal)). Let the inference step sizes be γl<L = Θ(1) and γL = γ′/M γ̄L

with a positive constant γ′. Consider the first one-step update of the learning parameters after a first
single-shot SI with F-ini. Then, PC admits the µP for feature learning at{

θ1 = −γ̄L − 1, θ1<l<L = −γ̄L ≥ 0, θl=L = 1, (θl = 2al + cl)

b1 = 0, bl<L = 1/2, bL = 1.
(12)

Rough sketch of the derivation. Section B.1 of the Appendix presents a detailed and comprehensive
derivation. It is based on the perturbation approach, which applies to general networks with nonlinear
activation functions. This method is inspired by the previous work that derived the µP by evaluating
Conditions 3.1 and 3.2 using the perturbations, such as ∂η′(∆Wl,1hl−1,1)

∣∣
η′=0

= Θ(1). This allows
for a systematic and transparent derivation. In PC, we extend the perturbation argument to the
inference step size and require

∂γ′∂η′(∆Wl,1hl−1,1)
∣∣
η′=γ′=0

= Θ(1), (13)

which is an example of Condition 3.1 for the hidden layer. Under the assumption of F-ini (el,0 = 0),
by putting δl = ∇ul

uL (l < L) and δL = y −WLvL−1,0, we obtain ul,1 − ul,0 = −∏L
i=l+1 γiδl,

and

el,1 = (ul,0 −
∏L

i=l+1
γiδl)− ϕ(Wl,0(ul−1,0 −

∏L

i=l
γiδl−1)). (14)

For the hidden layers, the perturbation term (13) becomes M−(θl+γ̄L)(−δl + ϕ′(Wlul−1,0) ◦
Wlδl−1)h

⊤
l−1,0hl−1,0 and we obtain θl + γ̄L − 1 + (aL + bL) = 0. We can similarly evaluate

the other layers. The last condition, bL = 1, comes from Condition 3.2. We can derive the NTK
parameterization of PC in the same way.

As Figure 1 demonstrates, the obtained µP supports µTransfer in PC without FPA. Note that µTransfer
is defined as satisfying both conditions: the optimal learning rate can be set independently of the order
of width, and the empirical rule that ‘wider is better’ holds (Yang et al., 2021). This means that the
optimal hyperparameters tuned for smaller-width models can be effectively re-used in larger-width
models. Additionally, consistent with previous work, we observed the empirical rule of “wider is
better” in µP (Yang et al., 2021), where test accuracy improves as the network width increases. The
derivation of µP through a one-step update can be immediately generalized to cross-entropy loss in
the same way as for µP of naive gradient descent. Thus, µTransfer can similarly be observed for
cross-entropy loss, as shown in Appendix (Figure S.5).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

23 27

ML

0.85

0.90

0.95

1.00

C
os

S
im

(a)

BP Layer1 GN Layer1 BP Layer2 GN Layer2

26 29

Ml

0.7

0.8

0.9

1.0

(b)
−1.0 −0.5 0.0

γ̄L

0.96

0.98

1.00

(c)

−1.0 −0.5 0.0

γ̄L

0.94

0.96

0.98

1.00

C
os

S
im

w
it

h
B

P
G

ra
d width

128

256

512

1024

2048

4096

8192

Figure 2: (Left) Comparison of gradients with the analytical solution of a linear network. We
measured the cosine similarity between the gradients analytically derived in Theorem 4.2 and the BP
gradients or GN gradients for each layer. (a) γ̄L = 0 yields gradients closer to BP gradient (which
means SGD in this experiment) compared to γ̄L = −1. (b) As ML approaches 1, PC’s gradient
converges to BP’s. (c) As Ml increases, the PC gradient approaches BP’s. (Right) In a nonlinear
MLP, PC’s gradient also approaches BP’s when γ̄L = 0.

Thus far, when considering the parameter gradients, it appears that γ̄L as a free parameter can be
absorbed into the learning rate, allowing the feature learning dynamics to remain stable. However,
as the following analysis shows, γL modifies the preconditioning of the computed gradients, which
may influence µTransfer of both γL itself and the learning rate. The analysis also demonstrates the
validity of setting γl<L = Θ(1).

4.2 ANALYSIS WITH LINEAR NETWORK

In the previous section, we derived the µP under the assumption that inference is performed only
once using F-ini and SI. However, in practice, the inference phase typically involves multiple update
steps. To address this, we found that it is possible to explicitly derive the following general solutions
(fixed points) of the inference phase for linear networks. See Section B.2 for the derivation.

Theorem 4.2. Suppose an L-layered linear network and a mean squared error loss L(y,WLvL−1),
and put e∗l = v∗l −Wlv

∗
l−1, with ∗ denoting the fixed point of the inference process (3). The following

holds:

e∗l =
γL
γl
W⊤

L:l+1(I + Cγ(W))−1(WL:1x− y), Cγ(W) :=

L∑
i=2

γL
γi−1

WL:iW
⊤
L:i (15)

v∗l =Wl:1x+ (
γL
γl
W⊤

L:l+1 +

l−1∑
i=2

γL
γi−1

Wl:iW
⊤
L:i)(I + Cγ(W))−1(y − f). (16)

and e∗L = y −WLv
∗
L−1 = (I + Cγ(W))−1(WL:1x− y) where WL:i =WLWL−1...Wi.

From this general solution, we can also confirm the following property of the infinite width.

Corollary 4.3. Suppose the setting of Theorem 4.2, γl<L = Θ(1) and the weight is initialized with
µP i.e., aL + bL = 1. In the infinite-width limit, the PC’s gradient reduces to SGD for γL = Θ(1).
For γL = Θ(M), the preconditioner part Cγ remains of order 1.

The exact solutions e∗l provide much clearer insight into the gradient computation compared to Eq.
(8), which was previously argued but not explicitly solved. First, it becomes evident that PC does
not generally coincide with GNT. Consequently, PC is also generally different from TP. In fact, PC
coincides with GNT only for the input layer in a shallow network (i.e., L = 2), where the update
vector for PC corresponds to a GNT update with a damping term. Although PC does not entirely
coincide with GNT, it is noteworthy that the scaling of cl in µP for γ̄L = −1 matches that of GNT.
In contrast, for γ̄L = 0, the PC’s gradient aligns with the SGD. Because the preconditioner part
scales as Cγ = O(1/M) in the infinite-width limit, we observe that e∗l = δl, which reduces to the
SGD. Naturally, µP matches that of SGD in this case. Intuitively, γL reflects how effectively the
last layer’s error propagates downward. Like linear regression, the last layer’s inference solution
inherently involves an inverse matrix. Thus, when γL is larger than other γl values, the last layer’s
representation is computed first and propagated downward, making the solution resemble GNT.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2.5 5.0 7.5 10.0 12.5

log2Ml

2−5

2−2

21

L
os

s
(I

n
fe

re
n

ce
)

Loss after inference γ̄L
-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0
210 212

ML−1

70

75

80

85

T
es

t
A

cc
(C

N
N

) With F-ini

210 212

ML−1

40

50

60

70

Without F-ini

muP
(γ̄L = 0)

muP
(γ̄L = −1)

NTK

SP

Figure 3: (Left) γ̄L = −1 steadily reduces the local loss as width increases. We observed the
inference loss in a randomly initialized linear network for various γ̄L. For γ̄L = −1, the inference
loss consistently decreases with increasing width. (Right) The "wider is better" trend holds for
µP with γ̄L = −1. With F-ini, this trend holds for µP regardless of the γ̄L value. However, without
F-ini, the benefits of γ̄L = −1 become particularly prominent.

−20 −15 −10

log2 LR

20

40

60

80

T
es

t
A

cc
(C

N
N

)

SP

−15 −10

log2 LR

muP (γ̄L = 0)

−15 −10

log2 LR

muP (γ̄L = −1)

width

4

8

16

32

64

128
0 20 40

Epoch

0.00

0.25

0.50

0.75

1.00

∆
h

∆h1 (input)

0 20 40

Epoch

∆h2 (hidden)
width

8

16

32

64

128

Figure 4: (Left) µP can transfer the learning rate across widths (without F-ini). We trained a
3-layer CNN on FashionMNIST with 100 inference iterations. Without F-ini, the stability of the
inference becomes more crucial. As a result, unlike the single-shot SI with F-ini shown in Figure 1,
the stability provided by γ̄L = −1 becomes critical. Note that additional experiments under different
settings, including those with VGG5 (Figure S.3) and cross-entropy loss (Figure S.5), are presented
in Section D.1.2 of the Appendix. (Right) ∆h remains consistent across widths during training.
We confirm that the condition ∆h = Θ(1) required by µP holds throughout the training.

Second, the order of e∗l in the analytical solution for the linear network matches the order of el,1
as derived in Theorem 4.1. Therefore, this theorem implies that in linear networks, the µP of PC
would remain unchanged regardless of the presence of F-ini or the number of inference iterations.
Moreover, as proved in Section B.2.2, the orders of e∗l and el,1 align only when γl<L = Θ(1). In
practical settings with multiple inferences, it is desirable for the µP to be consistent both after a single
inference and after the inference has fully converged. Therefore, setting γl<L = Θ(1) is reasonable.

Additionally, we found that the dimension of the last layer plays a key role in determining the
similarity between PC and BP. According to the solution for linear networks, when ML = 1, the
PC’s gradient aligns with SGD. Figure 2 shows numerical results confirming that for ML = 1, the
gradient direction always corresponds to SGD, and for Ml ≫ML = Θ(1), the gradient approaches
SGD as well. We observed that both GN and BP get much closer to each other for sufficiently large
widths. In other words, even when we realize GNT by setting γ̄L = −1, it has a quite close direction.
A detailed view of the cosine similarity at the large width is shown in Figure 2(c). This result seems
reasonable because in the context of second-order optimization, it has also been reported that GNT
tends to collapse into an identity matrix owing to damping (Benzing, 2022). In summary, while
PC’s gradient switches between SGD and GNT depending on the parameterization, it is important to
highlight that GNT behaves similarly to SGD in the infinite-width limit.

As a minor extension, we can also analyze the nudge-type loss of PC defined by Eq. (S.10) (Alonso
et al., 2022; Millidge et al., 2023; Pinchetti et al., 2024). In this case, the damping term I in Eq. (15),
is replaced by (1 + γ/β)I . Thus, the dependence on the parameterization remains essentially the
same as that of the naive PC. Further discussion on nudge-type PC can be found in Appendix B.2.3.

4.3 STABILITY OF INFERENCE PHASE

To ensure feature learning in SGD, the µP framework requires stable activations, i.e., ∆ul<L = Θ(1).
It seems natural to apply this requirement to the inference phase of PC. That is, let us suppose ul<L,s

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

−10 0 10

log2 γ
′
L

20

40

60

80
T

es
t

A
cc

(M
L

P
)

SP
with γl=1

−10 0 10

log2 γ
′
L

muP (γ̄L = 0)
with γl=1

−10 0 10

log2 γ
′
L

muP (γ̄L = −1)
with γl=1

0 10

log2 γ
′
L

SP
with γl=1e-2

0 10

log2 γ
′
L

muP (γ̄L = 0)
with γl=1e-2

0 10

log2 γ
′
L

muP (γ̄L = −1)
with γl=1e-2

width

128

256

512

1024

2048

4096

8192

Figure 5: µP with γ̄L = −1 performs consistently well, regardless of γl. When γl is small
(γl = 0.01), µP with γ̄L = 0 performs poorly, while µP with γ̄L = −1 shows significantly better
performance. This difference is likely due to slower inference convergence in µP with γ̄L = 0. For
larger values of γl (γl = 1), both µP configurations exhibit high accuracy. However, for µP with
γ̄L = 0, γL does not transfer effectively across widths, whereas µP with γ̄L = −1 demonstrates the
successful transfer of γL across widths.

varies by Θ(1) during the inference. Note that in Eq.(3) atL−1, the feedforward signal from the lower
layer is γL−1eL−1,s = Θ(1), and the error feedback from the last layer is γLϕ′ (uL−1,s)◦W⊤

L eL,s =
Θ
(
1/M γ̄L+bL

)
. Both terms should be of order Θ(1) for the inference to successfully merge both

feedforward and feedback signals. When bL = 1, this condition requires γL = Θ(M), and we
can expect the local loss in the last layer eL to decrease most prominently during the inference.
Additionally for γl<L = Θ(1), the inference remains stable for layers l < L− 1. Empirical results
in Figure 3 (left) confirm that when γ̄L = −1, the inference loss decreases consistently as the width
increases, verifying that the “wider is better” hypothesis holds even in inference. This facilitates the
hyperparameter transfer of γL for the inference dynamics.

We also observe the benefits of using γ̄L = −1 for the parameter updates. Without F-ini, the
convergence of inference usually deteriorates for SP, making inference stability especially critical in
this scenario. As shown in Figure 3 (right), the “wider is better” trend holds with F-ini regardless of
γ̄L. However, without F-ini, this trend holds only when γ̄L = −1. Figure 4 demonstrates that the
µTransfer of the learning rate holds for γ̄L = −1. Additionally, Figure 5 indicates that γ̄L = −1 is
also preferable from the perspective of µTransfer of γL.

5 FEATURE LEARNING OF TARGET PROPAGATION

5.1 µP OF TP

As overviewed in Section 3.1.2, TP reduces to GNT in the highly restrictive case of invertible
networks. However, TP is not equivalent to GNT or BP in general cases (Meulemans et al., 2020;
Ernoult et al., 2022). While TP involves two networks trained using different manners, and one may
feel it challenging to obtain a stable parameterization for learning, we demonstrate that, under the
assumption that the feedback network uses a linear activation function ψ, we can systematically
derive µP for both TP and DTP.
Theorem 5.1 (µP for TP and DTP (informal)). Consider a linear feedback network. The forward
network is allowed to have nonlinear activation functions. After the first training phase of Ql, take
the first one-step update of W . Then, we obtain µP as follows:{

c1 = 0, c1<l<L = 1, cL = 1,

b1 = 0, b1<l<L = 1/2, bL = 1/2.
(17)

The derivation is presented in Section C.1. Note that the linear feedback network has trained weights
in a pseudo-inverse form, that is, Q∗

l = hl−1(h
⊤
l hl + µI)−1h⊤l . Stable parameterization can also be

discussed for the training of the feedback network. For further details, see Section C.2.

As demonstrated in Figure 6, using the µP for TP results in the µTransfer appropriately across widths.
Furthremore, Figure S.14 in Appendix tracks ∆hl during training. In µP, ∆hl remains consistent
across different widths, whereas in SP, ∆hl either diverges or diminishes as the width changes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

−2.5 0.0 2.5 5.0

log2 LR

50

60

70

80

T
es

t
A

cc

SP

−2.5 0.0 2.5 5.0

log2 LR

muP
width

128

256

512

1024

2048

4096

8192

16384
211 216

width

0.4

0.5

0.6

0.7

0.8

0.9

1.0

lo
g

al
ig

n
m

en
t

ra
ti

o

BP

210 214

width

DTP
param

SP

muP
(TP)

muP
(SGD)

muP
(GNT)

Figure 6: (Left) µP can transfer the learning rate across widths in TP. (Right) TP does not
have kernel regime. We measured ωL = logM (∥WL,0∆hL−1,T ∥RMS/∥WL,0∥RMS∥∆hL−1,T ∥RMS)
across different parameterizations following Everett et al. (2024). In the infinite-width limit, ωL

converges to α. Therefore, in TP, where ωL remains fixed at 1/2 even as the width increases, the
kernel regime disappears.

5.2 DISAPPEARANCE OF THE KERNEL REGIME

It is notable that µP in the previous work of the gradient methods requires bL = 1; in TP, µP requires
bL = 1/2. For the usual gradient methods, a stable parameterization with bL = 1/2 leads to the
kernel regime. This raises the question: does a kernel regime exist in TP? Interestingly, in TP, the
kernel regime disappears (see Corollary C.1 for the details).

Rough sketch of derivation. Condition 3.2 must hold to achieve stable learning in the hidden layers.
Note that this condition is required in both the feature learning and kernel regimes. By expressing
∆hL−1 = Θ(1/Mr) , we obtain

aL + bL + r − α = 0. (18)
When the inner product WL∆hL−1 follows the Law of Large Numbers (LLN), α = 1, and when
it follows the Central Limit Theorem, α = 1/2 (Everett et al., 2024). Additionally, to prevent the
output of the last layer from exploding, it is necessary that hL = O(1), that is, aL + bL ≥ 1/2.
Consequently, r ≤ α− 1/2. In BP, the dependence between WL and ∆hL−1 results in α = 1 by the
LLN. We have r ≤ 1/2, allowing for the kernel regime. In contrast, in TP, updating the feedforward
network weights does not induce a dependence between WL and ∆hL−1, leading to α = 1/2. This
is because the gradient is computed based on the feedback weight Q∗

L = hL−1(h
⊤
LhL + µI)−1h⊤L ,

rather than WL. Consequently, r ≤ 0 and the kernel regime cannot be achieved in TP.

Figure 6 empirically confirms α = 1/2 in TP. TP seems to be the first example in the infinite-width
limit where bL = 1/2 induces feature learning.

6 CONCLUSION

In this work, we revealed µP for local loss optimization that can effectively scale toward the infinite
width in a stable manner, supported by our analysis of linear networks. Our study covers two of
the most fundamental settings: the local targets computed during the inference phase (i.e., PC) and
the feedback network (i.e., TP). Although neither method generally reduces to BP or GNT, making
gradient computation non-trivial, we identified the µP and highlighted its intriguing properties, such
as the gradient switching depending on the parameterization and the disappearance of the kernel
regime. Additionally, we empirically confirmed that the derived µP facilitates hyperparameter transfer
across widths.

Limitation and future direction. The derivation of µP assumes a one-step gradient and linear
networks, although this prerequisite is not unique to our work (Yang & Hu, 2021; Yang et al., 2024).
Ensuring the existence of feature learning dynamics for more general steps in the infinite width
limit would require the development of a tensor program. However, handling the dependencies
between variables that differ from standard BP, such as those arising from the inference phase and
feedback pass, is non-trivial and presents an interesting direction for future research. Additionally,
it would also be valuable to explore the learning dynamics of local learning and its convergence
properties by extending the infinite width theory or further analyzing linear networks. We believe
that understanding the universal behavior of large-scale limits will provide a foundation for the
development of more effective algorithms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
learning without weight transport. In Advances in Neural Information Processing Systems, 2019.

Nicholas Alonso, Jeffrey Krichmar, and Emre Neftci. Understanding and improving optimization
in predictive coding networks. In AAAI Conference on Artificial Intelligence, volume 38, pp.
10812–10820, 2024.

Nick Alonso, Beren Millidge, Jeffrey Krichmar, and Emre O Neftci. A theoretical framework for
inference learning. Advances in Neural Information Processing Systems, 35, 2022.

Ehsan Amid, Rohan Anil, and Manfred Warmuth. Locoprop: Enhancing backprop via local loss
optimization. In International Conference on Artificial Intelligence and Statistics, pp. 9626–9642.
PMLR, 2022.

Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, Sam S Schoenholz, Jascha Sohl-Dickstein,
and Surya Ganguli. Statistical mechanics of deep learning. Annual Review of Condensed Matter
Physics, 11(1):501–528, 2020.

Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
Acta Numerica, 30:87–201, 2021.

Y Bengio. Deriving differential target propagation from iterating approximate inverses.
arXiv:2007.15139, 2020.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv preprint arXiv:1407.7906, 2014.

Frederik Benzing. Gradient descent on neurons and its link to approximate second-order optimization.
In International Conference on Machine Learning, pp. 1817–1853. PMLR, 2022.

Blake Bordelon and Cengiz Pehlevan. The influence of learning rule on representation dynamics in
wide neural networks. In International Conference on Learning Representations, 2022a.

Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution in
wide neural networks. Advances in Neural Information Processing Systems, 2022b.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. How feature learning can improve neural
scaling laws. arXiv:2409.17858, 2024.

Colin Bredenberg, Ezekiel Williams, Cristina Savin, Blake Richards, and Guillaume Lajoie. For-
malizing locality for normative synaptic plasticity models. In Advances in Neural Information
Processing Systems, 2024.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In Advances in Neural Information Processing Systems, 2019.

Maxence M Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky,
Irina Rish, Blake Richards, and Yoshua Bengio. Towards scaling difference target propagation
by learning backprop targets. In International Conference on Machine Learning, pp. 5968–5987.
PMLR, 2022.

Katie E Everett, Lechao Xiao, Mitchell Wortsman, Alexander A Alemi, Roman Novak, Peter J Liu,
Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jaehoon Lee, and Jeffrey Penning-
ton. Scaling exponents across parameterizations and optimizers. In International Conference on
Machine Learning, 2024.

Karl Friston. Learning and inference in the brain. Neural Networks, 2003.

Karl Friston. A theory of cortical responses. Philosophical transactions of the Royal Society B:
Biological sciences, 2005.

Mario Geiger, Leonardo Petrini, and Matthieu Wyart. Perspective: A phase diagram for deep learning
unifying jamming, feature learning and lazy training. arXiv:2012.15110, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance.
Cognitive science, 1987.

Francesco Innocenti, Ryan Singh, and Christopher Buckley. Understanding predictive coding as a
second-order trust-region method. In ICML Workshop on Localized Learning, 2023.

Francesco Innocenti, El Mehdi Achour, Ryan Singh, and Christopher L Buckley. Only strict saddles in
the energy landscape of predictive coding networks? To appear in Advances in Neural Information
Processing Systems, 2024.

Satoki Ishikawa and Ryo Karakida. On the parameterization of second-order optimization effective
towards the infinite width. In International Conference on Learning Representations, 2024.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems, 2018.

Ido Kanter and Haim Sompolinsky. Associative recall of memory without errors. Physical Review
A, 35(1):380, 1987.

Ryo Karakida and Kazuki Osawa. Understanding approximate fisher information for fast convergence
of natural gradient descent in wide neural networks. Advances in Neural Information Processing
Systems, 33:10891–10901, 2020.

Axel Laborieux, Maxence Ernoult, Benjamin Scellier, Yoshua Bengio, Julie Grollier, and Damien
Querlioz. Scaling equilibrium propagation to deep convnets by drastically reducing its gradient
estimator bias. Frontiers in Neuroscience, 15:633674, 2021.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In Neural
Networks: Tricks of the Trade, pp. 9–50. Springer, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Machine Learning and Knowledge Discovery in Databases, pp. 498–515. Springer, 2015.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in Neural Information Processing Systems, 2019.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backprop-
agation and the brain. Nature Reviews Neuroscience, 2020.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In International Conference on Machine Learning, pp. 2408–2417. PMLR, 2015.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
two-layer neural networks. Proceedings of the National Academy of Sciences, 115:E7665–E7671,
2018.

Alexander Meulemans, Francesco Carzaniga, Johan Suykens, João Sacramento, and Benjamin F
Grewe. A theoretical framework for target propagation. In Advances in Neural Information
Processing Systems, 2020.

Beren Millidge, Yuhang Song, Tommaso Salvatori, Thomas Lukasiewicz, and Rafal Bogacz. A
theoretical framework for inference and learning in predictive coding networks. arXiv:2207.12316,
2022a.

Beren Millidge, Alexander Tschantz, and Christopher L Buckley. Predictive coding approximates
backprop along arbitrary computation graphs. Neural Computation, 2022b.

Beren Millidge, Yuhang Song, Tommaso Salvatori, Thomas Lukasiewicz, and Rafal Bogacz. Back-
propagation at the infinitesimal inference limit of energy-based models: Unifying predictive
coding, equilibrium propagation, and contrastive hebbian learning. In International Conference on
Learning Representations, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lorenzo Noci, Alexandru Meterez, Thomas Hofmann, and Antonio Orvieto. Super consistency of
neural network landscapes and learning rate transfer. In Neural Information Processing Systems,
2024.

Luca Pinchetti, Chang Qi, Oleh Lokshyn, Gaspard Olivers, Cornelius Emde, Mufeng Tang, Amine
M’Charrak, Simon Frieder, Bayar Menzat, Rafal Bogacz, et al. Benchmarking predictive coding
networks–made simple. arXiv:2407.01163, 2024.

Shikai Qiu, Andres Potapczynski, Marc Anton Finzi, Micah Goldblum, and Andrew Gordon Wilson.
Compute better spent: Replacing dense layers with structured matrices. In International Conference
on Machine Learning, 2024.

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nature neuroscience, 1999.

Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
local losses. In International Conference on Learning Representations, 2023.

Robert Rosenbaum. On the relationship between predictive coding and backpropagation. Plos One,
17(3):e0266102, 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

Tommaso Salvatori, Ankur Mali, Christopher L Buckley, Thomas Lukasiewicz, Rajesh PN Rao, Karl
Friston, and Alexander Ororbia. Brain-inspired computational intelligence via predictive coding.
arXiv preprint arXiv:2308.07870, 2023.

Tommaso Salvatori, Luca Pinchetti, Amine M’Charrak, Beren Millidge, and Thomas Lukasiewicz.
Predictive coding beyond correlations. In International Conference on Machine Learning, 2024a.

Tommaso Salvatori, Yuhang Song, Yordan Yordanov, Beren Millidge, Lei Sha, Cornelius Emde,
Zhenghua Xu, Rafal Bogacz, and Thomas Lukasiewicz. A stable, fast, and fully automatic
learning algorithm for predictive coding networks. In International Conference on Learning
Representations, 2024b.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in Computational Neuroscience, 11:24, 2017.

Yuhang Song, Thomas Lukasiewicz, Zhenghua Xu, and Rafal Bogacz. Can the brain do
backpropagation?—exact implementation of backpropagation in predictive coding networks. In
Advances in Neural Information Processing Systems, 2020.

Nikhil Vyas, Alexander Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, and Cengiz
Pehlevan. Feature-learning networks are consistent across widths at realistic scales. In Advances
in Neural Information Processing Systems, 2023.

James CR Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm
in a predictive coding network with local Hebbian synaptic plasticity. Neural Computation, 29(5):
1229–1262, 2017.

Greg Yang. Tensor programs II: Neural tangent kernel for any architecture. arXiv:2006.14548, 2020.

Greg Yang and Edward J. Hu. Feature learning in infinite-width neural networks. In International
Conference on Machine Learning, volume 139, pp. 11727–11737. PMLR, 2021.

Greg Yang and Etai Littwin. Tensor programs IVb: Adaptive optimization in the infinite-width limit.
International Conference on Learning Representations, 2023.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. In Advances in Neural Information Processing Systems, 2021.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Feature learning in infinite-depth neural
networks. In International Conference on Learning Representations, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendices
A EXTENDED BACKGROUND

A.1 EXTENDED RELATED WORK

Table S.1 : List of Abbreviations

Abbreviation Full Name Reference

BP BackPropagation -
SGD Stochastic Gradient Descent -
GNT Gauss Newton Target Proposition 3.3
µP Maximal Update Parameterization Definition A.5
NTK Neural Tangent Kernel -
HP HyperParameter -

PC Predictive Coding Section 3.1.1
F-ini Forward Initialization Technique i
FPA Fixed Prediction Assumption Technique ii

TP Target Propagation Section 3.1.2
DTP Difference Target Propagation Eq S.13

A.1.1 µP

While µP was introduced as a parameterization to induce a feature-learning regime in the infinite-
width limit for theoretical interest (Yang & Hu, 2021), one practical advantage highlighted by Yang
et al. (2021) is its ability to transfer the learning rate across different widths, a phenomenon they
experimentally validated. This phenomenon, known as µTransfer, has also been examined from a
theoretical perspective (Noci et al., 2024). Another notable advantage of µP is the improvement in
the scaling law exponent, which has been investigated both experimentally (Qiu et al., 2024) and
theoretically (Bordelon et al., 2024).

It is noteworthy that µP depends on the learning algorithm used and thus should be derived for
each specific method. The µP for Adam was introduced in Yang et al. (2021), with its theoretical
justification provided in Yang & Littwin (2023). For the second-order optimization, including the
Gauss-Newton algorithm, K-FAC, and Shampoo, the µP was derived in Ishikawa & Karakida (2024).
These works emphasize the importance of adjusting not only the learning rate but also the damping
term in second-order optimization using µP. Additionally, µP was derived for Adafactor in Everett
et al. (2024) and empirically demonstrated that the scaling of the ϵ term in Adam is also crucial in µP.

A.1.2 PREDICTIVE CODING

Recent progress in deep learning has largely been achieved by the success of backpropagation (Rumel-
hart et al., 1986; LeCun et al., 1998; 2015). This success has increased the interest in exploring
whether deep networks can also be trained using training algorithms other than backpropagation.
This includes exploration into biologically plausible training methods and the benchmarking of
local learning rules at modern scales networks on deep-learning benchmark datasets; equilibrium
propagation (Scellier & Bengio, 2017; Laborieux et al., 2021), target propagation (Bengio, 2014;
Lee et al., 2015), predictive coding (Whittington & Bogacz, 2017; Song et al., 2020; Salvatori et al.,
2023), and forward-forward algorithms (Ren et al., 2023).

Computation of predictive coding for supervised learning: Predictive coding was originally
introduced as an algorithm for solving inverse problems where the goal is to find the parameters
W that maximize the marginal likelihood p(vL;W) where vL denotes a variable representing the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

network output and vL = x for the input data x (Rao & Ballard, 1999). In this inverse problem, we
consider latent variables vl (also referred to as causes) and a generative function g(vl|vl−1;Wl). If
we assume a hierarchical Gaussian generative model, the marginal probability of the causes is as
follows:

p (v0, . . . , vL;W) = p(v0)

L∏
l=1

p(vl|vl−1;Wl) (S.1)

= N
(
v0, γ

−1
0 I

) L∏
l=1

N
(
Wlϕ(vl−1), γ

−1
l I

)
. (S.2)

Friston (2003) framed this inverse problem as an EM algorithm aimed at minimizing the following
variational free energy:

F = KL(q(v0, . . . , vL)∥p(v0, . . . , vL;W)), (S.3)
where q(v0, . . . , vL;W) is a tractable posterior probability distribution for the EM algorithm. In
particular, the E-step, referred to as inference, minimizes variational free energy by causes vl, while
the M-step, referred to as learning, minimizes by parameters Wl. We usually apply a mean-field
approximation or a Laplace approximation to the tractable probability distribution (Friston, 2005;
Salvatori et al., 2024a;b). Under these formulations, we can derive the variational free energy for PC.

F =

L∑
l=1

γl
1

2
∥vl −Wlϕ (vl−1)∥2 . (S.4)

While predictive coding networks were originally discussed primarily in the context of generative
models for unsupervised learning, Whittington & Bogacz (2017) reformulated PC networks for
supervised learning and highlighted their potential for use in the context of deep learning. Specifically,
if we fix v0 = x and vL = y for data, this corresponds to supervised learning using the mean squared
loss.

Heuristic techniques in PC: After Whittington & Bogacz (2017), there has been an increasing
amount of studies evaluating the performance of PC networks as local learning on deep-learning
benchmark datasets (Salvatori et al., 2023; Pinchetti et al., 2024). They revealed that the original
implementation of PC networks is insufficient for achieving stable training performance, and heuristic
modifications have played an important role. For instance, Fixed Prediction Assumption (FPA) has
been introduced to achieve higher performance by approximating the gradient computation of PC
networks closer to that of BP (Millidge et al., 2022b; Rosenbaum, 2022). Under FPA, ϕ′ (vl,s) is
replaced with ϕ′ (vl,0), resulting in an inference phase given by

vl,s+1 = vl,s − γlel,s + γl+1ϕ
′ (vl,0) ◦W⊤

l+1el+1,s, (l < L) (S.5)
and a learning phase is given by

Wl,t+1 =Wl,t + ηlγlel,sϕ(vl−1,0)
⊤. (S.6)

Additionally, FPA is typically used with Forward Initialization (F-ini). In Forward Initialization,
the state vl,0 is initialized with the forward value ul,0. While F-ini has been implicitly utilized in
most studies on PC (Whittington & Bogacz, 2017; Song et al., 2020; Rosenbaum, 2022), its role was
explicitly highlighted in Alonso et al. (2022), where the authors compared the convergence with and
without F-ini.

Rosenbaum (2022) pointed out that when both F-ini and FPA are assumed, PC networks are entirely
reduced to BP and that if the algorithms are fully equivalent to BP, the advantages of biological
plausibility and local updates are lost. In this study, we aim to identify a parameterization that enables
stable local learning while maintaining distinctions from BP. By leveraging several recently developed
heuristics, we clarify the desirable scales for stable and efficient local learning.

Nudged PC: The design of loss functions in PC networks has also been a focus of algorithmic
improvements. In most of the ML research, classification tasks generally use cross-entropy loss
rather than mean squared loss. Accordingly, PC networks sometimes use cross-entropy loss as
well (Pinchetti et al., 2024). The free energy for a general loss function is given by

F = L(y,WLϕ(vL−1)) +

L−1∑
l=1

γl
1

2
∥vl −Wlϕ (vl−1)∥2 . (S.7)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 1 PC Algorithm (Simultaneous or Sequential inference)

1: for s = 1 to n do
2: eL,s ← ∇uL,s

L(WLϕL(uL−1,s), y)
3: for l = L− 1 to 1 do
4: el,s ← ul,s −Wlϕl−1(ul−1,s)
5: el+1,s ← ul+1,s+1 −Wl+1ϕl(ul,s) (Sequential Inference)
6: ul,s+1 ← ul,s − γlel,s + γl+1ϕ

′(ul,s) ◦W⊤
l+1el+1,s

7: end for
8: end for

and its update rule for the inference phase is given by

vl,s+1 = vl,s − γlel,s + γl+1ϕ
′ (vl,s) ◦W⊤

l+1el+1,s, (l < L) (S.8)

vL,s+1 = vL,s − γL
∂L
∂vL

. (S.9)

Furthermore, there are formulations of PC networks that incorporate the nudge term introduced in
equilibrium propagation (Scellier & Bengio, 2017). PC networks with a nudge term updates the state
vl and weights Wl to minimize the following free energy function (Alonso et al., 2022; Millidge
et al., 2023; Pinchetti et al., 2024):

F = βL(y, vL) +
L∑

l=1

γl
1

2
∥vl −Wlϕ (vl−1)∥2 . (S.10)

Here, β is a nudge coefficient parameter that covers some variants of the PC algorithms in the previous
work.

There are several possible orders for computing this inference (Alonso et al., 2024) as illustrated in
Algorithm 1. Specifically, el can be calculated sequentially from the output layer to the input layer, or
it can be updated synchronously across all layers simultaneously from the output to the input. While
the main text focuses on Sequential Inference (SI), where computations proceed layer-by-layer from
the output to the input, Predictive Coding with synchronous inference is also a valid approach worth
considering.

A.1.3 TARGENT PROPAGATION

Target propagation offers a learning rule that is more biologically plausible and easier for the brain
to implement compared to BP (Bengio, 2014). Specifically, it addresses the following two issues
inherent to BP (Meulemans et al., 2020).

1. Signed error transmission problem: BP propagates the error gradient to the lower layers,
whereas the brain propagates target values for the neurons (Lillicrap et al., 2020).

2. Weight transport problem: BP requires exact weight symmetry between the forward and
backward paths. However, the brain cannot transport weights (Grossberg, 1987; Akrout
et al., 2019).

Target propagation aims to address the two issues by:

1. Propagating the target value ĥL = hL − η̂∇hL
L instead of the error gradient ∇hL

L for
signed error transmission problem.

2. Utilizing a feedback network gl distinct from the feedforward network fl to propagate the
target value ĥL for weight transport problem.

The feedback network gl has the weights Ql distinct from those in the feedforward network.

ĥl = gl(ĥl+1), gl(x) = ψ(Qlx) (l = 1, ..., L− 1). (S.11)

Here, ψ denotes the activation function. While it is often the same as the activation function used in
the feedforward network, it is also possible to consider a different activation function. We set ψ = ϕ

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

in experiments and assume ψ as the identity function only in Theorem 5.1. The feedback network is
trained to minimize the following reconstruction loss:

Lrec(Ql) = ∥gl (fl(hl−1 + ϵ))− hl−1 + ϵ∥2 , (S.12)

where ϵ is a small Gaussian noise to improve the robustness of the feedback network. Target
propagation attempts to approximate the inverse function of the feedforward network by learning the
feedback network through the optimization of this reconstruction loss.

Difference target propagation (DTP) is an improved methods of TP, which adjusts the propagation in
the feedback network as follows (Lee et al., 2015).

ĥi = gdiff
i

(
ĥi+1, hi+1, hi

)
= gi

(
ĥi+1

)
− (gi (hi+1)− hi) . (S.13)

In TP, the accumulation of the reconstruction error gi(fi(hi)) − hi during propagation pose an
obstacle to optimization. In DTP, subtracting (gi (hi+1)− hi) mitigates the accumulation of the
reconstruction error and improves the progress of learning.

As a side note, Meulemans et al. (2020) and Bengio (2020) pointed out that TP can be related to
the Gauss-Newton method for invertible networks. Additionally, Meulemans et al. (2020) proposed
Direct Difference Target Propagation so as to establish this correspondence even in non-invertible
networks under some infinitesimal conditions. Ernoult et al. (2022) reported that one can stabilize
TP by introducing the additional Local Difference Reconstruction Loss which makes the gradient
align more closely with Backpropagation rather than Gauss-Newton Targets. In our work, we aim to
clarify the fundamental properties of TP and DTP from the perspective of parameterization and do
not consider such additional conditions or loss functions.

A.2 DEFINITIONS FOR STABLE PARAMETERIZATION

As is common in the µP theory, we also assume that the firing activities are of order 1 at random
initialization:
Assumption A.1. ul,0, hl,0 = Θ(1) (l < L), f0 = uL,0 = O(1).

As shown in Theorem H.6 of Yang & Hu (2021), this assumption immediately leads to

a1 + b1 = 0, a1<l<L + b1<l<L = 1/2, aL + bL ≥ 1/2. (S.14)

In addition, the stability of learning is defined as follows (see Definition H.4 in Yang & Hu (2021) for
more detail):
Definition A.2 (Stability of learning). We say an abc-parameterization is stable if, for l < L and for
any fixed t ≥ 1,

∆hl,t = O(1), ∆ft = O(1), (S.15)
under Assumption A.1.

Condition S.15 ensures avoiding exploding dynamics with respect to the width, i.e., ∆hl,t =
O(1/Mk) with k < 0.

We follow the derivation based on the infinitesimal one-step update from random initialization (Yang
& Hu, 2021; Ishikawa & Karakida, 2024), which involves taking the limit of a sufficiently small
coefficient of the learning rate η′. This formulation clarifies the proof and enables the systematic
derivation of µP across various problems. In the infinitesimal formulation, Conditions 3.1 and 3.2 are
expressed as follows:
Condition A.3 (Wl updated maximally).

∂η′∆Wlhl−1,1

∣∣
η′=0

= Θ(1) (S.16)

where ∆Wl :=Wl,1 −Wl,0.
Condition A.4 (WL initialized maximally).

∂η′WL,0∆uL−1,1

∣∣
η′=0

= Θ(1). (S.17)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

As described in the previous work (Yang & Hu, 2021; Ishikawa & Karakida, 2024), Condition 3.1 (or
A.3) naturally appears from the expansion of Eq. (10) by the parameter update, yielding

∂η′∆Wlhl−1,1

∣∣
η′=0

= Θ(1/Mrl), (S.18)

for abc-parameterization. The stability requires
rl ≥ 0 (S.19)

and, in particular, feature learning is characterized by rl = 0. Condition 3.2 (or A.4) is required to
eliminate an uninteresting case in which the hidden layer provides no contribution to the network
output. Both NTK and feature learning regimes are characterized by this condition.

As is shown in Yang & Hu (2021), µP is the unique stable parameterization satisfying Condition A.3
for l ≤ L and Condition A.4 for WL. Thus, we can admit this characterization as a definition of µP.
Definition A.5 (µP). µP is the stable abc parameterization satisfying Condition A.3 for l ≤ L and
Condition A.4 for WL.

Note that Condition A.3 is required not only for hidden layers but also for the last layer. In the
previous work, this eliminates a trivial case of learning, i.e., ∆hL,t = O(1/Mk) with k > 0, where
the effect of learning vanishes.

B µP OF PREDICTIVE CODING

B.1 DERIVATION FOR PREDICTIVE CODING WITH SINGLE-SHOT SI

Theorem B.1 (Stable parameterization for PC). Set inference step sizes γl<L = Θ(1) and γL =
γ′/M γ̄L with a positive constant γ′. Suppose F-ini and single-shot sequential inference, and consider
a one-step update of parameters after the inference. For infinitesimal step sizes γ′L and η′, PC admits
the µP for feature learning at{

c1 = −γ̄L − 1, c1<l<L = −γ̄L, cl=L = 1,

b1 = 0, bl>L = 1/2, bl = 1.
(S.20)

Additionally, it admits the NTK parameterization at{
c1 = −γ̄L, c1<l<L = 1− γ̄L, cL = 1

b1 = 0, bl<L = 1/2.
(S.21)

Proof. Assuming F-ini, considering the single-shot SI for vl, we have

vl,1 = vl,0 + γl+1ϕ
′ (vl,0) ◦W⊤

l+1el+1,1 (S.22)

= vl,0 + γl+1ϕ
′ (vl,0) ◦W⊤

l+1(vl+1,1 −Wl+1hl,0) (S.23)

= vl,0 + γl+1ϕ
′ (vl,0) ◦W⊤

l+1(vl+1,1 − vl+1,0), (S.24)
for l < L where eL,0 = y −WLvL−1,0 =: δL. When the CE loss is used instead of MSE loss,
δL = y − f becomes δL = y − softmax(f), and the order analysis remains unchanged. To keep the
notation concise, we set ML = 1 in this proof. A generalization for ML = Θ(1) is possible. Next,
we define

δl<L := ∂uL/∂ul. (S.25)
Note that a batch gradient can be used with N training samples where N = O(1). One can regard vl
as an M ×N matrix in the derivation.

Using

vl,1 − vl,0 = −
L∏

i=l+1

γiδl, (S.26)

we have
el,1 := vl,1 − ϕ(Wlvl−1,1) (S.27)

= (ul,0 −
L∏

i=l+1

γiδl)− ϕ(Wl(ul−1,0 −
L∏
i=l

γiδl−1)) (S.28)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

for l = 1, ..., L− 1. Recall that vl,0 = ul,0 for F-ini. For l = L,

eL,1 := y −WLhL−1,1 (S.29)
= y −WLϕ(uL−1,0 − γLδL−1diag(δL)) (S.30)

where diag(x) denotes a diagonal matrix whose diagonal entries are given by x. The above equation
comes from

vL−1,1 = uL−1,0 −
γL
2
∇vL−1

∥y −WLhL−1∥2 (S.31)

= uL−1,0 − γLϕ′L−1 ◦W⊤
L δL = uL−1,0 − γLδL−1diag(δL). (S.32)

The first one-step update of the weight is expressed as

∆Wl,1 =
η′

M2al+cl
el,1h

⊤
l−1,1, (S.33)

In PC, in addition to the usual learning rate η, there also exists γ. Therefore, in addition to the
infinitesimal update of the learning rate η for the weight update, we also consider the infinitesimal
inference step size γL. By applying the perturbation of γL to Conditions A.3 and A.4, we derive

∆Ul + ∂γ′
L
∆Ul

∣∣
γ′
L=0

γ′L = Θ(1), (S.34)

∆VL + ∂γ′
L
∆VL

∣∣
γ′
L=0

γ′L = Θ(1) (S.35)

where we define
∆Ul := ∂η′∆Wl,1hl−1,s=1

∣∣
η′=0

, (S.36)

∆VL := ∂η′WL,0∆hl−1,s=1

∣∣
η′=0

. (S.37)

It is noteworthy that we retain the zero-th order terms, namely, ∆Ul and ∆Vl in the conditions. This
is because, even without the inference phase, parameter updates can progress while the internal states
remain at their initialization. Therefore, even if the maximalization of the order is less than Θ(1)
in the first-order perturbation terms, stable learning can still occur. Since µP aims to maximize the
order of updates as much as possible, we require the first-order terms of Eqs. (S.34,S.35) to be Θ(1)
whenever possible.

We introduce the following kernel matrix:

KA
l := h⊤l hl/M. (S.38)

For the random initialization Wl, from Eq. (S.14), we asymptotically obtain

KA
l = Θ(1), KA

L = Θ(1/M2(aL+bL)) (S.39)

in the infinite-width limit (Yang, 2020).

On Condition A.1.

(i) Case of 1 < l < L.

∂γ′
L
∆Ul

∣∣
γ′
L=0

= ∂

(
1

Mθl
el,s=1h

⊤
l−1,s=1hl−1,s=1

) ∣∣
γ′
L=0

(S.40)

=
1

Mθl
∂(el,s=1)h

⊤
l−1,s=1hl−1,s=1

∣∣
γ′
L=0

+
1

Mθl
el,s=1∂(h

⊤
l−1,s=1hl−1,s=1)

∣∣
γ′
L=0

=
1

Mθl
∂(el,s=1)

∣∣
γ′
L=0

h⊤l−1,s=0hl−1,s=0 (S.41)

=
1

Mθl+γ̄L−1
(−δl + ϕ′(Wlul−1,0) ◦Wlδl−1)K

A
l−1 (S.42)

where we used el<L,s=1

∣∣
γ′
L=0

= 0 and hl,s=1

∣∣
γ′
L=0

= hl,s=0. Since δl<L = Θ(WL) =

Θ(1/MaL+bL) and ∆Ul ∼Mθl+aL+bL−1, we have

∆Ul + ∂γ′
L
∆Ul

∣∣
γ′
L=0

γ′L ∼ 1/Mmin{θl+aL+bL−1,θl+γ̄L+aL+bL−1}. (S.43)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The similarity symbol (“∼”) denotes that the left-hand side is of the same order as the right-hand
side. Note that if the first-order term becomes negligible, the contribution of the inference phase
disappears in the parameter update. To maximize the order of the first-order term, we require

γ̄L ≤ 0 (S.44)

and obtain
rl = θl + γ̄L + aL + bL − 1. (S.45)

(ii) Case of l = 1.

∂γ′
L
∆Ul

∣∣
γ′
L=0

= − 1

Mθl+γ̄L
δlK

A
0 . (S.46)

∼ 1/Mθ1+γ̄L+aL+bL (S.47)

Here, we used el<L,s=1

∣∣
γ′
L=0

= 0 and hl,s=1

∣∣
γ′
L=0

= hl,s=0. Similar to the case of 1 < l < L,
Condition (S.34) leads to γ̄ ≤ 0 and

rl = θ1 + γ̄L + aL + bL. (S.48)

(iii) Case of l = L.

∂γ′
L
∆UL

∣∣
γ′
L=0

(S.49)

=
1

MθL
∂(eL,s=1)h

⊤
L−1,s=1hL−1,s=1

∣∣
γ′
L=0

+
1

MθL
eL,s=1∂(h

⊤
L−1,s=1hL−1,s=1)

∣∣
γ′
L=0

(S.50)

=
1

MθL
∂(eL,s=1)

∣∣
γ′
L=0

h⊤L−1,s=0hL−1,s=0 +
1

MθL
eL,s=1∂(h

⊤
L−1,s=1hL−1,s=1)

∣∣
γ′
L=0

(S.51)

=
1

MθL+γ̄L−1
ϕ′(WLuL−1,0) ◦WLδL−1K

A
L−1 +

1

MθL
δL∂(h

⊤
L−1,s=1hL−1,s=1)

∣∣
γ′
L=0

(S.52)

=
1

MθL+γ̄L−1
ϕ′(WLuL−1,0) ◦WLδL−1K

A
L−1 +

2

MθL
δLh

⊤
L−1,s=1∂(hL−1,s=1)

∣∣
γ′
L=0

(S.53)

Note that from Eq. (S.30), we have

eL,s=1

∣∣
γ′
L=0

= −(WL(ϕ
′
L−1 ◦ δL−1)) ◦ δL/M γ̄L . (S.54)

Since eL,s=1

∣∣
γ′
L=0

= δL ̸= 0,

WL(ϕ
′
L−1 ◦ δL−1)) ◦ δL = Θ(1/M2(aL+bL)−1). (S.55)

For the second term in Eq. (S.53), we have

h⊤L−1,s=1∂(hL−1,s=1)
∣∣
γ′
L=0

= h⊤L−1,s=0∂ϕ(WL−1vL−2,1)
∣∣
γ′
L=0

(S.56)

= h⊤L−1(ϕ
′
L−1 ◦WL−1∂vL−2,1)

∣∣
γ′
L=0

(S.57)

= −γL−1

M γ̄L
h⊤L−1(ϕ

′
L−1 ◦WL−1δL−2) (S.58)

where we used vL−2,1 − vL−2,0 = −γL−1γLδL−2 from Eq. (S.26). Let us recall that a variable
without an index indicates the initial state at s = 0. The variable δL−1 includes WL whereas hL−1 is
independent of it. Therefore, by applying the Central Limit Theorem with respect to WL, we have

h⊤L−1,s=1∂(hL−1,s=1)
∣∣
γ′
L=0
∼ 1/M γ̄L+aL+bL−1/2. (S.59)

Then,
∂γ′

L
∆UL

∣∣
γ′=0

∼ 1/Mmin{θL+γ̄L+2(aL+bL)−2,θL+γ̄L+aL+bL−1/2}. (S.60)

In contrast, we have
∆UL ∼ 1/MθL−1. (S.61)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Comparing the zero-th and first order terms (S.60,S.61), we obtain

min{θL − 1, θL + γ̄L + 2(aL + bL)− 2, θL + γ̄L + aL + bL − 1/2} = 0 (S.62)

Because aL + bL − 1/2 ≥ 0 from Eq. (S.14), we obtain

θL − 1 = 0. (S.63)

On Condition A.2.

∂γ′
L
∆VL

∣∣
γ′
L=0

=WL,0(ϕ
′(uL−1) ◦ ∂γ′

L
∂η′(∆WL−1,1hL−2,1)

∣∣
η′=0,γ′

L=0
)

= eM (δL−1 ◦
1

MθL−1
∂γ′(∆WL−1hL−2)

∣∣
γ′
L=0

) (S.64)

= Θ(1/MaL+bL+rL−1−1) (S.65)

where eM denotes an M -dimensional vector with all entries equal to 1. Note that the product with
eM means the summation over M .

Finally, from Conditions 1 and 2, the µP is given by

θ1 + γ̄L + aL + bL = 0 (l = 1), (S.66)
θl + γ̄L + aL + bL − 1 = 0 (1 < l < L), (S.67)
θL − 1 = 0 (l = L) (S.68)
aL + bL − 1 = 0, (S.69)

and γ̄L ≤ 0. That is, {
c1 = −γ̄L − 1, c1<l<L = −γ̄L ≥ 0, cl=L = 1,

b1 = 0, bl>L = 1/2, bl = 1.
(S.70)

The above µP case assumes al = 0. It is important to note that there is no issue in replacing cl with
θl = 2al + cl, which introduces an indeterminacy of al = al + α and cl = cl − 2α.

We can also derive the NTK parameterization, which is a commonly used term for the kernel regime
for rl<L = 1/2 (Yang & Hu, 2021):

θ1 + γ̄L + aL + bL = 1/2 (l = 1), (S.71)
θl + γ̄L + aL + bL − 1 = 1/2 (1 < l < L), (S.72)
θL − 1 = 0, (l = L) (S.73)
aL + bL − 1/2 = 0. (S.74)

It is noteworthy that the gradient computed by Eq. (S.28) differs from δl in standard SGD, implying
that the NTK matrix also deviates from ∇θf

⊤∇θf . Even in this case, the NTK regime can emerge
with a certain modified kernel composed of el and hl. A similar situation arises in the NTK regime
of second-order optimization (Karakida & Osawa, 2020). Although the preconditioner modifies the
NTK matrix, the linearization of the model still holds, allowing the emergence of the kernel regime.

B.2 FIXED POINTS OF PC IN LINEAR NETWORKS

B.2.1 PROOF FOR THEOREM 4.2

In this section, we analyze the fixed point of the inference phase using a linear network:

f(x) =WlWL−1...W1x. (S.75)

Even for linear networks, the properties of the fixed points have rarely been analyzed. An exception
is a recent study by Innocenti et al. (2024). They explicitly derived the free energy at a fixed point
to analyze the parameter loss landscape of a naive PC. However, their analysis uses an unfolding
calculation of a hierarchical Gaussian model to directly derive the free energy. Although this is an
elegant derivation, it is not a method for explicitly obtaining the fixed points themself. Additionally,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

since their proof is based on γ = 1, we need another method to determine the dependence on the
inference size. Here, we provide a derivation of the states at the fixed point that can be used more
generally for various inference sizes and add a nudge term (in Section B.2.3).

Proof . We consider the inference of naive PC:

F (v1, ..., vL) =
γL
2
∥y −WLvL−1∥2 +

L−1∑
l=1

γl
2
∥vl −Wlvl−1∥2. (S.76)

Taking ∂F
∂vl

= 0, we obtain the following fixed-point equations:

−γLW⊤
L (y −WLvL−1) + γL−1(vL−1 −WL−1vL−2) = 0, (l = L) (S.77)

−γlW⊤
l (vl −Wlvl−1) + γl−1(vl−1 −Wl−1vl−2) = 0, (1 < l < L) (S.78)

−γ2W⊤
2 (v2 −W2v1) + γ1(v1 −W1x) = 0 (l = 1). (S.79)

These equations are summarized in the following matrix form:
I O O

−W⊤
L I O . . . O

O −W⊤
L−1 I . . . O

...
.

...
O . . . O −W⊤

2 I



γL−1e

∗
L−1

γL−2e
∗
L−2

...
γ2e

∗
2

γ1e
∗
1

 =


γLW

⊤
L e

∗
L

O
O
...
O

 (S.80)

where e∗l := v∗l −Wlv
∗
l−1 and e∗L := y −WLv

∗
L−1.

Here, we use the following lemma:
Lemma B.2. Define

AL :=


I O O

−W⊤
L I O . . . O

O −W⊤
L−1 I . . . O

...
. . .

. . .
...

O . . . O −W⊤
2 I

 . (S.81)

Its inverse matrix is given by

A−1
L =


I O O
W⊤

L I O . . . O
W⊤

L−1:L W⊤
L−1 I . . . O

...
. . .

. . .
...

W⊤
2:L . . . W⊤

2:3 W⊤
2 I

 . (S.82)

Proof. One can easily derive this inverse matrix. A simple derivation is achieved by induction. We
can express

AL =

[
I O
K AL−1

]
(S.83)

where K⊤ = [WL, O, ..., O]. Suppose that the inverse of AL−1 is given by Eq. (S.82). Then,

A−1
L =

[
I O

KA−1
L−1 A−1

L−1

]
. (S.84)

Since KA−1
L−1 = [WL,WL−1:L, ...,W2:L]

⊤, the inversion of AL is also given by Eq. (S.82).

By using Lemma B.2, we can transform Eq. (S.80) as follows:
e∗L−1
e∗L−2

...
e∗2
e∗1

 = γL


1

γL−1
W⊤

L e
∗
L

1
γL−2

W⊤
L−1:Le

∗
L

...

1
γ2
W⊤

2:Le
∗
L

 . (S.85)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Although this equation can not be solved explicitly for v∗l−1, we can, nonetheless, solve it by summing
over e∗l as follows:

v∗L−1 −WL−1:1x (S.86)
= xe∗L−1 +WL−1e

∗
L−2 + · · ·+WL−1:2e

∗
1

= γL

(
1

γL−1
I +

1

γL−2
WL−1W

⊤
L−1 + · · ·+

1

γ1
WL−1:2W

⊤
L−1:2

)
W⊤

L e
∗
L. (S.87)

This leads to

v∗L−1 =

(
I +

γL
γL−1

W⊤
L WL +

γL
γL−2

WL−1W
⊤
L−1W

⊤
L WL + · · ·+ γL

γ1
WL−1:2W

⊤
L−1:2W

⊤
L WL

)−1

·
(
WL−1:1x+ γL

(
1

γL−1
I +

1

γL−2
WL−1W

⊤
L−1 + · · ·+

1

γ1
WL−1:2W

⊤
L−1:2

)
W⊤

L y

)
.

(S.88)

Set an ML ×ML matrix

Cγ(W) :=

L∑
i=2

γL
γi−1

WL:iW
⊤
L:i. (S.89)

Then,

e∗L = y −WLv
∗
L−1 (S.90)

= y − (I + Cγ(W))
−1

(WL:1x+ (I + Cγ(W)) y)

= (I + Cγ(W))
−1

(y − f). (S.91)

Thus, at the fixed point, the local loss is explicitly obtained as

e∗l =
γL
γl
W⊤

L:l+1(I + Cγ(W))−1(y − f). (S.92)

We can also obtain v∗l . From e∗1, we have

v∗1 =W1x+
γL
γ1
W⊤

L:2(I + Cγ(W))−1(y − f). (S.93)

By induction, we have

v∗l = e∗l +Wlv
∗
l−1 (S.94)

=Wl:1x+

(
γL
γl
W⊤

L:l+1 +

l−1∑
i=2

γL
γi−1

Wl:iW
⊤
L:i

)
(I + Cγ(W))−1(y − f). (S.95)

B.2.2 BALANCE CONDITION DETERMINING γl<L

Here, we consider the order of el,1 with respect to γl<L. For a linear network with one-shot SI, we
obtain

el,1 = −
L∏

i=l+1

γi(δl − γlWlδl−1) ∼ 1/Mmin(0,γ̄l)+
∑L

i=l+1 γ̄i (S.96)

In contrast, recall that the order of e∗l at the fixed point is

e∗l ∼ 1/M−γ̄l+min(0,γ̄l). (S.97)

Therefore, to satisfy el,1 ∼ e∗l , the following is necessary:
L∑

i=l+1

γ̄i = −γ̄l (S.98)

for all l < L. This is equivalent to γ̄l = 0 for all l < L. Thus, el,1 ∼ e∗l holds if and only if γ̄l<L = 0.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.2.3 NUDGED PREDICTIVE CODING

We can extend Theorem 4.2 to the nudged PC.
Theorem B.3. Suppose an L-layered linear network and put e∗l = v∗l −Wlv

∗
l−1, where ∗ denotes the

fixed point of the inference given by Eq. (S.10). The following holds:

e∗l = v∗l −Wlv
∗
l−1 =

γL
γl
W⊤

L:l+1

(
I +

γL
β
I + Cγ(W)

)−1

(WL:1x− y) (S.99)

e∗L = v∗L −WLv
∗
L−1 =

(
I +

γL
β
I + Cγ(W)

)−1

(WL:1x− y) (S.100)

where WL:i =WLWL−1...Wi.

Proof . Put

F (v1, ..., vL) = β∥y − vL∥2 +
L∑

l=1

γl
2
∥vl −Wlvl−1∥2. (S.101)

Taking ∂F
∂vl

= 0, we have

β(vL − y) + γL(vL −WLvL−1) = 0 (S.102)

−γlW⊤
l (vl −Wlvl−1) + γl−1(vl−1 −Wl−1vl−2) = 0 (1 < l ≤ L) (S.103)

−γ2W⊤
2 (v2 −W2v1) + γ1(v1 −W1x) = 0 (l = 1). (S.104)

Putting χ = vL − y, the system of equations can be written in a matrix form as follows:
I O O

−W⊤
L I O . . . O

O −W⊤
L−1 I . . . O

...
.

...
O . . . O −W⊤

2 I




γLe
∗
L

γL−1e
∗
L−1

...
γ2e

∗
2

γ1e
∗
1

 =


−βχ∗

O
O
...
O

 . (S.105)

From Lemma B.2, the above equation is transformed into
e∗L

eL−1∗

...
e∗2
e∗1

 = −β


1
γL
χ∗

1
γL−1

W⊤
L χ

∗

...

1
γ1
W⊤

2:Lχ
∗

 . (S.106)

Take the following summation:

e∗L +WLe
∗
L−1 +WL−1e

∗
L−2 + · · ·+WL−1:2e

∗
1 = v∗L −WL:1x

= − β

γL
(I + Cγ(W))χ∗. (S.107)

Thus, we can explicitly obtain vL as

v∗L =

(
β

γL
I +

β

γL
Cγ(W)

)−1(
WL:1x+

β

γL
(I + Cγ(W)) y

)
. (S.108)

Thus, χ can be written as follows:

χ∗ = y − v∗L (S.109)

= y −
(
β

γL
I +

β

γL
Cγ(W)

)−1(
WL:1x+

β

γL
(I + Cγ(W)) y

)
(S.110)

=

(
I +

β

γL
I +

β

γL
Cγ(W)

)−1

(y − f). (S.111)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

From the above, we conclude that

e∗l =
β

γl
W⊤

L:l+1

(
I +

β

γL
I +

β

γL
Cγ(W)

)−1

(y − f) (S.112)

=
γL
γl
W⊤

L:l+1

(
I +

γL
β
I + Cγ(W)

)−1

(y − f) (S.113)

at the fixed point.

C µP OF TARGET PROPAGATION

C.1 DERIVATION OF THEOREM 5.1.

Assume that the feedback network is linear: gl(x) = Qlx. Here, we consider a reconstruction loss
with L2 regularization:

L(Ql,s) = ∥Ql,sϕ(Wlhl−1)− hl−1∥2 + µl∥Ql,s∥2 (S.114)

with µl ≥ 0. Note that while some work adds noise to hl−1, it does not affect the order; therefore,
we will ignore it in this derivation. As described below, by taking the ridge-less limit of µ, we can
evaluate the parameterization of the original TP and Difference Target Propagation (DTP) in a clear
and unified manner. Considering the fixed point for QL, since ∂l(Ql)

∂Ql
= 0 holds, we have

Q∗
l = hl−1(h

⊤
l hl + µlI)

−1h⊤l (S.115)

where hl = ϕ(Wlhl−1). The feedback network is given by the network with Eq. (S.115). As a side
note, this weight is essentially the same as the pseudo-inverse weight, which is known as an extension
of the Hebbian weight (Kanter & Sompolinsky, 1987).

Local targets of DTP. DTP is an improved methods of TP, where ĥL is propagated as follows:

ĥi = gdiff
l+1

(
ĥl+1, hl+1, hl

)
= gl+1

(
ĥl+1

)
− (gl+1 (hl+1)− hl) . (S.116)

For the last layer, the error is given by

ĥL = hL + β(y − hL) (S.117)

For a linear feedback network, we have

ĥl = gl+1

(
ĥl+1

)
− (gl+1 (hl+1)− hl) (S.118)

= hl +Ql+1(ĥl+1 − hl+1) (S.119)

= hl +Ql+1((hl+1 +Ql+2(ĥl+2 − hl+2))− hl+1) (S.120)

= hl +Ql+1Ql+2(ĥl+2 − hl+2) (S.121)

= hl − β
L∏

i=l+1

QiδL. (S.122)

Therefore, at the equilibrium point for Ql, for l ≤ L− 2, we have

ĥl − hl = −β
L∏

i=l+1

Q∗
i δL (S.123)

= −βhl
L−1∏
i=l+1

(h⊤i hi + µlI)
−1h⊤i hi(h

⊤
LhL + µlI)

−1h⊤LδL (S.124)

= −βhl
L−1∏
i=l+1

(KA
i + µ′

iI)
−1KA

i (KA
L + µ′

LI)
−1h⊤LδL (S.125)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

where δL = ∂L/∂f and for l = L − 1, we have ĥL−1 − hL−1 = −βhL−1(K
A
L + µ′

LI)
−1h⊤LδL.

To avoid an uninteresting change of order, we introduce µl = µ′
l/M

µ̄l and require that it have
the same order as KA

l . This is essentially equivalent to the valid condition argued in Ishikawa &
Karakida (2024), which requires the damping term to have the same order as the preconditioner in the
second-order optimization. We note that we can take the ridge-less limit µ′

l → 0+ because KA
l (S.39)

is typically set to be regular at random initialization in the neural tangent kernel literature (Jacot et al.,
2018; Yang, 2020). For instance, this holds true for normalized input samples with ∥x∥ = 1.

Local targets of original TP. The signal propagation in the feedback network is

ĥl = Q∗
l+1 · · ·Q∗

LĥL (S.126)

= hl

L−1∏
i=l+1

(h⊤i hi + µiI)
−1h⊤i hi(h

⊤
LhL + µLI)

−1h⊤L (hL − βδL) (S.127)

→ hl − βhl
L−1∏
i=l+1

(KA
i)−1KA

i (KA
L)−1h⊤LδL (µ′

l → 0+). (S.128)

Thus, the target is reduced to essentially the same as that in DTP (S.125) and we can treat both in the
same manner.

On Condition A.1. The update for the last layer is identical to that of SGD with BP, thus

∂η′∆WLhL−1,1

∣∣
η′=0

= − 1

MθL−1
βδLK

A
L−1 (S.129)

Next, we consider the L− 1 layer.

∂η′∆WL−1hL−2,1

∣∣
η′=0

=
1

MθL−1
(ĥL−1 − hL−1)h

⊤
L−1hL−1 (S.130)

= − 1

MθL−1−1
βhL−1(h

⊤
LhL + µLI)

−1h⊤LδLK
A
L−1 (S.131)

= − 1

MθL−1−1
βhL−1(K

A
L + µ′

LI)
−1(KA

L −M−1h⊤Ly)K
A
L−1. (S.132)

Similarly, when ĥl − hl = −β
∏L

i=l+1QiδL, we have

∂η′∆Wlhl−1,1

∣∣
η′=0

=
1

Mθl
(ĥl − hl)h⊤l−1hl−1 (S.133)

= − 1

Mθl−1
βhl

L−1∏
i=l+1

(h⊤i hi + µiI)
−1h⊤i hi(h

⊤
LhL + µLI)

−1h⊤LδLK
A
l−1

(S.134)

= − 1

Mθl−1
βhl

L−1∏
i=l+1

(KA
i + µ′

iI)
−1KA

i (KA
L + µ′

LI)
−1(KA

L −M−1h⊤Ly)K
A
l−1

(S.135)

for l = 1, ..., L− 2. On the right-hand side, hL ∼ 1/MaL+bL−1/2, and from Eq. (S.39), we have

KA
L −M−1h⊤Ly ∼ max{1/M2(aL+bL), 1/MaL+bL+1/2} (S.136)

= 1/MaL+bL+1/2. (S.137)

In the last line, we used aL+bL ≥ 1/2. Here, from Assumption A.1, which states that aL+bL ≥ 1/2,
we obtain

rl =


θ1 − aL − bL + 1/2 (l = 1),

θl − 1− aL − bL + 1/2 (1 < l < L),

θL − 1 (l = L).

(S.138)

On Condition A.2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

∂η′(WL,0∆hL−1,1)
∣∣
η′=0

=
1

MθL−1
WL,0diag(ϕ′L−1)(ĥL−1 − hL−1)h

⊤
L−2 (S.139)

= − 1

MθL−1−1
βhL(h

⊤
LhL + µ′

LI)
−1h⊤LδLK

A
L−2 (S.140)

= − 1

MθL−1−1
βhL(K

A
L + µ′

LI)
−1(KA

L −M−1h⊤Ly)K
A
L−2. (S.141)

Thus, its order is

∂η′(WL,0∆hL−1,1)
∣∣
η′=0

∼ 1/MθL−1−1+(aL+bL−1/2)−2(aL+bL)+(aL+bL+1/2) (S.142)

= 1/MθL−1−1=rL−1+(aL+bL)−1/2. (S.143)

Finally, from Conditions A.1 and A.2, the µP is given by

θ1 − aL − bL + 1/2 = 0 (l = 1), (S.144)
θl − aL − bL − 1/2 = 0 (1 < l < L), (S.145)
θL − 1 = 0 (l = L), (S.146)
aL + bL − 1/2 = 0. (S.147)

C.1.1 DISAPPEARANCE OF KERNEL REGIME

Corollary C.1. Stable learning satisfying Condition A.2 leads to rL−1 = 0 for TP and DTP.

Proof. From Eq. (S.143), we have

rL−1 + (aL + bL)− 1/2 = 0. (S.148)

From Eq. (S.14), aL + bL ≥ 1/2 and we have rL−1 ≥ 0. In contrast, from the stability of learning,
we have rL−1 ≤ 0. Thus, rL−1 = 0.

Note that, precisely speaking, rL−1 = 0 does not necessarily imply rl<L−1 = 0. However, it is often
considered unnatural (or uninteresting) to examine cases in which the progress of learning depends on
individual layers. Therefore, the µP typically assumes a uniform parameterization, meaning rl<L = r
(see Theorem G.4 of Yang & Hu (2021)). In this sense, rL−1 = 0 indicates the disappearance of the
kernel regime.

One might be surprised by the fact that bL = 1/2 is allowed in the feature learning and that the kernel
regime disappears. Note that the feedback weight in the last layer (S.115) essentially differs from
WL. The feedback weight recieves hL as input whereas Wl recieves hL−1. This makes

QL ∼ 1/M1/2−(aL+bL) (S.149)

WL ∼ 1/MaL+bL . The gradient is proportional to QL in TP and WL in BP. The feedback weight
contributes more significantly to TP’s gradient when aL + bL ≥ 1/2. This eventually makes the
index r of the hidden layer (S.138) get quite large even for aL + bL = 1/2. We also need to be
careful about the order of condition A.2 (S.143). Because the feedback weight (S.115) has a lower
alignment exponent (Everett et al., 2024), this causes the condition 2 of TP to be smaller than that of
SGD (or K-FAC), i.e., 1/MrL−1+(aL+bL)−1. Therefore, stable feature learning is possible even for
aL + bL = 1/2.

Remark on zero head initialization. Related to the size of bL, the parameter initialization with
bL > 1/2 (bL > 1 for SGD) reduces to the µP of bL = 1/2 (bL = 1 for SGD) because Wl,0 becomes
negligible compared to ∆Wl,0. To illustrate the intuition, let us introduce the case where the weight
of the last layer in a feedforward network is initialized as WL = O, that is, bL =∞.

In this case, only the last layer is updated during the first step because Q∗
L = O does not propagate

the local error to the downstream layers. After the first-step update, the weight is given by

WL,1 = − η′

MθL
δLh

⊤
L−1. (S.150)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

and Wl<L,1 =Wl<L,0. Thus,

∂η′∆Wlhl−1,1

∣∣
η′=0

= − 1

MθL
δLh

⊤
L−1hL−1 (S.151)

= − 1

MθL−1
δLK

A
L−1. (S.152)

and
hL,1 = Θ(1/MθL−1), KA

L = Θ(1/M2θL−1), (S.153)
Substituting these into Eqs. (S.132,S.135), we obtain

rl =


θ1 − θL + 1 (l = 1),

θl − θL (1 < l < L),

θL − 1 (l = L).

(S.154)

From Eq. (S.141),
∂η′(WL,0∆hL−1,1)

∣∣
η′=0

= Θ(1/MθL−1−1). (S.155)

Finally, Conditions A.1 and A.2 lead to
θ1 − (θL − 1) = 0 (l = 1), (S.156)
θl − 1− (θL − 1) = 0 (1 < l < L), (S.157)
θL − 1 = 0 (S.158)

Thus, the µP is the same as in the case of random head initialization.

C.2 STABLE PARAMETERIZATION FOR FEEDBACK NETWORK

The feedback network minimizes the following loss function:

L(Ql) =
1

2Ml−1
∥ϕ(Qlhl)− hl−1∥2. (S.159)

where dividing by ML−1 is to ensure that L(Ql) = Θ(1), which is the default setting in PyTorch.
We consider the parameterization in the feedback network:

Ql ∼ N (0, σ′2/M2q̄l), τl =
τ ′l
M τ̄l

, (S.160)

where τl denotes the learning rate for the feedback network.

To ensure that the update ∆Qlhl = Θ(1) holds, we have

∆Qlhl =
τ ′

M τ̄l+1
(ϕ(Qlhl)− hl−1)ϕ

′(Qlhl)h
⊤
l hl. (S.161)

Here, because h⊤l<Lhl<L = Θ(M) and h⊤LhL = Θ(1/M2bL−1), assuming ∆Qlhl = Θ(1/Mrl),
we obtain:

rl =

{
τ̄l (1 < l < L),

τ̄L + 2bL (l = L)
(S.162)

Therefore,
τ̄l<L = 0, τ̄L = −2bL. (S.163)

If we optimize the feedback network for one step, we have

Ql<L,1 = Ql<L,0 −
τ ′

M τ̄l+1
hl−1h

⊤
l ∼

1

Mmin(1,ql)
, (S.164)

QL,1 = QL,0 −
τ ′

M τ̄L+1
hL−1h

⊤
L ∼

1

Mmin(1/2−bL,qL)
. (S.165)

And,

Q∗
l<L = hl−1(h

⊤
l hl + µI)−1h⊤l ∼

1

M
, (S.166)

Q∗
L = hL−1(h

⊤
LhL + µI)−1h⊤L ∼

1

M1/2−bL
. (S.167)

Therefore, in this case, Ql,1 = Q∗
l holds when
q̄l<L ≥ 1, q̄L ≥ 1/2− bL. (S.168)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 100 200 300

Iteration

0.7

0.8

0.9

1.0

co
s(
e l
,e
∗ l)

iteration vs similarity

5.0 7.5 10.0 12.5

log2 width

2−7

2−4

2−1

1
−

co
s(
e l
,e
∗ l)

width vs similarity Target
BP
(layer1)

GNT
(layer1)

Analytical
(layer1)

BP
(layer2)

GNT
(layer2)

Analytical
(layer2)

Figure S.1 : During the
training of the linear net-
work, it converges to the an-
alytical solution. We trained
a 3-layer linear network using
synthetic data.

0 5 10

log2ML

0.875

0.900

0.925

0.950

0.975

1.000

C
os

(I
n

fe
re

n
ce

)

Sim with BP gradient
γ̄L

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure S.2 : AsML approaches 1, the update vector in PC
converges to that of BP. We conducted inference training on
a 3-layer linear network and measured the similarity between
PC and BP. The results demonstrate that PC approaches BP
as ML decreases and γ̄L increases.

D ADDITIONAL EXPERIMENTS

D.1 PREDICTIVE CODING

D.1.1 LINEAR NETWORK

In Figure S.1 , we measure the similarity of the inference vector with BP, GNT, and the analytical
solution. With fewer inference iterations, the model behaves more like BP; however, as the number of
iterations increases, the model converges toward the analytical solution. Furthermore, as the middle
layer width Ml increases, the gap between GNT and BP decreases. Figure S.2 further demonstrates
that reducing the output dimension ML brings the model closer to BP. However, increasing ML

moves the model away from BP, though this divergence is more gradual as γ̄L approaches zero.

D.1.2 ADDITIONAL EXPERIMENTS ON µ TRANSFER FOR PC

Architecture In the main text, we primarily focused on MLP and CNN. However, our µP is
architecture-independent. The results for VGG5 are presented in Figure S.3 . Furthermore, the
µTransfer observed in Figure 4 also holds for MLP, as demonstrated in Figure S.4 .

Loss Type In the main text, we mainly used mean squared error (MSE) loss. However, this can be
replaced with cross-entropy (CE) loss. As demonstrated in Figure S.5 , µP for PC also transfers the
learning rate across widths when using cross-entropy loss.

Optimizer In this paper, we primarily focus on weight updates using SGD. However, it is also
possible to update the weights using Adam instead of SGD. In this case, the corresponding µP is as
follows: {

b1 = 0, bl>1 = 1/2, bL = 1,

c1 = 0, cl>1 = 1.
(S.169)

For Adam, the scaling of bl and cl does not depend on γ̄L. Additionally, in Adam, the gradients
are normalized, which means that µP remains unchanged regardless of whether the gradients are
generated by BP or PC. When considering the stability of the inference, scaling with respect to γ̄L
can be treated in the same manner as in the case of SGD.

γ̄l<L = 0, γ̄L = 1. (S.170)

Train sample We reduced the number of training samples in most of the graphs for µTransfer. By
reducing the number of training samples, finite-width models are known to behave more similarly to

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

−20 −15 −10

log2 LR

70

75

80

85

T
es

t
A

cc
(V

G
G

5
γ
l

=
0
.0

1
)

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

1

2

4

8

−20 −15 −10

log2 LR

70

75

80

85

T
es

t
A

cc
(V

G
G

5
γ
l

=
0
.1

)

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

1

2

4

8

Figure S.3 : In VGG5, the learning rate also transfers across widths. In SP, the optimal learning
rate shifts based on model width, whereas in µP, it remains fixed. Additionally, we trained with two
different γl values, and under µP (γ̄L = −1), the learning rate consistently transfers across widths,
regardless of γl. The model was trained for 40 epochs on 1024 samples from FashionMNIST.

−20 −15 −10

log2 LR

20

40

60

80

T
es

t
A

cc
γ
l

=
0
.0

1
,γ
l

=
0
.0

1

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−20 −15 −10

log2 LR

20

40

60

80

T
es

t
A

cc
γ
l

=
0
.0

1
,γ
l

=
0
.1

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

Figure S.4 : Without F-ini, µP with γ̄L = −1 transfers the learning rates across width also in
MLP. We trained 3-layer MLP on FashionMNIST without F-ini.

−20 −10

log2 LR

60

65

70

75

80

85

T
es

t
A

cc
(m

lp
ce

)

SP

−20 −10

log2 LR

NTK

−20 −10

log2 LR

muP (γ̄L = 0)

−20 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

Figure S.5 : µP for PC transfers learning rates across widths even with Cross Entropy. We train
3-layer MLP for 40 epochs on 1024 samples from FashionMNIST.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

−20 −10

log2 LR

20

40

60

80
T

es
t

A
cc

m
lp

(w
F

-i
n
i)

γ
l

=
0
.0

1
,γ
L

=
0
.1

SP

−20 −10

log2 LR

NTK

−20 −10

log2 LR

muP (γ̄L = 0)

−20 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−15 −10 −5

log2 LR

20

40

60

80

T
es

t
A

cc
m

lp
(w

/
o

F
-i

n
i)

γ
l

=
0
.0

1
,γ
L

=
0
.1

SP

−15 −10 −5

log2 LR

NTK

−15 −10 −5

log2 LR

muP (γ̄L = 0)

−15 −10 −5

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−20 −10

log2 LR

20

40

60

80

T
es

t
A

cc
m

lp
(w

/
o

F
-i

n
i)

γ
l

=
0
.1
,γ
L

=
0
.1

SP

−20 −10

log2 LR

NTK

−20 −10

log2 LR

muP (γ̄L = 0)

−20 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−20 −10

log2 LR

20

40

60

80

T
es

t
A

cc
cn

n
(w

F
-i

n
i)

γ
l

=
0
.0

1
,γ
L

=
0
.1

SP

−20 −10

log2 LR

NTK

−20 −10

log2 LR

muP (γ̄L = 0)

−20 −10

log2 LR

muP (γ̄L = −1)

width

4

8

16

32

64

128

256

−20 −10

log2 LR

20

40

60

80

T
es

t
A

cc
cn

n
(w

/
o

F
-i

n
i)

γ
l

=
0
.0

1
,γ
L

=
0
.1

SP

−20 −10

log2 LR

NTK

−20 −10

log2 LR

muP (γ̄L = 0)

−20 −10

log2 LR

muP (γ̄L = −1)

width

4

8

16

32

64

128

256

−20 −10

log2 LR

20

40

60

80

T
es

t
A

cc
cn

n
(w

/
o

F
-i

n
i)

γ
l

=
0
.1
,γ
L

=
0
.1

SP

−20 −10

log2 LR

NTK

−20 −10

log2 LR

muP (γ̄L = 0)

−20 −10

log2 LR

muP (γ̄L = −1)

width

4

8

16

32

64

128

256

Figure S.6 : µP with γ̄L = −1 can constantly transfer the learning rates across width We
confirmed µTransfer when training PC with Adam to update parameters in both MLP and CNN. In
the training of MLP without F-ini, we observe that µP with γ̄L = −1 consistently stabilizes training
and performs well. All experiments were conducted on FashionMNIST with 1024 samples.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

−10 0 10

log2 γ
′
L

20

40

60

80

T
es

t
A

cc
(m

lp
)

SP

−10 0 10

log2 γ
′
L

NTK

−10 0 10

log2 γ
′
L

muP (γ̄L = 0)

−10 0 10

log2 γ
′
L

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

Figure S.7 : When training with Adam, muP with γ̄L = −1 transfer γL across width. We trained
a 3-layer MLP on FashionMNIST with Adam.

−20 −10

log2 LR

40

60

80

T
es

t
A

cc
(m

lp
)

SP

−20 −10

log2 LR

NTK

−20 −10

log2 LR

muP (γ̄L = 0)

−20 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−10 0 10

log2 γ
′
L

20

40

60

80

T
es

t
A

cc
(m

lp
)

SP

−10 0 10

log2 γ
′
L

NTK

−10 0 10

log2 γ
′
L

muP (γ̄L = 0)

−10 0 10

log2 γ
′
L

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−10 0

log2 γ
′
l

20

40

60

80

T
es

t
A

cc
(m

lp
)

SP

−10 0

log2 γ
′
l

NTK

−10 0

log2 γ
′
l

muP (γ̄L = 0)

−10 0

log2 γ
′
l

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

Figure S.8 : The results of µP for PC are independent of the number of training samples. We
train a 3-layer MLP on FashionMNIST with full training samples. The stability of µP holds even
with all training samples.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

−20 −15 −10

log2 LR

10−1

100

101

102

In
fe

re
n

ce
L

o
ss

(M
L

P
w

F
-i

n
i)

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−20 −15 −10

log2 LR

101

102

103

In
fe

re
n

ce
L

o
ss

M
L

P
w

/
o

F
-i

n
i

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

Figure S.9 : When evaluating the loss after inference, only µP with γ̄L = −1 satisfies the empir-
ical rule of “wider is better” Regardless of whether F-ini is applied, µP with γ̄L = −1 consistently
reduces the loss during inference with stability. We trained 3-layer MLP on FashionMNIST.

infinite-width models, as has often been seen in papers examining the theoretical aspects of feature
learning (Geiger et al., 2020; Ishikawa & Karakida, 2024). However, even when training on the full
dataset, µP remains stable across widths, as shown in Figure S.8 .

Inference Loss When considering the stability of inference, we can observe the loss before
updating the parameters after inference. As shown in Figure S.9 , when training a 3-layer MLP on
FashionMNIST, only µP with γ̄L = −1 consistently reduces the inference loss as the model width
increases.”

Base width and inference iterations In µ-transfer, some research set the width of the smaller
model used for tuning the learning rate, as the base width, denoted by M ′, and adjusts the learning
rate using ηl = η′l/(M/M ′)cl . As shown in Figure S.10 , the choice of M ′ (a smaller M ′) can
sometimes make µP with γ̄L = 0 more sensitive.

As shown in Figure S.11 , the shift in the optimal learning rate at γL = 0 with M ′ = 128 becomes
more evident as the number of inference iterations increases. This is likely because, with more
iterations, the dynamics of inference play a more critical role in weight updates. In summary, to
achieve stable µTransfer independent of the base width and the number of inference iterations, we
should use µP with γL = −1.

Sequential Inference and Synchronous Inference In the main text, we focused on Sequential
Inference, where ul is updated layer by layer, starting from the output layer. However, Synchronous
Inference, where all layers are updated simultaneously, can also be considered. For the differences
between Sequential Inference and Synchronous Inference, see Algorithm.1. As shown in Figure S.12
, since µP for PC is validated at fixed points, it is also applicable to Synchronous Inference.

Additional Experiments with Figure 3 Figure S.13 presents the results of the same experiment
shown in Figure 3 (Right), but with the CIFAR-10/CIFAR=100 dataset and the VGG5 model. It is
evident that even with CIFAR-10, CIFAR-100 and VGG5, µP achieves higher accuracy compared to
SP and NTK.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

−20 −15 −10

log2 LR

20

40

60

80

T
es

t
A

cc
(b

a
se

=
1
)

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−20 −15 −10

log2 LR

20

40

60

80

T
es

t
A

cc
(b

a
se

=
8
)

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−20 −15 −10

log2 LR

20

40

60

80

T
es

t
A

cc
(b

a
se

=
6
4
)

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−20 −15 −10

log2 LR

20

40

60

80

T
es

t
A

cc
(b

a
se

=
1
2
8
)

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

Figure S.10 : When the base width M ′ is large, µP with γ̄L = 0 tends to fail with µtransfer. We
train a 3-layer MLP on FashionMNIST. This suggests that µP with γL = −1 should be used when
setting the base width, even with F-ini. The inference is performed for 100 iterations.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

−20 −15 −10

log2 LR

20

40

60

80
T

es
t

A
cc

(I
n

f
It

er
=

3
0
)

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−20 −15 −10

log2 LR

20

40

60

80

T
es

t
A

cc
(I

n
f

It
er

=
3
)

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−20 −15 −10

log2 LR

20

40

60

80

T
es

t
A

cc
(I

n
f

It
er

=
1
0
)

SP

−20 −15 −10

log2 LR

NTK

−20 −15 −10

log2 LR

muP (γ̄L = 0)

−20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

Figure S.11 : µP with γ̄L = −1 maintains high inference stability and successfully performs
µ-transfer even with a large number of inference iterations. We conducted the experiment shown
in Figure S.10 with varying numbers of inference iterations. Even with a larger number of inference
iterations, µP with γL = −1 consistently transfers the learning rate across different widths.

−25 −20 −15 −10

log2 LR

20

40

60

80

T
es

t
A

cc
m

lp
γ
l

=
0
.0

1
,γ
L

=
0
.1

SP

−25 −20 −15 −10

log2 LR

NTK

−25 −20 −15 −10

log2 LR

muP (γ̄L = 0)

−25 −20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

−25 −20 −15 −10

log2 LR

20

40

60

80

T
es

t
A

cc
m

lp
γ
l

=
0
.0

1
,γ
L

=
0
.0

1

SP

−25 −20 −15 −10

log2 LR

NTK

−25 −20 −15 −10

log2 LR

muP (γ̄L = 0)

−25 −20 −15 −10

log2 LR

muP (γ̄L = −1)

width

128

256

512

1024

2048

4096

8192

Figure S.12 : µP for PC also transfers learning rates across widths in synchronous inference.
µP for PC can also be applied in synchronous inference. Note that when the base width is set to 128,
as in SI, the learning rate does not transfer in µP with γ̄L = 0.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

29 210 211 212 213

ML−1

35

40

45

50

55

60

65

T
es

t
A

cc

CNN on CIFAR10

29 210 211 212 213 214

ML−1

20

25

30

35

40

45

50

CNN on CIFAR100

29 210 211

ML−1

86

87

88

89

90

91

VGG on FashionMNIST

muP
(γ̄L = 0)

muP
(γ̄L = −1)

NTK

SP

Figure S.13 : µP scales better than SP and NTK. We trained a CNN by PC with F-ini on
CIFAR10/CIFAR100 and a VGG5 on the full FashionMNIST dataset. The "wider is better" principle
holds for µP.

0 20 40

Epoch

0.2

0.4

0.6

0.8

∆
h

1
(i

n
p
u
t)

SP

0 20 40

Epoch

0.0

0.2

0.4

0.6

0.8

muP

0 20 40

Epoch

0

10

20

30

∆
h
L

(o
u
tp

u
t)

SP

0 20 40

Epoch

0

1

2

muP
width

128

256

512

1024

2048

4096

8192

16384

Figure S.14 : In Target Prop, using µP ensures that ∆hl remains consistent across widths. This
figure shows the RMS norm of ∆hl during training. For SP, ∆hl in the input layer diminishes as
the width increases, while ∆hl in the output layer diverges with increasing width. Consequently, the
training dynamics become unstable. In contrast, with µP, ∆hl remains consistent across different
widths in both the input and output layers.

0 5 10

log2 LR

0.2

0.4

0.6

L
o
ss

Feedback Network (TanH)

width

256

512

1024

2048

4096

8192

16384
0 2 4 6

log2 LR

0.6

0.8

1.0

L
o
ss

Feedback Network (ReLU)

width

256

512

1024

2048

4096

8192

16384

Figure S.15 : Learning rate transfer in Feedback networks. We demonstrate that the learning rate
in feedback networks transfers effectively across widths using toy data. Both the feedforward and
feedback networks include a Tanh/ReLU activation function following the linear layer.

0 5 10

log2 LR

0.00

0.25

0.50

0.75

1.00

L
o
ss

(M
L

P
T

a
n

H
)

SP

0 5 10

log2 LR

muP

0 5 10

log2 LR

0.6

0.8

1.0

1.2

L
o
ss

(M
L

P
R

eL
U

)

SP

0 5 10

log2 LR

muP

width

256

512

1024

2048

4096

8192

Figure S.16 : Learning rate transfer in Feedback networks (output layer). We show that the
learning rate in feedback networks transfers across widths using toy data. Unlike the hidden layers,
the learning rate in the output layer does not transfer under the default setting, which requires µP
scaling. Both the feedforward and feedback networks include a Tanh/ReLU activation function after
the linear layer.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

−5 0 5 10

log2 LR

40

60

80

T
es

t
A

cc

SP (FashionMNIST)

−5 0 5 10

log2 LR

muP (FashionMNIST)
width

128

256

512

1024

2048

4096

8192

16384

Figure S.17 : Even when training
the feedback network with DRL, µP
demonstrates greater stability com-
pared to SP. We trained a 3-layer
MLP on the FashionMNIST using DRL.
While SP exhibits a shift in the maxi-
mum learning rate as the model width
increases, µP consistently transfers the
optimal learning rates across different
widths.

−2.5 0.0 2.5 5.0

log2 LR

60

70

80

90

T
es

t
A

cc

SP (FashionMNIST)

−2.5 0.0 2.5 5.0

log2 LR

muP (FashionMNIST)
width

128

256

512

1024

2048

4096

8192

16384
−2.5 0.0 2.5 5.0

log2 LR

30

35

40

45

50

T
es

t
A

cc

SP (CIFAR10)

−2.5 0.0 2.5 5.0

log2 LR

muP (CIFAR10)
width

128

256

512

1024

2048

4096

8192

Figure S.18 : µP for TP remains stable regardless of the dataset or the number of training
samples. We trained a 3-layer MLP on both FashionMNIST and CIFAR-10 using the full training
samples. With µP, the learning rate successfully transfers across widths, ensuring that the maximum
learning rate remains consistent regardless of the model width.

D.2 TARGET PROPAGATION

D.2.1 ADDITIONAL EXPERIMENTS ON µTRANSFER FOR PC

Tenporal change of activation In Figure S.14 , we observed ∆h during the training of an MLP
on FashionMNIST. SP exhibits a dependency of ∆h on width, whereas µP demonstrates consistent
behavior, independent of width.

Feedback Network As discussed in Section C.2, stable parameterization is crucial not only for
feedforward but also for feedback networks. We verified this with µP, as shown in Figures S.15 and
S.16 .

DRL Meulemans et al. (2020) proposes the difference reconstruction loss (DRL) for constructing
feedback networks. In Figure S.17 , we empirically confirm that our µP works effectively with DRL
when training an MLP on FashionMNIST.

Training samples As with PC, in the case of TP, Figure 6 uses 1024 training samples. Similar
results were observed when using the full training dataset, as shown in Figure S.18 .

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

E EXPERIMENTAL SETTINGS

Architecture and dataset We trained the following three models:

• MLP: We trained a 3-layer multilayer perceptron (MLP) with Tanh activation. The MLP
models do not include bias.

• CNN: We trained 3-layer CNN with Tanh activation. The models consist of a two-layer
convolutional layers and a linear layer. We trained with different hidden widths where the
width is proportional to the input dimension of the output layer. (For example, when the
width is set to 4, the input dimension of the final layer is 512.) Max pooling is applied after
the activation function.

• VGG5: We trained a VGG-like model consisting of 4 convolutional blocks and 3 linear
blocks, based on the structure described in (Pinchetti et al., 2024). When the width is set to
8, it matches the VGG5 model in Pinchetti et al. (2024), with the channel sizes being [128,
256, 512, 512].

Dataset and batch size. We used FahionMNIST and CIFAR-10 datasets without applying any data
augmentation. The settings for batch size and training samples were as follows:

• PC In the experiments on µTransfer, FashionMNIST was generally trained with 1024
training samples and a batch size of 1024, except for Figure S.8 . However, when training
VGG5, the batch size was reduced to 64 due to memory constraints. In the experiment
verifying the scaling of µP with respect to width (Figure 3), all training samples were used,
with a batch size of 1024.

• TP In Figures S.14 and 6, we trained 3-layer MLP using 1024 training samples. Note that
in Figure S.18 in the Appendix, FashionMNIST, and CIFAR-10 were trained using the full
datasets. For the activation function of feedback networks, the same activation function as
one used in the forward pass is utilized (i.e., ψ = ϕ).

Training recipe Weight decay was not applied during the parameter updates for feedforward
networks. For SGD, the momentum was set to 0.9, and for AdamW, the parameters (β1, β2) were set
to (0.9, 0.99).

• PC The reduction mode for the loss function was set to "sum" to align the order of all terms
in the free energy function.

• TP For feedback networks, weight decay was set to 10−4 and the learning rate for the target
was set to η̂ = 0.01. Before starting the main training, only the feedback network was
trained for 5 epochs with the feedforward network fixed.

38

	Introduction
	Related Work
	Preliminaries
	Overview of Local Learning
	Predictive Coding
	Target Propagation

	P and Learning Regimes

	Feature Learning of predictive coding
	P of PC with single-shot sequential inference
	Analysis with Linear Network
	Stability of inference phase

	Feature Learning of target propagation
	P of TP
	Disappearance of the Kernel Regime

	Conclusion
	Extended Background
	Extended related work
	P
	Predictive Coding
	Targent Propagation

	Definitions for stable parameterization

	P of Predictive Coding
	Derivation for Predictive Coding with single-shot SI
	Fixed points of PC in Linear Networks
	Proof for Theorem 4.2
	Balance condition determining l<L
	Nudged Predictive Coding

	P of Target Propagation
	Derivation of Theorem 5.1.
	Disappearance of Kernel regime

	Stable parameterization for feedback network

	Additional Experiments
	Predictive Coding
	Linear Network
	Additional Experiments on transfer for PC

	Target Propagation
	Additional Experiments on Transfer for PC

	Experimental Settings

