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Abstract

Recently, many studies have illustrated the
robustness problem of Named Entity Recog-
nition (NER) systems: the NER models
often rely on superficial entity patterns for
predictions, without considering evidence from
the context. Consequently, even state-of-the-
art NER models generalize poorly to out-
of-domain scenarios when out-of-distribution
(OOD) entity patterns are introduced. Previous
research attributes the robustness problem to
the existence of NER dataset bias, where
simpler and regular entity patterns induce
shortcut learning. In this work, we bring new
insights into this problem by comprehensively
investigating the NER dataset bias from a
dataset difficulty view. We quantify the
entity-context difficulty distribution in existing
datasets and explain their relationship with
model robustness. Based on our findings,
we explore three potential ways to de-bias
the NER datasets by altering entity-context
distribution, and we validate the feasibility with
intensive experiments. Finally, we show that
the de-biased datasets can transfer to different
models and even benefit existing model-based
robustness-improving methods, indicating that
building more robust datasets is fundamental
for building more robust NER systems.

1 Introduction

Named Entity Recognition (NER), aiming to
recognize named entities from unstructured data,
is widely studied by researchers as a fundamental
task in Natural Language Processing (NLP) and a
crucial task in practical applications (Lample et al.,
2016; Chiu and Nichols, 2016; Li et al., 2020).
Recently, the advances in pre-trained language
models (Devlin et al., 2019; Lewis et al., 2020;
Liu et al., 2019) have contributed to promising
performance on standard NER benchmarks, such
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Ms. Hall expects Cathay 's profit to grow around 13 % annually this year.

Gold label: ORG
Predicted label: PER 

President Bush told Mr. Apple in this week 's interview, “….”

Gold label: PER
Predicted label: ORG 

( Out-of-vocabulary / unseen entity )
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Figure 1: Examples of two typical failures of NER
models, copied from the OntoNotes 5.0 dataset.

as CoNLL03 (Tjong Kim Sang and De Meulder,
2003) and OntoNotes 5.0 (Weischedel et al., 2013).

Despite the success, recent research has demon-
strated the robustness problem in NER: the state-
of-the-art NER systems often rely on superficial
entity patterns for predictions, while disregarding
evidence from the context. Consequently, the
models show poor generalization ability in out-
of-domain (OOD) scenarios where out-of-domain
entity patterns are introduced (Lin et al., 2020;
Ghaddar et al., 2021; Wang et al., 2022). For
instance, Figure 1 shows two typical OOD failures
of SOTA NER models: (1) Instances with out-of-
vocabulary entities (upper). The entity "Cathay"
is unseen in the training data, however, the model
fails to deduce correctly given obvious evidence
"[]’s profit to grow" in the context. (2) Instances
with ambiguous entities (bottom). Fu et al. (2020)
shows when an entity is labeled differently across
domains, the model fails to recognize well even
with supportive context, such as mistaking the
person name "Apple" in the example.

Previous works have delved into the robustness
problem of NER from different perspectives.
(Agarwal et al., 2020; Ghaddar et al., 2021; Kim
and Kang, 2022; Lin et al., 2020; Wang et al.,
2021) examine the NER models by constructing
challenging test sets. Their experiments reveal
that NER models fail to "learn from context
information" during training. Agarwal et al.
(2020) and Kim and Kang (2022) evaluate models



on controlled entity sets and consider the poor
robustness is due to the model’s tendency to
memorize entity patterns. Lin et al. (2020)
further designs a series of randomization tests
and demonstrates that the strong name regularity
and high mention coverage rate in existing NER
datasets might hinder model robustness. All these
studies indicate that the poor robustness of NER
models might be due to a hidden dataset bias of
existing NER datasets: the entity pattern is "easier"
for the model to learn, so the models are biased to
learn the shortcut in entity names while paying less
attention to the context.

In this work, we systematically locate the origin
of NER dataset bias and investigate its effect on
model robustness from a dataset difficulty view.
We try to answer two questions:

Q1: How does the entity-context distribution
in the training data induce dataset bias? To
answer this question, we borrow a recent concept
"V-information" (Xu et al., 2019; Ethayarajh et al.,
2022) to measure the difficulty of entity and context
for the model to learn in each dataset. We find
that (1) In all NER datasets we examine, the
V-information of the entity is obviously larger
than that of the context, indicating the dataset
distribution induces models to learn more entity
than context. (2) We further design an instance-
level metric to measure the difficulty of entity and
context in every single instance. We find that
the largest population of instances—with equality-
informative entity and context—does not lead or
even harm the models to learn context.

Q2: Based on the analysis in Q1, are we able
to build more robust NER datasets by altering
the entity-context distribution in existing data?
Based on Q1, we consider three potential ways to
de-bias the NER datasets: (1) Reducing the overall
V-information of the entity in the training data. (2)
Enhancing the overall V-information of the context
in the training data. (3) Enlarging the proportion
of the robustness-helpful instances, i.e., instances
with contexts easier than entities. By conducting
extensive experiments, we verify the feasibility of
all three approaches. These results also in turn
confirm our analysis in Q1. Furthermore, we
validate the transferability of the model-specific
constructed datasets to improve the robustness
of other models. These de-biased data are
even helpful for existing model-based robustness-
improving strategies, showing that building more

robust datasets is always fundamental for building
more robust NER systems.

We hope our study can bring new insights into
building more robust NER datasets, as well as
developing more robust and general NER systems
for real-world scenarios1.

2 Measuring the Difficulty of Entity and
Context in NER datasets

2.1 Background of V-information

Recently, Xu et al. (2019) extends the mutual
information Shannon (1948) to a concept of V-
usable information under computational con-
straints, which measures how much information
about Y can be extracted from X with a certain
model family V . As defined in Xu et al. (2019):

Definition 1. Let X , Y be two random variables
taking values in X × Y . Let V be a predictive
family that V ⊆ Ω = {f : X ∪ {∅} → P (Y)}.
The V-usable information is:2

IV(X → Y ) =HV(Y |∅)−HV(Y |X) (1)

where
HV(Y |∅) = inf

f∈V
E[− log2 f [∅](Y )]

HV(Y |X) = inf
f∈V

E[− log2 f [X](Y )]
(2)

More intuitively, V can be a pre-trained model
family like BERT. HV(Y |∅) can be computed with
a BERT model fine-tuned with a null input ∅ and
Y , and HV(Y |X) can be computed with a BERT
model fine-tuned with (X,Y ).

Ethayarajh et al. (2022) further extends V-
information to measure dataset difficulty. Intu-
itively, a higher IV(X → Y ) means V is able
to extract more usable information from X about
Y , thus indicating an easier dataset for V to learn.
They also propose to compare different attributes
of X by computing IV(τ(X) → Y ), where τ(·)
is a transformation on X to isolate an attribute
a. For instance, we can transform the regular
NLI (Bowman et al., 2015) inputs into hypothesis-
only inputs to measure the V-information of the
hypothesis attribute.

Ethayarajh et al. (2022) also propose a new
measure based on V-information to measure
pointwise difficulty, which refers to pointwise V-
information (PVI):

1Our code is available at https://github.com/rtmaww/
NERDataBias

2We use log2 to measure the entropies in bits of
information following (Ethayarajh et al., 2022).

https://github.com/rtmaww/NERDataBias
https://github.com/rtmaww/NERDataBias
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Figure 2: Illustration of our method to decouple contexts
and entity names. We respectively train a context-only
model and an entity-only model to examine the usable-
information of each attribute.

Definition 2. Let X , Y be two random variables
and V be a predictive family, the pointwise V-
information (PVI) of an instance (x, y) is

PVI(x → y) = − log2 g[∅](y) + log2 g
′[x](y) (3)

where g, g′ ∈ V .

Similarly, we can use a BERT model fine-tuned
with (X,Y ) and a BERT model fine-tuned with
(∅, Y ) to calculate the PVI of every single instance,
and a higher PVI indicates the instance is easier for
V . We adopt PVI to measure instance difficulty.

2.2 Decoupling Context and Entity

Motivated by Ethayarajh et al. (2022), in this work,
we propose to decouple the entity and context
attributes in order to measure the difficulty of each
part respectively. Specifically, we first transform
the NER dataset into two separate entity-only and
context-only datasets. As shown in Fig.2, to build
the context-only dataset, we replace the entity with
a "[MASK]". To build the entity-only dataset,
we simply use the entity as input. Then, we
respectively train a context-only and an entity-only
classification model based on a pre-trained model
family (such as BERT) to predict the entity type
based on the inputs. Based on the trained models,
we can thus calculate the respective PVI of context
and entity in each instance, as well as calculate
the V-information of context and entity of the
whole training data, which indicates the difficulty
of context and entity in this dataset to the used pre-
trained model. More implementation details are
included in Appendix A.3.

2.3 Context-entity Information Margin
(CEIM)

In order to better describe the difficulty discrepancy
of context and entity in an instance, we further
introduce a new measure: Context-entity Informa-
tion Margin (CEIM). Formally, we refer to the
context-only model as MC , and the entity-only

model as ME . For each instance (x, y), we denote
the context PVI (measured by MC) as PVIC(x),
and the entity PVI (measured by ME) as PVIE(x).
The CEIM is then calculated by:

CEIM(x) = PVIE(x)− PVIC(x) (4)

Intuitively, a high CEIM means the entity name in
the instance is much easier to learn than the context.

3 How Does the Entity-context
Distribution Induce Dataset Bias?

In order to answer Q1, in this section, we decouple
the context and entity in NER datasets and calculate
the V-information of each part, so as to obtain
the context-entity difficulty distribution. Based on
the results, we analyze the correlation between a
context-entity distribution and dataset bias in NER
datasets at both the whole-data level (Sec.3.2) and
the instance level (Sec.3.3).

3.1 Experiment Setup
Dataset To obtain comprehensive knowledge
of the entity-context distribution of different
NER datasets, we first conduct experiments on
6 commonly used datasets to calculate the V-
information of each dataset: CoNLL 2003 (Tjong
Kim Sang and De Meulder, 2003), OntoNotes
5.0 (Weischedel et al., 2013), Bio-NER (Collier
and Kim, 2004), ACE 2005 (Walker et al., 2006),
Twitter (Zhang et al., 2018) and WNUT 2017
(Derczynski et al., 2017).

In Section 3.3, we include experiments to further
explore the correlation between the entity-context
distribution and model robustness. Following
previous works on NER robustness (Lin et al.,
2020; Wang et al., 2022), we experiment on
CoNLL 2003 and ACE 2005 datasets. Except for
evaluating standard performance on the i.i.d. test
set (denoted as Test), we adopt two robustness
test sets (Wang et al., 2021) for each dataset, the
OOV and CrossCategory test sets, as the measure
of model robustness, also following (Wang et al.,
2022). These two robustness test set corresponds to
the two typical failures of NER models as described
in Fig.1, respectively. We include more dataset
details and example cases of these test sets in the
Appendix A.2.

Base Model We conducted all experiments in
this section based on the BERT-base-cased pre-
trained model (Devlin et al., 2019). More imple-
mentation details are included in Appendix A.3.



3.2 V-information Comparison between
Context and Entity

In Figure 3, we show the isolated V-information
of context and entity in 6 common NER datasets.
From the results, we can observe that (1) In most
of the commonly-used datasets, the V-information
of the entity is larger than 1.0. Such high values
indicate the pre-trained model is able to learn
and correctly classify most entities in the datasets
without any information from the context. (2)
In all datasets, the V-information of the entity is
obviously higher than that of context, meaning that
the entity is much easier for the pre-trained model
to learn than the context. Such V-information
discrepancy in existing datasets means that the
difficulty distribution of existing datasets induces
the model to learn more from entities instead
of contexts. Corresponding to previous studies
(Agarwal et al., 2020; Kim and Kang, 2022; Lin
et al., 2020), this is an intrinsic bias in NER datasets
that harms model robustness.

3.3 Understanding Entity-context
Distribution with CEIM

As V-information is the difficulty measure of
the whole dataset, we step further to understand
the instance-level difficulty of context and entity
with Context-entity Information Margin (CEIM)
(Section 2.3). We calculate the CEIM of instances
in each dataset and divide the instances into 3
categories: (1) High-CEIM: instances with high
CEIM, i.e., the entity is easier to learn than the
context; (2) Low-CEIM: instances with low CEIM,
i.e., the context is easier to learn; (3) NZ-CEIM:
instances with a near-zero CEIM (|CEIM(x)| <
0.5), i.e., the context and entity is equally-easy to
learn.

Table 1 shows the distribution of different CEIM
instances and the average PVIE in each part. It’s
shown that the near-zero-CEIM instances cover the
largest proportion in all datasets, and next is the
high-CEIM instances. Also, the Average-PVIE
shows that both the near-zero-CEIM and high-
CEIM instances mainly contain high-PVI (easy-
to-learn) entities.

In Table 2, we show some cases of different
CEIM instances. Generally speaking, the high-
CEIM instances often contain low-PVI contexts
that are ambiguous or misleading, while contain-
ing informative entities. The near-zero-CEIM
instances often consist of equally informative

CoNLL2003 OntoNotes5.0 ACE2005 Bio-NER Twitter WNUT2017
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Figure 3: The V-information of context and entity in 6
commonly used NER datasets.

contexts and entities. The low-CEIM instances
consist of high-PVI context and low-PVI entities,
where the entities are often rare, more complicated,
or ambiguous. We include more discussion on
how different CEIM instances might affect model
prediction in Appendix A.1.

Dataset
Low-CEIM NZ-CEIM High-CEIM

# num A-PVIE # num A-PVIE # num A-PVIE
CoNLL 2003 1962 -1.01 18266 1.90 3271 1.95

OntoNotes 5.0 4694 -1.55 37660 2.20 13390 2.59

ACE2005 3843 -0.36 17337 1.51 5290 1.99

Twitter 957 -1.34 3130 1.52 2089 1.64

WNUT2017 516 -2.05 880 1.73 579 2.12

Bio-NER 1936 -1.64 36774 1.38 12480 2.31

Table 1: The number of instances with different CEIM
levels in each dataset. A-PVIE denotes the Average-
PVI of entity names in different parts of data.

How do different CEIM instances affect model
robustness? To further understand the impact of
entity-context distribution on the model robustness,
we further conducted an experiment to compare the
model behavior when trained on data with different
CEIMs. We first randomly sampled 1000 instances
from the whole dataset as a baseline training set,
denoted as Base. Next, we randomly sampled 1000
near-zero-CEIM instances and add them to Base to
construct a new 2000-instance training set, denoted
as Base+NZ. Similarly, we constructed another
two training sets Base+High and Base+Low by
adding 1000 randomly-sampled high-CEIM and
low-CEIM instances to Base, respectively. We
then train a model on each training set and evaluate
their performance on the test set and the robustness
OOV and CrossCategory test set.

Table 3 shows the effect of different CEIM
data on the model performance. We can see that:
(1) By adding 1000 extra instances to Base, the
performance on the test set is improved on all
training sets. Among all training sets, Base+High



Type Context Entity name Label PVIC PVIE CEIM

High It’s composed of the U.S., Russia, [MASK], and the United Nations. the European Union ORG -4.73 2.04 6.77

CEIM [MASK] is playing a trick on us he says . America GPE -5.25 1.78 7.03

Near-zero And equally without doubt, [MASK] did not want him, that is, Bush, to do this. Blair PERSON 1.87 1.84 -0.03

CEIM China and [MASK] have become important mutual trade partners. Russia GPE 1.82 1.85 0.03

Low On Tuesday; [MASK] directors announced plans to spin off two big divisions... Trelleborg ’s ORG 2.19 -0.12 -2.07

CEIM ... Mr.[MASK] and I did the other night on ABC’s “ Nightline. ” Apple PERSON 1.63 -6.62 -8.25

Table 2: Examples of different CEIM instances. More detailed discussion can be found in Appendix A.1.

CoNLL 2003
Training set Test OOV CrossCategory
Base 87.15 64.28 40.74
Base + High 87.61 (+0.46) 63.77 (-0.51) 40.91 (+0.17)
Base + NZ 87.51 (+0.36) 64.05 (-0.23) 41.55 (+0.81)
Base + Low 87.50 (+0.35) 67.96 (+3.68) 44.93 (+4.19)

ACE 2005
Training set Test OOV CrossCategory
Base 81.44 73.91 39.04
Base + High 83.56 (+2.12) 73.64 (-0.27) 40.80 (+1.76)
Base + NZ 84.74 (+3.30) 74.54 (+0.63) 41.99 (+2.95)
Base + Low 83.36 (+2.13) 76.56 (+2.65) 42.86 (+3.82)

Table 3: The effect of different CEIM data on the model
generalization and robustness.

and Base+NZ show slightly larger improvement
than Base+Low, which corresponds to the findings
in previous studies (Lin et al., 2020; Agarwal et al.,
2020; Zeng et al., 2020) that high-PVI entity names
contribute more to the generalization on the i.i.d.
test set. (2) Base+Low shows notable improvement
on both OOV and CrossCategory test sets, while
Base+High and Base+NZ are less beneficial or
even harmful to the robustness performance. These
results demonstrate that the low-CEIM instances,
i.e., instances with contexts easier than entities,
contribute most to the model robustness. (3)
The limited robustness performance of Base+NZ
also indicates that although the context may be
informative enough for label predicting, with
equally easy entity and context, the pre-trained
model still tends to make use of the entity
information instead of context. Unfortunately,
the near-zero-CEIM data constitutes the largest
proportion in all datasets (Tab.1), thus having much
larger effects on the model training than the low-
CEIM data (which largely improves robustness).

4 Can We Build More Robust Datasets by
Altering Entity-context Distribution?

Based on the above analysis, in this section,
we explore three potential ways to de-bias NER
datasets by altering the entity-context distribution.

4.1 Experiment Setup

Datasets Similar to Section 3, in this section,
we conduct experiments on the CoNLL2003
and ACE2005 datasets, and evaluate the i.i.d.
test performance on the Test set, as well as
the robustness performance on the OOV and
CrossCategory test sets (denoted as "Cate.").

Base Model and Baselines In this section, we
conduct all experiments based on two pre-trained
LM, BERT-base-cased (Devlin et al., 2019) and
RoBERTa-large (Liu et al., 2019). To better verify
the robustness improvement of the three de-bias
methods, we include several robustness-improving
baselines: (1) Base (Devlin et al., 2019; Liu et al.,
2019) The base token classification model based
on BERT-base-cased and RoBERTa-large, trained
on the original training sets; (2) DataAug (Dai
and Adel, 2020), which augments the training set
by replacing entities with similar entities or typos
entities; (3) MINER (Wang et al., 2022), which
also creates samples with entity switching and
trained with a contrastive robustness-improving
loss. It is also the SOTA method in NER robustness;
(4) LPFT (Kumar et al., 2022), a general OOD
method that can effectively improve OOD model
generalization. More implementation details can
be found in Appendix A.4.

4.2 Enlarging the Low-CEIM Proportion

The experiments in Section 3.3 have shown that
the high-CEIM data and near-zero-CEIM data
contribute less to the model robustness, while the
low-CEIM data do make the model learn more
from context. However, the proportion of the low-
CEIM data in the datasets is quite low, leading to
limited influence on the model learning. In this
section, we reconstruct the training sets to alter the
proportion of low-CEIM data, trying to investigate:
(1) If enlarging the proportion of low-CEIM data
is a feasible way to improve robustness; (2) If
we can achieve a good balance of robustness and
generalization with a certain proportion of low-
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Figure 4: Performance of the BERT-base-cased models trained on the reconstructed datasets of different low-CEIM
proportions. We report the average result of 3 repeated experiments. We also include the results of the RoBERTa-
large models in Appendix A.5.

CEIM data.

4.2.1 Detailed Experimental Settings
As the number of low-CEIM instances is limited
in both CoNLL2003 and ACE2005 datasets (Table
1), we decided to fix the instance number of the
reconstructed training sets to 1000. We construct
datasets with the proportion of low-CEIM data
ranging from 0% to 90%. For example, when
constructing a training set with 20% low-CEIM
data, we randomly sample 200 instances from the
low-CEIM data and 800 instances from the high-
or near-zero-CEIM data.

4.2.2 Results
Figure 4 shows the model performance trained
on the reconstructed training sets on BERT-base-
cased 3. We can observe that: (1) With the
proportion of low-CEIM data increasing, the
performance on the test set keeps dropping, which
corresponds to the discussion in Sec.3.3 that the
high- and near-zero-CEIM data contribute more
to i.i.d. generalization. (2) As the proportion
of low-CEIM data increases, the performance on
the OOV and CrossCategory test sets generally
shows a trend of first rising and then falling. The
rising robustness performance at low low-CEIM
proportion validates the effectiveness of enlarging
the low-CEIM proportion for improving model
robustness. However, as the low-CEIM proportion

3The results on RoBERTa-large are in Appendix A.5.

keeps increasing, the poor generalization ability
will also affect robustness and lead to declining
results. (3) Compared with the results on 1000
random data, the reconstructed data, with certain
data proportions, achieves significant improvement
on the robustness test sets and comparable
performance on the Test set. We conclude that
for different datasets, there exists appropriate
proportions when a good balance of i.i.d. and
OOD generalization can be achieved (e.g., 10%-
30% for CoNLL03, 20%-40% for ACE05).

4.3 Reducing the V-information of Entity

As discussed in Section 3.2, the V-information
discrepancy between entity and context is the
main factor of dataset bias in NER. In order
to de-bias NER datasets, the most intuitive idea
is to increase the low-PVI entities or decrease
the high-PVI entities in the training set. In this
section, we explore potential ways to reduce the
V-information of the entity of the training set by
dataset reconstruction:

A. Random2low: Increasing the low-PVI enti-
ties by randomly replacing high-PVI entities with
low-PVI entities. The replaced sentences are added
to the original dataset as data augmentation.

B. HighC2low: Based on A, we further select
instances with high-PVI context and high-PVI
entity for entity replacement. This process



Methods

Base Model: BERT-base-cased Base Model: RoBERTa-large

CoNLL2003 ACE2005 CoNLL2003 ACE2005

Test OOV Cate. Avg. Test OOV Cate. Avg. Test OOV Cate. Avg. Test OOV Cate. Avg.

Base 91.18 70.89 44.48 68.85 87.48 79.80 44.84 70.71 92.10 72.54 50.01 71.55 88.84 80.84 46.13 71.94

DataAug 90.52 73.45 46.39 70.12 87.16 80.99 44.58 70.91 91.71 76.93 52.18 73.60 88.96 81.95 46.03 72.31

LPFT 91.14 73.89 48.32 71.12 87.76 80.28 44.37 70.80 92.12 75.67 48.53 72.11 88.85 82.10 46.23 72.39

MINER 90.98 76.89 49.97 72.61 87.41 79.23 45.45 70.70 91.88 79.33 56.27 75.83 88.83 82.69 46.75 72.76

A.Random2low
20% 90.84 76.04 48.24 71.71 87.51 81.23 47.25 71.99 91.84 78.05 54.95 74.95 88.23 82.69 52.13 74.35

40% 90.42 76.03 47.72 71.39 87.54 81.64 48.28 72.49 91.99 79.00 56.78 75.93 88.54 81.88 51.24 73.88

B.HighC2Low
20% 91.19 75.84 48.45 71.83 87.43 82.18 48.76 72.79 92.18 78.36 56.11 75.55 88.56 82.81 51.90 74.42

40% 90.55 77.11 48.92 72.19 87.11 82.32 49.97 73.13 91.76 79.37 57.17 76.10 88.42 83.55 52.72 74.90

C.Redundant2Low
20% 90.71 76.35 48.02 71.69 87.37 81.28 48.59 72.41 91.82 79.23 57.11 76.05 88.66 84.07 51.89 74.87

40% 90.42 77.34 48.07 71.94 86.97 82.17 48.41 72.52 91.54 79.52 58.06 76.38 88.67 84.43 53.49 75.53

Dataset Transferability Study (Discussed in Section 4.5)

MINER + HighC2Low 40% 90.71 79.85 53.42 74.66 87.01 80.75 49.87 72.55 91.70 80.33 61.16 77.73 89.37 85.16 54.54 76.36

BERT.HighC2Low 40% − − − − − − − − 91.74 79.18 55.15 75.36 89.11 83.37 52.23 74.90

Table 4: Performance of different approaches to reduce the V-information of entity in the datasets. Each reported
result is averaged by 3 repeated experiments. More detailed results of different rates are reported in Appendix A.5.

ensures that the replaced instances have informative
contexts for the model to learn and predict.

C. Redundant2low: As declared in (Lin et al.,
2020), existing datasets mainly consist of regularly-
patterned entities that harm model robustness. We
also find in our experiments that there exists a
large number of redundant high-PVI entities in
the datasets. Therefore, we propose to reduce
these redundant entities by replacing them with
low-PVI entities. Different from A and B, this
method doesn’t increase the total data size.

Note that all methods are actually trying to
introduce more low-CEIM instances. In our
experiments, we reconstruct the existing datasets
based on the above methods and train new models
on the reconstructed training sets, separately.

4.3.1 Results
Table 4 shows the results of the models trained
on three types of reconstructed datasets. Here,
m% means replacing m% of the total entities in
each method. From the results, we can observe
that: (1) All of the three methods show obvious
improvement over Base and even DataAug on
OOV and CrossCategory. As the replacement
rate grows, the robustness performance generally
increases, as well as the test performance decreases.
This trend is similar to previously observed trends
in Fig.4. (2) Compared with A.Random2Low,
B.HighCLow shows relatively higher robustness
performance and test performance. This is
because randomly replacing high-PVI entities

with low-PVI entities without considering the
context might create instances with both difficult
entity and context, which would not benefit
robustness and generalization. In contrast,
B.HighC2Low ensures introducing more low-
CEIM instances. In most cases, B.HighC2Low
can construct a dataset that achieves both higher
robustness performance and comparable test
performance. (3) C.Redundant2Low is also
effective in improving model robustness. Although
a large proportion of high-PVI entities are replaced,
the test performance is only slightly hurt and
comparable to A.Random2Low and DataAug that
increases data size with augmentation. It also
achieves larger improvement on the robustness test
sets than A.Random2Low and DataAug. These
results demonstrate that the large number of
redundant high-PVI entities in the NER datasets
limitedly benefits model generalization yet would
harm model robustness. (4) Apart from the
three methods, MINER can also achieve good
robustness. Nevertheless, we claim that the dataset
reconstruction methods are generally orthogonal
to the model-based robustness-improving methods
like MINER. More details of this point are
discussed in Sec.4.5.

4.4 Enhancing the V-information of Context
Aside from lowering the V-information of the
entity in Sec.4.3, another intuitive approach is to
enhance the V-information of the context. Similar
to Sec.4.3, in this section, we design two potential
ways to increase the proportion of high-PVI



Methods

Base Model: BERT-base-cased Base Model: RoBERTa-large

CoNLL2003 ACE2005 CoNLL2003 ACE2005

Test OOV Cate. Avg. Test OOV Cate. Avg. Test OOV Cate. Avg. Test OOV Cate. Avg.

Base 91.18 70.89 44.48 68.85 87.48 79.80 44.84 70.71 92.10 72.54 50.01 71.55 88.84 80.84 46.13 71.94

DataAug 90.52 73.45 46.39 70.12 87.16 80.99 44.58 70.91 91.71 76.93 52.18 73.60 88.96 81.95 46.03 72.31

LPFT 91.14 73.89 48.32 71.12 87.76 80.28 44.37 70.80 92.12 75.67 48.53 72.11 88.85 82.10 46.23 72.39

MINER 90.98 76.89 49.97 72.61 87.41 79.23 45.45 70.70 91.88 79.33 56.27 75.83 88.83 82.69 46.75 72.76

I.Random2High
30% 90.95 75.31 48.27 71.51 86.74 80.70 45.03 70.83 91.88 77.66 54.52 74.69 88.67 84.66 47.70 73.67

40% 90.43 76.69 50.20 72.44 86.87 81.21 45.26 71.12 91.67 77.86 54.85 74.79 88.53 84.08 48.81 73.81

II.Low2High
30% 90.42 76.87 52.15 73.15 86.99 81.38 46.78 71.71 90.76 79.12 60.52 76.80 88.86 83.60 50.57 74.34

40% 89.72 78.41 55.70 74.61 86.48 82.01 47.78 72.09 90.92 79.58 61.93 77.47 88.67 84.40 52.20 75.09

Dataset Transferability Study (Discussed in Section 4.5)

MINER + Low2High 40% 90.18 79.69 56.03 75.30 87.13 80.16 48.72 72.00 91.72 80.05 61.03 77.60 89.33 84.67 50.07 74.69

BERT.Low2High 40% − − − − − − − − 91.05 79.63 59.79 76.82 88.79 83.28 51.88 74.65

Table 5: Performance of different approaches to enhance the V-information of context in the datasets. Each reported
result is averaged by 3 repeated experiments. More detailed results of different rates are reported in Appendix A.5.

contexts in the training sets:

I.Random2High Randomly deleting a certain
ratio of contexts and replacing them with high-PVI
contexts from the retained set.

II.Low2High Deleting a certain ratio of low-PVI
contexts, and replacing the deleted contexts with
high-PVI contexts.

Similar to Section 4.3, we reconstruct the
existing datasets based on the above methods
and train new models on the reconstructed data,
separately.

4.4.1 Results
Table 5 shows the results of different methods,
where m% means deleting (replacing) m% of
the total context. We can observe that: (1)
Randomly deleting a certain proportion of context,
although decreases context diversity in the datasets,
doesn’t show a serious drop in the test performance.
Interestingly, by replacing these contexts with high-
PVI contexts, the robustness performance can be
improved to a certain degree. (2) As shown in
Appendix A.1, low-PVI contexts are often noisy
contexts and will harm performance. Therefore, it
is intuitive that replacing low-PVI contexts with
high-PVI contexts effectively improves robustness
performance. It also outperforms I.Random2High
on most replacement rates, validating that reducing
context difficulty can largely improve model
robustness. However, this method suffers from
more decrease in the test performance, which
might be because reducing the low-PVI contexts
relatively reduces model attention on the entity,

thus hindering generalization on i.i.d. distribution.
Nevertheless, the results show that a good trade-
off between OOD and i.i.d. performance can be
achieved with certain replacement ratios.

4.5 Transferability of the De-biased Datasets
As the V-information calculation is model-specific,
it is intuitive to wonder if the datasets reconstructed
based on one model can transfer to another
model. In both Table 4 and Table 5, we
further conduct experiments to investigate the
transferability of the de-biased datasets. In
both experiments, we trained MINER on the
reconstructed datasets (MINER+HighC2Low 40%
and MINER+Low2High 40%). We also use
the BERT-based reconstructed datasets to train
RoBERTa-large models (BERT.HighC2Low 40%
and BERT.Low2High 40%). Surprisingly, the
reconstructed datasets can also benefit other models
to a certain degree. These results not only validate
the generalizability of the de-biased datasets, but
also reveal that the dataset reconstruction methods
are orthogonal to the model-based robustness-
improving methods such as MINER. It also shows
that building more robust datasets is fundamental
for building more robust NER systems.

5 Related Work

5.1 Analyzing the Robustness Problem in
NER.

Many works have focused on analyzing the robust-
ness problem in NER. These works generally fall
into two categories: (1) Constructing challenging
sets to evaluate the model robustness (Ghaddar



et al., 2021; Lin et al., 2020) such as switching the
entities in test sets (Agarwal et al., 2020), testing
on out-of-dictionary entities (Lin et al., 2020; Kim
and Kang, 2022) or introducing typos to create
OOV entities (Wang et al., 2021); (2) Investigating
the impact of possible attribute through a delicate
design of experiments (Fu et al., 2020; Kim and
Kang, 2022), such as conducting randomization
experiments (Lin et al., 2020) or measuring the
impact of attributes with specifically-designed
metrics (Fu et al., 2020). Our work is totally
different from the existing studies. We provide a
brand new view of considering the NER robustness
problem by quantifying and comprehensively
analyzing the correlation between context-entity
distribution and model robustness and provide new
insights into the NER robustness studies.

It is worth mentioning that Lin et al. (2020) and
Peng et al. (2020) (work on Relation Extraction)
also consider the "context or name" problem and
design experiments to disentangle the impact of
context and entity name. These experiments also
motivate the experiment designs in this work.

5.2 Mitigating the Robustness Problem in
NER.

There are also many works that aim at mitigating
the robustness problem in NER. These works
include methods to alleviate the OOV problem
(Bojanowski et al., 2017; Peng et al., 2019),
leveraging data augmentation (Dai and Adel, 2020;
Zeng et al., 2020) or adopting adversarial training
(Ghaddar et al., 2021) or other training strategies
(Wang et al., 2022) to improve model robustness.
In this work, we explore a new direction
of approaches: to improve model robustness
through data reconstruction. We also argue that
constructing robust datasets is fundamental for
building more robust NER systems.

6 Conclusion

In this work, we conduct an interesting study
on the model robustness problem of NER. We
quantify the difficulty distribution of context and
entity in existing NER datasets and reveal how the
entity-context distribution affects model robustness.
Based on our analysis, we further explore three
potential ways to de-bias the existing NER datasets
by reconstructing the existing datasets and altering
the entity-context distribution. With extensive
experiments, we validate that the reconstructed

datasets can largely improve model robustness.
As these datasets can also benefit model-based
robustness-improving methods, we argue that
building more robust datasets is fundamental for
building more robust NER systems.
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Limitations

We summarize the limitations of this work as
follows: (1) We regard our work as an exploratory
study on the robustness problem of NER from the
dataset view. Nevertheless, the method to measure
the dataset difficulty is not quite efficient since
it requires first training two individual models
on an i.i.d. training set. There might be more
efficient ways to measure the dataset and instance
difficulty, thus further improving the efficiency and
practicality of the data reconstruction methods. (2)
In this work, we consider the robustness problem
of NER models with only small pre-trained models
(model size less than 1B). As the large language
models have shown powerful ability in information
extraction tasks, it is in doubt that if the same
conclusion can also generalize to large language
models. Nevertheless, we believe our study is
worthful since building more robust datasets is
always important for building a NER system
required for real-world usage. We expect our work
can prompt more valuable future works also on
large language models.
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A Appendix

A.1 Discussion of Different CEIM instances

In Section 3.3, we categorized each dataset
into three categories based on the CEIM scores:
high-CEIM instances, low-CEIM instances, and
Near-zero-CEIM instances. Then, we conducted
experiments to show the effect of different
CEIM instances on model robustness. To better
understand the concept of CEIM, we provide some
examples of different CEIM instances in Tab.2.

Generally, the high-CEIM instances often
contain low-PVI contexts. These contexts are often
ambiguous or misleading, thus might introduce
noise in model learning. On the contrary, the
entities in these high-CEIM instances are often
informative enough for the model to predict. As
a result, the model will pay less attention to the
context when trained on high-CEIM instances.
Therefore, removing these low-PVI contexts is
also helpful for de-bias the datasets, as shown in
Sec.4.4.

In near-zero-CEIM instances, the context and the
entity are usually equally supportive (the number of
cases with equally-low context and entity is small).
However, the entity pattern is easier to learn and
memorize. We deduce that the model might still
tend to memorize entity patterns instead of learning
more context, corresponding to the results in Table
3.

The low-CEIM instances consist of high-PVI
context and low-PVI entities. These entities
are often ambiguous, more complicated or less
frequent entities. Therefore, trained on low-CEIM
instances, the model will tend to pay attention
to the informative context for label predicting,
which will benefit robustness. However, as the
generalization to the i.i.d. test sets mainly relies
on high-PVI entities, these low-CEIM instances,
although helpful in OOD situations, might harm
i.i.d. generalizations. In Section 4.2,4.3,4.4,
we validate that an appropriate context-entity
distribution can achieve better trade-off between
i.i.d. and OOD generalization.

A.2 Dataset Details

In Section 3, we examine and analyze the
V-information of 6 commonly used datasets,
including: CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003) from the newswire domain,

OntoNotes 5.0 (Weischedel et al., 2013)4 from the
general domain, Bio-NER (Collier and Kim, 2004)
from the biology domain, ACE 2005 (Walker et al.,
2006)5 the general domain, Twitter (Zhang et al.,
2018) from social media domain and WNUT 2017
(Derczynski et al., 2017) from social media domain.
The dataset details can be found in Table 6.

In Section 4 and further exploration in Section
3, we conduct experiments on CoNLL 2003 and
ACE 2005 to investigate the relation between the
entity-context distribution and model robustness.
Following (Wang et al., 2022), we adopt two
robustness test sets from (Wang et al., 2021):
the OOV test set and the CrossCategory test
set (denoted as "Cate."). The OOV test set
is constructed by replacing entities with out-
of-vocabulary entities of the same category.
The CrossCategory test set is constructed by
replacing entities with entities from different
categories. Therefore, these two robustness test sets
respectively correspond to the two typical failures
of SOTA NER models shown in Figure 1. In Table
9, we show some cases of these two robustness
test sets for better understanding. We also include
quantity details of these two test sets in Table 6.

A.3 Implementation Details for V-information
Experiments

In Section 3, we conducted experiments to
calculate the V-information and PVIs of each
dataset. For both context-only and entity-only
models, we implemented based on the text
classification model based on the Huggingface
library6. To measure the PVI of the whole
training set, we adopted 5-fold cross-validation.
As the PVI of an instance (x, y) only depends
on the distribution of (X,Y ), using 5-fold
cross-validation will not affect the estimation of
PVI (Ethayarajh et al., 2022). We detail the
hyperparameters used for the experiments in Table
7. Other hyperparameters are the same as the
default hyperparameters if not noted.

All experiments are conducted on NVIDIA
GeForce RTX 3090 and NVIDIA Tesla V100. For
each result, we report the average results of 3
repeated experiments.

4https://catalog.ldc.upenn.edu/license/
ldc-non-members-agreement.pdf

5https://catalog.ldc.upenn.edu/license/
ldc-non-members-agreement.pdf

6https://github.com/huggingface/transformers/
tree/main/examples/pytorch/text-classification

https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf
https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf
https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf
https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification


Datasets Domain Language # Class # Train # Dev # Test # OOV # Cate.

CoNLL 2003 News English 4 15.0k 3.5k 3.5k 3.5k 3.5k
OntoNotes 5.0 General English 18 60.0k 8.5k 8.3k − −
ACE 2005 General English 8 9.7k 2.3k 2.0k 1.3k 1.3k
WNUT 2017 Social media English 6 3.4k 1.0k 1.3k − −
Twitter Social media English 4 4.0k 1.0k 3.3k − −
BioNER Biology English 5 18.5k 0.1k 3.9k − −

Table 6: Dataset details.

Dataset Model Epoch lr Batch size
Base model: BERT-base-cased

CoNLL2003 Context-only 2 5e-5 32
Entity-only 1/2 5e-5 32

OntoNotes 5.0 Context-only 2 5e-5 32
Entity-only 1/2 5e-5 32

ACE2005 Context-only 2 5e-5 32
Entity-only 1/2 5e-5 32

WNUT Context-only 5 1e-4 32
Entity-only 3 1e-4 32

Twitter Context-only 5 1e-4 32
Entity-only 3 1e-4 32

BioNER Context-only 3 5e-5 32
Entity-only 1 5e-5 32

Base model: RoBERTa-large

ACE2005 Context-only 2 1e-5 32
Entity-only 1/2 1e-5 16

CoNLL2003 Context-only 2 1e-5 32
Entity-only 1/2 1e-5 16

Table 7: Hyperparameters used for V-information
experiments in Section 3.

A.4 Implementation Details for Dataset
Reconstruction Experiments

We
implemented all BERT-base-cased and RoBERTa-
large dataset reconstruction experiments based on
the token classification model in the Huggingface
library7. For DataAug, we implemented based on
the implementations from (Wang et al., 2022)8. For
MINER, we implemented based on the released
code9. We used batch_size=32, gama=0.001,
beta=0.01, lr=0.00001 for BERT-based base-
lines, and used batch_size=32, gama=0.0001,
beta=0.0001, lr=0.00001 for RoBERTa-based base-
lines. For LPFT, we also implemented based on
the token classification model in the Huggingface
library10. We include the hyperparameters used for
the experiments in Table 8. Other hyperparameters

7https://github.com/huggingface/transformers/
tree/main/examples/pytorch/token-classification

8https://github.com/BeyonderXX/MINER
9https://github.com/BeyonderXX/MINER

10https://github.com/huggingface/transformers/
tree/main/examples/pytorch/token-classification

are the same as the default hyperparameters if not
noted.

All experiments are conducted on NVIDIA
GeForce RTX 3090 and NVIDIA Tesla V100. For
each result, we report the average results of 3
repeated experiments.

Dataset Training set size Epoch lr Batch size
Base model: BERT-base-cased

CoNLL2003
<5000 10 5e-5 8
>5000 7 5e-5 16

ACE2005
<5000 10 5e-5 8
>5000 10 5e-5 16

Base model: RoBERTa-large

CoNLL2003
<5000 10 1e-5 8
>5000 5 1e-5 16

ACE2005
<5000 10 1e-5 8
>5000 5 1e-5 16

Table 8: Hyperparameters used for all dataset
reconstruction experiments, DataAug, and LPFT
baselines in Section 4. Also used for the experiments in
Section 3.3. For LPFT, we train LP models and LPFT
models with the same hyperparameters as in the table.

A.5 Detailed Experiment Results of Data
Reconstruction

In Section 4, we only showed a part of the
experiment results due to space limitation. In
this section, we include other detailed experiment
results, including the results based on RoBERTa-
large in Section 4.2 (Fig.5), the detailed results of
different data reconstruction rates in Section 4.3
(Table 10) and Section 4.4 (Table 11).

https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification
https://github.com/BeyonderXX/MINER
https://github.com/BeyonderXX/MINER
https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification


Dataset Test set Example

CoNLL2003 OOV Bazemore (PER) said the Commodore Books (ORG) ’s credibility was at stake over
the issue of trade and labour .

CoNLL2003 Cate. The Yellow (PER) missed his club ’s last two games after the " National " (ORG)
slapped a worldwide ban on him...

ACE2005 OOV Duygu (PER) happen to be at a very nice Ginowan (LOC) by the beach Lotte Capital (LOC)
this is a chance for Evon (PER) to get away from Sacred Heart Secondary school (ORG)

coverage , everything , and kind of relax

ACE2005 Cate. Reporter : Solomon (PER) is associated with Clive (ORG) since 1987 and been very successful .

Table 9: Examples of the robustness test sets. Cate. denotes the CrossCategory test set.
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Figure 5: Performance of the RoBERTa-large models trained on the reconstructed datasets of different low-CEIM
proportions. We report the average result of 3 repeated experiments.

Methods

Base Model: BERT-base-cased Base Model: RoBERTa-large

CoNLL2003 ACE2005 CoNLL2003 ACE2005

Test OOV Cate. Avg. Test OOV Cate. Avg. Test OOV Cate. Avg. Test OOV Cate. Avg.

Base 91.18 70.89 44.48 68.85 87.48 79.80 44.84 70.71 92.10 72.54 50.01 71.55 88.84 80.84 46.13 71.94

DataAug 90.52 73.45 46.39 70.12 87.16 80.99 44.58 70.91 91.71 76.93 52.18 73.60 88.96 81.95 46.03 72.31

LPFT 91.14 73.89 48.32 71.12 87.76 80.28 44.37 70.80 92.12 75.67 48.53 72.11 88.85 82.10 46.23 72.39

MINER 90.98 76.89 49.97 72.61 87.41 79.23 45.45 70.70 91.88 79.33 56.27 75.83 88.83 82.69 46.75 72.76

A.Random2low

10% 90.99 73.67 46.17 70.28 87.24 80.43 46.69 71.45 91.97 76.59 53.65 74.07 88.85 81.98 49.43 73.42

20% 90.84 76.04 48.24 71.71 87.51 81.23 47.25 71.99 91.84 78.05 54.95 74.95 88.23 82.69 52.13 74.35

30% 90.50 75.62 48.11 71.41 87.03 80.39 47.42 71.62 91.89 78.71 56.89 75.83 88.30 82.41 51.66 74.12

40% 90.42 76.03 47.72 71.39 87.54 81.64 48.28 72.49 91.99 79.00 56.78 75.93 88.54 81.88 51.24 73.88

B.HighC2Low

10% 91.12 75.14 47.53 71.26 87.38 80.38 47.47 71.74 91.83 76.99 53.89 74.24 88.39 81.98 51.13 73.84

20% 91.19 75.84 48.45 71.83 87.43 82.18 48.76 72.79 92.18 78.36 56.11 75.55 88.56 82.81 51.90 74.42

30% 90.72 75.86 48.15 71.58 87.45 81.71 48.03 72.40 91.99 79.20 56.89 76.03 88.51 83.51 52.13 74.72

40% 90.55 77.11 48.92 72.19 87.11 82.32 49.97 73.13 91.76 79.37 57.17 76.10 88.42 83.55 52.72 74.90

C.Redundant2Low

10% 90.52 75.05 47.31 70.96 87.37 81.30 47.72 72.13 91.78 77.87 54.62 74.76 88.94 83.12 50.14 74.07

20% 90.71 76.35 48.02 71.69 87.37 81.28 48.59 72.41 91.82 79.23 57.11 76.05 88.66 84.07 51.89 74.87

30% 90.45 76.70 49.26 72.14 87.27 81.62 47.59 72.16 91.80 79.03 56.70 75.84 88.66 82.52 51.88 74.35

40% 90.42 77.34 48.07 71.94 86.97 82.17 48.41 72.52 91.54 79.52 58.06 76.38 88.67 84.43 53.49 75.53

Dataset Transferability Study (Discussed in Section 4.5)

MINER + HighC2Low 40% 90.71 79.85 53.42 74.66 87.01 80.75 49.87 72.55 91.70 80.33 61.16 77.73 89.37 85.16 54.54 76.36

BERT.HighC2Low 40% − − − − − − − − 91.74 79.18 55.15 75.36 89.11 83.37 52.23 74.90

Table 10: Detailed performance of different approaches to reduce the V-information of entity in the datasets. Each
reported result is averaged by 3 repeated experiments.



Methods

Base Model: BERT-base-cased Base Model: RoBERTa-large

CoNLL2003 ACE2005 CoNLL2003 ACE2005

Test OOV Cate. Avg. Test OOV Cate. Avg. Test OOV Cate. Avg. Test OOV Cate. Avg.

Base 91.18 70.89 44.48 68.85 87.48 79.80 44.84 70.71 92.10 72.54 50.01 71.55 88.84 80.84 46.13 71.94

DataAug 90.52 73.45 46.39 70.12 87.16 80.99 44.58 70.91 91.71 76.93 52.18 73.60 88.96 81.95 46.03 72.31

LPFT 91.14 73.89 48.32 71.12 87.76 80.28 44.37 70.80 92.12 75.67 48.53 72.11 88.85 82.10 46.23 72.39

MINER 90.98 76.89 49.97 72.61 87.41 79.23 45.45 70.70 91.88 79.33 56.27 75.83 88.83 82.69 46.75 72.76

I.Random2High

10% 90.74 72.41 45.59 69.58 87.17 80.19 44.69 70.68 91.60 75.78 53.22 73.53 88.97 81.51 45.96 72.15

20% 90.55 73.45 47.33 70.44 87.25 80.67 45.11 71.01 91.73 77.66 54.73 74.71 88.72 83.43 46.74 72.96

30% 90.95 75.31 48.27 71.51 86.74 80.70 45.03 70.83 91.88 77.66 54.52 74.69 88.67 84.66 47.70 73.67

40% 90.43 76.69 50.20 72.44 86.87 81.21 45.26 71.12 91.67 77.86 54.85 74.79 88.53 84.08 48.81 73.81

II.Low2High

10% 90.74 75.02 47.96 71.24 87.10 80.09 46.38 71.19 91.45 77.74 56.71 75.30 89.08 82.15 50.13 73.79

20% 90.48 76.51 49.90 72.30 87.05 80.79 47.81 71.88 91.30 79.33 59.48 76.70 88.87 84.13 51.93 74.97

30% 90.42 76.87 52.15 73.15 86.99 81.38 46.78 71.71 90.76 79.12 60.52 76.80 88.86 83.60 50.57 74.34

40% 89.72 78.41 55.70 74.61 86.48 82.01 47.78 72.09 90.92 79.58 61.93 77.47 88.67 84.40 52.20 75.09

Dataset Transferability Study (Discussed in Section 4.5)

MINER + Low2High 40% 90.18 79.69 56.03 75.30 87.13 80.16 48.72 72.00 91.72 80.05 61.03 77.60 89.33 84.67 50.07 74.69

BERT.Low2High 40% − − − − − − − − 91.05 79.63 59.79 76.82 88.79 83.28 51.88 74.65

Table 11: Detailed performance of different approaches to enhance the V-information of context in the datasets.
Each reported result is averaged by 3 repeated experiments.


