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Abstract

With the increasing interest in using large lan-001
guage models (LLMs) for planning in natu-002
ral language, understanding their behaviors be-003
comes an important research question. This004
work conducts a systematic investigation of005
LLMs’ ability to perform logical reasoning in006
natural language. We introduce a controlled007
dataset of hypothetical and disjunctive syllo-008
gisms in propositional and modal logic and use009
it as the testbed for understanding LLM per-010
formance. Our results lead to novel insights011
in predicting LLM behaviors: in addition to012
the probability of input (Gonen et al., 2023;013
McCoy et al., 2024), logical forms should be014
considered as important factors. In addition,015
we show similarities and discrepancies between016
the logical reasoning performances of humans017
and LLMs by collecting and comparing behav-018
ioral data from both.019

1 Introduction020

Logical reasoning is a fundamental aspect of build-021

ing AI systems for reliable decision-making (Kautz022

et al., 1992, inter alia)—given a set of premises, an023

AI system should be able to deduce valid conclu-024

sions. With the advent of large language models025

(LLMs; Touvron et al., 2023; Jiang et al., 2023;026

AI@Meta, 2024, inter alia), there has been a surge027

of interest in using these models to assist plan-028

ning and decision-making (Huang et al., 2022, in-029

ter alia); therefore, understanding the logical rea-030

soning capabilities becomes crucial in understand-031

ing the reliability and potential of LLMs in plan-032

ning. While recent work has shown that LLMs033

exhibit decent performance on logical reasoning034

problems (Liu et al., 2020; Ontanon et al., 2022;035

Wan et al., 2024, inter alia), there is still a lack of036

fine-grained understanding of the logical forms—037

among many argument forms presented in natu-038

ral language (Shieber, 1993), do LLMs perform039

equally well, or do they exhibit preferences for040
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Figure 1: Illustration of the fact that perplexity does
not serve as a reliable indicator of logical reasoning
performance; and therefore, neither does probability.
The distributions of the probabilities assigned to the
ground-truth answer (i.e., soft accuracy; Y-axis) by
Llama-3-70B are plotted against the perplexity of the
corresponding example question (X-axis) and grouped
by (a) modality, (b) argument forms, and (c) logic inter-
pretation content. Each group consists of 20 randomly
selected examples with other factors controlled.

certain argument forms? Do more complex compo- 041

nents of logical forms, such as modalities, matter 042

for LLM performance? 043

In this work, we investigate the logical reason- 044

ing capabilities of LLMs by assessing their per- 045

formance on different logical forms. We curate 046

a dataset of natural language statements and ques- 047

tions based on several logical forms in both proposi- 048
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tional and modal logic, which is designed to mirror049

reasoning in daily communication. An example is050

shown in §3.3. We then conduct a series of con-051

trolled experiments to analyze the performance of a052

set of LLMs on the dataset. Although our findings053

generally align with those by Gonen et al. (2023)054

and McCoy et al. (2024), who suggest that LLMs055

excel on examples with high probability, our results056

indicate that logical form, including but not limited057

to modalities and argument forms, is a crucial com-058

plementary factor in predicting the performance of059

LLMs (Figure 1). Additionally, with meaningful060

real-world interpretations, we find that:061

1. LLMs are still far from being perfect in atomic-062

level propositional and modal logic reasoning.063

2. LLMs prefer an affirmative answer under the064

modality of possibility, whereas they prefer a065

negative answer under the modality of necessity.066

3. In line with the recent results on categorical syl-067

logisms (Eisape et al., 2024), we verify on hy-068

pothetical and disjunctive syllogisms that LLMs069

achieve better performance on certain logical070

forms that humans perform well. However,071

some logical forms receive favor from LLMs,072

while the phenomena lack support from human073

intuition or human behavioral data.074

This paper is structured as follows. After reviewing075

related work (§2), we describe the dataset synthe-076

sis process (§3). We report the LLM reasoning077

results on our data (§4), compare them with human078

performance (§5). We conclude by discussing the079

implications of our results and the limitations(§6).080

2 Related Work081

Logical reasoning benchmarks. Prior LLM log-082

ical reasoning benchmarks (Liu et al., 2020; Han083

et al., 2022, inter alia) focus on complex, multi-084

hop reasoning problems with manually annotated085

problems, making cross-problem comparisons chal-086

lenging. Recent work has introduced benchmarks087

with synthesized natural-language questions us-088

ing predefined logical formulas and substitution089

rules (Saparov and He, 2022; Saparov et al., 2023;090

Parmar et al., 2024; Wan et al., 2024, inter alia).091

Compared to them, our work uniquely incorporates092

modal logic, which has been largely unexplored093

in existing benchmarks—while Holliday and Man-094

delkern (2024) present a case study, our approach095

offers two key advances: controlled knowledge096

bias in logic interpretations (§3.3) and a more rig-097

orous statistical evaluation framework (§4.1).098

Propositional and modal logic reasoning in lan- 099

guage models. Recent work has explored training 100

and finetuning language models specifically for log- 101

ical reasoning (Clark et al., 2021; Hahn et al., 2021; 102

Tafjord et al., 2022). Our work differs in two key 103

aspects: (1) we evaluate general-purpose language 104

models through prompting, a cost-efficient setup 105

that has been widely adopted in recent years, and 106

we focus on propositional and alethic modal logic 107

rather than temporal (Hahn et al., 2021) or epis- 108

temic (Sileo and Lernould, 2023) logic; 1 (2) unlike 109

studies comparing LLM and human performance 110

on categorical syllogisms (Eisape et al., 2024, inter 111

alia),2 we focus on hypothetical and disjunctive 112

syllogisms with considerations of modality. 113

Human logic reasoning. Work on human rea- 114

soning capabilities has informed studies of LLM 115

logical reasoning: Eisape et al. (2024) compared 116

LLM syllogistic reasoning with human behavior 117

results (Ragni et al., 2019) under the framework of 118

the Mental Models Theory (Johnson-Laird, 1983); 119

Lampinen et al. (2024) found similar content ef- 120

fects in human and LLM reasoning, supporting the 121

need to control for common-sense knowledge in 122

benchmarks (§3.2); Belem et al. (2024) studied 123

human and LLM perception of uncertainty at a 124

lexical level. Compared to them, we focus on the 125

propositional and modal logic reasoning process 126

and contribute new behavioral data. 127

3 Dataset 128

We curate a dataset of natural-language multi- 129

choice questions to measure the logical inference 130

performance of LLMs. Starting from propositional 131

and modal logical forms as templates (§3.1), we as- 132

sign meanings (e.g., real-world interpretations) to 133

each variable and translate templates into natural- 134

language Yes/No questions ((§3.2). A subsidary 135

visualization of the process is shown in Figure A1. 136

3.1 Background: Propositional and Modal 137

Logic 138

Propositional logic studies the relation between 139

propositions. In this framework, each proposition 140

is typically represented by a variable, and multi- 141

1Technically, any logic that involves non-truth-functional
operators, including first-order logic, temporal logic, and epis-
temic logic, can be viewed as a modal logic; however, we
adopt the most restrictive sense of modal logic (Ballarin, 2023)
and use it interchangeably with alethic modal logic.

2We refer readers to Zong and Lin (2024) for a more com-
prehensive review of categorical syllogisms.
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ple propositions combine with logical connectives142

(e.g., ∨ and →) to form compound propositions.143

In propositional logic, a proposition can be eval-144

uated as either true or false; however, this system145

can be overly simplistic when dealing with the com-146

plexity of real-world events. Consider the state-147

ment Alice is not eating, while it is true in a world148

where Alice is not eating, it may become false in149

a hypothetical possible world where Alice is in-150

deed eating. This idea, known as possible world151

semantics (Kripke, 1959), provides a framework152

for more nuanced statements about event possibili-153

ties, such as Alice may be eating and Alice must be154

eating. The former statement can be understood as155

there exists a possible world where Alice is eating,156

and the latter can be understood as in all possi-157

ble worlds, Alice is eating.3 Normal modal logic158

(Kripke, 1963) formalizes this idea and extends159

propositional logic to reason about event necessity160

and possibility. In the Backus–Naur form, a normal161

modal logic system L can be written as162

L : φ := p | ¬φ | 2φ | 3φ |163

φ ∨ φ | φ ∧ φ | φ→ φ, (1)164

where p is a propositional variable that serves as165

an atom in L, ¬ is the negation operator, 2 is the166

necessity operator (must), 3 is the possibility oper-167

ator (may), ∨ is logical disjunction (or), ∧ is logical168

conjunction (and), and → is the logical implica-169

tion operator (if...then). φ denotes the syntactic170

category of a formula in L. The right-hand side of171

Eq. (1) describes all possible logical formulas un-172

der the system L: for example, if φ ∈ L, the rules173

imply that ¬φ ∈ L, 2φ ∈ L, and so on. Following174

the convention in logic, the operator precedence is175

{¬,2,3} ≻ {∨,∧} ≻ {→}.176

Indeed, the operators (¬,2,→) forms a func-177

tional complete set of operators under L. Suppose178

φ and ψ are variables that represent logical formu-179

las. The logical or (∨) and logical and (∧) operators180

can be rewritten with logical not (¬) and logical181

implication (→), as follows:182

φ ∨ ψ ⇔ ¬φ→ ψ, (2)183

φ ∧ ψ ⇔ ¬ (φ→ ¬ψ) .184

Possibility operator 3 can also be derived from the185

necessity operator.186

3φ⇔ ¬2¬φ (3)187

3The possible world semantics, therefore, connects the no-
tion of necessity and possibility to the universal and existential
quantification (∀,∃) under first-order logic.

Deduction and sequent. Given a formula set Γ as 188

premises, if a deduction to a conclusion φ exists 189

using axiom schemata and inference rules under the 190

normal modal logic, we say the premises infer the 191

conclusion, and the deduction can be represented 192

as a logic sequent Γ ⊢ φ. If a formula set Γ do not 193

infer the conclusion, we denote it as Γ ⊬ φ and call 194

it a non-entailment. 195

3.2 Translating Logic to Natural Language 196

An interpretation maps propositional variables to 197

concrete meanings. For example, under the inter- 198

pretation that p is “Jane is eating apples” and q is 199

“John is eating oranges”, the logical formula p ∨ q 200

becomes “Jane is eating apples or John is eating 201

oranges.” 202

Choices of interpretation, i.e., the concrete con- 203

tent of the sentence, should not affect the un- 204

derlying logical reasoning process. However, in 205

natural-language utterances, reasoning can be in- 206

fluenced by various confounding factors. Knowl- 207

edge bias is a common pitfall. For example, 208

given the logical form {2p→ 2¬q,2p} ⊢ 2¬q, 209

regardless of p’s interpretation, if we interpret 210

¬q := “Cats are not animals” then the conclusion 211

will be “It is certain that cats are not animals.” 212

But common-sense knowledge suggests that “it is 213

certain that cats are animals” (2q), which logi- 214

cally contradicts the existing premise set.4 Such 215

bias will complicate logical reasoning (Lampinen 216

et al., 2024) and should be avoided in data curation. 217

Besides, each variable should have independent 218

interpretation, as detailed in Appendix B.2. 219

After being assigned interpretations, each logi- 220

cal form is further articulated as a yes-no question 221

on whether the conclusion can be inferred from the 222

premises. To mitigate the ambiguity in natural lan- 223

guage, we design heuristic rules to translate logic 224

forms into less ambiguous English, which are de- 225

tailed in Appendix B.2. For the exact wordings we 226

used, see Table A1 in Appendices. If a valid deduc- 227

tion exists (⊢) for the logical form, the ground truth 228

answer is Yes, otherwise No. The answer is solely 229

determined by the logical form and is independent 230

of the interpretation. 231

3.3 Involved Logical Forms 232

Translated logical forms can have varying degrees 233

of naturalness. For example, the necessitation rule 234

{φ} ⊢ 2φ, which translates to “φ is true; therefore, 235

4This confounding factor affects the examples in Table 18
of Han et al. (2022).
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it is certain that φ is true,” appears to be unnatural236

due to redundancy. 5 Based on the relationship237

between ∨ and → in Eq. (2), we use hypothetical238

and disjunctive syllogisms with four basic variants:239

{φ ∨ ψ,¬φ} ⊢ ψ, (∨L)240

{¬φ→ ψ,¬φ} ⊢ ψ, (→L; modus ponens)241

{φ ∨ ψ,¬ψ} ⊢ φ, (∨R)242

{¬φ→ ψ,¬ψ} ⊢ φ. (→R; modus tollens)243

Despite the semantic similarity, these logical244

forms translate to different natural-language ques-245

tions. For example, taking the interpretations246

of φ := Jane is watching a show and ψ :=247

John is reading a book, ∨L translates to248

Consider the following statements:
Jane is watching a show or John is reading a
book.
Jane isn’t watching a show.
Question: Based on these statements, can we
infer that John is reading a book?

With the same interpretation, →L’s translation of249

the first statement is If Jane isn’t watching a show,250

then John is reading a book.251

According to the commutativity of disjunction252

operator, we group ∨L and ∨R together as disjunc-253

tive syllogism, alongside two hypothetical syllo-254

gism groups, modus ponens (→L) and modus tol-255

lens (→R). All the logical forms shown above are256

valid sequents with ground-truth answer Yes. To257

balance the dataset, we introduce some logic fal-258

lacies that generate questions with ground-truth259

label No. By flipping the second premises and the260

conclusions, we obtain the following fallacies:261

{φ ∨ ψ,ψ} ⊬ ¬φ, (∨L
⊬)262

{¬φ→ ψ,ψ} ⊬ ¬φ, (→L
⊬)263

{φ ∨ ψ,φ} ⊬ ¬ψ, (∨R
⊬ )264

{¬φ→ ψ,φ} ⊬ ¬ψ, (→R
⊬ )265

where ∨L
⊬ and ∨R

⊬ are grouped as affirming the dis-266

junction, →L
⊬ and →R

⊬ corresponds to affirming267

the consequent and denying the antecedent, respec-268

tively. In our dataset, we require the formulas φ269

and ψ to the form of Mp and Mq, where p and q270

are propositional variables, each assigned with an271

interpretation. Both variables are constrained under272

the same modality M, which can be necessity (2),273

5Nevertheless, we report the experiment results on neces-
sitation rule in Appendix C.1.

possibility (3) or no modality (∅). Pairing with 274

four rules and theorem–fallacy variations, we have 275

a total of 3× 4× 2 = 24 forms. 276

3.4 Involved Logic Interpretations 277

For logic interpretations, we generate a set of verb 278

phrases by prompting the CodeLlama 2 model 279

(Rozière et al., 2024), and select 204 of them manu- 280

ally. and combine them with top-200 popular baby 281

names in the US into subject-verb-object pairs,6 282

such as (Ray,make, a pizza). We randomly gener- 283

ate 1000 interpretations with two pairs each. The 284

same set of interpretations is applied to variables 285

p, q in each logic sequent’s natural langauge tem- 286

plate. In total, there are 24× 1000 = 24000 ques- 287

tion, with samples shown in Table A1. 288

4 Experiment 289

4.1 Metrics and Investigated Models 290

Hu and Levy (2023) have suggested that the stan-
dard approach of greedily decoding yes-no strings
(Dentella et al., 2023) may underestimate the com-
petence of a language model; therefore, we adopt a
probability-based metric to evaluate the model per-
formance. In our evaluation protocol, the predicted
likelihood of the tokens Yes and No, conditioned on
the prompt s—denoted as p(Yes | s) and p(No | s),
respectively—serve as the soft labels for yes-no an-
swers. The soft accuracy p̂ on the single example
with ground-truth answer y ∈ {Yes, No} is defined
as the relative probability of y:

p̂ =
p(No | s)1[y = No] + p(Yes | s)1[y = Yes]

p(No | s) + p(Yes | s)
,

where 1[·] is the indicator function that returns 1 291

if the condition is true and 0 otherwise. This rel- 292

ative probability can also be viewed as the confi- 293

dence score of the model on the ground-truth an- 294

swer. The soft accuracy Accsoft of a model on 295

the entire dataset D is defined as the average soft 296

accuracy over all examples, 297

Accsoft =
1

|D|

|D|∑
i=1

p̂i. 298

299We use a zero-shot setting to investigate the gen- 300

eral performance of the models’ logical inference 301

capabilities—while adding detailed instructions or 302

few-shot demonstrations may increase the absolute 303

performance, they are at the cost of introducing 304

6https://www.ssa.gov/oact/babynames/names.zip
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Overall Leaderboard Modality Argument Form

Model (Rank) (Rank) ∅ 2 3 ∨L,R
⊢ →L

⊢ →R
⊢ ∨L,R

⊬ →L
⊬ →R

⊬

mistral-7b 0.645 (4) 0.145 (7) 0.464 0.496 0.974 0.877 0.663 0.280 0.434 0.653 0.939
mistral-8x7b 0.724 (1) 0.193 (5) 0.698 0.601 0.874 0.963 0.873 0.023 0.757 0.648 0.813
llama-2-7b 0.335 (10) 0.094 (10) 0.262 0.207 0.538 0.444 0.147 0.315 0.208 0.451 0.468
llama-2-13b 0.513 (9) 0.110 (9) 0.488 0.362 0.688 0.418 0.581 0.393 0.631 0.436 0.591
llama-2-70b 0.611 (5) 0.127 (8) 0.616 0.471 0.746 0.446 0.845 0.518 0.775 0.389 0.694
llama-3-8b 0.565 (6) 0.239 (3) 0.598 0.460 0.639 0.526 0.470 0.332 0.664 0.625 0.716
llama-3-70b 0.714 (2) 0.362 (1) 0.745 0.554 0.843 0.606 0.773 0.515 0.882 0.661 0.788
yi-34b 0.518 (8) 0.226 (4) 0.457 0.413 0.683 0.346 0.498 0.205 0.685 0.638 0.737
phi-2 0.532 (7) 0.155 (6) 0.469 0.456 0.673 0.670 0.757 0.522 0.365 0.402 0.510
phi-3-mini 0.690 (3) 0.272 (2) 0.657 0.536 0.877 0.839 0.974 0.475 0.664 0.462 0.604

OpenAI-o1 0.926 N/A N/A N/A 1.000 0.773 1.000 0.895 1.000 0.775 0.919 1.000 1.000
Gemini-1.5-Pro 0.859 N/A N/A N/A 0.831 0.748 0.997 1.000 1.000 0.919 0.661 0.991 0.638

human 0.595 N/A N/A N/A 0.589 0.566 0.640 0.691 0.901 0.628 0.594 0.225 0.411

Table 1: Overall and break-down accuracies of different models, as well as their HuggingFace OpenLLM Leader-
board performance and relative ranking (Fourrier et al., 2024). Each argument form category denotes the union
of the fine-grained categories specified in the superscripts and subscripts—for example, ∨L,R

⊢ denotes the entire
disjunctive syllogism group. Boldfaced values indicate the row-wise maximum for each factor. Note that due to
technical limitations of commercial LLMs, results from OpenAI-o1 (OpenAI, 2024) and Gemini-1.5-pro (Team
et al., 2024) are greedy-decoding based evaluation on 2,000 random samples that serve as references, and are
therefore not directly comparable to other probability-based evaluations. Human results are detailed in §5.

possibly undesired confounding factors or behav-305

iors, such as simply copy-pasting the answers in306

the examples.307

We evaluate on the following models with open-308

sourced weights: mistral-7b-v0.2 and -8x7b (Jiang309

et al., 2023, 2024); llama-2-7b, -13b and -70b (Tou-310

vron et al., 2023); 3.1 version of llama-3-8b and311

-70b (AI@Meta, 2024); yi-34b (01.AI, 2024); phi-2312

and phi-3-mini (Microsoft, 2023, 2024).7313

4.2 Results: Performance w.r.t. Logical Forms314

We evaluate the aforementioned models with the315

probability-based protocol (Table 1). Generally,316

models that rank higher in the leaderboard also317

achieve higher soft accuracy on our dataset. The318

break-down accuracies on modalities and argument319

forms reveal that:320

1. (Modality) All models consistently perform bet-321

ter on the possibility (3) than necessity (2) or322

plain propositional logic.323

2. (Argument Forms) The pattern is more diverse,324

yet most of the models struggle the most on325

modus tollens (→R
⊢ ) within logic sequents (i.e.,326

questions with ground-truth answers Yes), and327

affirming the consequent (→L
⊬) within fallacies.328

7Our evaluation protocol technically requires the condi-
tional probabilities of specified answers given a prompt, which
are not supported by most commercial models; however, we
report the greedy-decoding accuracy of these models on a
sample subset for reference.

4.2.1 Analysis on Logic Sequents 329

To systematically analyze the effect on model per- 330

formance of each factor of interest, as well as cross- 331

validating the observations above, we fit a linear 332

mixed-effects model (Raudenbush, 2002) to the 333

soft accuracy data on valid logic sequents (i.e. with 334

ground truth of Yes) across different LLMs and 335

logical forms, 336

Accsoft ∼ Modality + ArgForm + Perplexity 337

+ (1 + Perplexity | LLM), (4) 338

with the linear fixed effects of (i.) modality, (ii.) 339

argument form, and (iii.) input perplexity. Indi- 340

vidual probability, coupled with a constant term, is 341

modeled as a random effect to account for potential 342

model-specific biases. Here, Perplexity denotes the 343

perplexity of the input text (x1x2 . . . xN ), which 344

is defined as the exponential of the token-wise av- 345

erage negative log-likelihood of the text given a 346

specific language model: 347

Perplexity = exp

(
− 1

N

N∑
i=1

log p(xi | x<i)

)
348

The mixed-effects model yields a marginal R2 of 349

0.342 and a conditional R2 of 0.543, suggesting 350

a reasonable predictive power. The likelihood ra- 351

tio test on the full regression model vs. the null 352

regression model without each of the fixed effects 353
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Figure 2: Estimated marginal means of logical form
factors in the mixed-effects model of Eq. (4), along with
their 95% confidence intervals.

Hypothesis p-value

propositional < may < 0.001
must < propositional < 0.001
must < may < 0.001

disjunctive < modus ponens < 0.001
modus tollens < modus ponens < 0.001
modus tollens < disjunctive < 0.001

Table 2: Hypothesis testing results on the effect of
logical form factors on soft accuracy (Figure 2).

yields a significant result (p < 0.001), suggesting354

the importance of all these factors in determining355

the model performance.356

Fixed effects. In line with Gonen et al. (2023) and357

McCoy et al. (2024), we find a negative correlation358

between perplexity and soft accuracy (p < 0.001);359

however, the correlation is weak (ρ = −0.09),360

which suggests the necessity of the complemen-361

tary factors below in predicting LLM performance.362

For different modalities and argument forms, we363

estimate their marginal means on soft accuracy364

(Figure 2), and perform pairwise hypothesis testing365

on the estimated coefficients (Table 2). The results366

generally align with the general observations on367

the full dataset. The only exception is that modus368

ponens (→L), instead of disjunctive syllogism (∨),369

appears to be the easiest argument form (i.e., the370

one with the highest soft accuracy) among all.371

Random effects. We analyze the per-LLM ran-372

dom effects on the soft accuracy (Figure 3). All373

the model-specific mixed effects of perplexity are374

negative, suggesting the negative correlation be-375

0.20.10.0
phi-3-mini

phi-2

yi-34b

llama-3-70b

llama-3-8b

llama-2-70b

llama-2-13b

llama-2-7b

mistral-8x7b

mistral-7b
(a) Perplexity
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(7)

(8)

(2)

(6)

(5)

(9)
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(1)

(4)
(b) Intercept

Figure 3: Illustration of per-model random effects on
soft accuracy in the mixed-effects model of Eq. (4) with
99.9% confidence intervals. (a) Mixed effects (i.e., the
sum of fixed and random effects) of perplexity. (b)
Intercept random effects (i.e., constant term per model
on soft accuracy), with the model performance rank
(Table 1) annotated in parentheses.

tween perplexity and soft accuracy is consistent 376

across models (Figure 3a). While the intercept 377

random effects are not perfectly aligned with the 378

model performance—since the perplexity random 379

effects may introduce confounding factors—higher- 380

ranked models generally tend to have higher in- 381

tercept random effects (Figure 3b), which cross- 382

validates the general performance ranking. 383

4.2.2 Extended Analysis on the Negative 384

Perplexity–Performance Correlation 385

We further investigate the negative correlation be- 386

tween perplexity and model performance through 387

a controlled experiment: we create a mirror dataset 388

of the same size, keeping all the logical formulas 389

while interpreting them with nonsensical words. 390

For example, the formula 3(φ ∨ ψ) may be in- 391

terpreted as it’s possible that Neva is balaring a 392

montery or Lucille is sweeling prandates, where 393

the underlined words and phrases are nonsensical. 394

Intuitively, the perplexity of the problems in this 395

mirror dataset should be much higher than that of 396

the primary dataset problems (§3) under any rea- 397

sonably trained language model. 398

We analyze the correlation between perplexity 399

and model performance (Figure 4). As desired, 400

the perplexity of problems with nonsensical words 401

are indeed much higher than that of the primary 402

dataset (≈ 30 vs. ≈ 10). The significant portion 403

of horizontal and inclined lines in the figures again 404

suggests that perplexity is not a reliable predictor 405

of model performance. Meanwhile, the overall 406
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represents an average over a group of 1000 prompts that share the same underlying logic sequent. Two connected
dots share the same logic formula.
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Figure 5: Estimated marginal means of the factors in
the mixed-effects model of Eq. (5) with 95% confidence
intervals. Higher coefficients indicate a higher tendency
to affirm the claim.

parallelism of the lines echos our results that logical407

forms are important factors for such prediction.408

4.2.3 The Affirmation Bias over Modalities409

One key argument of Dentella et al. (2023) is that410

large language models exhibit a bias towards affirm-411

ing the claim, i.e., answering Yes more frequently412

than No. We investigate this phenomenon by fitting413

a mixed-effects model414

P (Yes | s)
P (Yes | s) + P (No | s)

∼ Modality + ArgForm415

+ Perplexity + (1 + Perplexity | LLM), (5)416

which has the same structure as Eq. (4), except the417

dependent variable being the relative probability of418

answering Yes conditioned on input text s.419

We present the estimated marginal means of420

the factors in the mixed-effects model (Figure 5).421

While our results confirm the affirmation bias on422

propositional logic, such bias is slightly less pro-423

nounced on the possibility modality (3, around424

0.03), and the models even show a bias towards425

rejecting claims under the necessity modality (2).426

5 Human Experiments 427

LLMs are trained on text produced by humans and 428

are able to generate plausible text; therefore, there 429

have been interests in using LLMs as human mod- 430

els (Eisape et al., 2024; Misra and Kim, 2024, inter 431

alia). Following this line of work, we conduct a hu- 432

man behavioral experiment to ground the LLM rea- 433

soning behavior. Using samples from our primary 434

dataset, we collected 710 responses from adults flu- 435

ent in English through Prolific.8 More experiment 436

details can be found in Appendix A.2. 437

The average human accuracy on each group is 438

shown in the last row of Table 1.9 Aligned with our 439

LLM results (§4), on modalities the overall human 440

results also show an accuracy order of (3 ≻ ∅ ≻ 441

2), and on argument forms, modus ponens (→L) 442

is the most accurately answered pattern. 443

To further investigate the interactions of logic 444

factors, we fit a generalized linear mixed-effects 445

model (Bates et al., 2015) to verify the effect of 446

modality and argument forms on human logic rea- 447

soning accuracy (Eq. (6) and Figure 6). 448

logit(Acc) ∼ Modality + ArgForm + Rt 449

+ (1 + Rt | ParticipantID), (6) 450

where Acc is the binary accuracy of human re- 451

sponses, and Rt is the response time. The gen- 452

eralized mixed-effects model yields a marginal R2 453

of 0.121 yet a 0.419 conditionalR2, indicating a di- 454

verse response pattern across participants. The like- 455

lihood ratio test on the full model against the null 456

model shows that only the effect of argument form 457

8https://prolific.com
9Human responses are binary classes, so correct and incor-

rect responses are coded as 1 and 0, respectively.
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Figure 6: Estimated marginal means of logical form
factors in the generalized mixed-effects model of Eq. (6),
along with their 95% confidence intervals.

is significant (χ2(2) = 25.6, p < 0.001). How-458

ever, in accordance with the overall performance,459

we find modus ponens (→L) has a significantly460

higher effect than other two valid argument forms.461

This confirms that logical forms can also have a462

significant impact on human reasoning accuracy,463

which is consistent with the LLM results, although464

the effect sizes are not the same.465

6 Conclusion and Discussion466

We present an analysis of hypothetical and disjunc-467

tive syllogisms on propositional and modal logic468

and systematically analyze the LLM performance469

on the dataset. Our analysis provides novel insights470

on explaining and predicting LLM performance: in471

addition to the perplexity or probability of the input472

text, the underlying logic forms play an important473

role in determining the performance of LLMs. In474

addition, we compare the behaviors of LLMs and475

humans using the same data through human behav-476

ioral experiments. We discuss the implications of477

our results as follows.478

Probability in language models. Probability and479

perplexity are often used as intrinsic evaluation480

metrics for language models. While Gonen et al.481

(2023) and McCoy et al. (2024) show that probabil-482

ity and perplexity correlate well with LLM perfor-483

mance, literature in program synthesis with LLMs484

shows little correlation between probability and485

execution-based evaluation results (Li et al., 2022;486

Shi et al., 2022). This work does not necessarily487

contradict either line but rather provides comple-488

mentary factors for analyzing LLM performance.489

We argue that probability may have become an 490

overloaded term in analyzing LLMs. Low proba- 491

bility may be due to one or more of the following 492

non-exhaustive reasons: (1) out-of-context content, 493

(2) ungrammatical language, or (3) grammatical 494

but semantically awkward content (cf. the mirror 495

dataset in §4.2.2), (4) reasonable but rare content. 496

We hypothesize that the probability of language 497

models may not be essentially able to capture all 498

these nuanced differences, and call for encoding 499

and decoding algorithms—such as Meister et al. 500

(2023)—that can better decompose the probability 501

into finer-grained and explainable components. 502

Comparing humans and LLMs. What is our goal 503

for building LLMs? To achieve better performance 504

on practical tasks or to build a more human-like 505

model? Our results, together with Eisape et al. 506

(2024), suggest that these two goals may not be per- 507

fectly aligned by revealing a mixture of similarity 508

and discrepancy between LLMs and humans—for 509

example, while LLMs exhibit higher benchmark 510

performance than humans on our dataset and show 511

the same argument form preferences with humans 512

(Figures 2 and 6), they also show systematic biases 513

that we do not find significant in human reasoning 514

(e.g., disfavoring the necessity modality, §4.2.3). 515

While there has been positive evidence of using 516

LLMs as human models in psycholinguistic stud- 517

ies (Misra and Kim, 2024, inter alia), our results 518

suggest executing such approaches cautiously. 519

On the relation between modality and perfor- 520

mance. Our results show that there is a significant 521

difference in performance between necessity and 522

possibility modalities, with the former much lower 523

than the latter (Table 1). Part of the reason for this 524

is that LLMs have a significant tendency to say 525

“No” to necessity modality (Figure 5). 526

On the one hand, our results extend the conclu- 527

sion of Dentella et al. (2023) that LLMs generally 528

respond positively—LLM behaviors may be signif- 529

icantly affected by finer-grained factors, including 530

but not necessarily limited to the modality involved 531

in the input. On the other hand, while LLMs sys- 532

tematically tend to answer “No” to questions in 533

necessity modality, we do not find related evidence 534

in human experiments, which leads us to hypothe- 535

size that such rejection bias comes from either the 536

model architecture or the training strategies, such 537

as the reinforcement learning with human feedback 538

(RLHF; Ouyang et al., 2022) protocol. We leave 539

this as an open question for future research. 540

8



Limitations541

This work comes with two major limitations:542

1. While we have verified that our data has a low543

perplexity (9.82± 2.47 under mistral-7b; much544

lower than that of the data by Wan et al. (2024),545

25.44), and, therefore, are similar enough to nat-546

ural language utterances, the synthetic language547

cannot fully substitute natural language in daily548

life. Our dataset and analysis are not comprehen-549

sive enough to cover many nuanced examples550

that may appear in real communication, espe-551

cially when context-dependent understanding is552

crucial to conveying communication goals.553

2. Despite more than 7,000 languages worldwide,554

as a first step, our material only covers English.555

This narrow focus is due to the languages the556

authors are proficient in and the coverage of the557

language models. We acknowledge the impor-558

tance of extending the scope of this work to a559

more comprehensive set of languages and leave560

the extension as an immediate follow-up step.561

In addition, the sample size of human experi-562

ments is somewhat limited. We leave more com-563

prehensive human behavioral data collection and564

analysis to future work.565

Ethics Statement566

While this work involves human logical reasoning567

experiments, we have ensured that (1) the data are568

generated procedurally following templates listed569

in the paper and (2) there is no harmful content570

in the atomic logical interpretations, reviewed by571

all the authors. In addition, we have ensured that572

all participants are paid a fair wage through the573

Prolific platform. Instructions and consent forms574

delivered to the participants can be found in the Ap-575

pendix A.2. The institutional ethics review board576

has approved the data collection process.577

This work contributes to the understanding of578

LLMs. We do not foresee risk beyond the minimal579

risk posed by LLM evaluation work. We acknowl-580

edge that using LLMs in real-world scenarios could581

significantly impact human behaviors, raising the582

need for model transparency, safety, security, and583

interpretability. We will open-source the synthetic584

logical reasoning dataset upon publication.585
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A Additional Experiment Details 803

A.1 LLM Experiment Details 804

All LLMs used are obtained from Hugging Face 805

checkpoints. Time and compute power require- 806

ments vary, the largest llama-3-70b model takes 807

around 2 hours on NVIDIA A6000 GPU to obtain 808

all results in §4. 809

A.2 Human Experiment Details 810

Participant consent. We use the following lan- 811

guage to obtain consent from participants, where 812

our institution name is replaced with the Anony- 813

mous Institution to protect the anonymity of sub- 814

mission. 815

This study is part of a scientific research project 816

at the Anonymous Institution. Your decision to com- 817

plete this study is voluntary. There is no way for us 818

to identify you. The only information we will have, 819

in addition to your responses, is the demographic 820

information you provided to Prolific and the time at 821

which you completed the survey. The results of the 822

research may be presented at scientific meetings or 823

published in scientific journals. Clicking on the but- 824

ton below indicates that you are at least 18 years 825

of age and agree to complete this study voluntarily. 826

Press the button below to start the experiment. 827

Participant instructions. We use keys F and J, 828

which are roughly symmetric on a standard English 829

keyboard, to collect participant responses. Half of 830

the participants see the following instruction: 831

In this study, you will be presented with two 832

statements followed by a question. Your task is to 833

answer either Yes or No to the question, based on 834

the information provided in the statements. Please 835

respond quickly and accurately by pressing "F" for 836

Yes, and "J" for No. 837

To mitigate the possible bias introduced by the 838

dominant hand, we have the other half of the par- 839

ticipants see instruction with reversed keys: In this 840

study, you will be presented with two statements fol- 841

lowed by a question. Your task is to answer either 842

Yes or No to the question, based on the information 843

provided in the statements. Please respond quickly 844

and accurately by pressing "F" for No, and "J" for 845

Yes. 846

Participant wage. We offer participants an 847

hourly wage of 1.5 times Prolific’s minimum wage. 848

The duration is determined by the median comple- 849

tion time among all participants. 850
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B Extra Details of the Dataset851

B.1 Data Synthesis Pipeline852

To better explain the data synthesis process, we853

provide a detailed visualization of our pipeline in854

Figure A1.855

B.2 Considerations in Translating Logical856

Form to Natural Language857

During the interpretation process, another key point858

is to assign independent interpretations to vari-859

ables. Deciding the dependency also involves com-860

mon sense knowledge. For example, consider the861

premises ¬p → q and q. If we interpret p :=862

“Jane is inside the house” and q := “Jane is out”863

to proposition variables p and q, the two variables864

are possibly not independent. According to com-865

mon sense, “Jane is not inside the house” (¬p)866

correlates with or is even equivalent to “Jane is out”867

(q). Logically, {¬p→ q, q} ⊬ ¬p; however, with868

the extra premise ¬p↔ q given by common sense,869

people may conclude that ¬p.10870

Besides, natural language is ambiguous—one871

sentence in natural language can come from mul-872

tiple logical forms under the same interpretation.873

We use present tense and progressive aspect to en-874

courage a reading of imaginary ongoing events,875

corresponding to the alethic modality. Such events876

are less likely to induce LLM’s or human’s individ-877

ual bias, as they are unrelated to factual knowledge878

or moral judgements. Also, we always use two879

full verb phrases, ruling out sentences like “Jane880

is eating apples or oranges,” so the two events are881

less likely to be mutually exclusive. In this way, we882

can reduce the ambiguity of the questions in our883

dataset.884

B.3 Data Samples885

All logic forms and corresponding natural language886

sentences can be found in Table A1.887

The exact prompt format is as follows:888

Consider the following statements:\n
Jane is watching a show or John is reading a book.\n
Jane isn’t watching a show.\n
Question: Based on these statements, can we infer that John
is reading a book?\n
Answer:<eof>

10This confounding factor affects the examples in Figure
10 of Holliday and Mandelkern (2024).

C Additional Experiments 889

C.1 Extra Experiment: Introduction Rule of 890

Modality 891

We report the results on the necessitation rule and 892

its variants here, as these rules are obscure and 893

verbose to be articulated in natural language: 894

{φ} ⊢ 2φ, (necessitation rule) 895

{φ} ⊢ 3φ, 896

{φ} ⊢ φ. 897

Its natural language form is as follows: 898

Jane is watching a show.
(2) Can we infer that it’s certain that Jane is watching

a show?
(3) Can we infer that it’s possible that Jane is watch-

ing a show?
(∅) Can we infer that Jane is watching a show?

All three variants are paired with 1000 logic in- 899

terpretations. As they are all rules of inference, 900

the ground truth answer is always Yes. Overall 901

accuracy is shown in Table A2, where across all 902

LLMs, the necessitation rule has the lowest accu- 903

racy. This echoes the necessity modality’s tendency 904

to be rejected discussed in §4.2.3. 905

We further fit a linear mixed-effects model simi- 906

lar to Eq. (4), except that the argument form effect 907

is now constant across all data points. The mixed- 908

effects model yields a marginal R2 of 0.391 and 909

a conditional R2 of 0.745. Estimated marginal 910

means shows that the accuracy on ∅ is 0.171 less 911

than 3, but 0.371 higher than 2, with both dif- 912

ferences significant at p < 0.0001. This further 913

suggests that modality serves as an important fac- 914

tor on logic reasoning performance. 915

C.2 Extra Experiment: Distribution of 916

Modalities 917

Besides the necessitation rule, distribution axiom 918

is the other fundamental axiom in normal modal 919

logic. It can be transformed into the rule shown 920

in Eq. (A1), and plugging in the definition of ∨ in 921

Eq. (2) gives the rule shown in Eq. (A2). Notice 922

that Eq. (A2) closely resembles rule ∨L’s variant 923

with necessity, as shown in Eq. (A3), except the dif- 924

ferent scope of the necessity operator and the posi- 925

tion of the negation operator. Moving the negation 926

operator out of the necessity operator will result in 927
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Validity Modality Argument Form Logical Form Natural Language

⊢ ∅ ∨L {p ∨ q,¬p} ⊢ q Jane is watching a show or John is reading a book.
Jane isn’t watching a show.
Can we infer that John is reading a book?

∅ ∨R {p ∨ q,¬q} ⊢ p Jane is watching a show or John is reading a book.
John isn’t reading a book.
Can we infer that Jane is watching a show?

∅ →L {¬p → q,¬p} ⊢ q If Jane isn’t watching a show, then John is reading a book.
Jane isn’t watching a show.
Can we infer that John is reading a book?

∅ →R {¬p → q,¬q} ⊢ p If Jane isn’t watching a show, then John is reading a book.
John isn’t reading a book.
Can we infer that Jane is watching a show?

2 ∨L {2p ∨ 2q,¬2p} ⊢ 2q It’s certain that Jane is watching a show or it’s certain that John is reading a book.
It’s uncertain whether Jane is watching a show.
Can we infer that it’s certain that John is reading a book?

2 ∨R {2p ∨ 2q,¬2q} ⊢ 2p It’s certain that Jane is watching a show or it’s certain that John is reading a book.
It’s uncertain whether John is reading a book.
Can we infer that it’s certain that Jane is watching a show?

2 →L {¬2p → 2q,¬2p} ⊢ 2q If it’s uncertain whether Jane is watching a show, then it’s certain that John is reading
a book.
It’s uncertain whether Jane is watching a show.
Can we infer that it’s certain that John is reading a book?

2 →R {¬2p → 2q,¬2q} ⊢ 2p If it’s uncertain whether Jane is watching a show, then it’s certain that John is reading
a book.
It’s uncertain whether John is reading a book.
Can we infer that it’s certain that Jane is watching a show?

3 ∨L {3p ∨ 3q,¬3p} ⊢ 3q It’s possible that Jane is watching a show or it’s possible that John is reading a book.
It’s impossible that Jane is watching a show.
Can we infer that it’s possible that John is reading a book?

3 ∨R {3p ∨ 3q,¬3q} ⊢ 3p It’s possible that Jane is watching a show or it’s possible that John is reading a book.
It’s impossible that John is reading a book.
Can we infer that it’s possible that Jane is watching a show?

3 →L {¬3p → 3q,¬3p} ⊢ 3q If it’s impossible that Jane is watching a show, then it’s possible that John is reading
a book.
It’s impossible that Jane is watching a show.
Can we infer that it’s possible that John is reading a book?

3 →R {¬3p → 3q,¬3q} ⊢ 3p If it’s impossible that Jane is watching a show, then it’s possible that John is reading
a book.
It’s impossible that John is reading a book.
Can we infer that it’s possible that Jane is watching a show?

⊬ ∅ ∨L {p ∨ q, q} ⊬ ¬p Jane is watching a show or John is reading a book.
John is reading a book.
Can we infer that Jane isn’t watching a show?

∅ ∨R {p ∨ q, p} ⊬ ¬q Jane is watching a show or John is reading a book.
Jane is watching a show.
Can we infer that John isn’t reading a book?

∅ →L {¬p → q, q} ⊬ ¬p If Jane isn’t watching a show, then John is reading a book.
John is reading a book.
Can we infer that Jane isn’t watching a show?

∅ →R {¬p → q, p} ⊬ ¬q If Jane isn’t watching a show, then John is reading a book.
Jane is watching a show.
Can we infer that John isn’t reading a book?

2 ∨L {2p ∨ 2q,2q} ⊬ ¬2p It’s certain that Jane is watching a show or it’s certain that John is reading a book.
It’s certain that John is reading a book.
Can we infer that it’s uncertain whether Jane is watching a show?

2 ∨R {2p ∨ 2q,2p} ⊬ ¬2q It’s certain that Jane is watching a show or it’s certain that John is reading a book.
It’s certain that Jane is watching a show.
Can we infer that it’s uncertain whether John is reading a book?

2 →L {¬2p → 2q,2q} ⊬ ¬2p If it’s uncertain whether Jane is watching a show, then it’s certain that John is reading
a book.
It’s certain that John is reading a book.
Can we infer that it’s uncertain whether Jane is watching a show?

2 →R {¬2p → 2q,2p} ⊬ ¬2q If it’s uncertain whether Jane is watching a show, then it’s certain that John is reading
a book.
It’s certain that Jane is watching a show.
Can we infer that it’s uncertain whether John is reading a book?

3 ∨L {3p ∨ 3q,3q} ⊬ ¬3p It’s possible that Jane is watching a show or it’s possible that John is reading a book.
It’s possible that John is reading a book.
Can we infer that it’s impossible that Jane is watching a show?

3 ∨R {3p ∨ 3q,3p} ⊬ ¬3q It’s possible that Jane is watching a show or it’s possible that John is reading a book.
It’s possible that Jane is watching a show.
Can we infer that it’s impossible that John is reading a book?

3 →L {¬3p → 3q,3q} ⊬ ¬3p If it’s impossible that Jane is watching a show, then it’s possible that John is reading
a book.
It’s possible that John is reading a book.
Can we infer that it’s impossible that Jane is watching a show?

3 →R {¬3p → 3q,3p} ⊬ ¬3q If it’s impossible that Jane is watching a show, then it’s possible that John is reading
a book.
It’s possible that Jane is watching a show.
Can we infer that it’s impossible that John is reading a book?

Table A1: Samples of all logical forms and corresponding natural language sentences.
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Form Template

InterpretationWord Pairs

{φ ∨ ψ,¬φ} ⊢ ψ

(Jane, watch, show)
(John, read, book)

φ = Jane is watching a show
ψ = John is reading a book

It is true that φ or it is true that ψ.
It isn’t true that φ.
Is it true that ψ?

Consider the following statements:
It is true that Jane is watching a show or . . .

it is true that John is reading a book.
It isn’t true that Jane is watching a show.
Question: Based on these statements, can we infer . . .

that John is reading a book?
Answer:

Logic

Content

Figure A1: The data synthesis pipeline: for each variable in logic forms (§3.1) we assign meanings to them to obtain
the natural language question-answering pairs (§3.2).

∅ 2 3

mistral-7b 0.998 0.885 0.999
mistral-8x7b 0.957 0.540 0.987
llama-2-7b 0.768 0.013 0.920
llama-2-13b 0.368 0.004 0.829
llama-2-70b 0.511 0.051 0.834
llama-3-8b 0.398 0.225 0.783
llama-3-70b 0.674 0.384 0.794
yi-34b 0.960 0.382 0.999
phi-2 0.814 0.226 0.892
phi-3-mini 0.992 0.925 0.994

Table A2: Overall accuracy of the necessitation rule
and its modality variants on each model.

a fallacy (Eq. A4).928

{2(φ→ ψ),2φ} ⊢ 2ψ, (A1)929

{2(φ ∨ ψ),2¬φ} ⊢ 2ψ, (A2)930

{2φ ∨2ψ,¬2φ} ⊢ 2ψ, (A3)931

{2(φ ∨ ψ),¬2φ} ⊬ 2ψ. (A4)932

We say (A2) to (A4) are of argument form933

theorem, base and spurious, respectively. See934

Table A3 for the logical forms and their ground935

truth we used to study the distribution of modali-936

ties. The natural language form is as follows:937

It’s certain that if Freddy is not going
shopping, then Coy is making dinner.

(theorem) It’s certain that Freddy is not going shop-
ping.

(spurious) It’s uncertain whether Freddy is going
shopping.
Can we infer that it’s certain that Coy is
making dinner?

This group of rules and fallacies comes from938

the fact that the necessity modality 2 is not dis-939

tributive to disjunction, i.e. 2(φ ∨ ψ) ⊬ 2φ ∨2ψ940

(Xiang, 2019, Ex. 5). In contrast, the possibility941

Modality Argument Form Logical Form

∅ base φ ∨ ψ,¬φ ⊢ ψ
2 base 2φ ∨ 2ψ,¬2φ ⊢ 2ψ
2 theorem 2(φ ∨ ψ),2¬φ ⊢ 2ψ
2 spurious 2(φ ∨ ψ),¬2φ ⊬ 2ψ
3 base 3φ ∨3ψ,¬3φ ⊢ 3ψ
3 theorem 3(φ ∨ ψ),3¬φ ⊢ 3ψ
3 spurious 3(φ ∨ ψ),¬3φ ⊢ 3ψ

Table A3: Logical forms and their ground truth to study
the distribution of modalities. Only the spurious form
of the necessity modality (marked by underline) has a
ground truth of false.

modality 3 is distributive to disjunction. This par- 942

ticular case could have served as a material to test 943

the LLM’s knowledge of the asymmetry between 944

the two modalities, yet in §4.2.3 we showed that 945

there is a bias towards rejection on the necessity 946

modality. As the false case of the disjunction is 947

on the necessity modality, this bias confounds the 948

experiment. 949

We fit a linear mixed-effects model similar to 950

Eq. (4) to the data, 951

Accsoft ∼ Modality × ArgForm + Perplexity 952

+ (1 + Perplexity | LLM), 953

with an interaction term between the modality and 954

argument form. On the theorem form compared 955

to the base form, the necessity modality 2 has a 956

0.173 higher estimated marginal means with p < 957

0.0001 significance, yet the possibility modality 3 958

has a 0.071 lower estimated marginal means. On 959

the spurious form compared to the base form, 960

the 2 has a 0.312 higher means, and the 3 has no 961

significant difference. On both forms, 3 ≻ 2 in 962

terms of accuracy still holds at a slight margin of 963

0.110 and 0.047 respectively. 964
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To verify whether on 2 the performance increase965

on spurious form is due to the rejection bias, we966

fit a linear mixed-effects model with the relative967

probability of answering Yes as dependent variable.968

Results show that on spurious form compared to969

the base form, the effect of 2’s tendency to answer970

Yes is only 0.060 lower, indicating the rejection971

bias of the base form is still present. Therefore,972

we hypothesize that the LLM’s performance on973

recognizing the fallacy of necessity distribution974

over disjunction is hindered by the rejection bias975

on the necessity modality.976
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