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ABSTRACT

To achieve effective image inpainting, it is crucial for the model to understand
contextual information. Previous studies using CNN-based algorithms have en-
countered limitations due to the absence of long-range dependencies, which re-
sulted in the model’s inability to capture contextual information. In this paper,
we propose a Multi-Scale Window-based Transformer model for high-quality im-
age inpainting. We introduce a transformer network with multi-scale windows to
capture the influence of different window sizes and gather significant contextual
information. To effectively integrate features processed through self-attention, we
modified the polarized self-attention network to align with the dimensions of the
multi-window scale. We also propose the Selective Mask Update method, which
captures vital information from features processed by self-attention, enabling the
generation of higher-quality results. Experiments show that it effectively fills in
missing areas and demonstrates superior performance on the benchmark dataset
compared to other models.

1 INTRODUCTION

Image inpainting (completion) aims to restore damaged images by filling in their empty areas with
plausible content. This technique can be applied in various areas, including photo editing (Jo &
Park, 2019) and image restoration (Wan et al., 2018). It can also be utilized for object removal
(Shetty & Schiele, 2018), removing unwanted objects within images.

To achieve successful image inpainting, it is crucial for the model to grasp contextual information.
The contextual information refers to the inferred information derived from the surrounding pixels
of the missing areas in the image. Sufficient availability of contextual information is essential for
creating the shape, structure, and texture of the missing regions. Previous studies (Yan et al., 2022;
Yu et al., 2021) have utilized a convolutional neural network (CNN) with an encoder-decoder archi-
tecture to comprehend relevant surrounding information for the purpose of restoration. However,
these CNN-based algorithms are effective in restoring small missing areas but struggle with larger
ones. For images with large missing areas, the spatial distance between the normal regions and the
areas that need to be filled increases. This makes it challenging to perceive and effectively utilize
meaningful contextual information. This issue arises from the limitation of the receptive field of
CNNs, which hinders the learning of global features and long-range dependencies (Yu et al., 2018)

To address this issue, a model based on the Transformer architecture (Vaswani et al., 2017), which
incorporates self-attention as a fundamental component in every layer, has been introduced. Im-
age inpainting algorithms based on the Transformer excel in capturing global information and, as
a result, they are more capable of utilizing meaningful contextual information compared to algo-
rithms relying on CNNs. For these reasons, recent advancements in image inpainting have led to the
proposal of Transformer-based models (Yan et al., 2018; Zhang et al., 2018a).

Most models based on Vision Transformers (ViT) (Dosovitskiy et al., 2021) divide input images
into tokens of a single patch size for self-attention or use tokens divided into windows for self-
attention within each window, as seen in the Swin-Transformer (Liu et al., 2021b) based models. It
often uses a fixed window size per transformer block for conducting self-attention. This approach
fails to account for the impact of different window sizes and struggles to appropriately handle ob-
jects of varying sizes. Consequently, it is limited in capturing multidimensional information based
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Figure 1: Successfully restored inpainting results by the proposed Multi-Scale Window based Trans-
former Network (MSWTN). In each image pair, the left side depicts the masked input image, while
the right side shows the restored image.

on object sizes, resulting in restricted contextual information (Ren et al., 2022). Therefore, we
propose a Multi-Scale Window based Transformer Network (MSWTN), capable of restoring even
large missing regions. MSWTN incorporates the Multi-Scale Window-based Transformer (MSWT)
block to perform parallel self-attention using multi-scale windows. This approach aims to acquire
more diverse contextual information by employing various windows simultaneously. The features
processed by self-attention in parallel are merged using the Multi-Scale Window-based Polarized
Self-Attention (MW-PSA) mechanism to achieve effective fusion. MW-PSA combines channel and
spatial information, providing better results compared to traditional attention mechanisms. More-
over, to reduce computational cost and enhance non-local interactions, the model utilizes multi-head
contextual attention (MCA) (Li et al., 2022) instead of traditional multi-head self-attention. MCA
conducts self-attention only using valid tokens based on a binary mask that distinguishes between
the missing and normal areas in images, calculating non-local information. Valid tokens are deter-
mined by this binary mask, which is updated at each transformer block, gradually increasing the
count of valid tokens. In this paper, we propose a Selective Mask Update to reflect key information
from the features that undergo self-attention.

The experimental results, as shown in Figure 1, successfully fill in large missing regions. Further-
more, we also demonstrate superior performance on the respective dataset compared to other image
inpainting models. The advantages of the method proposed in this paper are as follows:

• In this study, we propose MSWTN, an image inpainting model designed to restore large
missing areas with high quality. This model utilizes a multi-scale window-based trans-
former architecture and outperforms existing inpainting models.

• MSWTN consists of the MSWT module, which conducts parallel self-attention using win-
dows of multiple dimensions. This allows the model to capture various contextual infor-
mation for restoration. We also propose the MW-PSA module to effectively fuse features
that underwent MCA in MSWT.

• To achieve efficient mask updating, we proposed the Selective Mask Update module. The
module extracts tokens from the output of MSWT and updates the mask by incorporating
the positions of these tokens. Consequently, MSWTN efficiently fills the missing regions
by prioritizing tokens that contain key information through self-attention.

2 RELATED WORK

2.1 IMAGE INPAINTING

Image inpainting, also known as image completion, is the process of filling large missing regions
in images with plausible content. It holds significant interest in the field of computer vision. Deep
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Figure 2: The proposed MSWTN in this paper. It consists of the MSWT module for image restora-
tion and the SMU module for mask updating. The input image and mask pass through convolutional
neural network layers, and the final output is restored using convolutional neural network layers

learning has had a profound impact on image inpainting and has facilitated advancements in this
field. Methods based on CNNs include encoder-decoder networks that learn the relationships be-
tween missing and non-missing areas in order to restore them (Yu et al., 2019). However, archi-
tectures that solely rely on CNNs have limitations when it comes to filling large missing areas. To
address this, attention-based modules were integrated into the existing encoder-decoder structures to
achieve more photorealistic results for the missing areas (Liu et al., 2019; Ronneberger et al., 2015;
Yu et al., 2021). Moreover, in pursuit of effectively filling even larger missing regions, models using
multiple transformer blocks were introduced (Li et al., 2022; Yan et al., 2018) to comprehend long-
range semantics for the missing areas. In (Yan et al., 2018), different patch sizes were processed
for each attention head, enabling the capture of context information from various patch sizes. How-
ever, even with these models, limitations persist when dealing with challenging datasets due to the
insufficient contextual information for larger missing areas.

2.2 VISION TRANSFORMER

In the field of computer vision, transformers have gained attention for their successful performance.
The first vision transformer designed for images is ViT (Dosovitskiy et al., 2021), which divides
images into fixed-size patches for computation. However, performing self-attention on the en-
tire image using fixed-size patches results in high computational costs. To address this, the Swin
Transformer (Liu et al., 2021b) introduced Window-based Multi-head Self-Attention (W-MSA),
where self-attention is conducted only within specific windows. However, due to the fixed window
sizes within transformer blocks, it is not possible to fully consider the impact of different window
sizes. According to previous research (Li et al., 2022; Wang et al., 2004), fixed window sizes can
limit model performance and restrict the availability of contextual information. Consequently, sev-
eral multi-dimensional information-based vision transformer models (Chen et al., 2021; Li et al.,
2022; 2021; Wang et al., 2004) have been proposed. In Li et al. (2022), patches divided by multi-
dimensional windows within a transformer block are individually subjected to self-attention. In
Chen et al. (2021), the image patches are divided into two branches based on their sizes in order to
extract multi-dimensional feature maps for cross-attention. These models have demonstrated better
performance than traditional vision transformer models. In this paper, we introduce MSWTN for
high-quality image inpainting, which is using multi-dimensional windows to obtain context infor-
mation without constraints imposed by window sizes.

3 METHOD

3.1 OVERALL MODEL

The proposed MSWTN architecture is depicted in Figure 2. It takes a masked image and its corre-
sponding binary mask as inputs, with the goal of restoring the missing areas. The model consists of
two main blocks: the MSWT (Multi-scale Window-based Transformer) block responsible for image
restoration, and the SMU (Selective Mask Update) block responsible for updating the mask. The up-
dated mask is then used as an input to MSWT, performing MCA (Multi-Head Contextual Attention)
(Li et al., 2022) along with the input image. In MCA, the updated mask allows for self-attention
among valid tokens. The input image undergoes tokenization through a convolution block and then
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Figure 3: The proposed MSWT module, the core component of the proposed model. (A) depicts
the entire network structure of MSWT, while (B) illustrates the MW-PSA network designed for the
fusion of features that have passed through MCA.

passes through five transformer blocks. The initial convolution block is used for two main purposes:
firstly, utilizing local inductive priors in the initial layers can result in improved representations,
and secondly, downsampling the original image reduces computational complexity. The input di-
mensions of the five transformer blocks vary due to patch merging and patch upsampling. Through
patch merging, the width and height dimensions of features in each layer decrease by half, while
the channel dimension doubles. Conversely, patch upsampling is calculated in reverse compared
to patch merging. The output of the last transformer block is passed through convolutional neural
network layers to restore the original input size. Furthermore, U-Net (Ronneberger et al., 2015) is
employed at the end to enhance the local textures, thereby improving the fine details of the image.

3.2 MULTI-SCALE WINDOW BASED TRANSFORMER

In this study, we propose a new transformer block called MSWT that enhances the restoration per-
formance of large missing regions. Unlike conventional vision transformer structures, MSWT uses
multi-scale windows to perform window partitioning for window-based self-attention. This ap-
proach aims to capture and utilize information based on multiscale windows. As shown in Figure2
(A), each transformer block consists of four main modules: MCA (Multi-head Contextual Atten-
tion), MW-PSA (Multi-Scale Window-based Polarized Self-Attention), FC (Fully Connected) layer,
and MLP (Multi-Layer Perceptron). This can be formulated as follows:

xl+1 = MLP(FC(x́l))
x́l = concat(MW − PSA(x̂l), xl)

x̂l = concat(
{
MCAi(x

l
i)
}
)

(1)

In equation (1), the function concat() is feature concatenation. Where the input feature denoted
by x ∈ RH×W×C and the number of windows nwin, x is divided into i-th window in l-th block.
After passing through MCA in parallel, the features are restored to dimension H×W× C

nwin
and

then concatenated along the channel dimension to output x̂l. x̂l is fused into a single output through
MW − PSA, and the output is combined with initial input xl. This passes through the FC layer and
MLP to produce the final feature xl+1 of the block. In this paper, number of windows is nwin = 3
and each window’s size set to wini(i=1,2,3) = {4, 8, 16}. We determined them through performance
comparisons based on experiments.

3.2.1 MULTI-HEAD CONTEXTUAL ATTENTION (MCA)

In image inpainting, a masked image consisting of valid tokens and invalid tokens is often used.
Using existing window based self-attention leads to inefficiencies in computational cost since it
operates on both valid and invalid token. Moreover, it can weaken the information of valid tokens,
limiting its effectiveness in filling the missing pixel information. To address this, we introduce

4



Under review as a conference paper at ICLR 2024

Figure 4: The visualization of proposed Selective Mask Update.

the Multi-Head Contextual Attention (MCA) (Li et al., 2022) to our model, which performs self-
attention only on valid tokens based on the mask. This achieve higher quality inpainting results than
results from normal self-attention. The equation for MCA is as follows:

Att(Q,K,V) = Softmax(
QVT +M′

√
dk

)V (2)

where Q,K,V is query, key, value respectively, and dk is a scaling factor. M′ stands for the mask,
where it is set to 0 for valid tokens (non-missing areas) and -3000 for invalid tokens(missing areas).
Therefore, MCA determines self-attention values based on whether the token is valid of not.

3.2.2 MULTI-SCALE WINDOW BASED POLARIZED SELF-ATTENTION (MW-PSA)

The output of MCA passes through MW-PSA for effective fusion. MA-PSA is devised based on
the Polarized Self-Attention (Liu et al., 2021a), and its structure is shown in Figure 2 (B). The input
to MW-PSA is denoted as x̂l ∈ RH×W×C , and the results from MCA for each window size are
denoted as x̂l

i ∈ RH×W× C
nwin , then x̂l = concat({x̂l

i, i = (1, · · ·, nwin)}) in this context. The
equation of MW-PSA is as follow:

MW − PSA(x̂l) = Attw−ch(x̂
l) +Attw−sp(x̂

l) (3)

Where Attw−ch(·) is window-based channel-only attention, Attw−sp(·) is also window-based
spatial-only attention. The final output of MW-PSA is obtained by combining the features that
have passed through both attention modules. The equation of Attw−ch(·) is as follow:

Attw−ch(x̂
l) = concat({Fadd(x̂

l
i⊙chŵ

l
i),

i = (1, · · ·, nwin)}),
ŵl = Fsm(concat({wi

l, i = (1, · · ·, nwin)})),
ŵl

i ∈ R1×1× C
nwin ,

wi
l = Fgap(Fconv(x̂

l
i)) ∈ R1×1× C

nwin

(4)

x̂l
i is passing through 1x1 convolution layer Fconv and global average pooling Fgap , and results in

attention weight ŵl
i. The attention weight for each window features ŵl

i are concatenated and then
passed through softmax operation Fsm along the channel dimension. The weights for chnnel-only
attention ŵl

i corresponding i-th window feature are computed through channel-wise multiplication
with the input x̂l

i . Subsequently, element-wise addition Fadd is performed, resulting in a dimension
H ×W × 1. The outputs of Fadd are concatenated to have same dimension as the initial one. The
same process applies to window-based spatial-only attention, with the attention weights’ dimension
is transformed to ŵl

i ∈ RH×W×1. Through this process, it’s possible to perform spatial and channel
attention not just for a single feature but for multiple window features. This essentially allows con-
ducting both attention for various window-based results, which is the structure ensures that minimal
information leak occurs while enabling the fusion of MCA outputs.

3.2.3 SELECTIVE MASK UPDATE

The mask is binary, where valid tokens have a value of 1, while invalid tokens are assigned a value
of 0. This mask determines whether the MCA operation is applied to the position of the respective
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token. The goal of SMU is to fill all the empty regions of the image, making the mask update
process a transformation of all tokens into valid tokens in the mask. The input consists of the
window features x̂l

i after MCA and the inverse mask M′ to be updated. where m′
j signifies the

tokens within the inverse mask M′ = {m′
j |j = 0, 1, · · ·, s} , and s represents the number of tokens.

The mask updating process proceeds as follows:

A = Ftop−k(

nwin∑
i=1

Fsm(σ(x̂l
i))⊙M ′) (5)

x̂l
i is adjusted in dimension through reshape σ to make the one channel, followed by softmax oper-

ation across pixels Fsm. This process assigns importance to each pixel’s location, determining the
significance based on the pixel’s positional information. We conduct element-wise multiplication
between the positional information and inverse mask to determine which positions of tokens in the
missing regions. This operation is performed for all window-based information and the and results
are summed up. The combined features then undergo Top-K selection Ftop−k , K is adaptable based
on the image size. Consequently, the Top-K Selection operation, the set of indices token A corre-
sponding to the K most significant tokens is generated as output. The tokens corresponding to these
indices in set A are updated as valid tokens, completing the final mask update process.

m′
j =

{
0, ifj ∈ A
1, ifj /∈ A

}
(6)

Therefore, the Selective Mask Update introduced in this paper utilizes the feature information after
MCA to update the mask. Through Top-k selection, it extracts essential information and updates the
positions of this information. This approach allows the utilization of crucial information within the
image to restore empty regions, resulting in improved outcomes.

3.3 LOSS FUNCTIONS

To enhance the quality of image generation, this paper combines adversarial loss (Creswell et al.,
2018), perceptual loss (Johnson et al., 2016), and style loss (Gatys et al., 2016) in an optimal manner
to train the model.

Adversarial Loss. In order to train the Generative Adversarial Network (GAN) stably, which
is widely employed in image generation, this paper introduces the non-saturating adversarial loss
(Creswell et al., 2018).

LG = −Ex̂ [log (D (x̂))]
LD = −Ex [log (D (x))]− Ex̂ [log (1−D (x̂))]

(7)

In the equation (7), x represents real images, and x̂ represents fake images generated by the genera-
tor. Both the generator and discriminator are optimized according to their respective loss functions.

Perceptual Loss. The perceptual loss is obtained by using feature maps from a pre-trained VGG-16
network. It involves comparing the feature maps of the generated images with the feature maps of
the real images, aiming to create more realistic images by minimizing the differences between these
feature maps.

Lperc =

N∑
i=1

ηi ∥ϕi(x̂) − ϕi(x)∥1 (8)

Where ϕi is the activation function of i-th layer in the pretrained VGG-16 network, and ηi is the
scailing coefficient.

Style Loss. For achieving finer texture restoration, Style loss has been incorporated. Similar to the
perceptual loss, Style loss also employs the feature maps of pre-trained VGG-16 layers. The Gram
matrices of these feature maps and the ground truth (GT) are computed, and then the Mean Squared
Error (MSE) is calculated between these Gram matrices. The process can be represented by the
following equation:

Lstyle =

N∑
i=1

ηi

∥∥∥ϕi(x̂)(ϕi(x̂))
T − ϕi(x)(ϕi(x))

T
∥∥∥
1

(9)

6



Under review as a conference paper at ICLR 2024

Table 1: Quantitative comparison for the Places365 and CelebA-HQ datasets. All images are of size
256 x 256, and the results are divided between Small Mask and Large Mask. The highest performing
values are indicated in bold.

Datasets Places368-standard CelebA-HQ
Mask size Small Large Small Large

FID MSWTN(ours) 1.07 2.74 2.61 4.85
MAT[11] 1.15 2.99 2.94 5.16

CoModGAN[18] 2.06 6.18 5.12 14.56
DeepFill v2[19] 6.83 22.23 5.14 12.79

MADF[20] 12.80 18.42 5.55 11.13
RFR[21] 8.34 25.88 8.75 23.81

P-IDS(%) MSWTN(ours) 19.08 12.30 20.48 14.17
MAT[11] 18.89 13.33 10.56 13.90

CoModGAN[18] 18.98 16.79 5.45 0.43
DeepFill v2[19] 4.39 1.08 6.68 1.30

MADF[20] 14.39 8.45 3.74 0.80
RFR[21] 13.19 3.90 0.05 0.03

U-IDS(%) MSWTN(ours) 39.29 31.63 32.58 24.47
MAT[11] 37.62 30.23 22.85 25.13

CoModGAN[18] 35.12 24.43 15.87 13.80
DeepFill v2[19] 22.58 10.87 17.67 3.07

MADF[20] 18.78 16.33 15.84 3.17
RFR[21] 20.61 9.36 12.93 0.84

Overall Loss. In the overall loss function, R1 regularization (Mescheder et al., 2018) has been
applied, and the equation for this regularization term is as follow.

R1 = Ex ∥ ∇D (x) ∥ (10)

The final overall loss function for the generator is composed as follows:

L = LG + λ1R1 + λ2Lperc + λ3Lstyle (11)

Where λ1 = 10, λ2 = 0.1, λ3 = 0.1

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

We conducted experiments using two datasets, namely Places365 (Zhou et al., 2018) and CelebA-
HQ (Karras et al., 2018). The image resolution for both datasets was set at 256x256 pixels. For
the Places365 dataset, approximately 1.8 million images were used for training, and 36,500 images
were used for validation. In the case of CelebA-HQ, the training set consisted of 27,007 images,
and the validation set comprised 2,993 images. Two types of masks, referred to as small and large
masks, were employed for testing. These masks were generated using the free-form mask generation
approach from DeepFill v2 (Yu et al., 2019). For the small mask, we defined the range of the missing
area ratio as [0.0, 0.4], and for the large mask, we set it to [0.0, 0.9]. Masks were generated through
random sampling within these specified ranges. These mask ratios were determined with Li et al.
(2022).

We used a batch size of 16 and employed the Adam optimizer. The learning rate was set to 1x10−3,
β1 = 0 , β2 = 0.99. The experiments were conducted on a PC equipped with two parallel NVIDIA
GeForce RTX 3090 GPUs.

4.2 RESULTS

We compared the results of our experiments with those of state-of-the-art in image inpainting. The
comparison is carried out through both qualitative and quantitative analyses. In the quantitative
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Figure 5: Qualitative comparison between the proposed model and other existing models for the
Places365 dataset. From left to right: Ground Truth (GT), Masked Input, Proposed Model, and
results from comparative models.

comparison, three metrics—FID (Heusel et al., 2017), P-IDS (Zhao et al., 2021), and U-IDS (Zhang
et al., 2018a)—are utilized for comparison. PSNR and SSIM (Wang et al., 2004) are excluded from
our evaluation as they have been shown in numerous studies (Ledig et al., 2017) to exhibit significant
discrepancies with human perception when assessing the quality of high-resolution images.

4.2.1 COMPARISON WITH SATE OF THE ARTS

Quantitative comparisons. In this experiment, we compared our proposed model MSWTN with
several state-of-the-art (SOTA). To ensure a fair comparison, both training and testing were con-
ducted on the same dataset, and the same set of masks was used for testing across all models. The
models to compared are MAT (Li et al., 2022), CoModGAN (Zhao et al., 2021), DeepFillv2 (Yu
et al., 2019), MADEF (Zhu et al., 2021), and RFR (Li et al., 2020). Quantitative comparison re-
sults presented in Table 1 indicate that our proposed MSWTN outperforms the comparison models.
When evaluating on the Places dataset using small masks, MSWTN achieves the highest perfor-
mance across all metrics. For large masks, MSWTN achieves the highest performance in all metrics
except for PIDS. Similar trends are observed on the CelebA-HQ dataset, where MSWTN achieves
the best performance for small masks and also best performance for large masks, excluding UIDS.
The CoModGAN achieves the highest PIDS score on large masks for the Places dataset, while the
MAT records the highest UIDS score on large masks for the CelebA-HQ dataset. Our proposed
MSWTN ranks third in terms of PIDS and second in UIDS scores for these datasets.

Qualitative comparisons. For visual comparison of the results, we compare the test results of our
proposed MSWTN model and five other comparative models with the ground truth images from
the CelebA-HQ and Places365 datasets. Figure 5 shows the test results of the proposed MSWTN
model and five comparative models for the Places365 dataset. The results are all of size 256x256
and restoration with large masks. It is evident that the result images from MSWTN closely resemble
the ground truth (GT) and exhibit fewer artifacts compared to the results of other models.
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Table 2: Quantitative comparison for the ablation study. The dataset used is CelebA-HQ, and Models
A, B, and C represent the models with specific modules removed from the Full Model.

Model FID P-IDS(%) U-IDS(%)

Full Model 4.85 14.17 24.47
A - MSWT 5.20 12.13 21.23
B - MW-PSA 5.01 11.89 23.94
C - SMU 4.99 12.60 23.67

4.2.2 ABLATION STUDY

In this section, an experiment was conducted to assess the impact of the modules that constitute
the proposed model on performance. The experiment was carried out using the CelebA-HQ dataset
under the same conditions as mentioned in section 4.1. The goal was to compare performance by
gradually removing modules from the full model proposed in this paper. The quantitative compari-
son of these results can be observed in Regarding performance, all three metrics were best achieved
when the full model was used. In case A, the performance is demonstrated when the MSWT module
is removed, and instead, the basic Swin-Transformer is utilized. Across all three metrics, a degrada-
tion of over 10% compared to the full model is evident. This indicates that the proposed MSWTN is
significantly influenced by the MSWT module, implying that the structure incorporating the multi-
scale window proposed is effective for inpainting tasks. In case B, the result is obtained when the
MW-PSA is omitted from the full model, and the output of MSWT is fused with a simple convo-
lutional neural network layer. In this case, the performance demonstrates the most significant drop
compared to other models. Therefore, the fusion process of MSWT’s output is found to be highly
crucial. Lastly, case C represents the results when only the Selective Mask Update is omitted from
the Full Model, and the conventional mask update mechanism is used. Among the three modules,
this case shows the least performance discrepancy compared to the full model.

5 CONCLUSION

We propose a multi-scale windows-based transformer for high-quality video inpainting. We con-
ducted parallel self-attention through multi-dimensional windows to incorporate diverse contextual
information, achieving superior performance compared to existing models. Furthermore, we in-
troduce a Multi-scale Window Polarized Self-attention(MW-PSA), which efficiently fuses features
obtained through MCA in both channel and spatial dimensions. Additionally, addressing the ineffi-
ciency of existing mask update methods, we propose the Selective Mask Update (SMU) approach.
This method involves updating the masks of prioritized regions based on tokens that have undergone
self-attention. We have observed that our model exhibits superior performance compared to other
models in both quantitative and qualitative evaluations.
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APPENDIX

A MASK DETAILS

Figure 6: The images of the free-form masks used in the experiments, (a) represents a sample of the
large mask, and (b) represents a sample of the small mask.

We randomly generated free-form masks. Free-form masks were created based on Yu et al. (2019),
generating random-sized rectangles and specifying the ranges for the number of rectangles and
strokes to construct both large masks and small masks. The stroke ranges for both large masks
and small masks were referenced from Li et al. (2022). For large masks, the number of generated
rectangles is uniformly sampled within [0, 5], and the number of strokes is randomly sampled from
[0, 9]. For small masks, the number of generated rectangles is sampled from [0, 3], and the number
of strokes is constrained within [0, 4]. The generated large masks were used for training on the
experimental dataset, and for testing, both large masks and small masks were employed. Figure 6
shows each mask dataset.

B ADDITIONAL ABLATION STUDY

Table 3: Quantitative comparison for the additional ablation study. Model (A) represents the Full
Model, Models (B), and (C) represent the models with specific modules removed from the Full
Model.

Model LPIPS PSNR SSIM

(A) Full Model 0.097 23.30 0.82
(B) - MW-PSA 0.102 22.89 0.81
(C) - SMU 0.100 23.16 0.81

In this section, we provide additional results for the ablation study. The ablation study was per-
formed on the CelebA-HQ dataset, and Table 3 presents a quantitative comparison conducted as an
additional performance evaluation to assess the impact of each module. As additional performance
metrics, we used LPIPS (Zhang et al., 2018b), PSNR and SSIM (Wang et al., 2004). It was ob-
served that the Full Model outperformed the others in all three metrics. Among these metrics, it
was observed that model (B) exhibited the most significant difference from the Full Model in terms
of LPIPS and PSNR. Specifically, the PSNR showed a clear difference compared to other metrics,
and this observation also applied to model (C). In the case of SSIM, both models showed the least
noticeable difference when compared to the Full Model. However, model (B) displayed the lowest
performance in terms of LPIPS and PSNR compared to the Full Model, indicating the significant
impact of the MW-PSA module.
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Qualitative comparisons for this are presented in Figure 7. It can be observed that model (A) restored
the image most closely to reality compared to the other models. Specifically, detailed areas such as
the eyes were well-formed and did not appear artificial.

Figure 7: Qualitative comparison for the additional ablation study. (A), (B), and (C) models are the
same as the models in Table 3.
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C ADDITIONAL RESULTS

We conducted experiments on the CelebA-HQ (Karras et al., 2018) dataset and the Places365 (Zhou
et al., 2018) dataset. In this regard, we provide additional Qualitative comparisons for experiments
conducted with the proposed model MSWTN and various state-of-the-art methods. Figure 8 shows
visual results for the CelebA-HQ dataset, while Figure 9 depicts additional visual results for the
Places dataset. The proposed model MSWTN exhibits more realistic restoration results compared
to other models, with less noise in the images.

Figure 8: Qualitative comparison between the proposed model and other existing models for the
CelebA-HQ dataset.
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Figure 9: Qualitative comparison between the proposed model and other existing models for the
Places365 dataset.
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