
MetaQA: Combining Expert Agents for Multi-Skill Question Answering

Anonymous ACL submission

Abstract

The recent explosion of question answering001
(QA) datasets and models has increased the in-002
terest in the generalization of models across003
multiple domains and formats by either train-004
ing on multiple datasets or combining multiple005
models. Despite the promising results of multi-006
dataset models, some domains or QA formats007
may require specific architectures, and thus the008
adaptability of these models might be limited.009
In addition, current approaches for combin-010
ing models disregard cues such as question-011
answer compatibility. In this work, we pro-012
pose to combine expert agents with a novel,013
flexible, and training-efficient architecture that014
considers questions, answer predictions, and015
answer-prediction confidence scores to select016
the best answer among a list of answer pre-017
dictions. Through quantitative and qualitative018
experiments, we show that our model i) cre-019
ates a collaboration between agents that outper-020
forms previous multi-agent and multi-dataset021
approaches, ii) is highly data-efficient to train,022
and iii) can be adapted to any QA format. We023
release our code and a dataset of answer predic-024
tions from expert agents for 16 QA datasets to025
foster future research of multi-agent systems1.026

1 Introduction027

The large number of question answering (QA)028

datasets released in the past years has been ac-029

companied by models specialized in them (Rogers030

et al., 2021; Dzendzik et al., 2021). These datasets031

and models differ by the domain (e.g., biomedi-032

cal and Wikipedia), required skills (e.g., numerical033

and multi-hop), and format (e.g., extractive and034

multiple-choice). This variety of tasks and overspe-035

cialization of the corresponding models have led036

the community towards developing simple unified037

models that can generalize across domains and for-038

mats through unifying dataset formats (Khashabi039

et al., 2020), creating models trained on multiple040

1https://anonymous.4open.science/r/MetaQA-3468

Figure 1: Given a question, each expert agent provides a
prediction with a confidence score and MetaQA selects
the best answer. Correct answers in green. Wrong
answers in red.

datasets (Fisch et al., 2019; Talmor and Berant, 041

2019; Khashabi et al., 2020), and designing ensem- 042

ble methods for QA agents (Geigle et al., 2021). 043

All these research lines have a potential impact on 044

end-user applications because generalization can 045

help create robust systems and ease the implementa- 046

tion of QA models. More abstractly, these research 047

lines also share a central research question: how to 048

combine QA skills. 049

We argue that a one-size-fits-all architecture may 050

encounter some limitations in combining QA skills. 051

For instance, Raffel et al. (2020) have observed 052

that a single model trained on multiple tasks may 053

underperform the same architecture trained on a 054

single task. An alternative approach is to combine 055

multiple expert agents. Geigle et al. (2021) propose 056

a model that given a question and a list of datasets, 057

selects the dataset from which the question comes. 058

This can be used to identify agents trained on a spe- 059

cific type of questions. However, despite achieving 060

a classification accuracy greater than 90%, this ap- 061
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proach underestimates high-performing models on062

out-of-domain questions.063

To address the limitations of previous ap-064

proaches, we propose a novel model, MetaQA, to065

combine heterogeneous expert agents (i.e., differ-066

ent architectures, formats, and tasks). It takes a067

question, and a list of candidate answers with con-068

fidence scores as input and selects the best answer069

(Figure 1). We modify the embedding mechanism070

of the Transformer encoder (Vaswani et al., 2017)071

to embed the confidence score of each candidate072

answer. In addition, we use a multi-task training073

objective that makes the model learn two comple-074

mentary tasks: selecting the best candidate answer075

and identifying agents trained on the domain of the076

input question.077

Our approach learns to match questions with078

answers, an immensely easier task than the end-079

to-end QA of multi-dataset models. This makes080

MetaQA remarkably data efficient as it only uses081

16% of the training data of multi-dataset models.082

We compile a list of 16 QA datasets that en-083

compass different domains, formats, and reasoning084

skills to conduct experiments. Through quantitative085

experiments, we show that our MetaQA i) estab-086

lishes a successful collaboration between agents, ii)087

outperforms multi-agent and multi-dataset models,088

iii) excels in minority domains, and iv) is highly089

efficient to train. Our contributions are:090

• A new approach for multi-skill QA that estab-091

lishes a collaboration between agents.092

• A model called MetaQA that utilizes question,093

answer, and confidence scores to select the094

best candidate answer for a given question.095

• Extensive analyses showing the successful col-096

laboration between agents and the training ef-097

ficiency of our approach.098

• A dataset of (QA Agents, Questions, and an-099

swer predictions) triples that cover different100

QA formats, domains, and skills to foster fu-101

ture developments of multi-agent models.102

2 Related Work103

Currently, there are two approaches for multi-skill104

QA: multi-agent and multi-dataset models.105

Multi-agent models consists of combining mul-106

tiple expert agents. A well-known method is the107

Mixture of Experts. It requires training a set of108

models and combining their outputs with a gat- 109

ing mechanism (Jacobs et al., 1991). However, 110

this approach would require jointly training mul- 111

tiple agents, which can be extremely expensive, 112

and sharing a common output space to combine 113

the agents. These limitations make it unfeasible 114

to implement in our setup, where many heteroge- 115

neous agents are combined (i.e., agents with dif- 116

ferent architectures, target tasks, and output for- 117

mats such as integers for multiple-choice or answer 118

spans for span extraction). Inspired by topic clas- 119

sification, Geigle et al. (2021) proposed mapping 120

questions to QA datasets (topics) to identify agents 121

trained on that type of questions. Although related 122

to us, their work does not attempt to achieve any 123

agent collaboration. Moreover, because of their 124

topic-classification approach, agents that are effec- 125

tive in out-of-domain questions are underestimated. 126

Lastly, Friedman et al. (2021) average the weights 127

of adapters (Houlsby et al., 2019) trained on single 128

datasets to obtain a multi-dataset model. However, 129

their architecture is limited to span extraction. 130

Multi-dataset models consist of training a 131

model on various datasets to generalize it to mul- 132

tiple domains. Talmor and Berant (2019) conduct 133

extensive analyses of the generalization of QA mod- 134

els. However, they only experiment on extractive 135

tasks and, due to their model architecture (BERT 136

for span extraction), it is not possible to extend it to 137

other tasks such as abstractive or visual QA. Fisch 138

et al. (2019) created a competition on QA gen- 139

eralization using 18 datasets. These datasets are 140

from very different domains, such as Wikipedia and 141

biomedicine, among others. However, they also fo- 142

cus only on extractive datasets. Lastly, Khashabi 143

et al. (2020) shows that the different QA formats 144

can complement each other to achieve a better gen- 145

eralization. They use an encoder-decoder architec- 146

ture and transform the questions into a common 147

format. However, we argue that their approach 148

is limited because some questions may require a 149

specific skill that must be modeled in a particular 150

manner (e.g., numerical reasoning), and this is not 151

possible with their simple encoder-decoder. 152

3 Model 153

We propose a new model, shown in Figure 2, to 154

combine k QA agents. Each agent i is trained on 155

domain domi and predicts an answer Ansi. With- 156

out loss of generalizability, we assume that each 157

agent is trained on a different domain and each 158
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question belongs to one of these domains. We de-159

fine two complementary tasks: i) domain selection160

(Domain Selection Networks, DomSeN, in Figure161

2) and ii) answer selection (AnsSel network in Fig-162

ure 2). The division of the problem into these two163

learnable tasks is vital to ensure that MetaQA con-164

siders out-of-domain agents, which can also give165

correct answers. To achieve this, the backbone of166

our architecture relies on an encoder Transformer167

(Vaswani et al., 2017) whose input is the concate-168

nation of the question with the candidate answers169

from each agent. Each answer is separated by a170

new token [ANS] that informs the model of the171

beginning of a new answer candidate.172

Figure 2: MetaQA architecture. The Domain Selection
Networks, DomSeN, identifies the domain of input ques-
tion Q. Answer Selection, AnsSel, selects the correct
answers. confk is the confidence score from the agent k
for answer k.

We devise a new embedding for the Transformer173

encoder to include the confidence score of the pre-174

dictions of each agent (Figure 3). While the origi-175

nal encoder uses the token ti, position pi, and seg-176

ment si embeddings, we add an agent confidence177

embedding ci to these three.178

xi = ti + pi + si + ci (1)179

The new ci is obtained with a feed-forward net-180

work f that takes an answer confidence confi and181

creates an embedding ci.182

ci =

{
f(confj), if i ∈ Idx([ANS] Ansj)
f(0), otherwise

(2)183

where Idx is a function that given a list of tokens 184

returns their indexes in the encoder input. 185

Figure 3: Description of our novel embedding system
including confidence scores from the agents.

We leverage two types of embeddings from the 186

output of the encoder. The first one is the em- 187

bedding of the [CLS] token. This embedding 188

captures information about the domain of the input 189

question. It is used as the input to k independent 190

feed-forward networks called Domain Selection 191

Network (DomSeN) to identify the domain of the 192

input question (i.e., the dataset from which the 193

question comes) in a similar way as TWEAC. The 194

second type of embedding used is the embedding of 195

the [ANS] tokens, which contain the cues needed 196

to identify the correct answers to the input question. 197

These [ANS] embeddings are concatenated with 198

the score of each corresponding domain Domi and 199

input into a final feed-forward network, called An- 200

swer Selection (AnsSel), that selects the correct 201

answers according to the domain of the question 202

and the candidate answers. 203

3.1 Training 204

As previously mentioned, our model learns two 205

complementary tasks: i) domain selection and ii) 206

answer selection. Thus, to learn these two tasks, 207

we define the following loss function: 208

ℓ =
α1

k

k∑
i=0

ℓDomSeNi + α2ℓAnsSel (3) 209

210

ℓAnsSel =
1

k

k∑
i=0

CE( ˆAnsi, yi) (4) 211

where ℓDomSeNi is the loss of one DomSeN net- 212

work and ℓAnsSel the loss of the AnsSel network. 213

ℓAnsSel is the average of the cross-entropy loss CE 214

of each answer prediction ˆAnsi = {0, 1}. Lastly, 215

DomSeN networks use the Binary Cross Entropy. 216

We obtain the labels of AnsSel, yi, by comparing 217

the string prediction of each agent with the correct 218
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answer. If the F1 score is higher than a threshold,219

θ, we consider the prediction as correct. As for220

DomSeNi, its training label is 1 when the input221

question is from the training set of the ith agent.222

4 Experimental Setup223

4.1 Datasets224

We have collected a series of QA datasets cov-225

ering different formats, domains, and reasoning226

skills. In particular, we use four formats: extrac-227

tive, multiple-choice, abstractive, and multimodal.228

For extractive, we use the MRQA 2019 shared229

task collection (Fisch et al., 2019), QAMR230

(Michael et al., 2018), and DuoRC (Saha et al.,231

2018). We include these two additional datasets232

to add more diversity. In detail, QAMR re-233

quires predicate-argument understanding, a skill234

that agents should have to solve most QA datasets.235

As for DuoRC, it is the only dataset in our col-236

lection on the film domain, and this allows us to237

study transfer learning from other domains. The238

multiple-choice datasets require boolean reason-239

ing, commonsense, and passage summarization240

skills. Lastly, we include abstractive QA following241

(Khashabi et al., 2020) and a multimodal dataset242

to show that our approach can solve any type of243

question while multi-dataset models are limited to244

certain formats.245

Most of these datasets do not have the labels of246

the test set publicly available, except for RACE and247

NarrativeQA. Since we need to do hyperparameter248

tuning and hypothesis testing to compare models,249

we divide the public dev set into an in-house dev250

set and test sets following (Joshi et al., 2020). Then,251

we conduct hyperparameter tuning on the dev set252

and hypothesis testing on the test set. A summary253

of the datasets is available in Appendix A.1.254

4.2 Expert Agents255

To guarantee a fair comparison with MultiQA, we256

have trained all the agents for extractive datasets us-257

ing the same architecture as MultiQA, span-BERT,258

a BERT model pretrained for span extraction tasks259

that clearly outperforms BERT on the MRQA 2019260

shared task (Joshi et al., 2020). More details on261

the implementation are provided in Appendix A.3.262

For the remaining datasets, we use agents that are263

publicly available on HuggingFace or Github with264

a performance close to the current state of the art.265

A summary of them is provided in Appendix A.2.266

4.3 Baselines 267

We compare our approach with three types of mod- 268

els: i) multi-agent systems, ii) multi-dataset mod- 269

els, and iii) expert agents. The first family is repre- 270

sented by our main baseline, TWEAC, a model that 271

maps questions to topics (or types of questions) to 272

identify agents trained on that type of data (Geigle 273

et al., 2021) and the simple max-voting ensemble. 274

The second family of models is composed of Mul- 275

tiQA (Talmor and Berant, 2019) and UnifiedQA 276

(Khashabi et al., 2020). MultiQA is a transformer 277

encoder with a span-extraction layer trained on 278

multiple extractive QA datasets. Because of this 279

span-extraction layer, it can only solve extractive 280

QA tasks. UnifiedQA, on the other hand, can solve 281

any QA task that can be converted into text-to-text 282

thanks to its architecture, an encoder-decoder trans- 283

former (i.e., extractive, abstractive, and multiple- 284

choice). Lastly, we include the expert agents to 285

analyze whether MetaQA closes the gap to them 286

compared to the baselines. 287

4.4 Evaluation 288

Since MetaQA may select more than one answer, 289

we select the answer with the highest confidence 290

score by MetaQA as the decision of the model 291

to evaluate it. We evaluate our model and the 292

baselines using the official metrics of each dataset, 293

i.e., macro-average F1 for extractive, accuracy for 294

multiple-choice, and rouge-L for abstractive. In 295

the particular case of DROP, the official metric is 296

macro-average F1, and thus, we also use it. The 297

reported results are the means and standard devia- 298

tions of the models trained with five different seeds 299

except for UnifiedQA, which would be too expen- 300

sive to compute. We use a two-tailed T-Test to 301

compare the models with a p-value of 0.05. 302

5 Results and Discussions 303

In this section, we answer the questions: i) is 304

MetaQA able to combine multiple agents without 305

undermining the performance of each one (§5.1), 306

ii) is it robust on out-of-domain scenarios? (§5.2), 307

iii) how does agent collaboration work? (§5.3), iv) 308

how data-efficient is MetaQA? (§5.4), and v) what 309

is the effect of each module of MetaQA? (§5.5). 310

5.1 Comparison with the Baselines 311

5.1.1 TWEAC 312

MetaQA outperforms TWEAC in all datasets ex- 313

cept HellaSWAG and SIQA, as shown in Table 1. 314
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Dataset MetaQA TWEAC Exp. Agent UnifiedQA MultiQA Voting

SQuAD 91.98±0.11† 89.09±0.36 92.92 90.81 93.14±0.18 90.73
NewsQA 71.71±0.21† 66.86±0.75 73.68 65.57 73.59±0.60 66.60
HotpotQA 79.27±0.15† 74.96±0.59 80.60 77.92 81.68±0.22 71.71
SearchQA 81.98±0.25†‡ 80.41±0.22 81.04 81.61 80.45±1.82 68.87
TriviaQA-web 80.63±0.26†‡ 76.55±0.15 79.34 72.34 77.76±4.15 75.73
NQ 81.20±0.18† 78.06±0.37 81.97 75.58 82.57±0.30 72.25
DuoRC 51.24±0.20†‡ 44.28±0.23 43.77 34.65 46.99±0.15 50.94
QAMR 83.78±0.14† 78.77±0.48 84.00 82.70 84.62±0.14 73.07

BoolQ 73.14±0.23† 72.20±0.03 72.17 81.34 n.a. 73.88
CSQA 78.66±0.19† 77.18±0.18 78.56 58.43 n.a. 68.41
HellaSWAG 73.19±1.01 77.12±0.30 77.14 36.01 n.a. 69.33
RACE 84.71±0.05† 83.02±0.27 84.78 69.65 n.a. 67.30
SIQA 74.17±0.64 75.39±0.05 75.44 61.62 n.a. 70.01

DROP 73.04±1.98† 69.12±0.36 74.61 42.45 n.a. 26.18
NarrativeQA 67.19±0.00 67.19±0.00 67.19 57.82 n.a. 67.19

HybridQA 50.94±0.00 50.94±0.00 50.94 n.a n.a 50.94

Table 1: MetaQA (ours) and the baselines on the test set of each dataset. Best results in bold. † represents that
MetaQA is statistically significant better than TWEAC. ‡ represents that MetaQA is statistically significant better
than MultiQA. n.a means that the system cannot model the dataset.

On average, MetaQA achieves an average perfor-315

mance boost of 2.42 with respect to TWEAC, and316

more importantly, the performance boost is greater317

than 4 points on HotpotQA, DuoRC, NewsQA,318

QAMR, and TriviaQA. Particularly, there is an as-319

tonishing 6.8 points performance boost on DuoRC.320

The reason for these results is that TWEAC only321

aims to identify the agent trained on the domain of322

the question while we retrieve the best answer pre-323

diction, even if it comes from out-of-domain mod-324

els. For instance, in DuoRC, MetaQA selects the325

in-domain agent only for 43% of its questions, i.e.,326

most of the questions are assigned to agents that327

are not trained on DuoRC. In this way, MetaQA328

establishes a collaboration between agents.329

We also observe that the gap between MetaQA330

and TWEAC is more significant on extractive QA331

than on multiple-choice. This is expected due to332

our selection of multiple-choice datasets. The sub-333

stantial differences in the format of these datasets334

limit the potential agent collaboration. For instance,335

BoolQ is the only boolean dataset, and therefore,336

it can only be used to solve boolean questions,337

which do not appear in the other multiple-choice338

datasets. Also, SIQA, a commonsense reasoning339

dataset, uses a short context passage while CSQA340

(commonsense too) does not have any context,341

and hence, an agent trained for CSQA cannot be 342

used successfully on SIQA. These characteristics 343

of the setup makes the upper-bound performance 344

of MetaQA to be the same as the expert agents. Yet, 345

even with these limitations, MetaQA outperforms 346

TWEAC in three of the five datasets. Also, the ex- 347

pert agents only significantly outperform MetaQA 348

on 2/5 datasets. Lastly, the performance in Narra- 349

tiveQA and HybridQA is the same because there is 350

only one agent per dataset. 351

5.1.2 UnifiedQA 352

MetaQA outperforms UnifiedQA by a striking 8.89. 353

This is because of the limitations of UnifiedQA’s ar- 354

chitecture. For example, the performance in DROP 355

is clearly far from our MetaQA. The reason for this 356

is that while the expert agent used by MetaQA is 357

designed for numerical reasoning, UnifiedQA does 358

not have any mechanism to achieve this, and since it 359

is designed as a general model for text-to-text gen- 360

eration, it cannot be augmented with special reason- 361

ing modules. The same phenomenon occurs in the 362

multiple-choice datasets and in some minority do- 363

mains in extractive QA (i.e., NewsQA and DuoRC). 364

The only exception is in BoolQ, where UnifiedQA 365

achieves the best results. However, this is because 366

T5 (Raffel et al., 2020), on which UnifiedQA is 367
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Dataset NewsQA HotpotQA SearchQA TriviaQA NQ DuoRC QAMR CSQA HellaSWAG SIQA DROP ∆

MetaQA 71.46 79.37 81.87 80.65 81.08 51.01 83.87 78.40 72.14 73.90 74.96 -
UnifiedQA 65.57 77.92 81.61 72.34 75.58 34.65 82.70 58.43 36.01 61.62 42.45 -

OOD MetaQA 62.26 69.41 66.59 75.02 67.51 50.51 72.20 58.59 52.13 59.28 22.14 -
OOD TWEAC 57.65 43.98 57.93 66.62 65.37 47.32 69.59 47.46 50.59 59.16 20.53 -6.31
OOD UnifiedQA 60.12 62.21 63.02 69.33 61.49 32.84 70.07 50.57 29.35 44.93 22.30 -8.12
OOD MultiQA* 63.36 69.44 67.94 76.09 68.52 49.89 72.53 n.a. n.a. n.a. n.a. 0.61
OOD Max Voting 63.25 67.59 61.76 73.81 68.27 50.48 68.92 58.94 64.03 63.22 22.46 0.64

Table 2: Results of leave-one-out ablation. Out-of-domain (OOD) models are trained on all the datasets except the
target dataset. Best OOD results in bold. Underlined results reflect OOD MetaQA outperforming full UnifiedQA. ∆
is the average performance gap to OOD MetaQA. * MultiQA uses a pseudo-OOD setup, see remarks in §5.2.

trained, is already one of the SOTA models, while368

the agent we use has lower performance and was369

the only publicly available model in HuggingFace’s370

Model Hub at the time of experimentation.371

5.1.3 MultiQA372

MultiQA slightly outperforms MetaQA by an aver-373

age of 0.24. However, these gains are insignificant374

compared to its restrictions. MultiQA is only com-375

patible with extractive QA (§4.3), while MetaQA376

is compatible with any QA format. Moreover, our377

model was trained on only 13% of its training set,378

as later discussed in §5.4. Furthermore, we observe379

that MultiQA mostly outperforms expert agents on380

Wikipedia-based datasets (i.e., SQuAD, HotpotQA,381

NQ, and QAMR). This might suggest that MultiQA382

is overfitted to Wikipedia due to its training on mul-383

tiple datasets using Wikipedia paragraphs2 and that384

would explain why it struggles with other minor-385

ity domains. On the other hand, MetaQA excels386

in minority domains where it achieves a striking387

4.15 points performance boost on DuoRC, 2.73388

on TriviaQA-web, 1.55 on SearchQA, and in over-389

all outperforms MultiQA by an average of 2.88.390

These results show the superior ability of MetaQA391

to avoid overfitting to a specific domain.392

5.1.4 Max-Voting393

Lastly, MetaQA also outperforms max-voting by394

an average of 8.54. In the case of easy datasets such395

as SQuAD, the performance is similar because all396

expert agents excel in this dataset, so any approach397

to combine the agents would yield similar results.398

More interestingly, the performance in DROP is399

clearly far from MetaQA. We attribute this to the400

low performance of the extractive agents in this401

dataset and their similar wrong answers.402

2MultiQA is trained on question and contexts (Wikipedia
paragraphs). However, MetaQA does not have access to these
paragraphs as shown in Figure 2.

5.2 Leave-One-Out Ablation 403

In this experiment, we analyze whether the com- 404

bination of expert agents can successfully solve 405

an out-of-domain (OOD) dataset. We conduct a 406

leave-one-out ablation test in both MetaQA and the 407

baselines. In the case of MetaQA, we remove the 408

expert agent of the target dataset, retrain MetaQA 409

again without this dataset, and evaluate it on the 410

target dataset. Similarly, we retrain TWEAC, Uni- 411

fiedQA, and MultiQA without the target dataset 412

and evaluate the model on the target dataset. Lastly, 413

we also use the Max-Voting baseline without the 414

agent trained on the target dataset. We trained 415

MetaQA five times with different random seeds for 416

each target dataset and report their average results. 417

However, we could not do this for the other models 418

due to their much higher computation costs. 419

Table 2 shows that OOD MetaQA outperforms 420

OOD TWEAC in all datasets by an average of 6.31. 421

The larger gap in OOD than in in-domain scenar- 422

ios (Table 1) supports our hypothesis: the topic- 423

classification approach of TWEAC disregards high- 424

performing models in OOD, and our solution of 425

establishing a collaboration between the agents is 426

able to combine skills. 427

OOD MetaQA also outperforms OOD Uni- 428

fiedQA by a striking average of 8.13 points. In 429

addition, in four datasets (TriviaQA-web, DuoRC, 430

CommonsSenseQA, and HellaSWAG), the ablated 431

MetaQA even outperforms the full UnifiedQA 432

trained on those datasets. This further supports our 433

approach of combining multiple agents, instead of 434

datasets, in scenarios with a wide variety of do- 435

mains and formats, where flexibility is key. 436

In the particular case of MultiQA, as discussed 437

in §5.1.3, half of its training sets are based on 438

Wikipedia paragraphs. Therefore, removing a 439

Wikipedia-based dataset such as HotpotQA does 440

not remove Wikipedia contents from its training 441
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Dataset Question In-domain Agent OOD Agent

DuoRC Who does Rocky Balboa work for as an enforcer? Adrian Tony Gazzo (NewsQA Agent)
TriviaQA-web Who played the character Mr Chips in the 2002 TV

adaptation of Goodbye Mr Chips?
Timothy Carroll MartinClunes (DuoRC Agent)

SearchQA This short story, written around 1820, contains the
line "If I can but reach that bridge... I am safe"

Legend Legend of Sleepy Hollow (Triv-
iaQA Agent)

Table 3: Examples of questions where our MetaQA system disregard the in-domain agent due to their incorrect
predictions (in red) and selects and an out-of-domain (OOD) agent that returns the right answer (in green).

set3. As a consequence, this compromises the OOD442

setup. However, even under this pseudo-OOD443

setup, MultiQA only outperforms MetaQA by a444

slight margin of 0.61.445

Lastly, we analyze the Max Voting baseline in446

this scenario. Although prior works disregard this447

baseline, the results in Table 2 show that OOD Max448

Voting outperforms all the other baselines and has a449

similar performance to OOD MetaQA. Its average450

gain with respect to OOD MetaQA is 0.64. How-451

ever, this is not the overall trend. OOD MetaQA452

outperforms OOD Max Voting in 5/8 extractive453

QA datasets by a considerable margin of 3.19. On454

the other hand, multiple-choice datasets, especially455

the difference in HellaSWAG, incline the average456

towards OOD Max Voting. Despite the promising457

claims of prior works (Talmor and Berant, 2019;458

Khashabi et al., 2020) about OOD performance,459

these results suggest that aggregating a wide range460

of QA skills for different formats and domains in461

out-of-domain scenarios is still an open problem462

and non-neural baselines have strong results. Sim-463

ilar results have also been observed in retrieval464

methods, where non-neural baselines outperform465

supervised methods on OOD scenarios (Thakur466

et al., 2021).467

5.3 Qualitative Analysis468

We further analyze the behavior of our proposed469

model by inspecting its predictions. In particular,470

we investigate the collaboration between the agents471

for DuoRC, SearchQA, and TriviaQA, where this472

collaboration is particularly strong.473

In DuoRC, the most helpful out-of-domain474

(OOD) agent is NewsQA, with a chosen rate of475

18.2% in the test set. This might be due to the476

question types of DuoRC and NewsQA. DuoRC’s477

questions are crowdsourced and are predominately478

who-questions (42% of the training set as shown479

3This is not the case for MetaQA because our input is only
the questions, answer predictions, and confidence scores, not
the Wikipedia paragraphs.

in Appendix 9). NewsQA’s questions are also 480

crowdsourced and have a high proportion of who- 481

questions (24%). The other datasets with a high 482

amount of who-questions are NQ and SearchQA. 483

However, the questions of these two datasets are 484

very different in style to DuoRC (i.e., real user 485

queries and trivia from a TV show). An example 486

of this DuoRC-NewsQA agents collaboration is 487

shown in the first row of Table 3. 488

In TriviaQA-web, the second most commonly 489

used agent is trained on DuoRC. We randomly sam- 490

pled 50 QA pairs where DuoRC is the selected 491

agent and returns the right answer. In 20% of the 492

cases, the question was about a movie or book plot, 493

which indicates that our MetaQA successfully rec- 494

ognizes that this OOD agent is able to respond to 495

this type of question. An example of this collabo- 496

ration is shown in the second row in Table 3. 497

In SearchQA, the most helpful OOD agent is 498

TriviaQA (5% chosen rate). This might be due 499

to their similarities (Table 6). Within the pool of 500

instances where the in-domain agent fails and the 501

TriviaQA agent provides the right answer, we ran- 502

domly analyzed 50 instances and discovered that 503

in 84% of the cases, the in-domain agent returns 504

a partially correct answer, and in those cases, the 505

OOD agent was able to identify the exact answer. 506

This is another example of the successful agent col- 507

laboration achieved by our MetaQA. Even though 508

the in-domain agent almost has the correct answer, 509

MetaQA selects an OOD agent that gives a better 510

answer, as shown in the last row on Table 3. 511

5.4 Efficiency of MetaQA 512

We trained MetaQA with bins of QA instances for 513

each dataset and observed that the training con- 514

verges with only 10K instances/per dataset (i.e., 515

160K instances, including all datasets). This is 516

only 16% of the data needed to train UnifiedQA 517

(900K instances excluding HybridQA) and 13% of 518

the data needed to train MetaQA (600K of extrac- 519

tive QA instances). The reason for this large saving 520

7



is that MetaQA only has to learn how to match521

questions with answers because it reuses publicly522

available agents. On the other hand, multi-dataset523

models need to learn how to solve questions (i.e.,524

language understanding, reasoning skills, etc.), a525

much more complex task.526

As for inference time, if all the agents fit on527

memory4, multi-datasets models and our MetaQA528

would have comparable running times. For exam-529

ple, compared to MultiQA, since our extractive530

agents use the same architecture as MultiQA, run-531

ning the agents would take the same amount of532

time as running MultiQA. Then, we would need533

to select the answer. However, our MetaQA only534

takes 0.05s/question to select the best candidate535

answer. This makes it fast enough to not be notice-536

able by the users. On the other hand, if the agents537

do not fit in memory at the same time, it would be538

necessary to run them sequentially. Yet, this might539

not be a problem because it is possible to predict540

in advance which agents are more likely to give a541

correct answer to a given question (Geigle et al.,542

2021; Garg and Moschitti, 2021), which we leave543

as future work. This would allow us to skip some544

agents at run-time and improve the running time545

dramatically in low-memory scenarios.546

5.5 Ablation Study547

Lastly, we quantitatively measure the impact of548

each feature of MetaQA on its overall performance.549

The first row of Table 4 shows that removing the550

loss of the Domain Selection Network (DomSeN)551

hurts the performance of MetaQA. This manifests552

that our intuition of considering in-domain agents553

without falling into the argumentum ad verecun-554

diam fallacy is correct. Lastly, the second row555

shows that the confidence embeddings provide key556

information to MetaQA to select an answer. For in-557

stance, an in-domain agent could have a prediction558

with low confidence because it does not know the559

answer, while an out-of-domain agent could have560

the correct answer and be certain about it.561

Model Avg. Downgrade

−ℓDomSeN -0.45
− Conf. Emb. -0.46

Table 4: Average performance loss across all datasets
of each ablated model compared to the full model.

4In our hardware and with our experimental setup, all
agents and MetaQA fit on our GPU memory.

6 Conclusions 562

In this work, we propose a new system to com- 563

bine expert agents for question answering (QA) 564

called MetaQA. It considers questions, answer pre- 565

dictions, and confidence scores from the agents 566

to select the best answer to a question. Through 567

quantitative experiments, we show that our model 568

avoids the limitations of multi-dataset models and 569

outperforms the baselines thanks to the agent col- 570

laboration established. Additionally, since MetaQA 571

learns to match questions with answers instead of 572

end-to-end QA, it is highly data-efficient to train. 573

We leave as future work: i) combining partially 574

correct answer predictions to generate a better one, 575

ii) adding new agents without retraining MetaQA 576

by fixing most of the weights and only training the 577

weights of the new Domain Selection Network, and 578

iii) identifying a priori agents that are likely to give 579

an incorrect answer to skip them at run-time. 580

Ethics Discussion 581

The proposed model, MetaQA, cannot generate un- 582

fair, biased, or harmful content given that the expert 583

agents it aggregates are fair because MetaQA does 584

not generate content. Rather it selects from Expert 585

Agents. The datasets we use are well-known to be 586

safe for research purposes and do not contain any 587

personal information or offensive content. We also 588

comply with the licenses and intended uses of each 589

dataset. The licenses of each dataset are shown 590

in Appendix A.1. We are not held responsible for 591

errors, false or offensive content generated by the 592

agents. MetaQA should be used at the users’ discre- 593

tion. Future work should address how to identify 594

unfair or false content to avoid selecting it. 595

Limitations 596

The main limitation of MetaQA is that when no 597

agent has a correct answer, it returns an incorrect 598

answer. Table 5 describes how often this scenario 599

occurs. In extractive datasets, without the out- 600

liers (i.e., SQuAD and DuoRC), we observe this 601

to be 18% on average per dataset. This percentage 602

drops to 8.35% in multiple-choice datasets (without 603

BoolQ, another outlier). As for NarrativeQA and 604

HybridQA, there are many unsolvable questions 605

because we only use one agent for each of them 606

and these agents have a relatively low performance. 607

Also, if the agents do not fit in memory at the 608

same time, it would be necessary to run them se- 609

quentially, which would increase the inference time. 610

8



Dataset % Unsolvable

SQuAD 3.92
NewsQA 26.88
HotpotQA 19.93
SearchQA 13.97
NQ 19.15
TriviaQA-web 12.25
QAMR 15.81
DuoRC 47.41

BoolQ 1.47
SIQA 8.90
HellaSWAG 8.90
CSQA 9.00
RACE 6.61

DROP 21.77
NarrativeQA 55.71
HybridQA 56.09

Table 5: Percentage of unsolvable questions for our
MetaQA with the selected agents, i.e., none of the agents
can give a correct answer.

Yet, it might be possible to overcome this limitation611

because it is possible to predict in advance which612

agents are more likely to give a correct answer to a613

given question (Geigle et al., 2021; Garg and Mos-614

chitti, 2021). This would allow us to skip some615

agents at run-time and improve the running time616

dramatically in low-memory scenarios.617
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A Appendix899

A.1 Datasets900

Table 6 summarizes the characteristics of the901

datasets, contains the size of the train, validation,902

and test splits of each dataset, and their licenses.903

In the case of RACE, the authors did not provide904

any license but specified that it could only be used905

for non-commercial research purposes. In the case906

of CommonSenseQA and SIQA there is no license907

specified, but they are freely available to download.908

Therefore, our use of these datasets complies with909

their licenses and intended uses.910

A.2 Expert Agents911

Table 7 provides the links to download the ex-912

pert agents used in this work. In the case of Nar-913

rativeQA and HybridQA, we only employ one914

agent because of the difficulty of obtaining oth-915

ers. Both of these datasets use uncommon modal-916

ities (abstractive and table+text). Therefore, it is917

not straightforward to adapt other models to these918

datasets.919

A.3 Implementation920

Our model was implemented using PyTorch921

(Paszke et al., 2019) and HuggingFace’s Trans-922

formers library (Wolf et al., 2020). Both MetaQA923

and MultiQA were implemented using Span-BERT924

large (335M parameters), while UnifiedQA uses925

T5-base (220M parameters, the closest to the 335M926

of our MetaQA). The score embedder for MetaQA927

is implemented as a linear layer with an input size928

of 1 and an output size of 1024 (i.e., the hidden size929

of Span-BERT Large). α1 and α2 in Eq. 3 are set930

to 0.5 and 1 respectively. The Domain Selection931

Networks are implemented as a linear layer with an932

input size of 1024 and an output size of 1. Lastly,933

the Answer Selection Network (AnsSel) is also im-934

plemented as a linear layer with an input size of935

number-of-agents × 1025 (Span-BERT’s hidden936

size + 1 from the output of the domain selection937

network). The threshold θ to determine whether938

a candidate answer is correct or not to create the939

labels to train AnsSel is set to 0.7.940

MetaQA was trained for one epoch using a batch941

size of six, a weight decay of 0.01, a learning rate942

of 5e-5, and 500 warmup steps.943

All the extractive agents and MultiQA were944

trained using the same architecture, Span-BERT945

large, for two epochs and with the same hyperpa-946

rameters: batch size of 16, learning rate of 3e-5,947

max length of 512, and doc stride of 128. 948

UnifiedQA was trained for two epochs using a 949

batch size of four, a learning rate of 5e-5, and a 950

weight decay of 0.01. It was evaluated on the dev 951

set every 100K steps. 952

Lastly, the max-voting baseline assumes that two 953

answers are the same if the F1 score is higher than 954

a threshold (0.9). We tuned this parameter on the 955

dev set searching in the range [0.5, 0.6, ..., 1.0]. We 956

used the implementation of HuggingFace’s SQuAD 957

F1 metric5. In the case that two answers have the 958

same amount of votes, we select the one with the 959

highest confidence score given by an agent. 960

Any other parameter used the default value in 961

HuggingFace’s Transformers library. Each model 962

was trained five times with different random seeds 963

to do hypothesis testing except for UnifiedQA, 964

which would be too expensive to compute. 965

We used the implementation of HuggingFace’s 966

Dataset library (Lhoest et al., 2021) for the eval- 967

uation using EM and F1 metrics, while for the 968

ROGUE metric we used the official implementa- 969

tion6. 970

All the experiments were conducted in a 971

SLURM cluster where each job was assigned to 972

different computer nodes with different CPUs and 973

GPUs. Therefore, comparing the running time of 974

each model is not possible. 975

A.4 Adding New Agents 976

Augmenting MetaQA with a new agent only re- 977

quires adding one more AgSeN network and in- 978

creasing the output space of the AnsSel network. 979

Thus, it requires retraining the whole architecture 980

(including the Transformer encoder). However, as 981

discussed in §5.4, the training efficiency is one of 982

the strengths of our system. 983

A.5 MetaQA on a Single Dataset 984

We conduct an additional experiment to analyze 985

the behavior of MetaQA with multiple expert 986

agents trained in a single dataset. We train 987

MetaQA for three NewsQA agents: RoBERTA- 988

base, XtremeDistil (Mukherjee et al., 2021), and 989

SpanBERT, and evaluate it on NewsQA. As ob- 990

served in Table 8, MetaQA performs on par with 991

the agents. However, the performance gap is 992

smaller than in the main use case (§5.1). This 993

is attributed to the similarities between the mod- 994

els. These three models are all Transformers and 995

5https://huggingface.co/metrics/squad
6https://pypi.org/project/rouge-score/

12

https://pypi.org/project/rouge-score/


Dataset Characteristics Train Dev Test License
E

xt
ra

ct
iv

e
SQuAD (Rajpurkar et al., 2016) Crowdsourced questions on Wikipedia 6573 5253 5254 MIT
NewsQA (Trischler et al., 2017) Crowdsourced questions about News 74160 2106 2106 MIT
HotpotQA (Yang et al., 2018) Crowdsourced multi-hop questions on Wikipedia 72928 2950 2951 MIT
SearchQA (Dunn et al., 2017) Web Snippets, Trivia questions from J! Archive 117384 8490 8490 MIT
NQ (Kwiatkowski et al., 2019) Wikipedia, real user queries on Google Search 104071 6418 6418 MIT
TriviaQA-web (Joshi et al., 2017) Web Snippets, crowdsorced trivia questions 61688 3892 3893 MIT
QAMR (Michael et al., 2018) Wikipedia, predicate-argument understanding 50615 18908 18770 MIT
DuoRC (Saha et al., 2018) Movie Plots from IMDb and Wikipedia 58752 13111 13449 MIT

M
ul

tip
le

-C
ho

ic
e RACE (Lai et al., 2017) Exams requiring passage summarization and attitude

analysis
87866 4887 4934 NA

CSQA (Talmor et al., 2019) Web Snippets, common-sense reasoning 9741 611 610 NA
BoolQ (Clark et al., 2019) Wikipedia, Yes/No questions 9427 1635 1635 CC BY-SA 3.0
HellaSWAG (Zellers et al., 2019) Completing sentences using common sense 39905 5021 5021 MIT
SIQA (Sap et al., 2019) Common sense in social interactions 33410 977 977 NA

A
bs

. DROP (Dua et al., 2019) Wikipedia, numerical reasoning 77409 4767 4768 CC BY-SA 4.0
NarrativeQA (Kočiský et al., 2018) Books, Movie Scripts 32747 3461 10557 Apache 2.0

M
M HybridQA (Chen et al., 2020) Wikipedia tables and paragraphs 62682 1733 1733 MIT

Table 6: Summary of the datasets used. Abs. stands for abstractive and MM for multi-modal.

# Expert Agents Used for Link

1 Span-BERT Large (Joshi et al., 2020) for
SQuAD

all extractive + DROP in-house trained

2 Span-BERT Large for NewsQA all extractive + DROP in-house trained
3 Span-BERT Large for HotpotQA all extractive + DROP in-house trained
4 Span-BERT Large for SearchQA all extractive + DROP in-house trained
5 Span-BERT Large for NQ all extractive + DROP in-house trained
6 Span-BERT Large for TriviaQA-web all extractive + DROP in-house trained
7 Span-BERT Large for QAMR all extractive + DROP in-house trained
8 Span-BERT Large for DuoRC all extractive + DROP in-house trained
9 RoBERTa Large (Liu et al., 2019) for

RACE
all multiple choice https://huggingface.co/LIAMF-USP/roberta-large-finetuned-

race
10 RoBERTa Large for HellaSWAG all multiple choice https://huggingface.co/prajjwal1/roberta_hellaswag
11 RoBERTa Large for SIQA all multiple choice in-house trained
12 AlBERT xxlarge-v2 (Lan et al., 2020) for

CSQA
all multiple choice https://huggingface.co/danlou/albert-xxlarge-v2-finetuned-

csqa
13 BERT Large-wwm (Devlin et al., 2019)

for BoolQ
BoolQ https://huggingface.co/lewtun/bert-large-uncased-wwm-

finetuned-boolq
14 TASE (Segal et al., 2020) for DROP DROP https://github.com/eladsegal/tag-based-multi-span-extraction
15 Adapter BART Large (Pfeiffer et al., 2020)

for NarrativeQA
NarrativeQA https://huggingface.co/AdapterHub/narrativeqa

16 Hybrider (Chen et al., 2020) for HybridQA HybridQA https://github.com/wenhuchen/HybridQA

Table 7: List of the expert agents, datasets in which they are used, and links to download.

trained on the same dataset, so it is natural that they996

are similar. An approach such as MetaQA excels997

when the agents are very different, as in Table 1,998

where the agents were trained on different datasets999

and therefore have different skills.1000

Model F1 Score

MetaQA 73.73
SpanBERT 73.68
RoBERTa 73.15
XtremeDistil 64.16

Table 8: MetaQA trained only on NewsQA agents.

A.6 Wh-word Statistics 1001

Table 9 shows the percentage of wh-words per 1002

dataset. 1003
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Dataset what where who when why which how

SQuAD 56.71 4.55 10.82 7.47 1.48 7.73 11.23
NewsQA 49.52 8.54 24.46 5.01 0.11 3.17 9.19
HotpotQA 37.98 4.61 22.99 2.22 0.05 29.39 2.76
SearchQA 7.55 9.5 32.53 28.66 0.72 18.32 2.72
NQ 16.58 13.05 40.02 20.35 0.63 3.25 6.11
TriviaQA-web 30.16 1.56 15.07 0.72 0.02 50.03 2.44
QAMR 61.75 5.23 17.92 4.59 0.66 3.04 6.82
DuoRC 35.16 9.68 42.32 2.06 2.44 1.89 6.45

Table 9: Statistics of wh-words per dataset.
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