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Abstract
We study open-domain question answer-001
ing with structured, unstructured and semi-002
structured knowledge sources, including text,003
tables, lists and knowledge bases. Depart-004
ing from prior work, we propose a unifying005
approach that homogenizes all sources by re-006
ducing them to text and applies the retriever-007
reader model which has so far been limited008
to text sources only. Our approach greatly009
improves the results on knowledge-base QA010
tasks by 11 points, compared to latest graph-011
based methods. More importantly, we demon-012
strate that our unified knowledge (UniK-QA)013
model is a simple and yet effective way to014
combine heterogeneous sources of knowledge,015
advancing the state-of-the-art results on two016
popular question answering benchmarks, Nat-017
uralQuestions and WebQuestions, by 3.5 and018
2.6 points, respectively.019

1 Introduction020

Answering factual questions has long been an in-021

spirational challenge to information retrieval and022

artificial intelligence researchers (Voorhees, 1999;023

Lopez et al., 2011). In its most general form, users024

can ask about any topic and the answer may be025

found in any information source. Defined as such,026

the challenge of open domain question answering027

is extremely broad and complex. Though there028

have been successful undertakings which embrace029

this complexity (notably Ferrucci, 2012), most re-030

cent works make simplifying assumptions as to the031

source of answers, which fall largely in two cate-032

gories: structured data and unstructured text.033

A long line of research aims to answer user ques-034

tions using a structured knowledge base (KB) (Be-035

rant et al., 2013; Yih et al., 2015), known as KBQA.036

Typically, a KB can be viewed as a knowledge037

graph consisting of entities, properties, and a pre-038

defined set of relations between them. A question039

can be answered, provided that it can be expressed040

within the language of relations and objects present041

Figure 1: Illustration of UniK-QA’s workflow for
unified-knowledge question answering: dense index re-
trieves Wikipedia passages, tables and knowledge base
relations. Heterogeneous contexts are encoded inde-
pendently through the encoder, then processed jointly
in the decoder to generate the answer.

in the knowledge graph. With a high-quality, care- 042

fully curated KB, answers can be extracted with 043

fairly high precision. KBQA, however, struggles 044

with low answer coverage due to the cost of curat- 045

ing an extensive KB, as well as the fact that many 046

questions simply cannot be answered using a KB 047

if the answers are not entities. 048

A second line of work targets a large collec- 049

tion of unstructured text (such as Wikipedia) (Chen 050

et al., 2017) as the source of answers. Thanks to the 051

latest advances in machine reading comprehension 052

and text retrieval, substantial progress has been 053

made for open-domain question answering from 054

text (TextQA) in just the past couple years (Yang 055
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et al., 2019; Lee et al., 2019; Karpukhin et al., 2020;056

Guu et al., 2020; Izacard and Grave, 2020). On057

the other hand, semi-structured tables and struc-058

tured KBs can be valuable knowledge sources, yet059

TextQA methods are restricted in taking only un-060

structured text as input, missing the opportunity of061

using these complementary sources of information062

to answer more questions.063

When it comes to answering questions using064

both structured and unstructured information, a065

straightforward solution is combining specialized066

TextQA and KBQA systems. The input question067

is sent to multiple sub-systems, and one of them068

is selected to output the final answer. While this069

approach may take advantage of the state-of-the-art070

models designed for different information sources,071

the whole end-to-end system, however, becomes072

fairly complex. It is also difficult to handle ques-073

tions that can only be answered when reasoning074

with information from multiple sources is required.075

Having a more integrated system design that cov-076

ers heterogeneous information sources has proven077

to be difficult. One main reason is that techniques078

used for KBQA and TextQA are drastically dif-079

ferent. The former exploits the graph structure080

and/or semantic parsing to convert the question081

into a structured query, while TextQA has mostly082

settled on the retriever-reader architecture powered083

by pre-trained transformers. Recent work on multi-084

source QA has tried to incorporate free text into085

graph nodes (Sun et al., 2018; Lu et al., 2019) to086

make texts amenable to KBQA methods, but the087

performance remains unconvincing.088

In this work, we propose a novel unified knowl-089

edge representation (UniK-QA) approach for090

open-domain question answering with heteroge-091

neous information sources. Instead of having mul-092

tiple specialized sub-systems or incorporating text093

into knowledge graphs, we flatten the structured094

data and apply TextQA methods. Our main motiva-095

tion for doing so is to make the powerful machinary096

of pre-trained transformers available for structured097

QA. In addition, this approach opens the door to098

a simple and unified architecture. We can easily099

support semi-structured sources such as lists and100

tables, as well as fully structured knowledge bases.101

Moreover, there is no need to specially handle the102

schema or ontology that defines the structure of103

the KB, making it straightforward to support multi-104

ple KBs. Our UniK-QA model incorporates some105

27 million passages composed of text and lists,106

455,907 Wikipedia tables, and 3 billion relations 107

from two knowledge bases in a single, unified open- 108

domain QA model. 109

We first validate our approach by modeling 110

KBQA as a pure TextQA task. We represent all 111

relations in the KB with their textual surface form, 112

and train a retriever-reader model on them as if 113

they were text documents. This simple approach 114

works incredibly well, improving the exact match 115

score on the WebQSP dataset by 11% over pre- 116

vious state of the art. This result further justifies 117

our choice of unifying multi-source QA under the 118

TextQA framework as it can improve KBQA per- 119

formance per se. 120

For our multi-source QA experiments, we con- 121

sider lists, tables, and knowledge bases as sources 122

of structured information, and convert each of them 123

to text using simple heuristics. We model various 124

combinations of structured sources with text, and 125

evaluate on four popular open-domain QA datasets, 126

ranging from entity-heavy KBQA benchmarks to 127

those targeting free-form text sources. Our results 128

indicate that while the best single source of in- 129

formation varies for each dataset as expected, our 130

multi-source model improves over strong TextQA 131

baselines in all cases. We obtain new state-of-the- 132

art results for two datasets, advancing the published 133

art on NaturalQuestions by 3.5 points and on We- 134

bQuestions by 2.6 points. 135

In addition, we consider the realistic setting in 136

which the source of questions is not known a priori, 137

as would be the case for a practical system. We 138

train a single multi-dataset model on a combined 139

dataset from several benchmarks, and show that it 140

outperforms all single-source baselines across this 141

diverse set of questions. 142

2 Background & Related Work 143

2.1 Knowledge-base question answering 144

(KBQA) 145

A knowledge base (KB) considered in this work is 146

a collection of facts, represented as a set of subject- 147

predicate-object triples. Each triple (e1, p, e2) de- 148

notes a binary relationship between the subject en- 149

tity e1 and the object e2 (e.g., places, persons, dates 150

or numbers), as well as their relation type, or predi- 151

cate p (e.g., capital_of, married_to, etc.). 152

Modern large-scale KBs, such as Freebase (Bol- 153

lacker et al., 2008), DBPedia (Auer et al., 2007) 154

and Wikidata (Vrandečić and Krötzsch, 2014) can 155

contain billions of triples that describe relations 156
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between millions of entities, making them great157

sources of answers to open-domain questions. The158

prevailing approach for knowledge-base question159

answering (KBQA) is semantic parsing (Berant160

et al., 2013; Yih et al., 2015), where a natural lan-161

guage question is converted into a logical form that162

can be used to query the knowledge base. Such163

methods are tailored to the specific graph structure164

of the KB and are usually not directly applicable to165

other knowledge sources.166

2.2 Open-domain question answering from167

text (TextQA)168

KBQA is ultimately limited in its coverage of facts169

and the types of questions it can answer. On170

the other hand, large collections of text such as171

Wikipedia or CommonCrawl promise to be a richer172

source of knowledge for truly open domain ques-173

tion answering systems. This line of work (which174

we will refer to as TextQA) has been popularized175

by the TREC QA tracks (Voorhees, 1999), and has176

seen explosive growth with the advent of neural177

machine reading (MRC) (Rajpurkar et al., 2018)178

models. In the neural era, Chen et al. (2017) were179

the first to combine MRC with retrieval for end-to-180

end QA. Subsequent work cemented this retriever-181

reader paradigm, with improved reader models182

(Yang et al., 2019; Izacard and Grave, 2020) and183

neural retrievers (Lee et al., 2019; Guu et al., 2020;184

Karpukhin et al., 2020). Despite impressive ad-185

vances, TextQA systems can still underperform186

KBQA, especially on benchmarks originally cre-187

ated for KBs such as WebQuestions. Furthermore,188

they also fall short of universal coverage, due to the189

exclusion of other (semi-)structured information190

sources such as tables.191

2.3 Question answering from tables192

Large amounts of authoritative data such as na-193

tional statistics are often available in the form of194

tables. Even for simple, natural questions asked by195

users of a search engine, a significant fraction of196

them can be answered from tables (Kwiatkowski197

et al., 2019). While KBQA and TextQA have en-198

joyed increasing popularity, tables as a source of199

information has surprisingly escaped the attention200

of the community save for a few recent works.201

Working with web tables can be challenging, due202

to the lack of formal schema, inconsistent format-203

ting and ambiguous cell values (e.g., entity names).204

In contrast to relational databases and KBs, tables205

can at best be described as semi-structured informa-206

tion. Sun et al. (2016) considered open domain QA 207

from web tables, however made no use of unstruc- 208

tured text. Some recent work investigated MRC 209

with tables without a retrieval component (Pasu- 210

pat and Liang, 2015; Yin et al., 2020; Chen et al., 211

2020b). In addition, Chen et al. (2020a,c) investi- 212

gated open domain QA using tables and text. While 213

they are in a similar direction, these works focus on 214

complex, crowd-sourced questions requiring more 215

specialized methods, while we target the case of 216

simple, natural questions and investigate if popu- 217

lar TextQA and KBQA benchmarks can be further 218

improved with the addition of tables. 219

2.4 Fusion of text and knowledge-base 220

As discussed, KBQA and TextQA are intuitively 221

complementary, and several attempts have been 222

made to merge them to get the benefits of both. 223

An early example is (Ferrucci, 2012), which com- 224

bines multiple expert systems and re-ranks them 225

to produce the answer. More recent work at- 226

tempts to enrich the KB by extracting structure 227

from text. One way to accomplish this is using 228

OpenIE triplets (Fader et al., 2014; Xu et al., 2016), 229

thus staying completely within the semantic pars- 230

ing paradigm. Somewhat closer to our approach are 231

UniversalSchemas (Riedel et al., 2013; Das et al., 232

2017), which embed KB relations and textual rela- 233

tions in a common space. Yet, UniversalSchemas 234

are also constrained to an entity-relation structure. 235

The latest in this line are the works of (Sun et al., 236

2018, 2019), which augments the knowledge graph 237

with text nodes and applies graph methods to iden- 238

tify candidate answers. 239

By retaining structure, previous work was able to 240

take advantage of KBQA methods, but also failed 241

to capture the full richness of TextQA. We depart 242

radically in our approach, by foregoing all structure, 243

and directly applying TextQA methods based on 244

the more general retriever-reader architecture. We 245

also evaluate on a more diverse benchmark set com- 246

posed of natural open domain datasets, as well as 247

those originally meant for KBQA, and demonstrate 248

strong improvements in this truly open-domain 249

setting. Concurrent work (Agarwal et al., 2020) 250

proposed a similar idea for language model pre- 251

training and also evaluated on open-domain QA. 252

Our work differs in that (1) we have a more com- 253

prehensive treatment of sources (including tables, 254

lists and multiple KBs) and ODQA datasets, (2) we 255

compare against and improve on much stronger 256
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state-of-the-art baselines, and (3) we also evaluate257

in a more realistic multi-dataset setting with all258

datasets handled by a single model.259

3 Modeling260

3.1 UniK-QA architecture261

We use a retriever-reader architecture, with dense262

passage retriever (DPR) (Karpukhin et al., 2020) as263

retriever and fusion-in-decoder (FiD) (Izacard and264

Grave, 2020) as our reader. Structured knowledge265

such as tables, lists and KB relations are converted266

to text with simple heuristics (§3.2, §3.3), and we267

generalize DPR to retrieve from these heteroge-268

neous documents as well as regular text passages.269

Each retrieved document is concatenated with the270

question, then independently encoded by the reader271

encoder. Fusion of information happens in the de-272

coder, which computes full attention over the entire273

concatenated input representations. The overall ar-274

chitecture is illustrated in Figure 1.275

Retriever The DPR retriever consists of a dense276

document encoder and a question encoder, trained277

such that positive documents have embeddings278

closer to the question embedding in dot product279

space. We follow the original DPR implementa-280

tion closely, starting from BERT-base (Devlin et al.,281

2019) encoders, using 100-token text passages, a282

single negative document per question while train-283

ing with the same hyper-parameters. We further284

include tables, lists and KB relations in the index.285

The details of how these are processed into docu-286

ments and merged are in the subsequent sections.287

One improvement we make to the training pro-288

cess is iterative training, where better hard nega-289

tives are mined at each step using the model at the290

previous step, similar to (Xiong et al., 2020a). All291

models including our text-only baselines benefit292

from this change. We find 2 iterations sufficient.293

Reader The FiD reader has demonstrated strong294

performance in the text-only setting and effective295

in fusing information from a large number of docu-296

ments (Izacard and Grave, 2020). We thus find it a297

natural candidate for fusing knowledge from vari-298

ous sources. We use the FiD model with T5-large299

(Raffel et al., 2019), 100 context documents, and300

the original hyper-parameters for all experiments.301

3.2 Unified representations for KBs302

In order to apply our retriever-reader model, we303

first convert KB relations into text using simple304

Natalie Portman
/m/09l3p

CVT
/m/0k3qy8

Star Wars Episode I
/m/0ddt_

Padmé Amidala
/m/0drf_

<performance.film>

<performance.character>

Freebase Relation (with CVT entities):

Converted Text:
Natalie Portman performance film Star Wars Episode I, and performance 
character Padmé Amidala .

Wikidata Relation (with qualifiers):

Star Wars Episode I
Q165713

Natalie Portman
Q37876P161: cast member

Padmé Amidala
Q51789

P453: character role

Converted Text:
Star Wars Episode I cast member Natalie Portman, and character role 
Padmé Amidala .

Figure 2: Converting Freebase and Wikidata relations
to text.

heuristics. For a relation triple 〈subj, pred, obj〉, 305

where subj, pred and obj are the subject, predicate 306

and object of the relation respectively, we serialize 307

it by concatenating the text surface forms of subj, 308

pred and obj. 309

More complex (n-ary) relations involve multiple 310

predicates and objects, such as Natalie Portman 311

played the character Padmé Amidala in the movie 312

Star Wars, and can be expressed differently de- 313

pending on the KB. In particular, Freebase uses 314

compound value types (CVTs) to convert an n-ary 315

relation into multiple standard triples, while Wiki- 316

data allows a predicate to have qualifiers to express 317

additional properties (Tanon et al., 2016). In this 318

work, we convert an n-ary relation into a single 319

sentence by forming a comma-separated clause for 320

each predicate (Figure 2). A side benefit of this 321

approach is that these complex relations are now 322

represented as a single piece of text, whereas they 323

would normally be considered multi-hop and re- 324

quire more complex methods (Fu et al., 2020) if 325

using traditional graph-based KBQA models. 326

Once converted to text, relations can be indexed 327

and retrieved using DPR. We index individual rela- 328

tions to best leverage the power of DPR for retriev- 329

ing the most relevant relations for a given question1. 330

Unlike most existing KBQA works, our approach 331

can also seamlessly incorporate multiple KBs by 332

storing all relations into a joint index and retrieving 333

from it (see §5.4). 334

Directly indexing billions of relations in the en- 335

tire KB can bring additional engineering challenges. 336

1Indexing at a coarser granularity (such as creating a doc-
ument for each entity) also has practical challenges because
certain entities (e.g., United States) may have hundreds of
thousands of relations, resulting in extremely long documents.
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To avoid these, we implement retrieval of relations337

in two steps, where an entity linking system is used338

in the first step to narrow down the search to a339

2-hop neighborhood of the retrieved entities for340

each question (We use STAGG (Yih et al., 2015)341

in the case of Freebase and ELQ (Li et al., 2020)342

for Wikidata). We then use DPR to retrieve the top343

K relations from this reduced set. To be consistent344

with text input, we combine retrieved relations into345

documents of at most 100 tokens, after which they346

are fed to the FiD reader in the same way as text347

paragraphs.348

3.3 Unified representations for tables349

English Wikipedia contains more than 3 million350

tables (‘classical’ tables embedded in text as well351

as specialized tables like info-boxes), which are a352

huge source of factual knowledge by themselves353

and can substantially increase the coverage of open-354

domain QA systems. For instance, the answer to355

approximately a quarter of the questions in the356

NaturalQuestions (NQ) dataset can be found in357

Wikipedia tables (Kwiatkowski et al., 2019). These358

tables, however, have largely been ignored in recent359

open-domain QA work since it usually requires a360

dedicated model to reason over table structure. In361

contrast, we propose a simple approach to serialize362

tables and incorporate them into our UniK-QA363

framework like KB relations.364

We start from a large subset of Wikipedia tables365

extracted and released as part of the NaturalQues-366

tions dataset. We include all candidate documents367

which are part of the training set, extract nested368

tables into independent units, and filter out single-369

row tables as well as ‘service’ tables. This results370

in a corpus of 455,907 tables, which are used in371

our experiments.372

As with KB relations, semi-structured content373

in tables need to be ‘linearized’ into text for the374

retriever-reader model to work. There are many375

ways to do such linearization (see Yin et al., 2020;376

Chen et al., 2020b). We tried two types of tables377

linearization: ‘template’-like encoding used in re-378

cent literature (Chen et al., 2020b) and a simpler379

one which we find works the best in our experi-380

ments (see Table 4). In particular, we concatenate381

cell values on the same row, separated by commas,382

to form the text representation, and multiple rows383

are then combined into longer documents delimited384

by newlines.385

As with TextQA, we divide linearized tables into386

Model Hits@1

GraftNet (Sun et al., 2018) 67.8
PullNet (Sun et al., 2019) 68.1
EmQL (Sun et al., 2020) 75.5*

Our KBQA (T5-base) 76.7
Our KBQA (T5-large) 79.1

Table 1: Hits@1 on WebQSP dataset using Freebase.
(*)EmQL uses oracle entities, hence is not directly
comparable with the others.

100-token chunks for indexing and retrieval. We 387

take the first non-empty table row as the header and 388

include it in every table chunk. This heuristic to 389

select the first non-empty row as header is crucial 390

and adds 4-6 points to top-20 passage accuracy. 391

4 KBQA as TextQA: A Motivating 392

Experiment 393

In this section, we present a motivating experi- 394

ment showing that our UniK-QA approach not 395

only provides a natural pathway to multi-source 396

open-domain QA, but also improves KBQA per 397

se. In particular, we evaluate our approach on a 398

widely-used KBQA dataset, WebQSP (Yih et al., 399

2016), in the single-source setting. 400

We use Freebase as the knowledge source, and 401

re-use pre-computed STAGG entity linking results 402

and 2-hop neighborhoods as provided by Sun et al. 403

(2018) for fair comparisons. We convert KB rela- 404

tions in the 2-hop neighborhood into text, retrieve 405

the most relevant ones using DPR to form 100 con- 406

text passages, and feed them into the T5 FiD reader 407

as described in Section 3.2. The results are shown 408

in Table 1, where the numbers represent Hits@1, 409

or the percentage of the model’s top-predicted an- 410

swer being a “hit” (exact match) against one of the 411

gold-standard answers. 412

We see that our KBQA method outperforms 413

previous state-of-the-art methods by a wide mar- 414

gin, improving exact match accuracy to 79.1%. 415

Since we adopt the exact same KB setup and 416

pre-processing procedure from previous work, 417

this improvement can be attributed purely to our 418

UniK-QA model. We take this result as strong 419

evidence for our claim that powerful TextQA meth- 420

ods generalize well to structured data, and offer a 421

natural new framework for unifying structured and 422

unstructured information sources. 423
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5 Multi-Source QA Experiments424

We now present our main experiments on unified425

multi-source question answering.426

5.1 Datasets427

For our main experiments, we use the same datasets428

that have recently become somewhat standard for429

evaluating open-domain QA (Lee et al., 2019):430

NaturalQuestions (NQ) (Kwiatkowski et al.,431

2019) consists of questions mined from real Google432

search queries and Wikipedia articles with answer433

spans annotated. While the answer spans are usu-434

ally on the regular, free-form text, some span anno-435

tations are in tables.436

WebQuestions (WebQ) (Berant et al., 2013) tar-437

gets Freebase as the source of answers, with ques-438

tions coming from Google Suggest API.439

TriviaQA (Trivia) (Joshi et al., 2017) contains440

a set of trivia questions with answers originally441

scraped from the Web.442

CuratedTREC (TREC) (Baudiš and Šedivỳ,443

2015) is a collection of questions from TREC QA444

tracks and various Web sources, intended to bench-445

mark open-domain QA on unstructured text.446

5.2 Combinations of sources447

We compare 5 variations of our model, each with a448

different combination of information sources. We449

have Text-only, Tables-only and KB-only variants450

as single-source baselines. Next, the Text + tables451

model makes use of the entire Wikipedia dump,452

including lists and tables. Finally we add the KBs453

resulting in the Text + tables + KB model.454

The Text + tables model uses a unified dense455

index, where text passages and table chunks are456

jointly indexed. For the Text + tables + KB model,457

since KB relations cannot be naturally chunked458

into 100-token documents for retrieval, we index459

them separately and then merge results with a fixed460

quota for KB relations. This quota is determined461

by maximizing retrieval recall on the development462

set. We also experiment with combining multiple463

KBs, which is straightforward with our approach,464

despite differences in structure.465

5.3 A multi-dataset model466

In a realistic setting, the best knowledge source467

to answer a given question is unknown a priori468

to the system, but most open-domain QA datasets469

are collected with respect to a specific information470

source (e.g., Wikipedia for NQ and Freebase for471

WebQ). To better simulate the real-world scenario, 472

we also experiment with a setting where we train a 473

single model on the combination of all 4 datasets 474

and evaluate without any input to the model as 475

to the source of questions.2 We refer to this as 476

the multi-dataset setting. We train multi-dataset 477

models for all 5 variants described above. The 478

smaller datasets, WebQ and TREC, are upsampled 479

5 and 8 times respectively while training. 480

5.4 Results 481

Main results are presented in Table 2. In the first 482

set of experiments, we train a reader model inde- 483

pendently for each dataset, as typically done in 484

previous work. We use Freebase as knowledge 485

base for WebQuestions as intended, and use Wiki- 486

data for all others. The multi-dataset model uses 487

Wikidata. 488

The results highlight the limitation of current 489

state-of-the-art open-domain QA models which use 490

texts as the only information source. On WebQ, for 491

instance, the KB-only model performs 5% better 492

than the text-only one, and previous state of the art 493

is also achieved by the KBQA model. Moreover, 494

adding structured information sources significantly 495

improves the performance over text-only models 496

on all datasets, obtaining state-of-the-art results for 497

NQ, WebQ and TREC. This indicates that KBs and 498

tables contain valuable knowledge which is either 499

absent in the unstructured texts or harder to extract 500

from them (see also §6). 501

In the multi-dataset setting, we also observe 502

clear improvements from combining sources, with 503

the Text + tables + KB model outperforming the 504

Text-only baseline by 5.4 points on average in this 505

realistic setting. The performance is generally 506

lower than the per-dataset models, especially for 507

the small datasets (WebQ and TREC), which may 508

be due to the fact that each of these datasets was 509

collected on a single information source and the 510

multi-dataset model is less likely to exploit this 511

implicit prior knowledge. 512

Multiple KBs We also experiment with combin- 513

ing both Wikidata and Freebase. We see substantial 514

improvements on all datasets in the KB-only set- 515

ting over using a single KB, as well as significant 516

gains over our best numbers for NQ and TriviaQA 517

in the Text+tables+KB setting (Table 3). 518

2We normalize the questions by removing question marks
and by presenting them in lowercase.
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Model NQ WebQ Trivia TREC Avg.

SoTA 51.41 55.13 67.61 55.32 57.3
Retrieval-free 28.54 30.64 28.74 - -

Per-dataset models
Text 49.0 50.6 64.0 54.3 54.5
Tables 36.0 41.0 34.5 32.7 36.1
KB 27.9 55.6 35.4 32.4 37.8
Text + tables 54.1 50.2 65.1 53.9 55.8
Text + tables + KB 54.0 57.8 64.1 55.3 57.8

Multi-dataset model
Text 50.3 45.0 62.6 45.7 50.9
Tables 34.2 38.4 33.7 31.1 34.4
KB 25.9 43.3 34.2 38.0 35.4
Text + tables 54.6 44.3 64.0 48.7 52.9
Text + tables + KB 53.7 56.9 63.4 51.3 56.3

Table 2: Exact match results on the test set. SoTA numbers are from (Izacard and Grave, 2020)1, (Iyer et al.,
2020)2 which are TextQA approaches, and (Jain, 2016)3, which is a KBQA method. (Jain, 2016) reports another
metric; however, their predictions are available from which we calculated the EM score. Retrieval-free numbers
refer to closed-book results from Roberts et al. (2020)4 with the same T5 model.

Source(s) NQ WebQ Trivia TREC

KB-only (1 KB) 27.9 55.6 35.4 32.4
KB-only (2 KBs) 30.9 56.7 41.5 36.0
All (1 KB) 54.0 57.8 64.1 55.3
All (2 KBs) 54.9 57.7 65.5 54.0

Table 3: Results for combining Freebase and Wikidata.

6 Analysis519

Having demonstrated that combining information520

sources does improve answer accuracy, we now521

provide more analysis on how this is achieved by522

inspecting both retriever and reader closely.523

Retriever One natural assumption is that adding524

more data increases the coverage of relevant con-525

texts that can be used to answer the input questions,526

thereby improving the end-to-end performance. We527

verify this by examining the retrieval results of528

different models using the NQ development set,529

where a context is considered relevant if it contains530

the correct answer string. When more knowledge531

sources are added, our system is able to improve532

retrieval recall (Table 4, top half), which may cor-533

relate with the end-to-end answer accuracy shown534

in Table 2.535

Reader Although including additional informa-536

tion sources improves the chance of retrieving rel-537

evant contexts, it is not guaranteed that the reader538

Model R@20 R@100

Text-only 80.0 85.9
w/ lists 82.7 89.6
w/ tables 83.1 91.0
w/ lists + tables 85.0 92.2
w/ lists + tables + KB 83.4 92.8

Tables-only

simple linearization 86.3 94.3
template linearization 60.8 69.4

Table 4: Retrieval recall on the NQ dev set with dif-
ferent settings. Tables only results are for the NQ dev
subset which has answers in tables.

can leverage those contexts and output the correct 539

answers. For instance, reader model training may 540

benefit from diverse sources of contexts, and the 541

end-to-end improvement of answer accuracy may 542

simply be attributed to a reader model that per- 543

forms better on contexts from regular text. Due to 544

the nature of the FiD generative reader, however, it 545

is non-trivial to ascertain which input context(s) 546

contribute the answer. As a proxy, we look at 547

the correlation between the source of positive con- 548

texts (those which contain a correct answer string) 549

feeding into the reader model and the performance 550

change in the outcome. 551

Suppose we are comparing two reader models 552

7



Figure 3: Percentage of questions with answers in ad-
ditional sources. For NQ the additional sources are list
and tables. For WebQ the additional source is KB.

Mu and Mt, where Mu uses additional sources of553

information compared to Mt (e.g., Mt uses text554

only and Mu uses text and KB). Let Q be all the555

questions in our development set, Qu ⊆ Q and556

Qt ⊆ Q the subsets of questions answered cor-557

rectly by Mu and Mt, respectively. The improve-558

ment set Q′ = Qu −Qt is thus the questions that559

Mu manages to improve upon Mt. Examining the560

source of the positive contexts for the questions in561

Q′ can help shed some light on how Mu performs562

better. For example, if more positive contexts are563

from KB rather than text, then the improvement is564

more likely due to additional information present565

at inference time. Figure 3 plots the percentages566

of positive contexts originating from the additional567

sources for the questions in the full development568

set (Q) vs those in the improvement set (Q′) in two569

cases. The first one compares a baseline text-only570

model to a model with lists and tables added on NQ,571

and the second compares a text+tables model with572

text+tables+KB on WebQ. In both cases, answers573

retrieved from the additional source correlate with574

a better outcome.575

To examine the effects of other indirect factors,576

such as the change of overall model quality due577

to the inclusion of varied sources or more training578

samples from the tables, we evaluate the text + ta-579

bles model with text-only input. We find that this580

achieves a similar performance (48.7 EM) on the581

NQ test set compared to a text-only model on the582

same input, suggesting that these other factors are583

not a major contributor and that the improved per-584

formance is primarily due to the added knowledge585

from structured sources.586

7 Discussion587

We demonstrated a powerful new approach,588

UniK-QA, for unifying structured and unstruc-589

tured information sources for open-domain ques-590

tion answering. We adopt the simple and general591

retriever-reader framework and show not only that 592

it works for structured sources, but improves over 593

traditional KBQA approaches by a wide margin. 594

By combining sources in this way, we achieved 595

new state-of-the-art results for two popular open- 596

domain QA benchmarks. 597

However, our model also has several shortcom- 598

ings in its current form. As a result of flattening all 599

sources into text, we lose some desirable features 600

of structured knowledge bases: the ability to re- 601

turn all answers corresponding to a query, and the 602

ability to infer multi-hop paths to answer more com- 603

plex questions. In this work we have side-stepped 604

the first issue by focusing on the exact match met- 605

ric (equivalent to Hits@1), which is standard in 606

the open-domain QA literature, but largely ignores 607

multiple answers. We were also able to ignore the 608

second issue, since the datasets we evaluated on, 609

while standard, are composed mostly of simple, 610

natural user questions which can be answered from 611

a single piece of information. 612

We do believe these are important details and 613

they can be addressed within the framework de- 614

scribed here. For instance, outgoing edges of an 615

entity with the same relation can easily be merged, 616

thus encoding all answer entities into a single text 617

representation. It is also possible to simply gener- 618

ate multiple answer candidates from the reader’s 619

decoder. For multi-hop question answering, there 620

is recent work (Xiong et al., 2020b) successfully 621

extending dense retrieval to the multi-hop setting, 622

which could naturally be applied within our frame- 623

work. It remains to be seen how these approaches 624

would compare to more traditional structured meth- 625

ods, and we leave this for future work. 626
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