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Abstract—Sepsis is a leading cause of mortality in intensive
care units (ICUs), yet existing research often relies on outdated
datasets, non-reproducible preprocessing pipelines, and limited
coverage of clinical interventions. We introduce MIMIC-Sepsis,
a curated cohort and benchmark framework derived from the
MIMIC-IV database, designed to support reproducible mod-
eling of sepsis trajectories. Our cohort includes 35,239 ICU
patients with time-aligned clinical variables and standardized
treatment data, including vasopressors, fluids, mechanical ven-
tilation and antibiotics. We describe a transparent preprocess-
ing pipeline—based on Sepsis-3 criteria, structured imputation
strategies, and treatment inclusion—and release it alongside
benchmark tasks focused on early mortality prediction, length-of-
stay estimation, and shock onset classification. Empirical results
demonstrate that incorporating treatment variables substantially
improves model performance, particularly for Transformer-based
architectures. MIMIC-Sepsis serves as a robust platform for
evaluating predictive and sequential models in critical care
research.

Index Terms—Sepsis, benchmark, MIMIC-IV, machine learn-
ing, clinical data, intensive care unit, prediction models

I. INTRODUCTION

Sepsis is a life-threatening condition caused by the body’s
extreme response to an infection that can lead to organ failure
and even death. It is one of the leading causes of death in
the world. According to the World Health Organization, there
are an estimated 48.9 million cases and 11 million sepsis-
related deaths worldwide, representing 20% of all global
deaths [1]. In addition, the cost of sepsis is staggering; the
average hospital-wide cost of sepsis was estimated to be more
than US$32,000 per patient in high-income countries [1]. The
onset of sepsis is often acute and can be difficult to detect,
which may result in delayed treatment and, consequently,
irreversible organ damage. As such, early diagnosis and timely
interventions are crucial for improving patient survival rates.
Recent studies have shown that early administration of vaso-
pressors is associated with increased survival rates in patients
with septic shock, while delayed administration of antibiotics
after sepsis identification significantly increases in-hospital
mortality rates [2], [3].

Over the past few decades, several large-scale EHR datasets
collected from intensive care units (ICU) have been made
publicly available for research purposes, including MIMIC-III
and eICU [4], [5]. These datasets encompass diverse patient
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populations and clinical conditions. One important feature of
these datasets is the inclusion of extensive clinical variables,
including physiological measurements, laboratory test results,
medication administration records, and detailed documentation
of clinical interventions, which builds a solid foundation for
developing and evaluating novel computational approaches for
sepsis research.

Researchers have applied state-of-the-art machine learning
models to these datasets, yielding significant advances in fore-
casting sepsis progression and patient outcomes. Deep learning
methodologies have been employed to predict in-hospital
mortality among septic patients with promising results [6].
Furthermore, reinforcement learning algorithms have been
shown to optimize therapeutic interventions—specifically the
dosage and timing of vasopressors and intravenous fluid ad-
ministration—potentially surpassing human clinical decision-
making in improving patient survival rates [7].

Despite these methodological innovations and growing in-
terest in leveraging large-scale ICU datasets for sepsis re-
search, significant practical challenges persist. First, many
existing studies rely on the outdated and relatively smaller
MIMIC-IIT dataset, which may no longer reflect current
clinical practices. The newer MIMIC-IV dataset [8] offers
a more recent and comprehensive resource, yet efforts to
curate standardized sepsis cohorts from MIMIC-IV remain
limited. Second, data preprocessing procedures are often in-
consistent and poorly documented. Preparing these complex
clinical datasets for modeling requires extensive extraction,
harmonization, and cleaning. Most prior sepsis studies lack
transparent documentation of these steps, which significantly
impedes reproducibility and validation. Finally, clinical in-
terventions are frequently overlooked in analyses of sepsis
trajectories. However, treatments such as vasopressors, flu-
ids, and mechanical ventilation can dramatically influence
physiological variables—for example, blood pressure may rise
after vasopressor administration, or oxygen saturation may
improve following oxygen therapy. Failure to account for these
interventions can lead to biased conclusions about disease
progression and treatment efficacy.

In this study, we introduce MIMIC-Sepsis, a curated co-
hort and benchmark framework derived from the MIMIC-IV
database. The cohort comprises 35,239 ICU stays that satisfy



Sepsis-3 criteria, with curated time-aligned features including
vital signs, laboratory results, and treatment interventions such
as vasopressors, intravenous fluids, and antibiotics. We stan-
dardize dosage units, apply multi-level imputation strategies,
and transform event-based clinical data into structured longitu-
dinal format to facilitate modeling. In addition to releasing the
cohort and processing pipeline, we define a set of benchmark
tasks—including mortality prediction, length-of-stay estima-
tion, and shock classification—to enable reproducible and
extensible evaluation of predictive and sequential models in
sepsis care.

Our contributions are twofold: (1) we provide a transpar-
ent, reproducible cohort construction pipeline with harmo-
nized clinical variables, and (2) we introduce an evaluation
framework that supports time-aware modeling of treatment
dynamics and outcomes. Through empirical experiments, we
find that integrating temporal sequences of clinical data with
treatment information improves model performance, particu-
larly for Transformer-based architectures. MIMIC-Sepsis aims
to serve as a public benchmark for advancing machine learning
applications in sepsis and critical care.

The code and data processing pipeline are publicly available
at: https://github.com/yongh7/MIMIC-sepsis.

II. RELATED WORK

Early detection of sepsis or septic shock onset remains a
critical challenge in improving patient outcomes. Calvert et
al. [9] were among the first to address this challenge by
developing a time series-based regression model using the
MIMIC-II database to predict sepsis 3 hours prior to onset
for patients in the Medical Intensive Care Unit (MICU).
Subsequent research has expanded upon this work with more
sophisticated methodologies and datasets. For instance, Fager-
strom et al. [10] employed a Cox proportional hazards model
on MIMIC-III data to predict septic shock onset, while Deshon
et al. [11] applied survival analysis techniques to predict sepsis
onset using a proprietary dataset. Additionally, Goh et al. [12]
explored an alternative approach utilizing unstructured clinical
text from MIMIC-III for sepsis prediction.

Predicting outcomes in sepsis represents another active
research topic. Notable contributions include Hou et al. [13],
who implemented tree-based models to predict 30-day mor-
tality, and Yong et al. [6] , who developed deep learning
architectures to forecast in-hospital mortality, both utilizing
laboratory and vital sign measurements from MIMIC-III.
Furthermore, Boussina et al. [14] conducted a before-and-after
quasi-experimental study evaluating the clinical impact of a
deep learning model for early sepsis prediction within the UC
San Diego Health system.

Treatment optimization constitutes a distinct domain within
computational sepsis research. Raghu et al. [7] applied rein-
forcement learning algorithms to optimize therapeutic inter-
ventions for sepsis patients, specifically addressing the dosage
and timing of vasopressors and intravenous fluid adminis-
tration. Huang et al. [15] refined this approach by imple-
menting more granular control of treatment dosing strategies.

Additionally, Choudhary et al. [16] introduced ICU-sepsis, an
environment built upon the MIMIC-III dataset that provides
standardized benchmarks for evaluating reinforcement learn-
ing algorithms in sepsis treatment, focusing on the same two
interventions (vasopressors and intravenous fluids).

While these studies represent significant contributions to
sepsis research, they exhibit several limitations: reliance on
outdated datasets (MIMIC-II and MIMIC-III), employment
of ad-hoc data curation processes lacking standardization and
reproducibility, narrow focus on isolated aspects of sepsis care,
and insufficient inclusion of comprehensive clinical interven-
tions. Notably, antibiotic administration—an important aspect
of sepsis treatment—is frequently overlooked in analyses
despite its critical importance in clinical practice.

III. DATASET/BENCHMARK DESIGN
A. Benchmark Design Principles

Our dataset and benchmark framework are built around
three core principles. First, we preserve the temporal struc-
ture of clinical trajectories by aligning all events relative
to the suspected sepsis onset. This supports time-sensitive
analyses, such as early warning prediction and treatment
effect modeling. Second, we explicitly incorporate clinical
interventions—including vasopressors, fluids, antibiotics, and
mechanical ventilation—acknowledging their influence on pa-
tient physiology and outcomes. Third, we ensure complete
reproducibility by releasing our data preprocessing pipeline
and providing transparent documentation of each step, includ-
ing cohort inclusion criteria, temporal alignment, imputation
methods, and variable definitions.

B. Cohort Selection and Data Processing

Our cohort construction process draws on methodologies
from prior sepsis studies on MIMIC-IIT by Komorowski et
al. [17] and Killian et al. [18]. We extract three categories of
data: (1) static demographics such as age, sex, and Charlson
comorbidity index; (2) longitudinal clinical measurements
including vitals, laboratory tests, microbiology cultures, and
urine output; and (3) clinical interventions relevant to sepsis
management.

To identify suspected infection, we follow the Sepsis-3
definition [19], using either antibiotic administration records or
positive microbiological cultures as potential infection triggers.
Once the presumed infection time is determined, we define a
fixed observational window extending from 24 hours before
to 72 hours after infection onset. This window is designed to
capture both early detection signals and the acute progression
phase of sepsis.

Clinical measurements within this window are standardized
to consistent units, and implausible outliers are removed based
on clinical thresholds. Data are resampled into fixed 4-hour
intervals. When multiple values exist within an interval, we
compute the mean. For missing values, we apply forward fill if
a prior value exists within a variable-specific validity window
(e.g., longer for stable measures like weight). Remaining
missingness is addressed through a tiered imputation strategy



inspired by Komorowski et al. [17]. Specifically, Linear inter-
polation is used for variables with low missingness (< 5%) to
preserve local temporal trends without introducing complex
assumptions, while K-nearest neighbors (KNN) imputation
is applied for moderate missingness to exploit correlations
across similar patient profiles in the multivariate feature space.
Variables with more than 80% missingness are excluded due
to insufficient data support and the high risk of introducing
bias through imputation. Certain variables are estimated using
clinical rules—for instance, FiOs is derived from oxygen
flow rate and device type, and GCS is inferred from RASS
scores [20]. From the cleaned data, we compute derived scores
such as SOFA and SIRS to assess organ dysfunction and
systemic inflammation.

We extract four types of interventions central to sepsis
care: (1) mechanical ventilation (mode and parameters), (2)
antibiotics (timing and number of unique agents), (3) fluid
resuscitation (standardized to NaCl 0.9% equivalent volume),
and (4) vasopressors (converted to norepinephrine-equivalent
dosage). For each 4-hour interval, we compute cumulative
vasopressor dose and fluid volume. Including these treatment
variables allows us to capture not just patient status, but also
care dynamics.

Sepsis onset is identified using Sepsis-3 criteria: the earliest
timepoint where a patient’s SOFA score increases by two or
more points from baseline in the presence of infection. Septic
shock is defined using three conditions: (1) administration of
at least 2000 mL of fluids in the prior 12 hours, (2) MAP <
65 mmHg despite fluids, and (3) vasopressor requirement with
lactate > 2 mmol/L [19].

Finally, we exclude patients under 18 years of age, non-
sepsis patients, those with implausible fluid input/output val-
ues, and individuals who died shortly after ICU admis-
sion—potentially indicating withdrawal of care.

IV. DATASET/BENCHMARK DESCRIPTION

Now we present the characteristics of the curated sepsis
cohort and proposed benchmark.

A. Data statistics

This section presents the statistics of the curated sepsis
cohort and proposed benchmark. The dataset comprises 35,239
patients with clinical variables tracked over time. Table I
summarizes the key demographic and clinical characteristics
of the cohort.

The cohort represents a diverse population of sepsis patients
with varying degrees of disease severity. The majority of
patients are middle-aged or elderly, with a gender distribution
slightly skewed toward males. The median Charlson comorbid-
ity index of 5.0 suggests a considerable burden of comorbid
conditions within this population. Clinical parameters show
considerable variability. Figure 2 illustrates the distribution of
key physiological measurements across various organ systems
among the selected cohort, along with their inter-parameter
correlations. The majority of clinical parameters demonstrate

TABLE 1. Cohort Characteristics.

Characteristic Value
Demographics
Total patients 35,239
Age (mean + std) 654 £ 16.3
Gender (% female) 44.5%
Charlson Index (median [IQR]) 5.0 [3.0-7.0]
Age Distribution (%)
18-40 8.5%
41-65 38.1%
66-80 33.9%
> 80 19.4%
BMI Distribution (%)
Underweight (< 18.5) 7.2%
Normal (18.5-24.9) 29.0%
Overweight (25-29.9) 26.5%
Obese (> 30) 37.3%
Clinical Outcomes
Hospital mortality (%) 14.5%
90-day mortality (%) 25.1%
Length of stay (days) 5.1 +£7.1
Readmission rate (%) 7.3%
Septic shock (%) 12.4%
Disease Severity
SOFA score (mean + std) 55+28
SIRS score (mean =+ std) 1.5+£1.0
Interventions
Mechanical ventilation (%) 35.1%
Vasopressor use (%) 16.9%
Antibiotics given (%) 66.3%
Patients receiving all 3 interventions (%) 23.3%

Fluid Management

Mean fluid balance (mL) -931.2 +£ 8142.5

Fluid rate per 4h (mL) 4589 + 645.2
Cumulative fluid at 24h (mL) 3017.3 £ 5566.5
Patients with negative fluid balance (%) 56.9%

approximately normal distributions, with the exception of the
Glasgow Coma Scale (GCS) score.

Most patients in the study received antibiotics, totaling
66.3%. And a smaller percentage required mechanical ven-
tilation (35.1%) and vasopressors (16.9%). In Figure 3 we
observed that patients receiving antibiotics or vasopressors
exhibit higher mortality rates, and interestingly, those who
received these treatments tend to have worse clinical outcomes.
However, these observations likely reflect confounding by in-
dication, as sicker patients typically receive treatments earlier.

B. Benchmark Tasks

We define four predictive tasks designed to reflect real-
world challenges in sepsis care—from early risk stratification
to dynamic treatment planning. These tasks are grouped into
two categories based on their temporal structure:

1) Static Prediction from Early Observations: For in-
hospital mortality IHM) and length of stay (LOS), mod-
els use only the first 6 hours of the sepsis trajectory. This
simulates early clinical decision-making scenarios where
rapid risk assessment is needed to guide treatment and
resource allocation.

2) Dynamic Prediction with Rolling Windows: For vaso-
pressor requirement (VR) and septic shock (SS), we use
a rolling window approach. At each time step, the model
observes the previous 6 hours of data to predict whether
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Fig. 1. Cohort selection and data processing workflow. This figure illustrates the high-level approach used to extract and process

sepsis-related data from MIMIC-IV.

the event will occur within the next 24 hours. This
mirrors real-time monitoring environments that require
continuous, updated assessments of patient status.

Table II summarizes the prediction tasks, modeling setup,
and evaluation metrics. IHM, VR and SS are framed as binary
classification problems, and LOS as regression. We standardize
metrics across tasks to enable consistent and fair comparisons
between models.

TABLE II. Benchmark Tasks. IHM: In-hospital Mortality,
LOS: Length of Stay, VR: Vasopressor Requirement, SS:
Septic Shock.

Task  Type Approach  Metrics

IHM  Binary Class.  Static AUROC, AUPRC
LOS Regression Static MAE, RMSE
VR Binary Class. Dynamic AUROC, AUPRC
SS Binary Class.  Dynamic AUROC, AUPRC

These standardized tasks are intended to facilitate robust
benchmarking and reproducibility, supporting the development
and evaluation of new machine learning models in sepsis and
critical care research.

V. EXPERIMENTS AND RESULTS

We evaluate model performance on the benchmark tasks
using a range of machine learning algorithms, from linear
baselines to deep learning architectures including LSTMs and
Transformers [21], [22]. The dataset is randomly split into
80% for training and 20% for testing.

For regression tasks (e.g., length of stay prediction), we
report Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE). For classification tasks (e.g., mortality and sep-
tic shock prediction), we report the Area Under the Receiver
Operating Characteristic curve (AUROC) and Area Under the
Precision-Recall Curve (AUPRC). Compared to metrics such
as accuracy or precision, AUROC and AUPRC provide more
robust evaluations in the presence of class imbalance. For
example, a naive model that always predicts the majority class
may achieve high accuracy but only 0.5 AUROC, indicating
no true discrimination ability.
We test three classes of models:

o Linear Model: Temporal features within the observation
window are flattened and used as input to a single-layer
perceptron.

« LSTM: A standard two-layer LSTM network is used,
with a dropout rate of 0.1 to prevent overfitting.

o Transformer: A transformer encoder with 8 attention
heads and 2 layers is implemented, also using a dropout
rate of 0.1 to ensure fair comparison with the LSTM
model.

A key contribution of our benchmark is the incorporation of
clinical treatment variables. To quantify their utility, we com-
pare model performance with and without treatment-related
features (e.g., vasopressor dosage, fluid intake, antibiotic ex-
posure). To our knowledge, this is the first sepsis benchmark to
systematically evaluate the impact of incorporating treatment
variables into predictive modeling.

A. Results and Analysis

Table III presents the performance of the models on each
benchmark task with treatment variables included. Table IV
shows the same tasks evaluated without treatment variables,
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Fig. 2. Key Clinical Parameters Across Organ Systems. Each panel shows the distribution of a key parameter using boxplots
and violin plots. The correlation heatmap (bottom right) displays relationships between parameters.

enabling a direct comparison of the effect of including clinical
interventions.

TABLE III. Model Performance on Benchmark Tasks
(With Treatment Variables). IHM: In-hospital Mortality, LOS:

TABLE IV. Model Performance on Benchmark Tasks (With-
out Treatment Variables). IHM: In-hospital Mortality, LOS:
Length of Stay, SS: Septic Shock, VR: Vasopressor Require-
ment. Best performance for each metric is bolded.

Length of Stay, SS: Septic Shock, VR: Vasopressor Require- Task  Metric Lincar LSTM _Transformer
ment. Best performance for each metric is bolded. IHM  AUROC T 0.844  0.825  0.864
IHM  AUPRC 1T 0.512 0.487 0.560

Task  Metric Linear LSTM  Transformer LOS RMSE | 13.81 5.31 5.18

IHM  AUROC 1 0.845 0.838 0.863 LOS MAE | 3.14 286 2.70

IHM AUPRC 1 0.512 0.507 0.550 SS AUROC 1+ 0.876 0.879 0.919

LOS RMSE | 13.22 593 5.12 SS AUPRC 1 0.489 0.501 0.672

LOS MAE | 3.10 2.85 2.81 VR AUROC 1T 0.823 0.779 0.810

SS AUROC 1 0.881 0.885 0.925 VR AUPRCT 0697 0.635 0.687

SS AUPRC 1 0.497 0.580 0.705

VR AUROC T 0.924 0911 0.927

VR~ AUPRCT 0892 0870  0.903 model sees an absolute increase of 0.112 in AUROC and 0.235

The results show that deep learning models, particularly the
Transformer architecture, consistently outperform the linear
baseline across all benchmark tasks. The Transformer achieves
the highest AUROC and AUPRC scores in mortality and septic
shock prediction, and demonstrates the lowest RMSE and
MAE in the length of stay task. Similarly, the vasopressor
requirement task benefits from deep learning models, with the
Transformer again showing superior performance.

A key finding is the substantial improvement in dynamic
prediction tasks when treatment variables are included. For
example, in the vasopressor requirement task, the LSTM

in AUPRC when treatment features are added.

For static prediction tasks like in-hospital mortality and
length of stay, the impact of treatment variables is less
pronounced. We hypothesize that this is due to the limited
observation window (first 6 hours), during which treatment
effects may not yet be fully manifested.

We also conducted ablation experiments varying the pre-
diction horizon for dynamic tasks and observed that model
performance was relatively robust to horizon length, suggest-
ing that the rolling window design generalizes well to different
clinical settings.

While our benchmark focuses on four core tasks, the
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framework is extensible. For example, additional targets such
as the need for mechanical ventilation or readmission risk
can be integrated based on specific research objectives. We
also release baseline implementations to serve as a foundation
for future work and facilitate model development for clinical
decision support systems aimed at early risk identification and
treatment optimization.

VI. DISCUSSION

We introduced MIMIC-Sepsis, a curated dataset and bench-
mark framework designed to advance machine learning re-
search in sepsis care. Our work contributes a reproducible
cohort construction pipeline with harmonized clinical variables
and a suite of benchmark tasks that reflect clinically meaning-
ful challenges. By aligning data relative to sepsis onset and
incorporating treatment interventions such as vasopressors, an-
tibiotics, fluids, and ventilation, our benchmark enables time-
aware modeling of patient trajectories and treatment outcomes.

Our findings highlight the importance of including treatment
variables in predictive modeling. While their impact was more
pronounced in dynamic tasks (e.g., vasopressor requirement),
their limited effect in early static prediction tasks suggests

future work could explore better representations or incorpo-
rate interaction effects between physiology and interventions.
The results also affirm that Transformer-based architectures
benefit from this enriched temporal structure and intervention
information.

Several limitations should be acknowledged. First, the
dataset is derived from a single institution (Beth Israel Dea-
coness Medical Center), which may affect generalizability to
other settings. Second, as with all retrospective EHR data,
inconsistencies in documentation and potential biases in care
delivery may influence the extracted variables. Third, while we
adopted the widely accepted Sepsis-3 definition, newer tools
like gSOFA and advanced severity scoring systems are not yet
integrated and may improve future cohort definitions.

Looking ahead, the MIMIC-Sepsis benchmark provides a
strong foundation for more complex modeling tasks. One
promising direction is the development of reinforcement learn-
ing algorithms to guide sequential decision-making in sepsis
care, particularly for treatment personalization. Our structured
and time-aligned dataset is readily suitable for this class of
models.

Another important extension is the incorporation of unstruc-



tured clinical data such as discharge summaries and progress
notes. Though not yet included in our benchmark tasks,
our preprocessing tools provide alignment between structured
and unstructured data, allowing researchers to experiment
with multimodal modeling approaches. These notes contain
rich contextual insights that may enhance risk stratification,
trajectory forecasting, and causal inference.

Overall, we aim for MIMIC-Sepsis to serve as a standard-
ized and extensible benchmark that supports the reproducibil-
ity, comparability, and clinical relevance of machine learning
research in critical care.

VII. CONCLUSION

This work introduces MIMIC-Sepsis, a publicly available
benchmark designed to support machine learning research in
sepsis and critical care. We contribute: (1) a transparent and
reproducible pipeline for cohort construction and variable har-
monization; and (2) a benchmark framework that incorporates
treatment interventions and supports time-aware modeling of
disease progression and outcomes.

By aligning clinical events relative to sepsis onset and in-
cluding interventions such as vasopressors, fluids, antibiotics,
and ventilation, MIMIC-Sepsis enables the study of treatment
dynamics often overlooked in prior sepsis research. Our ex-
periments demonstrate that Transformer-based models benefit
from this richer temporal and treatment-aware representation,
outperforming baselines across multiple predictive tasks.

We anticipate MIMIC-Sepsis will serve as a standardized
resource for the broader research community. It offers a foun-
dation for evaluating predictive models, exploring causal rela-
tionships, and developing reinforcement learning approaches
for treatment optimization. Ultimately, we hope this bench-
mark facilitates reproducible, clinically meaningful advances
in computational sepsis care.
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