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ABSTRACT

Large language model evaluation requires thousands of benchmark items, mak-
ing evaluations expensive and slow. Existing methods compute average accuracy
across fixed item sets, treating all items equally despite varying quality and infor-
mativeness. We present ATLAS an adaptive testing framework using Item Re-
sponse Theory (IRT) to estimate model ability through Fisher information-guided
item selection. Our analysis of five major benchmarks reveals that 3-6% of items
exhibit negative discrimination, indicating annotation errors that corrupt static
evaluation. ATLAS achieves 90% item reduction while maintaining measurement
precision: on HellaSwag (5,608 items), we match full-benchmark estimates us-
ing only 42 items with 0.154 MAE. Our framework maintains item exposure rates
below 10% and test overlap at 16-27%, compared to static benchmarks where
every model sees all items (100% exposure). Among 4,000+ tested models, IRT
ranks differ from accuracy ranks: models with the same accuracy get different IRT
scores, and 23-31% of all models shift by more than 10 rank positions. Code and
calibrated item banks available athttps://anonymous.4open.science/
r/ATLAS—3210/README .md.

1 INTRODUCTION

Large language model (LLM) evaluation relies on benchmarks with tens of thousands of test items.
These benchmarks impose high computational costs and evaluation cycles spanning days or weeks.
Despite benchmark growth—some proposals exceed 100,000 items—evaluation practice remains
static: models receive average accuracy scores across fixed item sets. This approach ignores statis-
tical information in large datasets and raises questions about efficiency and validity.

Current evaluation faces three fundamental limitations. First, average scores hide meaningful differ-
ences between models with distinct error patterns, particularly for lower-performing models where
small ability differences are obscured by measurement noise. Second, static benchmarks create vul-
nerability to data contamination as items leak into pretraining corpora, enabling high scores through
memorization rather than genuine capability. Third, evaluating complete benchmarks is inefficient,
treating poorly discriminative items as equally informative as high-quality questions.

To address these limitations, we propose ATLAS (Adaptive Testing for LLM Ability Scoring), an
adaptive evaluation framework based on computerized adaptive testing (CAT; |Lord!|1980; [Wainer
et al.|2000; Weiss|[1982). ATLAS first calibrates benchmark items using three-parameter logistic
(3PL) IRT models to estimate item difficulty, discrimination, and guessing parameters (Birnbaum)
1968; Hambleton et al.| |1991)). Then, rather than administering fixed item sets, ATLAS dynamically
selects items with maximum Fisher information for each model’s current estimated ability, termi-
nating when precision thresholds are reached. This approach directly addresses all three limitations:
Fisher information-guided selection provides precise ability estimates that distinguish models with
identical accuracy, dynamic item selection reduces contamination through diverse test forms, and
adaptive termination achieves reliable evaluation with significantly fewer items.

We validate our framework across five major benchmarks (WinoGrande, TruthfulQA, HellaSwag,
GSMB8K, ARC). ATLAS achieves competitive or superior performance to static baselines: on Truth-
fulQA, it attains the lowest MAE (0.067) using only 51 items; on HellaSwag, it matches MetaBench
accuracy (0.154 MAE) while requiring 3x fewer items (39 vs 93). Across benchmarks, ATLAS re-
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quires 30-78 items on average compared to thousands in full evaluation, while IRT-based estimates
reveal systematic rank reordering that exposes limitations of accuracy-based evaluation.

Our contributions are: (1) We demonstrate fundamental limitations of average-score evaluation and
establish the benefits of psychometric ability estimates for LLM evaluation. (2) We develop ATLAS,
the first large-scale adaptive testing framework for LLMs, achieving 90% item reduction while main-
taining measurement precision and natural contamination resistance through < 10% item exposure
rates. (3) We provide comprehensive psychometric analysis of five major benchmarks, revealing
that IRT-based estimates cause systematic rank reordering (23 — 31% of models shift more than 10
positions) and identifying that 3 — 6% of items exhibit negative discrimination due to annotation
errors, with calibrated item banks released for reproducible evaluation.

2 RELATED WORK

2.1 BACKGROUND

Large-scale benchmarks such as WinoGrande, TruthfulQA, HellaSwag, GSM8K and ARC have
become standard for LLM evaluation but impose significant computational costs. These static ap-
proaches suffer from benchmark saturation, data contamination, and item redundancy, raising con-
cerns about their ability to reflect genuine model capabilities.

Item Response Theory (IRT) has recently been applied to LLM evaluation (Lalor et al.||2024; |Guinet
et al.} 2025). It provides item parameters such as difficulty, discrimination, and guessing, as well
as latent ability estimates 6 for models. However, existing IRT applications remain largely static:
tinyBenchmarks (Polo et al.L|2024) uses clustering for item selection but doesn’t guarantee informa-
tiveness for # estimation, while MetaBench (Kipnis et al.,|2025) requires computationally expensive
iterations to identify stable subsets. These approaches often lack proper psychometric validation
and emphasize predictive accuracy over model fit diagnostics, which makes it difficult to ensure that
ability estimates are valid, interpretable, and comparable across models.

Beyond these limitations of existing IRT applications, many evaluations continue to rely on aver-
age scores. Average scores tend to mask meaningful model differences and are often affected by
form-dependence, nonlinear scaling, equal weighting of uninformative items, and contamination
sensitivity (see Appendix [A| for detailed analysis). In contrast, IRT-based ability estimates () pro-
vide form-invariant, uncertainty-aware alternatives that adjust for item difficulty and discrimination.

2.2 ADAPTIVE TESTING

Computerized adaptive testing (CAT) is a psychometric framework for efficiently measuring ability
by selecting items that maximize Fisher information. By adapting item selection in real time, CAT
caters to different ability levels, administering easier items to weaker models and more challenging
items to stronger ones. CAT can operate with a fixed test length or with a variable length, terminating
once a predefined precision threshold is reached (Weiss, |1982).

The challenge of evaluating LLMs closely parallels that of international large-scale assessments
for humans. Our dataset includes more than 4,000 models, ranging from simple pattern-matching
systems with very low ability estimates (8 < —2) to advanced models such as GPT-4 with high
ability estimates (¢ > 2) . This wide heterogeneity makes static benchmarks inadequate: fixed
test forms inevitably include items that are trivial for advanced models and impossible for weaker
ones, which limits their diagnostic value. Unlike static benchmarks, CAT explicitly adapts to each
model’s ability level, ensuring that item selection remains informative across the full spectrum of
performance.

CAT allows us to reduce test length while maintaining measurement precision. Modern extensions
such as Multi-Stage Testing and the incorporation of process data (Zenisky et al., 2009} |[Zheng &
Chang| [2015}; Tang et al.l [2024) provide further gains in efficiency and validity. Prior attempts
to explore adaptive evaluation for LLMs have been either limited in scope (Zhuang et al., [2023)
or primarily conceptual (Zhuang et al., 2025)). Beyond efficiency, CAT also strengthens defenses
against contamination. Because models are evaluated on small, adaptively chosen subsets selected
in real time, the overlap between training and evaluation data is substantially reduced. Furthermore,
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CAT protocols can be refreshed with new items while preserving comparability of ability estimates
6. A detailed comparison of IRT-based approaches is provided in Appendix

3 METHODOLOGY

We introduce a novel adaptive testing framework that transforms LLM evaluation from static bench-
marking to dynamic ability estimation. Our approach addresses three critical limitations of current
evaluation practice: (1) it distinguishes models with identical average scores but different capability
patterns, (2) it reduces computational cost by requiring 90% fewer items while maintaining accuracy,
and (3) it naturally mitigates contamination risks through diverse item sampling.

This section presents our framework in four stages: problem formulation (Section [3.1)), data con-
struction with psychometric filtering (Section [3.2)), item bank calibration using IRT models (Sec-
tion[3.3), and adaptive testing with randomesque selection (Section [3.4).

3.1 PROBLEM FORMULATION AND SETUP

We formulate LLM evaluation as a psychometric measurement problem. Let Z denote the set of
benchmark items and L the set of language models. For each model ¢ € L and item i € 7, we
observe a binary response Y; ¢ € {0, 1}, where 1 indicates correct and 0 incorrect. These responses
form the item-response matrix {Y; ¢ }iez ccc.

Unlike traditional approaches that rely solely on accuracy scores, our objective is to estimate the la-
tent ability 6, of each model based on its response pattern {Y; ;};cz, while simultaneously calibrat-
ing item-level parameters: discrimination a;, difficulty b;, and guessing c;. This approach enables
fine-grained model comparison even when models achieve identical accuracy, as 6, accounts for the
varying informativeness of different items.

3.2 DISCRIMINATIVE ITEM FILTERING

We construct the item-response matrix using data from the HuggingFace Open LLM Leaderboard.
The item pool Z spans five benchmarks: ARC, GSM8K, HellaSwag, TruthfulQA, and WinoGrande.
To ensure data quality for IRT calibration, we apply two levels of filtering: removing unsuitable
models and eliminating non-informative items.

Model Selection. We retain only models £ with complete responses across all items to ensure
unbiased ability estimates. Models with extreme scores (below 0.1st percentile) are excluded to
prevent parameter estimation instability, as IRT’s sigmoidal functions become under-constrained at
the boundaries.

Item Filtering. We apply two complementary filters to retain only discriminative items:

» Low-variance removal: Items with response standard deviation < 1% or mean accuracy
> 95% are discarded, as they provide litter information for differentiating between models.

* Discrimination filtering: We compute the point-biserial correlation 7, (¢) between each
item’s response vector {Y; ¢}sc, and the models’ total scores Ty = > jez Yo (see Ap-

pendix@]for details). Items with rp;(7) < 0.1 are removed as non-diagnostic.

This filtering process yields a refined response matrix that supports stable and reliable IRT calibra-
tion (see Table[5]in Appendix [D]for detailed results).

3.3 ScALABLE IRT CALIBRATION

The calibration stage estimates item parameters (a;, b;, ¢;) and computes reference ability estimates

é}”wle for each LLLM ¢ for validation. To model the probability of a correct response, we adopt the
three-parameter logistic (3PL) IRT model (Birnbauml [1968; [Lord, [1980):

1761’
pi(e) = ci +

T Tt exp(—ai(0, — b)) M
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Here, a; is the discrimination parameter, which determines how sharply item ¢ differentiates between
stronger and weaker models. b; is the difficulty parameter, specifying the ability level at which a
model has a 50% chance (beyond guessing) of answering item ¢ correctly. c; is the guessing parame-
ter, setting the lower bound on the probability of success due to random guessing. These parameters
enable Fisher information-based prioritization of items in our adaptive framework, distinguishing
high-quality items from those with low discriminative power.

Common-Person Calibration at Scale. We develop a partition-based calibration strategy that takes
advantage of the unique characteristics of LLM benchmarking. Unlike traditional testing where only
subsets of items are administered to each examinee, all LLM models respond to all items, enabling
a novel application of common-person linking. We partition items into K non-overlapping sub-
sets 7y, (each with |Zx| > 100 items), calibrate each subset independently, then apply mean-sigma
transformations (Kolen & Brennan| 2014)) using the model population £ as linking anchors. This
approach reduces computational complexity from O(|Z|?) to O(K - maxy, |Z;|*) while maintaining
calibration accuracy through the redundancy of having all models as linkers (Chalmers| 2012).

Heterogeneity-Aware Ability Estimation. The extreme heterogeneity of LLM populations, span-
ning from random baselines (8 ~ —3) to near-perfect models (§ =~ 3), breaks standard estimation
methods. Standard IRT practice relies on Expected A Posteriori (EAP) estimation (Bock & Mis-
levyl |1982) for ability estimation. However, EAP produces undefined values for all-correct or all-
incorrect response patterns, affecting 12% of our model population spanning from random baselines
to near-perfect systems. To address this LLM-specific challenge, we employ Weighted Likelihood
Estimation (WLE) (Warm, (1989) with bias correction term % where J(0) = >, a%g}) (Warm),
1989). This choice enables finite estimates across the full ability spectrum while maintaining con-
sistency properties (Baker & Kiml 2004]), crucial for establishing reliable validation baselines in the

extreme heterogeneity of LLM evaluation.

Multi-Subset Model Fit Validation. Unlike prior IRT applications to LLM evaluation (Polo et al.,
2024; [Kipnis et al., 2025)) that omit model validation, we conduct rigorous psychometric diagnos-
tics to ensure calibration quality. We report the M, statistic (Maydeu-Olivares, 2015) with RMSEA
indices, establishing that our 3PL models achieve good fit (RMSEA < 0.05) across all benchmarks.
Our partition-based calibration strategy, which divides the full item bank into non-overlapping sub-
sets (each containing > 100 items for statistical stability), enables both computational feasibility
and robust validation. Since the same set of models £ acts as common persons across all partitions,
diagnostic statistics reflect global calibration quality rather than partition-specific artifacts. This
multi-subset linking design ensures that model fit metrics capture systematic patterns across the en-
tire item bank, not just localized subsets. This validation is crucial for reliable adaptive testing, as
misfitting items would compromise Fisher information calculations and degrade selection accuracy.

3.4 ADAPTIVE TESTING WITH INFORMATION SELECTION

Our proposed ATLAS dynamically selects the most informative items for each model, dramatically
reducing the number of items needed while maintaining accuracy. Algorithm|[T|presents the complete
procedure. The algorithm includes several key design choices tailored to LLLM evaluation:

Initialization and Bounds. We initialize the ability estimate at 6o = 0. In IRT, abilities are typ-
ically standardized to mean zero, so this choice provides a neutral starting point that avoids bias
toward high- or low-performing models and stabilizes early item selection when little information is
available. We enforce minimum (30) and maximum (500) item limits. The minimum ensures stable
estimation for models at performance extremes, while the maximum constrains computational cost
and yields approximately 90% reduction in test length relative to full benchmarks.

Randomesque Item Selection. Rather than deterministically selecting the single most informative
item, we randomly sample from the top-5 candidates ranked by Fisher information:

1(0) = af - pi(0) - [1 — pi(0)]. )

This randomesque strategy (Kingsbury & Zaral [1989) prevents over-reliance on specific item types
while still keeping high information, which is important for models with specialized capabilities.
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Algorithm 1 Adaptive Testing for Model ¢

1: Initialize: éo «— 0, testrecord Ry < (0, t + 0
2: while { < max_items and not converged do
3: t+—t+1

4 if{ =1 then .

5 Select item ; with |b;, — 0| minimized

6: else )

7: Compute Fisher information I;(0;_1) for all unadministered items
8: Select i; randomly from top-5 most informative items

9: end if
10: Administer item 7; to model ¢, observe response Y;, ,

11: Update record: Ry < Ry U {(it, Yi, 0)}
12:  Update ability: §, < EAP(Ry)
13: Compute standard error: SE(6;) « 1/\/>jer, Ij(ét)

14: if t > min_items and SE(6;) < 7 then

15: break > Convergence achieved
16: end if

17: end while .

18: return 0, < 0;, SE(6,), Ry

Sequential Ability Updates. After each item administration, we update the ability estimate using
Expected A Posteriori (EAP) estimation (Bock & Mislevy, |1982)):

b= Bl6lR] = [ 0-plole) do. @)

EAP provides numerically stable updates with sparse early responses and incorporates prior knowl-
edge about ability distributions. In contrast, WLE tends to become unstable when response patterns
are extreme, a situation common in the early stages of adaptive testing.

Precision-Based Stopping. The procedure terminates when either the maximum number of items

is reached or the standard error of the ability estimate, SE(ég), falls below a predefined threshold 7,
provided that at least 30 items have been administered. This stopping rule achieves efficiency and
ensures consistent precision across the ability spectrum.

Output and Validation. For each model /, the algorithm produces: (1) the administered item
sequence and responses Ry, (2) the ability estimate trajectory {ét} with associated standard errors,
and (3) the final estimate ;. We validate these adaptive estimates against whole-bank references
92”1010 to confirm that our dramatic reduction in items does not compromise measurement accuracy.

4 EXPERIMENTS

We evaluate the proposed ATLAS framework across five benchmarks, comparing its efficiency and
accuracy against static baselines while analyzing exposure rates, overlap patterns, and the advan-
tages of IRT-based ability estimation over raw accuracy scores.

4.1 EXPERIMENTAL SETUP AND METRICS

We evaluate ATLAS across five diverse benchmarks covering different cognitive domains: Wino-
Grande (commonsense reasoning), Truthful QA (factual consistency), HellaSwag (procedural infer-
ence), GSMS8K (mathematical reasoning), and ARC (scientific question answering). All experiments
use calibrated item banks from Section

We compare against four static baselines that do not adapt to individual models: (1) Random sam-
pling of 100 items uniformly from the full bank, (2) TinyBenchmarks Polo et al. (2024) using pre-
determined subsets selected via clustering without Fisher information optimization, (3) MetaBench-
Primary and (4) MetaBench-Secondary [Kipnis et al.|(2025) using curated splits that require com-
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putationally expensive iterations to identify stable subsets. Unlike these static approaches, ATLAS

uses three precision thresholds (SE(@) < 0.1,0.2,0.3) with bounds of 30-500 items, terminating
when sufficient precision is achieved.

We evaluate using five metrics: (1) Mean Absolute Error (MAE) between ATLAS estimates 6,
and full-bank references é}“h"l"' to assess accuracy, (2) Average Number of Items Administered to
measure efficiency, (3) Item Exposure Rate quantifying how frequently each item appears across
evaluations, (4) Test Overlap Rate () measuring the average proportion of shared items between
any two model evaluations, and (5) Runtime per session to assess computational efficiency. The
exposure rate is calculated as the percentage of models that encounter each specific item, while the
overlap rate represents the average Jaccard similarity between item sets administered to different
models. Additional experimental configurations and psychometric interpretations are provided in

Appendix [C]

Table 1: Baseline and adaptive evaluation results (MAE and Avg. Item). Lower is better |.

Method WinoGrande Truthful QA HellaSwag GSMSK ARC
MAE Items MAE Items MAE Items MAE Items MAE Items
Random 0.176 100 0.105 100 0.231 100 0.164 100 0.147 100
TinyBenchmarks | 0247 100 0.161 100 0.299 100 0.173 100 0.165 100
MetaBench-P 0.148 133 0.081 154 0.164 93 0.154 100 0.142 145
MetaBench-S 0.210 106 0.074 136 0.238 58 0.162 100 0.133 100
ATLASg 1 0.149 78 0.067 51 0.154 39 0.159 73 0.099 71
ATLASQ o 0.181 39 0.074 30 0.159 30 0.181 39 0.126 36
ATLASq 3 0.183 32 0.072 30 0.161 30 0.186 32 0.128 30

Table 2: Adaptive evaluation efficiency and diversity. ATLAS maintains low item exposure rates
(< 10%) and moderate test overlap (16 — 27%), providing natural contamination resistance while
achieving fast selection times (< 1 minute per model). Lower values indicate better performance
for all metrics.

Benchmark Method Test Overlap | Avg. Item | Avg. Selection |
(Item #) Rate (%) Exposure Rate (%) Time (s)

. ATLASs5<0.1 18.85 9.28 40.99
W“(‘f&rg)“de ATLASsg<0.2 17.32 5.07 19.92
ATLASsp<0.3 20.28 4.24 16.74
ATLASsE<0.1 18.93 8.17 15.97
Tm(‘gg‘él)QA ATLASg5<0.2 21.69 10.56 9.37
ATLASgp<0.3 21.67 10.68 9.72
ATLASsp<0.1 15.76 3.90 75.52
H‘zlslggg)ag ATLASsp<0.2 19.28 6.23 56.93
ATLASgp<0.3 19.25 6.85 57.06
ATLASsp<0.1 22.43 8.32 45.69
Céfgg%( ATLASs5<0.2 22.16 5.63 24.08
ATLASgp<0.3 26.89 8.24 19.06
ARC ATLASsp<0.1 19.50 10.08 30.99
(842) ATLASsE<0.2 19.25 5.42 13.98
ATLASsp<0.3 21.91 9.77 11.82

4.2 PERFORMANCE AND RELIABILITY ANALYSIS

Table [I| reveals ATLAS’s consistent efficiency advantages across all benchmarks. On HellaSwag,
ATLAS achieves the best accuracy (0.154 MAE) using only 39 items - just 42% of MetaBench-
Primary’s 93 items while improving accuracy by 6%. The efficiency gains are most dramatic on
TruthfulQA, where ATLAS achieves the lowest MAE of 0.067 using only 33% of MetaBench-
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Figure 1: Comparison of subset (predicted) ability estimates against whole-bank (reference) abilities
across five benchmarks. Points along the diagonal indicate perfect agreement. ATLAS maintains
the closest alignment overall, particularly on TruthfulQA, ARC, HellaSwag and in the low-ability
regime of GSMS8K, while static baselines such as TinyBenchmarks and random show greater vari-
ance and systematic deviation.

Primary’s items (51 vs 154) and outperforms both MetaBench variants. On ARC, ATLAS demon-
strates substantial improvements in both dimensions: 30% better accuracy (0.099 vs 0.142 MAE)
using just 53% of the items (77 vs 145). Even on GSM8K where MetaBench-Primary achieves
marginally lower error, ATLAS maintains competitive performance (0.159 vs 0.154 MAE) while re-
quiring 27% fewer items. WinoGrande shows similar patterns, with ATLAS matching MetaBench-
Primary’s accuracy (0.149 vs 0.148 MAE) using only 59% of the items.

Figure [I] compares ability estimates from subsets against whole-bank references. ATLAS’s tight
alignment to the diagonal demonstrates reliable ability estimation across benchmarks. In contrast,
static baselines show systematic deviations: TinyBenchmarks exhibits bias at high-ability levels,
while random sampling produces broad scatter, confirming the importance of principled item selec-
tion over arbitrary subsampling.

4.3 CONTAMINATION RESISTANCE AND EFFICIENCY BENEFITS

Table 2] demonstrates ATLAS’s contamination resistance and efficiency advantages across multiple
dimensions. The average item exposure rates remain below 10% across all benchmarks and precision
levels, with the lowest rates on large banks: HellaSwag achieves just 3.9% exposure with SE < 0.1,
meaning each item appears in fewer than 4% of model evaluations. This contrasts sharply with static
baselines where every item is exposed in 100% of evaluations. Even smaller banks maintain low
exposure rates, with ARC and Truthful QA showing 5.4-10.7% exposure rates, making systematic
memorization during pretraining practically impossible.

The test overlap rates of 16-27% provide natural contamination resistance while maintaining eval-
uation consistency. On HellaSwag, the 15.8% overlap rate means two randomly selected models
share fewer than 16% of items on average, compared to 100% overlap in static evaluation. This di-
versity scales with bank size: larger banks like HellaSwag (5,608 items) achieve the lowest overlap
rates (15.8-19.3%), while smaller banks like GSM8K show higher but still protective overlap rates
(22.2-26.9%). The precision threshold affects this trade-off: stricter thresholds (SE < 0.1) generally
produce lower overlap rates but higher exposure rates due to longer tests.

Runtime efficiency demonstrates practical scalability, with selection times averaging 9.4-75.5 sec-
onds per model across benchmarks. The timing scales roughly with bank size: HellaSwag requires
the longest selection time (57-76 seconds) due to its large item pool, while Truthful QA achieves
the fastest selection (9.4-16.0 seconds). Importantly, these times include the full adaptive selection
process and remain well under one minute for most configurations, making ATLAS practical for
both interactive evaluation and large-scale benchmarking scenarios.
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Figure 2: Comparison of IRT ability estimates é}”‘"'e with raw accuracy. Left: Ability vs accuracy
reveals strong correlation but critical differences at performance extremes where accuracy collapses.
Right: Rank comparison shows systematic reordering, with 23% (GSM8K) and 31% (HellaSwag)
of models shifting > 10 positions. IRT separates models with identical accuracies by accounting for
which items they solve correctly.

4.4 DISTINGUISHING LOW- AND HIGH-PERFORMING MODELS

Figure2]demonstrates IRT’s key advantage: separating models with similar accuracy scores through
ability estimates. Despite strong correlations (0.99 for GSM8K, 0.96 for HellaSwag), systematic
differences emerge at performance extremes. In low-performing regimes, accuracy collapses into
narrow bands (0.10-0.15) while IRT spans 6 ~ —3 to —1, distinguishing models that solve easy
versus challenging items. In high-performing regimes, ceiling effects compress accuracy differ-
ences, but IRT maintains discrimination across 6 ~ 1.5 to 2.5. Similar patterns are observed across
TruthfulQA, WinoGrande, and ARC benchmarks, with additional score-versus-theta comparisons
provided in Appendix [B]

The right panels show systematic rank reordering: 23-31% of models shift > 10 positions when
ranked by IRT versus accuracy. Models performing well on hard items receive higher IRT ranks
despite moderate accuracy, while those succeeding on easy items are appropriately downweighted.
This enhanced discrimination provides more reliable model comparisons, especially critical in satu-
rated performance regions where accuracy-based evaluation fails. Similar patterns of IRT superiority
in distinguishing models are observed across TruthfulQA, WinoGrande, and ARC benchmarks, with
additional analysis provided in Appendix [B]

4.5 ITEMS ARE NOT EQUALLY INFORMATIVE

Accuracy by Difficulty Level (WinoGrande)

0.900
0.875
0.850

>
0.825 3

<
0.800 8

<
0.775
0.750
0.725

0.700

o> or o> o o°

Figure 3: Two models with identical accuracy (0.833) on WinoGrande receive different ability es-
timates (é 4 =1.2vs 0 B = 0.6). Model A succeeds on harder items (darker cells on right), while
Model B answers easier items (darker cells on left). IRT captures these item difficulty patterns that
raw accuracy cannot.
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Figure3|demonstrates IRT’s key advantage: models with identical accuracy (0.833) receive different
ability estimates (04 = 1.2 vs 5 = 0.6) based on which items they solve correctly. Under the
3PL IRT model, items differ in discrimination a;, difficulty b;, and guessing c¢; parameters. Model
A succeeds on high-difficulty items (b; > 0.5) with strong discrimination (a; > 1.5), yielding
2.3x more Fisher information than Model B, which mainly answers easier, less discriminative items
(b; < —0.5, a; < 0.8).

IRT provides automatic quality control by weighting items according to their empirical contribu-
tion to distinguishing model abilities. In our calibrated banks, 3.2-5.7% of items exhibit negative
discrimination (a; < 0), indicating systematic flaws where stronger models perform worse. For
example, WinoGrande item #247 achieves 0.89 accuracy but a; = —0.43 due to exploitable linguis-
tic artifacts. Under raw accuracy, this flawed item contributes equally (weight = 1/N) to all scores,
potentially inflating weak models. Under IRT, negative discrimination automatically down-weights
its contribution by 82% (effective weight o< a? ~ 0.18), reducing measurement contamination and
providing more reliable ability estimates than accuracy alone. Similar patterns of identical accuracy
leading to different ability estimates are observed across ARC, HellaSwag, and other benchmarks,
with additional heatmap visualizations provided in Appendix [B]

5 DISCUSSION

5.1 IMPLICATIONS FOR BENCHMARK DESIGN

Our results identify two requirements for future LLM benchmark development. First, reduced item
sets require content balancing to maintain assessment validity. Without balanced skill domain repre-
sentation, benchmarks produce biased evaluations. Our adaptive framework can be easily modified
to simultaneously balance content coverage while maximizing measurement precision (Cheng &
Chang| [2009). In contrast, achieving such balance with a static reduced item set would be far more
challenging.

Second, item quality directly impacts evaluation reliability. Our analysis reveals that 3.2-5.7% of
items exhibit negative discrimination parameters, indicating systematic flaws that corrupt accuracy-
based evaluation. While IRT automatically down-weights such items, many existing benchmarks
lack quality control procedures, allowing poorly constructed or ambiguous items to distort aggregate
scores. Future benchmark development should adopt rigorous psychometric validation as standard
practice, moving beyond crowd-sourced accuracy to principled measurement design.

5.2 LIMITATIONS AND FUTURE WORK

Despite efficiency gains, our framework has limitations. Initial calibration requires a representative
model population, which becomes outdated as architectures evolve. The current implementation
handles only multiple-choice formats; generative tasks need different methods. Future work should
develop online calibration that updates item parameters with new models, and hybrid approaches
combining adaptive selection with open-ended evaluation.

6 CONCLUSION

Adaptive testing replaces exhaustive benchmarking with efficient, contamination-resistant measure-
ment. Our ATLAS framework reduces items by 90% while maintaining precision, separates models
with identical accuracies using IRT-based ability estimates, and limits contamination through <
10% item exposure rates. With benchmark saturation and contamination risks increasing, adaptive
testing provides a rigorous alternative, applying measurement science principles instead of static
averaging.



Under review as a conference paper at ICLR 2026

REFERENCES

Mary J Allen and Wendy M Yen. Introduction to measurement theory. Waveland Press, 2001.

Frank B Baker and Seock-Ho Kim. Item response theory: Parameter estimation techniques. CRC
press, 2004. doi: https://doi.org/10.1201/9781482276725.

Allan Birnbaum. Some latent trait models. Statistical theories of mental test scores, 1968.

R Darrell Bock and Robert J Mislevy. Adaptive eap estimation of ability in a microcomputer envi-
ronment. Applied psychological measurement, 6(4):431-444, 1982. doi: https://doi.org/10.1177/
014662168200600405.

R Philip Chalmers. mirt: A multidimensional item response theory package for the r environment.
Journal of statistical Software, 48:1-29, 2012. doi: 10.18637/jss.v048.106.

Shyh-Yueh Chen. A simplified procedure for estimating item exposure rates in computerized adap-
tive testing. Applied Psychological Measurement, 29(3):209-227, 2005.

Ying Cheng and Hua-Hua Chang. The maximum priority index method for severely constrained
item selection in computerized adaptive testing. British journal of mathematical and statistical
psychology, 62(2):369-383, 2009. doi: https://doi.org/10.1348/000711008X304376.

Gauthier Guinet et al. Evaluating large language models with psychometrics. OpenReview, 2025.
URLhttps://openreview.net/pdf?1d=0SsQ5AUZz6X.

Ronald K Hambleton, Hariharan Swaminathan, and H Jane Rogers. Fundamentals of item response
theory, volume 2. Sage, 1991.

G Gage Kingsbury and Anthony R Zara. Procedures for selecting items for computerized adaptive
tests. Applied measurement in education, 2(4):359-375, 1989. doi: https://doi.org/10.1207/
$15324818ame0204_6.

Alex Kipnis, Konstantinos Voudouris, Luca M. Schulze Buschoff, and Eric Schulz. metabench —
a sparse benchmark of reasoning and knowledge in large language models. In The Thirteenth
International Conference on Learning Representations (ICLR), 2025.

Michael J. Kolen and Robert L. Brennan. Test Equating, Scaling, and Linking: Methods and
Practices. Springer, New York, NY, 3rd edition, 2014.

John P Lalor, Pedro Rodriguez, Jodo Sedoc, and Jose Hernandez-Orallo. Item response theory for
natural language processing. In Proceedings of the 18th Conference of the European Chapter of
the Association for Computational Linguistics: Tutorial Abstracts, pp. 9-13, 2024.

Frederic M. Lord. Applications of Item Response Theory to Practical Testing Problems. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1980.

Alberto Maydeu-Olivares. Making sense of item fit statistics. Educational and Psychological
Measurement, 75(3):365-387, 2015.

Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail
Yurochkin. tinybenchmarks: evaluating 1lms with fewer examples. In International Conference
on Machine Learning ICML), 2024.

Xiuxiu Tang, Yi Zheng, Tong Wu, Kit-Tai Hau, and Hua-Hua Chang. Utilizing response time for
item selection in on-the-fly multistage adaptive testing for pisa assessment. Journal of Educational
Measurement, 2024. doi: 10.1111/jedm.12403.

Howard Wainer, Neil ] Dorans, Ronald Flaugher, Bert F Green, and Robert J Mislevy. Computerized
adaptive testing: A primer. Routledge, 2000. doi: https://doi.org/10.4324/9781410605931.

Thomas A Warm. Weighted likelihood estimation of ability in item response theory. Psychometrika,
54(3):427-450, 1989. doi: https://doi.org/10.1007/BF02294627.

10


https://openreview.net/pdf?id=OSsQ5AUz6X

Under review as a conference paper at ICLR 2026

David J Weiss. Improving measurement quality and efficiency with adaptive testing. Applied
psychological measurement, 6(4):473-492, 1982. doi: 10.1177/014662168200600408.

April Zenisky, Ronald K Hambleton, and Richard M Luecht. Multistage testing: Issues, designs,
and research. In Elements of adaptive testing, pp. 355-372. Springer, 2009. doi: ttps://doi.org/
10.1007/978-0-387-85461-8_18.

Yi Zheng and Hua-Hua Chang. On-the-fly assembled multistage adaptive testing.
Applied Psychological Measurement, 39(2):104-118, 2015. doi: https://doi.org/10.1177/
0146621614544519.

Yan Zhuang, Qi Liu, Yuting Ning, Weizhe Huang, Rui Lv, Zhenya Huang, Guanhao Zhao, Zheng
Zhang, Qingyang Mao, Shijin Wang, et al. Efficiently measuring the cognitive ability of llms: An
adaptive testing perspective. arXiv preprint arXiv:2306.10512, 2023.

Yan Zhuang, Qi Liu, Zachary A. Pardos, Patrick C. Kyllonen, Jiyun Zu, Zhenya Huang, Shijin
Wang, and Enhong Chen. Position: Ai evaluation should learn from how we test humans. In
International Conference on Machine Learning (ICML), 2025.

11



Under review as a conference paper at ICLR 2026

A DETAILED ANALYSIS OF AVERAGE SCORE LIMITATIONS

Average score (percent correct) remains the most widely reported metric for evaluating LLMs.
While it provides a convenient ordinal indicator for fixed forms, it is a shaky measure of under-
lying ability.

First, average scores are form-dependent: changing the mix or difficulty of items alters percent
correct, even if the model’s true ability is unchanged. Second, the metric has a nonlinear scale:
improvements at the extremes (e.g., 98% — 100%) do not reflect the same underlying gain as
improvements in the middle (e.g., 50% — 52%). Third, it assumes equal informativeness across
items, allowing easy or guessable items to influence the mean as much as highly discriminative
ones. Fourth, it is subject to coverage bias: the observed score reflects the content blueprint of
the test rather than ability across domains. Fifth, average scores offer no measure of uncertainty,
making it unclear whether differences are statistically meaningful. Finally, they are highly sensitive
to contamination: memorized items from pretraining can artificially inflate percent correct without
reflecting genuine reasoning or generalization.

In contrast, IRT-based ability estimates (6) provide form-invariant, uncertainty-aware measures that
adjust for item difficulty and discrimination. Reporting 6 + SE(6) offers a psychometrically prin-
cipled alternative. For communication purposes, reconstructed percent scores may be shown along-
side, but 6 should serve as the primary indicator of model capability.

B COMPARISON OF IRT-BASED BENCHMARK METHODS

Table 3: Comparison of IRT-Based Benchmark Methods for LLMs

Factor TinyBenchmarks MetaBench (Static) ATLAS
(Static)
Assembly rules
IRT Calibration Required Required Required
Adaptivity None (same items) None (same items) High (items vary by
ability)
Test Length Fixed Fixed Variable, stopping
rules
Exposure control High (same items High (same items Low (rotating pool)
reused) reused)
Pool Sensitivity Subset dependent Subset dependent Robust to large pools
Fairness Biased if mis- Biased if mis- Balanced across abil-
targeted targeted ities
Score Precision Low at extremes Low at extremes High, SEs available
Model Fit Rarely checked Rarely checked Possible fit checks
Efficiency Fixed (100 items) Fixed (XX items) Fewer items, compa-
rable accuracy
Saturation Risk High High Low

C DETAILED EXPERIMENTAL SETUP AND METRICS

C.1

BENCHMARKS AND DATASETS

We conduct experiments on five diverse benchmarks covering different cognitive domains:

* WinoGrande: Commonsense reasoning with pronoun resolution

e TruthfulQA: Factual consistency and truthfulness evaluation

» HellaSwag: Procedural inference and common sense completion

12
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* GSMSK: Mathematical word problems requiring multi-step reasoning
* ARC: Scientific question answering across multiple domains

All experiments use the calibrated item banks from Section [3.3] ensuring consistent filtering and
parameter quality across datasets. Items with poor psychometric properties (negative discrimina-
tion a; < 0, extreme difficulty |b;| > 4, or unrealistic guessing ¢; > 0.5) were excluded during
calibration.

C.2 BASELINE CONFIGURATIONS

We compare ATLAS against four fixed, non-adaptive strategies:

Random Baseline: Samples 100 items uniformly from the full bank without consideration of item
parameters or model ability.

TinyBenchmarks: Uses the predetermined subset from [Polo et al.| (2024)), selected via clustering
methods but without explicit Fisher information optimization for ability estimation.

MetaBench-Primary and MetaBench-Secondary: Curated splits from Kipnis et al.| (2025) that
require computationally expensive iterations to identify stable subsets. These splits emphasize pre-
dictive accuracy over psychometric validity.

All baseline data is available on Hugging Face: tinyBenchmarks, HCAl/metabenchl

Unlike ATLAS, these approaches do not adapt to individual test-takers and serve only as static
reference points for accuracy—efficiency tradeoffs.

C.3 ATLAS CONFIGURATION DETAILS
For each model ¢, we run ATLAS under three precision-based stopping thresholds:

. SE(@) < 0.1: High precision, suitable for fine-grained model comparison

. SE(@) < 0.2: Moderate precision, balancing accuracy and efficiency

» SE() < 0.3: Lower precision, maximizing efficiency for rapid screening

A minimum of 30 items is enforced to prevent premature termination due to lucky guesses or initial
high-information items, while the maximum is capped at 500 items to ensure computational feasibil-
ity. This setup balances precision and budget constraints, simulating realistic conditions for adaptive
evaluation in production environments.

C.4 DETAILED METRIC DEFINITIONS
Average Mean Absolute Error (MAE):

1 O
MAE = W Z |9€ _ eyhole‘
M
where M is the set of evaluated models, ég is the ATLAS-derived ability estimate, and OA}”h"le is the
reference estimate from the complete item bank.
Average Item Exposure Rate:

1 count(4)
Exposure = — _—
IZ| 2 M|

i€
where count() is the number of times item ¢ was administered across all models M, and |Z| is the
total number of items in the bank.

Test Overlap Rate:

S | Te, N T, |
Q (|/\2/1|) 622 min(|7z, [, [7e,|)

where Ty represents the set of items administered to model £.
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C.5 PSYCHOMETRIC INTERPRETATION GUIDELINES

Item Exposure Rate Benchmarks: Values below 20-30% are considered desirable in large-scale
adaptive testing, as they indicate that no small subset of items dominates the evaluation, reducing
security risks and promoting item bank longevity.

Test Overlap Rate Benchmarks: Values under 10-15% are typically considered good in adap-
tive testing practice, providing sufficient form diversity to resist contamination while maintaining
measurement consistency.

Runtime Considerations: All measurements reflect computational efficiency in fully automated
settings. Runtime includes item selection via Fisher information maximization but excludes model
inference time, which varies significantly across architectures.

Table 4: Summary of MIRT M2 Average RMSEA across datasets

Dataset Avg. RMSEA  Avg. 5% RMSEA  Avg. 95% RMSEA  Num. Files
Winogrande 0.0565 0.0561 0.0568 10
Truthful QA 0.0690 0.0686 0.0693 6
HellaSwag 0.0482 0.0478 0.0486 50
GSMBK 0.0436 0.0433 0.0440 12
ARC 0.0588 0.0585 0.0592 8

Note: ‘Avg. RMSEA‘ is the mean RMSEA across all files for each dataset. ‘Avg. 5% RMSEA*
and ‘Avg. 95% RMSEA® are the averages of the file-level 5th and 95th percentile RMSEA
bounds, respectively.

D DATA PREPROCESSING DETAILS

D.1 POINT-BISERIAL CORRELATION FORMULA
The point-biserial correlation (Allen & Yen,2001) for item ¢ is defined as:

Torv,e=1 — Topy=0

*VDidi,

(i) = .

where T'y|y,,—1 and T'yy,,—o are the mean total scores of models that answered item i correctly and
incorrectly, respectively; st is the standard deviation of total scores {7y }; p; = ﬁ > ter Y, is the
proportion of models that answered item ¢ correctly; ¢; = 1 — p;; and | £] is the number of models.

D.2 FILTERING RESULTS

WinoGrande TruthfulQA HellaSwag GSMSK ARC

Num. Selected Models 4680 4635 3467 4195 4162
Num. Selected Item 1046 628 5608 1307 842
Avg. M>; RMSEA 0.0565 0.0690 0.0482 0.0436  0.0588

Table 5: Summary of model and item filtering per benchmark. RMSEA values reflect average fit
from M, statistics under the 3PL IRT model. Calibration and ability estimation were performed
using the mirt package in R, with WLE as the estimator. Items were filtered based on variability,
ceiling effects, and point-biserial discrimination.

A  EVALUATION METRIC DEFINITIONS

This section provides the exact mathematical definitions of the evaluation metrics introduced in
Section ??, along with brief interpretations.
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Average Mean Absolute Error (MAE). For each model /, let 9} denote the CAT-derived ability
estimate and ¢! the full-bank reference estimate. The average MAE is:

MAE = Z ‘05 gtole &)

Lel

where |L£] is the number of models evaluated. Interpretation: Lower MAE indicates higher fidelity,
i.e., CAT ability estimates more closely match the whole-bank reference.

Average Item Exposure Rate. Let /; denote the number of models administered item ¢, with |Z|
total items and |£| total models. The item exposure probability for item 4 is

hi

P(A;) = 1z @)

The average item exposure rate is then
) P(A 6
4) = Z ©6)
i€l
Interpretation: Lower values indicate higher adaptivity and greater item diversity, while higher

values suggest uniform or repetitive item usage across models.

Test Overlap Rate. Following [Chen| (2005), the expected proportion of common items between
two randomly selected test forms is given by

S _ e PA)? 1
C="To-y  E-v

(7

where L is the average test length. Interpretation: Lower values of () imply greater test form
diversity, which reduces risks of collusion and item memorization.

Correlation Metrics For completeness, we provide the definitions of the rank-based correlation
coefficients used in Section ??.

Spearman correlation.

6 Zz 1 ’L
n(n? —1)’
where d; is the rank difference for observation i across the two measures.

p=1-

Kendall correlation.

(#concordant pairs) — (#discordant pairs)
sn(n—1) '

T =

B ADDITIONAL EXPERIMENTAL RESULTS

15



Under review as a conference paper at ICLR 2026

TruthfulQA
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Figure 4: Comparison of raw average scores and whole-bank ability estimates on Truthful QA.
(Left) While average scores compress performance at the extremes, whole-bank ability estimates
reveal clearer separation among both low- and high-performing models, reflecting sensitivity to
item difficulty and discrimination. (Right) Rank comparison shows strong consistency between
the two measures (Spearman p = 0.97, Kendall 7 = 0.87), but ability-based ranking provides
finer resolution, especially in distinguishing weaker and stronger models beyond what raw accuracy
captures.

WinoGrande

Spearman Corr: 0.8598 Kendall Corr: 0.6976

S Whole-bank Ability Estimates vs. Average Score 10 bank Ability vs. Score)
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072 4 2946
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Figure 5: Comparison of raw average scores and whole-bank ability estimates on WinoGrande.
(Left) Whole-bank estimates show a non-linear relationship with average score and reveal clearer
separation on high-performing models, highlighting that ability captures relative item difficulty and
provides finer differentiation beyond raw accuracy. (Right) Rank comparison indicates strong but
imperfect alignment (Spearman p = 0.86, Kendall 7 = 0.70), with deviations from the diagonal
reflecting cases where ability-based ranking distinguishes models more effectively than accuracy
alone.
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ARC
Spearman Corr: 0.9143 Kendall Corr: 0.7703
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Figure 6: Comparison of raw average scores and whole-bank ability estimates on ARC. (Left)
Whole-bank estimates exhibit a non-linear relationship with average scores, providing clearer sepa-
ration on high-performing models by accounting for item difficulty and discrimination. (Right) Rank
comparison shows strong but not perfect alignment between the two metrics (Spearman p = 0.91,
Kendall 7 = 0.77), with deviations from the diagonal highlighting cases where ability-based rank-
ing offers more informative distinctions than raw accuracy alone.

Accuracy by Difficulty Level (ARC)

Model A

Model B

o o O o o® o0 O LR

Figure 7: Two models with the similar average accuracy (0.713) and (0.714) on ARC nevertheless
receive very different whole-bank ability estimates. Model A (mera-mix—4x7B) attains a whole-
bank ability rank of 270 because its correct responses are concentrated on more difficult items. In
contrast, Model B (LLaMAAntino—-3-ANITA-8B-Inst-DPO-ITA) is assigned a much lower
whole-bank ability rank of 2612, as its successes occur primarily on easier items. This divergence
shows how IRT-based ability estimation can distinguish models that appear identical under raw
accuracy by accounting for item difficulty.
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Accuracy by Difficulty Level (HellaSwag)
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Figure 8: Two models with the same average accuracy (0.853) on HellaSwag nevertheless receive
very different whole-bank ability estimates. Model A (supermario_v1) attains a whole-bank
ability rank of 347 because its correct responses are concentrated on more difficult items. In contrast,
Model B (contaminated-proof_7b_vl.0_safetensor) is assigned a much lower whole-
bank ability rank of 3074, as its successes occur primarily on easier items. This divergence shows
how IRT-based ability estimation can distinguish models that appear identical under raw accuracy
by accounting for item difficulty.
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