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ABSTRACT

Evaluating large language models (LLMs) typically requires thousands of bench-
mark items, making the process expensive, slow, and increasingly impractical at
scale. Existing evaluation protocols rely on average accuracy over fixed item sets,
treating all items as equally informative despite substantial variation in difficulty
and discrimination. We introduce ATLAS, an adaptive testing framework based
on Item Response Theory (IRT) that estimates model ability using Fisher informa-
tion—guided item selection. ATLAS reduces the number of required items by up to
90% while maintaining measurement precision. For instance, it matches whole-
bank ability estimates using only 41 items (0.157 MAE) on HellaSwag (5,600
items). We further reconstruct accuracy from ATLAS’s ability estimates and find
that reconstructed accuracies closely match raw accuracies across all five bench-
marks, indicating that ability 6 preserves the global performance structure. At
the same time, 6 provides finer discrimination within accuracy-equivalent mod-
els: among more than 3,000 evaluated models, 23-31% shift by more than 10
rank positions, and models with identical accuracies receive meaningfully dif-
ferent ability estimates. Code and calibrated item banks available at https:
//anonymous.4open.science/r/ATLAS-3210/README .md.

1 INTRODUCTION

Large language model evaluation relies on benchmarks with tens of thousands of items, which are
costly to run and often take days or weeks to complete. Even with benchmarks exceeding 100,000
items, evaluation still depends on average accuracy over fixed item sets. This practice overlooks
valuable statistical information and raises concerns about efficiency and validity.

Current evaluation practices face three fundamental limitations. First, average benchmark scores ob-
scure meaningful differences between models with distinct error patterns, especially among lower-
performing models where small ability differences are dominated by measurement noise. Second,
static evaluations treat poorly discriminative items as equally informative as high-quality questions,
leading to unreliable and often misleading comparisons. Third, evaluating complete benchmarks is
inefficient and time-consuming, requiring models to answer hundreds or thousands of items regard-
less of how much additional information those items provide.

To address these limitations, we propose ATLAS (Adaptive Testing for LLM Ability Scoring), an
adaptive evaluation framework based on computerized adaptive testing (CAT) (Lord, |1980; [Wainer
et al., 2000; |Weiss| |1982). ATLAS first calibrates benchmark items using three-parameter logistic
(3PL) IRT models to estimate item difficulty, discrimination, and guessing parameters (Birnbaum)
1968; Hambleton et al.| |1991)). Then, rather than administering fixed item sets, ATLAS dynamically
selects items with maximum Fisher information for each model’s current estimated ability, termi-
nating when precision thresholds are reached. This approach directly addresses all three limitations:
Fisher information-guided selection provides precise ability estimates that distinguish models with
identical accuracy, dynamic item selection prioritizes highly discriminative items rather than treat-
ing all questions as equally informative, and adaptive termination enables reliable evaluation with
far fewer items and substantially less time than full-benchmark scoring.

We evaluate ATLAS across five major benchmarks, including WinoGrande (Sakaguchi et al., 2021},
Truthful QA (Lin et al., [2021)), HellaSwag (Zellers et al.,|2019), GSM8K (Cobbe et al.,|[2021), ARC
(Clark et al.,|2018)) and find that it matches or exceeds the accuracy of strong static baselines while
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using far fewer items. For example, ATLAS achieves the lowest MAE on Truthful QA (0.064 with
48 items) and HellaSwag (0.157 with 41 items), and matches MetaBench (Kipnis et al., |2025) on
WinoGrande while using 2x fewer items (70 vs. 133). It also outperforms TinyBenchmarks (Polo
et al., 2024)), which uses 97-100 items but yields higher error across all benchmarks. Overall,
ATLAS requires only 30—89 items per benchmark compared to hundreds in static subsets, and attains
the lowest Information Efficiency Score (IES) across all benchmarks, demonstrating the strongest
accuracy—efficiency tradeoff.

Our contributions are: (1) We identify fundamental limitations of average-score evaluation and
show that psychometric ability estimates provide more robust and informative comparisons of LLM
performance. (2) We introduce ATLAS, a large-scale adaptive testing framework for LLMs that
achieves up to 90% item reduction while maintaining measurement precision through SE-controlled
stopping, enabling flexible and precision-targeted evaluation beyond fixed-length designs. (3) We
conduct a comprehensive psychometric analysis of five major benchmarks, revealing that IRT-based
ability estimation induces substantial rank reordering (23-31% of models shift by more than 10 po-
sitions). (4) We highlight the importance of rigorous psychometric validation by reporting model-fit
statistics (e.g., RMSEA via the M2 statistic) and demonstrating the use of common-person linking
to align item parameters efficiently and ensure cross-model comparability.

2 RELATED WORK

2.1 IRT-BASED APROACHES

Item Response Theory (IRT) has recently been applied to LLM evaluation (Lalor et al.,|2024; Guinet;
et al., |2025). It provides item parameters such as difficulty, discrimination, and guessing, as well
as latent ability estimates 6 for models. However, existing IRT applications remain largely static
in nature. For instance, TinyBenchmarks (Polo et al., 2024) uses clustering for item selection but
doesn’t guarantee informativeness for # estimation, while MetaBench (Kipnis et al., 2025) requires
computationally expensive iterations to identify stable subsets. Moreover, these approaches often
lack proper psychometric validation and emphasize predictive accuracy over model fit. TinyBench-
marks and MetaBench do not report fit statistics. Instead, we ccompute these metrics using their
released IRT code (as shown in Table[T). This limitation makes it difficult to ensure that the result-
ing ability estimates are valid, interpretable, and comparable across models. A detailed comparison
of IRT-based approaches is provided in Appendix

Beyond these limitations of existing IRT applications, many evaluations continue to rely on aver-
age scores. Average scores tend to mask meaningful model differences and are often affected by
form-dependence, nonlinear scaling, equal weighting of uninformative items, and contamination
sensitivity (see Appendix [A| for detailed analysis). In contrast, IRT-based ability estimates () pro-
vide form-invariant, uncertainty-aware alternatives that adjust for item difficulty and discrimination.

2.2 ADAPTIVE TESTING

Computerized adaptive testing (CAT) adjusts item administration based on an examinee’s evolving
ability estimate (Meijer & Nering, 1999} |Van der Linden & Glas, [2010). After each response, the
test updates the ability estimate and selects the next item using an algorithm that aims to provide the
most informative measurement while satisfying test constraints (Weiss, |1982; [Changl [2015; |Cheng
& Chang,[2009). Related adaptive frameworks such as multistage testing and process-data—based ap-
proaches apply similar principles and offer additional flexibility and diagnostic information (Zenisky
et al.,[2009; |[Zheng & Chang, [2015} [Tang et al.,|2024)). These features allow CAT to evaluate exam-
inees efficiently while maintaining rigorous measurement precision. This adaptive structure aligns
well with challenges in evaluating LLMs, which vary widely in their performance levels. Current
evaluations often use large static benchmarks in which every model must answer all items, even
when many items provide little information about its ability. These benchmarks also rarely report
empirical item characteristics, so their difficulty range and informativeness across models remain
unclear. CAT addresses these limitations by selecting items targeted to each model’s estimated abil-
ity, which yields more precise and efficient evaluation with far fewer items.

However, only a few studies have explored adaptive evaluation for LLMs. Early efforts were either
limited in scope (Zhuang et al.,|2023) or primarily conceptual (Zhuang et al.||2025). A recent study
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that is closely related to our work is Fluid Benchmarking (Hofmann et al., 2025), which appeared
around the same time as this research. Fluid also applies CAT principles to increase evaluation
efficiency and models LLM performance on a latent ability scale. The two approaches are comple-
mentary and differ in several ways. Fluid focuses on adaptive evaluation during LLM pretraining,
whereas our work examines post-training evaluation. Fluid calibrates its IRT model on 102 LMs,
while ATLAS uses a substantially larger and more diverse pool of 3,000+ LMs. Fluid adopts a
fixed-length adaptive design, while ATLAS uses a precision-based stopping rule that terminates the
test once the uncertainty of the ability estimate falls below a predefined threshold. Precision-based
stopping ensures consistent measurement precision across models and avoids administering unnec-
essary items. In addition, we report model-fit statistics to ensure the adequacy of the IRT model
before running CAT and provide a transparent description of calibration and linking procedures
used to estimate item parameters. Both studies demonstrate that adaptive testing methods can be
used at different stages of LLM development and under different design choices, which illustrates
the broader potential of CAT-based approaches for scalable and precise LLM assessment.

3 METHODOLOGY

We introduce a novel adaptive testing framework that transforms LLM evaluation from static bench-
marking to dynamic ability estimation. Our approach addresses three critical limitations of current
evaluation practice: (1) it reduces computational cost by requiring 90% fewer items while maintain-
ing accuracy, (2) it overcomes the ceiling effects of accuracy-based metrics and preserves discrimi-
nation across the ability spectrum, and (3) it distinguishes models with identical average scores but
different underlying capability patterns.

This section presents our framework in four stages: problem formulation (Section [3.1)), data con-
struction with psychometric filtering (Section [3.2)), item bank calibration using IRT models (Sec-
tion[3.3), and adaptive testing with randomesque selection (Section [3.4).

3.1 PROBLEM FORMULATION AND SETUP

We formulate LLM evaluation as a psychometric measurement problem. Let Z denote the set of
benchmark items and L the set of language models. For each model ¢ € £ and item i € Z, we
observe a binary response Y; ¢, € {0, 1}, where 1 indicates correct and 0 incorrect. These responses
form the item-response matrix {Y; ¢ }iez ce .

Unlike traditional approaches that rely solely on accuracy scores, our objective is to estimate the la-
tent ability 6, of each model based on its response pattern {Y; ;};cz, while simultaneously calibrat-
ing item-level parameters: discrimination a;, difficulty b;, and guessing c¢;. This approach enables
fine-grained model comparison even when models achieve identical accuracy, as 6, accounts for the
varying informativeness of different items.

3.2 DATA CONSTRUCTION WITH PSYCHOMETRIC FILTERING

We construct the item-response matrix using data from the HuggingFace Open LLM Leaderboard.
The item pool Z spans five benchmarks: ARC, GSM8K, HellaSwag, TruthfulQA, and WinoGrande.
To ensure data quality for IRT calibration, we apply two levels of filtering: removing unsuitable
models and eliminating non-informative items.

Model Selection and Splitting. We retain only models £ with complete responses across all items.
To obtain a calibration sample whose ability distribution approximates a Gaussian, a standard as-
sumption for stable IRT estimation, we exclude models in the extreme low-ability tail (below the
0.1st percentile), whose near-zero response patterns destabilize 3PL parameter estimation. The
high-ability tail is small and non-degenerate, so these models are retained. The selected models
are then split into training and testing sets using stratified random sampling (10 bins) to ensure that
both splits share a similar ability distribution. We allocate 90% of the models to the training set
for item calibration, and use the remaining 10% as the testing set for evaluating performance in our
experiments (see Table [5).

Item Filtering. We apply two complementary filters to retain only discriminative items:
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 Low-variance removal: Items with response standard deviation < 1% or mean accuracy
> 95% are discarded, as they provide litter information for differentiating between models.

* Discrimination filtering: We compute the point-biserial correlation 7, (7) between each
item’s response vector {Y; s}scc and the models’ total scores Ty = jez Yje (see Ap-

pendixfor details). Items with r,,;,(¢) < 0.1 are removed as non-diagnostic.

This filtering process yields a refined response matrix that supports stable and reliable IRT calibra-
tion (see Table[5]in Appendix [C|for detailed results).

3.3 SCALABLE IRT CALIBRATION

The calibration stage estimates item parameters (a;, b;, ¢;) and computes reference ability estimates

é}”wle for each LLM / for validation. To model the probability of a correct response, we adopt the
three-parameter logistic (3PL) IRT model (Birnbauml 1968} [Lord, [1980):

1-— C;
1+ exp(—a; (0 — b))

pi(be) = ¢; + (D

Here, a; is the discrimination parameter, which determines how sharply item ¢ differentiates between
stronger and weaker models. b; is the difficulty parameter, specifying the ability level at which a
model has a 50% chance (beyond guessing) of answering item ¢ correctly. ¢; is the guessing parame-
ter, setting the lower bound on the probability of success due to random guessing. These parameters
enable Fisher information-based prioritization of items in our adaptive framework, distinguishing
high-quality items from those with low discriminative power.

Common-Person Calibration at Scale. To estimate item characteristics efficiently using the 3PL
model, we adopted a partition-based calibration procedure that leverages the unique structure of
LLM benchmarking. Instead of fitting the full 3PL model to the entire item pool at once, which
would be computationally prohibitive, we divided the items into K non-overlapping subsets Zj, (each
with |Zy| > 100 items), and calibrated each subset independently. This yields multiple provisional
difficulty scales that must be aligned. Because all models answer all items, the model population
serves as a natural set of common persons, allowing us to link the independently calibrated subsets
onto a unified scale using mean—sigma transformations (Kolen & Brennan| [2014). This approach
reduces computational complexity from O(|Z|3) to O(K -maxy, [Zx|®) while maintaining calibration
accuracy due to the stability provided by having all models serve as linking anchors (Chalmers)
2012). A detailed description of this common-person calibration and linking procedure is provided

in Appendix

Heterogeneity-Aware Ability Estimation. LLM populations exhibit extreme heterogeneity, rang-
ing from near-random models (f ~ —3) to highly capable systems (¢ ~ 3). To obtain stable and
unbiased estimates across this wide ability spectrum, we adopt the Weighted Likelihood Estimator
(WLE) (Warm, [1989), which incorporates a bias-correction term %, where J(6) = Zi aléée).
WLE provides finite, well-behaved estimates even at ability extremes and maintains desirable con-
sistency properties (Baker & Kim)| [2004)). These characteristics are essential for establishing reliable

evaluation baselines under the substantial heterogeneity present in modern LLM benchmarks.

Multi-Subset Model Fit Validation. Unlike prior IRT applications to LLM evaluation (Polo et al.,
2024; Kipnis et al., [2025)), which do not report any model-fit diagnostics, we conduct rigorous psy-
chometric validation to ensure calibration quality. We compute the limited-information My statistic
(Maydeu-Olivares} |2015) with RMSEA indices for TinyBenchmarks, MetaBench, and ATLAS (see
Table [I). TinyBenchmarks exhibits extremely poor fit across all benchmarks. This is expected:
TinyBenchmarks is calibrated on a relatively small set of 395 LLMs while relying on IRT models
with up to 15 latent traits, creating a parameter space that far exceeds the available data. Such an
underidentified setting makes good model fit difficult, and our computed RMSEA values confirm
severe misfit. MetaBench performs better, with RMSEA values between 0.04 and 0.14, yet still
shows poor fit on Truthful QA (0.1389) and marginal fit on ARC (0.0811), indicating that its fixed
subsets do not generalize evenly across datasets. In contrast, ATLAS consistently achieves accept-
able or good fit across all benchmarks, demonstrating the stability and robustness of our calibration
procedure.
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Besides, our partition-based calibration strategy, which divides the full item bank into non-
overlapping subsets (each containing > 100 items for statistical stability), enables both compu-
tational feasibility and robust validation. Since the same set of models £ acts as common per-
sons across all partitions, diagnostic statistics reflect global calibration quality rather than partition-
specific artifacts. This multi-subset linking design ensures that model fit metrics capture systematic
patterns across the entire item bank, not just localized subsets. This validation is crucial for reliable
adaptive testing, as misfitting items would compromise Fisher information calculations and degrade
selection accuracy.

Table 1: Model fit comparison across benchmarks using the limited-information statistic M5 and
its derived Avg. RMSEA values. Lower Avg. RMSEA indicates better model fit. Model fit is
interpreted according to standard psychometric thresholds: RMSEA < 0.05 = Good fit; 0.05-0.08 =
Acceptable fit; 0.08-0.10 = Marginal fit; > 0.10 = Poor fit.

Method Winogrande TruthfulQA HellaSwag GSMSK ARC

RMSEA Fit RMSEA Fit RMSEA Fit RMSEA Fit RMSEA Fit
TinyBenchmarks 364.24 Poor 371.49 Poor 646.82 Poor 506.60 Poor 369.89 Poor
MetaBench 0.0524 Acceptable 0.1389 Poor 0.0498 Good 0.0423 Good 0.0811 Marginal
ATLAS 0.0565 Acceptable 0.0690 Acceptable 0.0482 Good 0.0438 Good 0.0595 Acceptable

3.4 ADAPTIVE TESTING WITH INFORMATION SELECTION

Our proposed ATLAS dynamically selects the most informative items for each model, dramatically
reducing the number of items needed while maintaining accuracy. Algorithm|[I|presents the complete
procedure. The algorithm includes several key design choices tailored to LLM evaluation:

Algorithm 1 Adaptive Testing for Model ¢

1: Initialize: 90 + 0, testrecord Ry < 0, t < 0
2: while { < max_items and not converged do
3: t+—t+1

4: if £ = 1 then .
5: Select item ¢; with |b;, — 6| minimized
6: else A
7: Compute Fisher information I;(#;_1) for all unadministered items
8: Select i; randomly from top-5 most informative items
9: end if
10: Administer item ¢; to model /, observe response Y, ¢

11:  Update record: Ry < Ry U {(i1,Ys, )}
12:  Update ability: §; < EAP(R,)
13: Compute standard error: SE(0;) « 1/ > iR, Ij(ét)

14: if £ > min_items and SE(6;) < 7 then

15: break > Convergence achieved
16: end if

17: end while )

18: return 6, < 0;, SE(6,), Ry

Initialization and Bounds. We initialize the ability estimate at 6o = 0. This value is a conventional
neutral starting point in CAT because the latent trait scale is typically assumed to be centered at
zero. Beginning at the scale midpoint helps stabilize early item selection by preventing the algorithm
from drifting toward artificially high or low values before any response information is available. We
enforce minimum (30) and maximum (500) item limits. The minimum ensures stable estimation
for models at performance extremes, while the maximum constrains computational cost and yields
approximately 90% reduction in test length relative to full benchmarks.
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Randomesque Item Selection. Rather than deterministically selecting the single most informative
item, we randomly sample from the top-5 candidates ranked by Fisher information:

Li(0) = ai - pi(0) - [L = pi(0)]- 2)
This randomesque strategy (Kingsbury & Zara, |1989) prevents over-reliance on specific item types
while still keeping high information, which is important for models with specialized capabilities.

Sequential Ability Updates. After each item administration, we update the ability estimate using
Expected A Posteriori (EAP) estimation (Bock & Mislevy, |1982):

b= Bi6lR] = [ 6-plole) do. )

EAP provides numerically stable updates with sparse early responses and incorporates prior knowl-
edge about ability distributions. In contrast, WLE tends to become unstable when response patterns
are extreme, a situation common in the early stages of adaptive testing.

Precision-Based Stopping. In our implementation, testing stops once either the maximum item
limit is reached or SE(6;) falls below a threshold 7, after a minimum number of items has been
administered. This precision-based rule ensures consistent measurement accuracy while minimizing
test length. Although our experiments adopt this precision-based design, ATLAS can also operate
under a fixed-length stopping rule by specifying a predetermined test length.

Output and Validation. For each model ¢, the algorithm produces: (1) the administered item
sequence and responses Iy, (2) the ability estimate trajectory {ét} with associated standard errors,
and (3) the final estimate 6,. We validate these adaptive estimates against whole-bank references
éZVh‘)le to confirm that our dramatic reduction in items does not compromise measurement accuracy.

4 EXPERIMENTS

We evaluate the proposed ATLAS framework across five benchmarks, comparing its efficiency and
accuracy against static baselines such as random sampling, TinyBenchmarks, and MetaBench. We
report accuracy- and efficiency-based metrics, with full metric definitions provided in Appendix

4.1 EXPERIMENTAL SETUP AND METRICS

We evaluate ATLAS across five diverse benchmarks covering different cognitive domains: Wino-
Grande (commonsense reasoning), Truthful QA (factual consistency), HellaSwag (procedural infer-
ence), GSMSK (mathematical reasoning), and ARC (scientific question answering). All experiments
use calibrated item banks from Section [3.3]

We compare against four static baselines that do not adapt to individual models: (1) Random sam-
pling of 100 items uniformly from the full bank, (2) TinyBenchmarks (Polo et al.,|2024) using pre-
determined subsets selected via clustering without Fisher information optimization, (3) MetaBench-
Primary and (4) MetaBench-Secondary (Kipnis et al.,[2025) using curated splits that require com-
putationally expensive iterations to identify stable subsets. Unlike these static approaches, ATLAS
uses three precision thresholds (SE(é) < 0.1,0.2,0.3) and an item bound of 30-500, terminating
adaptively when the required precision is achieved or the maximum test length is reached. Addi-
tional experimental configurations are provided in Appendix

We evaluate each method primarily in ability space, comparing ATLAS-estimated abilities 6, with
full-bank abilities 9}”“"5 (See Table . We report four metrics: (1) Mean Absolute Error (MAE)
to measure estimation accuracy; (2) Standard Error (SE) of the absolute errors across models to
quantify stability; (3) Average Test Length, the number of items administered per model; and (4)
Information Efficiency Score (IES), which jointly reflects accuracy and item usage relative to a
100-item random baseline (values < 1 indicate higher efficiency). Detailed formulations of these
metrics are provided in Appendix [E]

For completeness, we also provide accuracy-space evaluations, comparing reconstructed accu-
racies to full-bank raw accuracies (See Table EI) Additional evaluation metrics and their results,
including Item Exposure Rate, Test Overlap Rate, and Selection Time are provided in Ap-

pendix
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Table 2: Comparison of whole-bank ability é}’h"le and subset-based ability 6, across benchmarks.
For each method, we report MAE=SE, item count, and Information Efficiency Score (IES), where
lower values are better for all metrics. Bold indicates the best result, underlining the second-best,
and dashed underlining the third-best.

Method ‘ WinoGrande ‘ TruthfulQA ‘ HellaSwag ‘ GSMSK ‘ ARC

h MAESE | Items | IES | MAE=+SE | Items | IES | MAE=+SE | Items | IES | MAE=+SE | Ttems J. IES | MAE=+SE | Items | IES |
Randomy oo 0.16740.007 100 1000 | 0.10340.004 100 1000 | 0.24040.010 100 1000 | 0.150£0.014 100 1000 | 0.183£0.007 100 1000
TinyBenchmarks | 0.20430.008 100 1221 | 0.145:0.007 97 1370 | 0.19840.009 97 0797 | 0.164£0.014 100 1089 | 017240007 99 0.932
MetaBench-P 0.15240.007 133 1216 | 0.08440.004 154 1262 | 051420016 93 1990 | 0.103:£0.013 237 1628 | 0.134£0.005 145 1.062
MetaBench-S 0.19540.009 106 1239 | 0072:0.003 136 0945 | 1.570£0.055 58 3788 | 0.096:0.012 249 1595 | 0.1344:0.006 100 0735
ATLASg. 1 0.15540.012 70 0.655 0.06410.002 48 0300 | 0.157+0.010 41 0266 | 0.15020.011 70 0.701 0.0840.006 89 0407
ATLAS( o 0.16620.010 3 0372 | 0.073+0.003 30 0211 | 0.16340.009 30 0203 | 0.177£0.012 36 0428 | 0.1204:0.008 35 0233
ATLAS 3 017930011 32 0342 | 0.071:£0.003 30 0206 | 0.165£0.010 30 0205 | 0.173£0.012 31 0363 | 0.117£0.007 30 0.193

Table 3: Comparison of raw whole-bank accuracy and p-IRT reconstructed accuracy across bench-
marks. For each method, we report MAE=XSE, number of administered items, and the Information
Efficiency Score (IES), where lower values are better for all metrics. Bold denotes the best value,
underlining the second-best, and dashed underlining the third-best.

Method WinoGrande TruthfulQA HellaSwag ‘ GSMSK ‘ ARC

h MAE£SE|  lItems] IES| | MAE£SE| lItems| IES| | MAE+SE] Items| IES| | MAESE| Items| IES| | MAE£SE| ltems| IES|
Randomy o 0.0494:0.001 100 1000 | 0.0210.001 100 1000 | 0.0240.001 100 1000 | 0.026:0.001 100 1000 | 0.02940.001 100 1.000
TinyBenchmarks | 0.050%0.001 100 1.010 | 0.025%0.001 97 1154 | 0.019+0.001 97 0.782 0.02830.00T 100 1071 | 0.031£0.001 99 1.041
MetaBench-P 0.03420.001 133 1446 | 0.017-£0.001 134 1266 | 0.05040.001 93 1943 | 0.022:£0.001 237 2060 | 0.02710.001 145 1350
MetaBench-S 0.05140.001 106 1103 | 0.02140.001 136 1394 | 0.11540.004 58 2793 | 0.020£0.001 249 1954 | 0.033£0.001 100 1114
ATLAS.1 0.048-0.001 70 0678 | 0.023£0.001 48 0532 | 0.02040.001 il 0348 | 0.03940.001 70 1055 | 0.032:0.002 89 0974
ATLAS( .2 0.05140.002 37 0383 | 0.02430.001 30 0338 001 30 0258 | 0.04420.002 36 0612 | 0.034:0.002 35 0404
ATLASq.3 0.0502-0.001 2 0324 | 002340001 30 0331 01 30 0261 | 0.04240.002 31 0516 | 0.034:£0.002 30 0350

4.2 PERFORMANCE AND RELIABILITY ANALYSIS
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Figure 1: Comparison of subset (predicted) ability estimates against whole-bank (reference) abilities
across five benchmarks (graphical illustration complementing Table[2)). Points along the identity line
indicate perfect agreement. ATLAS maintains the closest alignment overall, particularly on Truth-
fulQA, ARC and HellaSwag and in the high-ability regime of WinoGrande, while static baselines
such as TinyBenchmarks and Metabench show greater variance and systematic deviation.

Table [2] presents a comparison of whole-bank ability estimates and subset-based estimates across
five benchmarks. ATLAS consistently delivers the strongest accuracy—efficiency tradeoff among all
methods. Across every benchmark, an ATLAS variant achieves the lowest Information Efficiency
Score (IES), indicating that it provides the most accurate estimates using the fewest items. For ex-
ample, ATLAS attains the best MAE on Truthful QA (0.064 with 48 items) and HellaSwag (0.157
with 41 items), and matches the performance of MetaBench-Primary on WinoGrande while requir-
ing nearly half as many items (70 vs. 133). Even in more challenging settings such as GSMS8K and
ARC, ATLAS maintains low MAE with item counts as small as 30—36, outperforming all static base-
lines in information efficiency. In contrast, static subsets such as TinyBenchmarks and MetaBench
exhibit inconsistent performance. They are strong on some datasets but poor on others, with sub-
stantially higher IES values. Overall, these results demonstrate that adaptive item selection enables
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ATLAS to deliver high-fidelity ability estimates while dramatically reducing evaluation cost, achiev-
ing reliable performance that fixed subsets fail to match.

Figure [I] plots subset-based ability estimates against whole-bank references across all five bench-
marks. Across datasets, ATLAS shows the closest alignment to this identity line, with tightly clus-
tered points and minimal systematic drift, reflecting stable and high-fidelity ability estimation. In
contrast, static baselines exhibit benchmark-dependent failures. TinyBenchmarks consistently devi-
ate from the identity line in the extreme high or low-ability regime, especially on ARC and Truth-
fulQA. MetaBench performs reasonably on GSM8K but breaks down substantially on HellaSwag,
where both its primary and secondary subsets produce large downward deviations, indicating poor
item coverage.

Table [] shows that ATLAS produces diverse and efficient adaptive tests. Test overlap remains low
(11-23%) and item exposure rates stay below 12% across all benchmarks, indicating broad item
coverage rather than reliance on a small subset. Runtime is also practical, with end-to-end selection
times ranging from 9.4 to 75.5 seconds per model, scaling predictably with bank size (fastest on
TruthfulQA, longest on HellaSwag). Overall, ATLAS provides adaptive evaluations that are both
statistically robust and computationally efficient.

Accuracy Reconstruction. To evaluate whether the ability estimates 6 align with traditional
accuracy-based evaluation, we reconstruct each model’s expected accuracy from its estimated abil-
ity and its observed responses on the reduced subset using the performance-IRT (p-IRT) estimator
(Polo et al.| [2024)) (detailed in Appendix [F). Conceptually, p-IRT is grounded in the Test Character-
istic Curve (TCC) (Lord & Novickl 2008 [Hambleton et al.,|1991), which maps a model’s ability 0
to its expected probability of answering benchmark items correctly under the calibrated 3PL model.
The p-IRT estimator refines this TCC-based mapping by combining the model’s observed responses
with IRT-predicted probabilities. Following this formulation, we convert each model’s 6 into a re-
constructed accuracy and compare it with the raw full-bank accuracy in Table 3] Across all five
benchmarks, the reconstructed accuracies closely match the raw accuracies, indicating that 6 pre-
serves the global performance structure while providing finer discrimination than accuracy alone.

(a) GSM8K (b) HellaSwag
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Figure 2: Comparison of IRT ability estimates éZ’hde with raw accuracy. Left: Ability vs accuracy
reveals strong correlation but critical differences at performance extremes where accuracy collapses.
Right: Rank comparison shows systematic reordering, with 23% (GSMS8K) and 31% (HellaSwag)
of models shifting > 10 positions. IRT separates models with identical accuracies by accounting for
which items they solve correctly.

4.3 DISTINGUISHING LOW- AND HIGH-PERFORMING MODELS

Figure [2]demonstrates IRT’s key advantage: separating models with similar accuracy scores through
ability estimates. Despite strong correlations (0.99 for GSM8K, 0.96 for HellaSwag), systematic
differences emerge at performance extremes. In low-performing regimes, accuracy collapses into
narrow bands (0.10-0.15) while IRT spans 6 ~ —3 to —1, distinguishing models that solve easy
versus challenging items. In high-performing regimes, ceiling effects compress accuracy differ-
ences, but IRT maintains discrimination across § ~ 1.5 to 2.5. Similar patterns are observed across
TruthfulQA, WinoGrande, and ARC benchmarks, with additional score-versus-theta comparisons
provided in Appendix
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The right panels show systematic rank reordering: 23-31% of models shift > 10 positions when
ranked by IRT versus accuracy. Models performing well on hard items receive higher IRT ranks
despite moderate accuracy, while those succeeding on easy items are appropriately downweighted.
This enhanced discrimination provides more reliable model comparisons, especially critical in satu-
rated performance regions where accuracy-based evaluation fails. Similar patterns of IRT superiority
in distinguishing models are observed across TruthfulQA, WinoGrande, and ARC benchmarks, with
additional analysis provided in Appendix [G]

4.4 ITEMS ARE NOT EQUALLY INFORMATIVE

Accuracy by Difficulty Level (WinoGrande)
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Figure 3: Two models with identical accuracy (0.833) on WinoGrande receive different ability es-
timates (é 4 =12vs 6 B = 0.6). Model A succeeds on harder items (darker cells on right), while
Model B answers easier items (darker cells on left). IRT captures these item difficulty patterns that
raw accuracy cannot.

Figure[3]demonstrates IRT’s key advantage: models with identical accuracy (0.833) receive different
ability estimates (04 = 1.2 vs 5 = 0.6) based on which items they solve correctly. Under the
3PL IRT model, items differ in discrimination a;, difficulty b;, and guessing c¢; parameters. Model
A succeeds on high-difficulty items (b; > 0.5) with strong discrimination (a; > 1.5), yielding
2.3x more Fisher information than Model B, which mainly answers easier, less discriminative items
(b; < —0.5, a; < 0.8).

IRT provides automatic quality control by weighting items according to their empirical contribu-
tion to distinguishing model abilities. In our calibrated banks, 3.2-5.7% of items exhibit negative
discrimination (a; < 0), indicating systematic flaws where stronger models perform worse. For
example, WinoGrande item #247 achieves 0.89 accuracy but a; = —0.43 due to exploitable linguis-
tic artifacts. Under raw accuracy, this flawed item contributes equally (weight = 1/N) to all scores,
potentially inflating weak models. Under IRT, negative discrimination automatically down-weights
its contribution by 82% (effective weight o a? ~ 0.18), reducing measurement contamination and
providing more reliable ability estimates than accuracy alone. Similar patterns of identical accuracy
leading to different ability estimates are observed across ARC, HellaSwag, and other benchmarks,
with additional heatmap visualizations provided in Appendix [G]

5 DISCUSSION

5.1 PSYCHOMETRIC CONSIDERATIONS FOR FUTURE LLM BENCHMARKS

Our findings highlight several important considerations for the construction of future LLM bench-
marks. First, item quality directly affects evaluation reliability. Recent studies show that misla-
beled or ambiguous items are common in existing LLM benchmarks (Vendrow et al, 2025} [Gemal
2025). Although IRT naturally downweights such items through probabilistic modeling, static
benchmarks lack mechanisms to prevent them from being repeatedly sampled. Fluid Benchmarking
(Hofmann et all, 2025)) demonstrates the consequence: under random sampling, a mislabeled item
appears in nearly every evaluation, whereas adaptive IRT-based selection surfaces one only after
roughly 100 sessions. This illustrates how adaptive, information-based item selection can mitigate
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the impact of low-quality items. These findings collectively reinforce the need for psychometric
validation in future benchmark design, including procedures such as discrimination screening and
content-alignment checks.

Second, model fit is essential for trustworthy item parameter estimation, yet it is rarely examined
or reported in existing benchmark-reduction methods that apply IRT. When the underlying IRT
model fits poorly, the resulting difficulty and discrimination estimates become unstable, which in
turn compromises any downstream conclusions drawn from reduced item sets. Our results show
that several widely used static subsets exhibit substantial misfit (Table, underscoring that model-fit
diagnostics should be a standard requirement for any benchmark that applies IRT for item calibration
or reduction. Routine reporting enables researchers to verify whether the assumed psychometric
model adequately captures LLM response behavior before relying on the resulting item parameters
or reduced test forms.

Third, when item banks are partitioned for computational feasibility, linking procedures become
crucial. Partitioning items without proper linking can introduce scale drift if parameters are esti-
mated independently across subsets. Common-person linking, where the same set of models re-
sponds to all partitions, ensures that items are placed on a consistent latent scale. This preserves the
interpretability of difficulty and discrimination estimates and supports coherent benchmarking even
when calibration must be distributed or performed in stages. Future large-scale benchmarks should
adopt principled linking strategies to maintain comparability across domains and bank updates.

Finally, reduced item sets necessitate content balancing to preserve assessment validity. Content
balancing ensures proportional representation across skill domains or cognitive competencies, pre-
venting benchmarks from overemphasizing specific subskills. Without it, evaluations risk becoming
biased or unrepresentative. Our adaptive framework can be readily extended to jointly optimize
domain coverage and measurement precision (Cheng & Changl 2009). Achieving comparable bal-
ance in static reduced subsets is far more difficult and typically requires extensive manual tuning or
domain expertise.

5.2 LIMITATIONS AND FUTURE WORK

Despite notable efficiency gains, our framework has several limitations. Initial calibration relies on a
representative model population, which may become outdated as architectures evolve. Nonetheless,
adaptive testing supports incremental updates: new model responses can be incorporated to refine
item parameters and maintain calibration accuracy over time. The current implementation remains
limited to multiple-choice formats, while generative or open-ended tasks require alternative scoring
and modeling strategies. Moreover, our framework is unidimensional, assuming a single latent
proficiency dimension across all items, whereas LLM capabilities are inherently multidimensional.
Future work should extend the framework to multidimensional IRT formulations that jointly model
reasoning, factuality, and linguistic ability.

To facilitate broader adoption, we have implemented a modular scoring interface that allows users
to define custom evaluation functions (e.g., determining whether a model answers a selected item
correctly). Future work will explore online or Bayesian calibration techniques for continuous
item updating, multidimensional modeling to capture diverse LLM capabilities, and hybrid adap-
tive—generative evaluation for open-ended tasks. We also plan to extend the system with interfaces
for cross-model benchmarking, enhanced item exposure control, and visualization tools that improve
interpretability and diagnostic insight.

6 CONCLUSION

We presented ATLAS, a large-scale adaptive testing framework that reframes LLM evaluation
by moving beyond fixed-form, accuracy-based benchmarking toward dynamic ability estimation.
Through psychometric modeling and information-guided item selection, ATLAS achieves up to 90%
item reduction, avoids accuracy ceiling effects, and reveals ability differences that static benchmarks
overlook. Our analysis further highlights the importance of rigorous model-fit validation, item-
quality assessment, and principled linking procedures for building reliable and scalable benchmarks.
These advances show that adaptive, psychometrically grounded evaluation offers a more efficient,
interpretable, and robust foundation for assessing the rapidly growing landscape of LLMs.

10
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A DETAILED ANALYSIS OF AVERAGE SCORE LIMITATIONS

Average score (percent correct) remains the most widely reported metric for evaluating LLMs.
While it provides a convenient ordinal indicator for fixed forms, it is a shaky measure of under-
lying ability.

First, average scores are form-dependent: changing the mix or difficulty of items alters percent
correct, even if the model’s true ability is unchanged. Second, the metric has a nonlinear scale:
improvements at the extremes (e.g., 98% — 100%) do not reflect the same underlying gain as
improvements in the middle (e.g., 50% — 52%). Third, it assumes equal informativeness across
items, allowing easy or guessable items to influence the mean as much as highly discriminative
ones. Fourth, it is subject to coverage bias: the observed score reflects the content blueprint of
the test rather than ability across domains. Fifth, average scores offer no measure of uncertainty,
making it unclear whether differences are statistically meaningful. Finally, they are highly sensitive
to contamination: memorized items from pretraining can artificially inflate percent correct without
reflecting genuine reasoning or generalization.

In contrast, IRT-based ability estimates (6) provide form-invariant, uncertainty-aware measures that
adjust for item difficulty and discrimination. Reporting 6 + SE(0) offers a psychometrically prin-
cipled alternative. For communication purposes, reconstructed percent scores may be shown along-
side, but 6 should serve as the primary indicator of model capability.

B COMPARISON OF IRT-BASED BENCHMARK METHODS

Table 4: Comparison of IRT-Based Benchmark Methods for LLMs

Factor TinyBenchmarks (Static) MetaBench (Static) ATLAS

IRT Calibration =~ Required Required Required

Adaptivity None (same items) None (same items) High (items vary by ability)
Test Length Fixed Fixed Variable, stopping rules

Exposure control  High (same items reused) High (same items reused) Low (rotating pool)

Pool Sensitivity ~ Subset dependent Subset dependent Robust to large pools
Fairness Biased if mis-targeted Biased if mis-targeted Balanced across abilities
Score Precision Low at extremes Low at extremes High, SEs available
Model Fit Rarely checked Rarely checked Possible fit checks
Saturation Risk High High Low

C DATA PREPROCESSING DETAILS

C.1 POINT-BISERIAL CORRELATION FORMULA
The point-biserial correlation (Allen & Yen| [2001) for item ¢ is defined as:

TK\YM=1 - TZ\YM=0

*VPidi,

Tpp (i) = .

where T'y|y,,—1 and T'y|y,,—¢ are the mean total scores of models that answered item i correctly and
incorrectly, respectively; st is the standard deviation of total scores {7y }; p; = ﬁ > ver Yie is the
proportion of models that answered item ¢ correctly; ¢; = 1 — p;; and | £] is the number of models.

13
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C.2 DETAILED EXPLANATION OF THE COMMON-PERSON CALIBRATION PROCEDURE

In this work, calibration refers to estimating item characteristics under the 3PL item response theory
model. The purpose of calibration is to place all items on a shared difficulty scale so that perfor-
mance comparisons across items and models become meaningful. Under the 3PL model, each item
is described by a difficulty parameter, a discrimination parameter that captures how strongly the item
differentiates between high- and low-performing models, and a guessing parameter that reflects the
chance of a correct response when the model effectively guesses. When every LLM responds to the
same items, their collective performance patterns allow these parameters to be estimated in a consis-
tent way. This provides a principled way to identify which items are easy or difficult for models and
which items are more or less informative. Calibrating the full benchmark at once would be compu-
tationally intensive because the 3PL model becomes more expensive to fit as the number of items
grows. To make the process tractable, we divide the full item pool into several non-overlapping
subsets and calibrate each subset independently. This reduces the computational load substantially,
but it also means that each subset is estimated on its own internal scale. For example, the notion of
“difficulty” in one subset is not automatically aligned with the notion of “difficulty” in another. A
separate linking step is therefore required to place all subsets onto a shared scale.

Linking requires shared reference points known as anchors. In educational measurement, anchors
are typically common items or common examinees that appear in multiple test forms. They serve
as a bridge that allows independently calibrated scales to be aligned. In our setting, every LLM
responds to every item in the benchmark, which means that the same population of models appears
in the calibration of each item subset. The models therefore act as common persons in the traditional
psychometric sense and serve as the linking anchors for the benchmark. Their relative performance
across subsets provides the information needed to align the scale of each subset with the others. The
linking procedure examines how the same models perform across the different subsets and adjusts
each subset’s scale so that the overall performance patterns match. If a model appears stronger than
its peers in one subset and shows a similar relative standing in another, then the two subsets can
be placed on the same scale by aligning the average performance level and the overall spread of
performance. This rescaling is then applied to the item parameters of each subset so that all items,
regardless of which subset they came from, are expressed on a single, unified difficulty metric.

This form of common-person linking is particularly effective for LLM benchmarking. In human
testing, it is rarely feasible for every examinee to respond to every item, and linking must rely on
smaller or less reliable anchor sets. LLMs do not face constraints such as fatigue, practice effects,
or time limits, which allows us to use the entire model population as a complete and stable set of
anchors. This makes the linking process highly robust and enables a scalable calibration framework
that achieves substantial computational efficiency while maintaining coherence across a very large
item bank.

14
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C.3 CALIBRATION DATA, ITEM-BANK PARTITIONING, AND FIT STATISTICS

Table 5: Statistics describing the calibration dataset, testing dataset, item-bank size after filter-
ing, number of calibration partitions (K), and average model-data fit (RMSEA from M2) across
all benchmarks.

WinoGrande TruthfulQA HellaSwag GSMS8K ARC

Models used for calibration 4680 4635 3467 3775 3747
Models used for testing 521 516 386 420 417
Calibration subsets (K) 10 6 50 12 8
Items after filtering 1045 627 5600 1306 839
Average RMSEA (15) 0.0565 0.0690 0.0482 0.0438  0.0595

D DETAILED EXPERIMENTAL SETUP AND METRICS

D.1 BENCHMARKS AND DATASETS
We conduct experiments on five diverse benchmarks covering different cognitive domains:

* WinoGrande: Commonsense reasoning with pronoun resolution

TruthfulQA: Factual consistency and truthfulness evaluation

* HellaSwag: Procedural inference and common sense completion

GSMS8K: Mathematical word problems requiring multi-step reasoning

* ARC: Scientific question answering across multiple domains

All experiments use the calibrated item banks from Section [3.3] ensuring consistent filtering and
parameter quality across datasets.

D.2 BASELINE CONFIGURATIONS

We compare ATLAS against four fixed, non-adaptive strategies:

Random Baseline: Samples 100 items uniformly from the full bank without consideration of item
parameters or model ability.

TinyBenchmarks: Uses the predetermined subset from |Polo et al.[(2024), selected via clustering
methods but without explicit Fisher information optimization for ability estimation.

MetaBench-Primary and MetaBench-Secondary: Curated splits from Kipnis et al.| (2025) that
require computationally expensive iterations to identify stable subsets. These splits emphasize pre-
dictive accuracy over psychometric validity.

All baseline data is available on Hugging Face: tinyBenchmarks, HCAl/metabench.

Unlike ATLAS, these approaches do not adapt to individual test-takers and serve only as static
reference points for accuracy—efficiency tradeoffs.

D.3 ATLAS CONFIGURATION DETAILS
For each model ¢, we run ATLAS under three precision-based stopping thresholds:

. SE(@) < 0.1: High precision, suitable for fine-grained model comparison
. SE(@) < 0.2: Moderate precision, balancing accuracy and efficiency

. SE(@) < 0.3: Lower precision, maximizing efficiency for rapid screening
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A minimum of 30 items is enforced to prevent premature termination due to lucky guesses or initial
high-information items, while the maximum is capped at 500 items to ensure computational feasibil-
ity. This setup balances precision and budget constraints, simulating realistic conditions for adaptive
evaluation in production environments.

E EVALUATION METRIC DEFINITIONS

This section provides the exact mathematical definitions of the evaluation metrics introduced in
Section[d] along with brief interpretations.

Average Mean Absolute Error (MAE) and Standard Error (SE). We compute MAE for both

ability estimates and accuracy scores. For ability, let 6, denote the CAT-derived estimate and é}"h(’le
the full-bank reference. The ability MAE is

MAEy =

|£‘ Z ‘9[ gwhole )

LeL

——p-IRT
For accuracy, let Acc, denote the reconstructed accuracy (e.g., via p-IRT) and Acc,™™ the ob-
served raw accuracy. The accuracy MAE is

s IRT raw
E.cc = |£| g ’Accz Acc,™|.
el

To quantify variability across models, we also report the standard error (SE) of MAE. Let e; denote
the per-model absolute error and € its mean. The standard deviation (SD) is

1
D= [t (er—2)?
lel

SD
VIL]

Interpretation: Lower MAE and SE indicate higher fidelity and greater stability: CAT-derived esti-
mates more closely match whole-bank references (for ability) or observed scores (for accuracy) and
do so consistently across models.

and the standard error (SE) is
SE =

Information Efficiency Score (IES). To compare the efficiency of different evaluation methods,
we define the Information Efficiency Score (IES) relative to a baseline of 100-item uniform ran-
dom sampling (Random_100). For a given method, let MAE,.moq denote its average MAE and
MAERandom the MAE under Random_100. Let Itemsyemoq denote the average number of selected
subset items. The IES is:

MAE 1 etho Items metho,
IES — thod €MSmethod ) (4)
MAERandom 100

Interpretation: An IES value below 1 indicates that the method achieves a better accuracy—efficiency
tradeoff than the Random_100 baseline, requiring fewer items and/or producing lower error for the
same number of items. An IES value of 1 means the method is equally efficient as Random_100.
Values greater than 1 indicate lower efficiency, meaning the method uses more items and/or yields
higher error than the baseline.

Average Item Exposure Rate. Let h; denote the number of models administered item ¢, with |Z|
total items and |£| total models. The item exposure probability for item 3 is
h;

P(A) = 77

(&)
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The average item exposure rate is then
; P(A 6
A) =7 Z 6)
i€
Interpretation: Lower values indicate higher adaptivity and greater item diversity, while higher

values suggest uniform or repetitive item usage across models.

Test Overlap Rate. Following |Chen| (2005)), the expected proportion of common items between
two randomly selected test forms is given by

S _ ey Py
C="Te -y v

)

where L is the average test length.

Interpretation: Lower values of Q imply greater test form diversity, which reduces risks of collusion
and item memorization.

E.1 CORRELATION METRICS

For completeness, we provide the definitions of the rank-based correlation coefficients used in Sec-
tion [l

Spearman correlation.

Z’LI’L

=1-
p n(n? —1)’

where d; is the rank difference for observation 7 across the two measures.

Kendall correlation.

(#concordant pairs) — (#discordant pairs)

in(n—1)

F PERFORMANCE-IRT (P-IRT) ESTIMATOR

The Performance-IRT (p-IRT) estimator (Polo et al.l |2024) is a probabilistic scoring method used
to compute expected accuracy when only a subset of benchmark items is observed. Conceptually,
p-IRT is grounded in the Test Characteristic Curve (TCC) (Lord & Novick, [2008; [Hambleton et al.,
1991), which maps a model’s ability 0 to its expected probability of correctly answering items under
the calibrated 3PL model. It provides an estimate of a model’s overall benchmark accuracy without
requiring evaluation on the full item set.

Goal. We formulate LLM evaluation as a psychometric measurement problem. Let Z denote the
full set of benchmark items and L the set of language models. For each model ¢ € £ and item ¢ € Z,
we observe a binary response Y; , € {0, 1}, forming the item-response matrix {Y; ¢ };cz, rec. The
true full-benchmark accuracy of model / is

Accraw _ |I| ZYVZ[

1€L

The p-IRT estimator approximates Acc,™ when only a subset of items 7 C T is observed, by

combining the model’s observed responses on 7 with IRT-predicted probabilities on the remaining
items 7 \ Z.
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Estimator. P-IRT computes the conditional expectation

—p-IRT .
Accl,? = E{Acc?aw ’ Yig:ie I}} ,

which is the minimum—mean-squared-error predictor of Acc;™ under the calibrated IRT model.

Then - ~
—p-IRT A 1 I\T 1 .
Acey = el d Yo + ZAI] > bie,

CzZl 7= Izl |1z\I| =

i€l i€I\T
———

Observed accuracy Unobserved TCC

where
pre = P(Yie =100, di,b1.¢:)

is the predicted probability of correctness for model ¢ under the calibrated 3PL model.
Intuition. The p-IRT estimator is a weighted combination of:

¢ Observed accuracy on the subset 7.

» Unobserved TCC on the remaining items Z \ 7, based on the model’s ability 6, and item
parameters.

The weight |Z|/|Z| € [0,1] corresponds to the proportion of observed items and determines the
tradeoff between observed and predicted performance.

Use in This Work. We apply p-IRT to reconstruct accuracy from ability estimates 0. As shown in
Table 3] reconstructed accuracies closely match raw accuracies across benchmarks, confirming that
ability estimates retain the global performance structure while smoothing noise and offering finer
discrimination than raw accuracy alone.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 INTERPRETING TEST OVERLAP, EXPOSURE, AND RUNTIME IN ATLAS

Table [6] provides a detailed breakdown of adaptive evaluation behavior across all five benchmarks,
summarizing test overlap, average item exposure, and selection time. These metrics together illus-
trate how ATLAS balances efficiency, diversity, and computational scalability when administering
adaptive tests. Formal definitions of all metrics are included in Appendix [E]

Test overlap rates quantify how frequently different models are exposed to the same items. Across
benchmarks, overlap remains modest, ranging from roughly 11% to 23%. These values are far
lower than those of static subsets, which administer identical items to all models. The relatively
low overlap indicates that ATLAS tailors item sequences to each model’s evolving ability estimate
rather than relying on a fixed set of questions. For example, HellaSwag reaches the lowest overlap
values (as low as 11.26%), reflecting its large item pool and the wide range of informative items
available. Higher overlap on datasets such as GSMS8K (approximately 20-24%) reflects the smaller
bank size and the concentration of discriminative items in particular ability regions. Overall, the
overlap statistics confirm that ATLAS provides genuine adaptivity while preserving comparability
across models.

Average item exposure rates remain low across all settings, consistently under 12% and often much
lower. Exposure values around 3—5% on HellaSwag and WinoGrande (for SE thresholds of 0.2 and
0.3) indicate that ATLAS does not rely excessively on a small subset of items. Low exposure reduces
the risk of memorization or contamination in long-term evaluation scenarios, broadens the portion
of the item bank that contributes to measurement, and ensures that no individual item disproportion-
ately influences ability estimation. The pattern across SE thresholds reflects a standard property of
adaptive testing: when fewer items are required (larger SE thresholds), exposure becomes more con-
centrated on the most informative items. In ATLAS, this concentration remains moderate, indicating
healthy rotation among informative items.
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Selection time reflects the computational cost of the full adaptive selection loop, including Fisher
information computation and termination checks. It refers to the complete runtime of the adaptive
item selection loop for each model, rather than the time required for a single item decision. Times
range from 9 to 76 seconds per model and scale predictably with benchmark size. TruthfulQA,
with 628 items, achieves the fastest selection times (approximately 9—16 seconds). In contrast,
HellaSwag, with more than 5600 items, shows the longest selection times (57-76 seconds), due
to the larger number of items evaluated when determining the most informative question at each
step. Importantly, even in the largest setting, selection remains well under 90 seconds, and for
all other benchmarks it typically completes within tens of seconds. This confirms that ATLAS is
computationally practical for both interactive evaluation and large-scale benchmarking workflows.

Taken together, the results in Table [6]show that ATLAS achieves high adaptivity, broad item utiliza-
tion, and practical runtime efficiency across diverse benchmarks. Low overlap and exposure promote
content coverage and robustness, while stable runtime performance ensures operational scalability
without compromising statistical quality.

Table 6: Adaptive evaluation efficiency and diversity. ATLAS maintains low item exposure rates
(< 12%) and moderate test overlap (13 — 24%) with fast selection times (< 76 seconds per model).
Lower values indicate better performance for all metrics.

Benchmark Method Test Overlap | Avg. Item | Avg. Selection |
(Item #) Rate (%) Exposure Rate (%) Time (s)

. ATLASsE<0.1 18.22 8.24 40.99
W“(‘;’(irg)nde ATLASS£<0.2 14.93 471 19.92
ATLASsE<0.3 17.03 4.04 16.74
ATLASsE<0.1 17.32 7.86 15.97
Tm(tgg‘él)QA ATLASg5<0. 18.43 9.58 9.37
ATLASsE<0.3 18.07 9.49 9.72
ATLASsE<0.1 11.26 3.86 75.52
H‘Egggg‘g ATLASs5<0. 13.72 4.78 56.93
ATLASsE<03 13.67 4.82 57.06
ATLASsE<0.1 21.27 7.21 45.69
(;’f’é\g% ATLAS35<0.2 20.78 4.40 24.08
ATLASsE<0.3 23.70 5.54 19.06
ARC ATLASsE<0.1 19.15 11.15 30.99
(842) ATLASsE<0.2 17.09 541 13.98
ATLASsE<0.3 19.60 9.21 11.82

G.2 EXPERIMENT ON MMLU

While both TinyBenchmarks (Polo et al.,2024) and MetaBench (Kipnis et al.,|2025) include MMLU
(Hendrycks et al., |2020) as part of their evaluation suites, they treat it as a single unified dataset by
aggregating all 57 subject areas. In contrast, we perform evaluation on a per-subject basis. This
design choice acknowledges the heterogeneous nature of MMLU, where each subject represents a
distinct knowledge domain with varying linguistic characteristics, content distributions, and diffi-
culty levels. Aggregating across all subjects can obscure these domain-specific patterns and limit
interpretability in adaptive assessment.

The corresponding results are reported in Table [/} Despite the small number of items per subject,
ATLAS consistently demonstrates robust adaptive evaluation performance. As the selection thresh-
old is relaxed (SE < 0.1 — 0.3), the mean absolute error (MAE) increases moderately (e.g., from
0.099 to 0.235 in Anatomy), while the number of evaluated items is substantially reduced (approx-
imately 80%). This indicates that ATLAS effectively balances efficiency and accuracy, even in
limited-data regimes.

Moreover, reductions in test overlap and exposure rates across the evaluated subjects suggest that
the adaptive mechanism achieves broader item coverage and mitigates redundancy. Evaluation time
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also decreases proportionally with the number of items, confirming the computational efficiency of

the adaptive process.

Benchmark Method | MAE | | Avg. Item | | Test Overlap | | Exposure Rate | | Avg. Time (s) |
o ATLASgsm<o.1 | 0.025 | 5245 0.6808 0.6639 0.59
MMLU g‘;’;g:ﬁ:;”gebm ATLASs <02 | 0.067 3218 04413 0.4073 036
: ATLASsp<o3 | 0098 |  19.90 0.3169 0.2519 022
ATLASsp<o.1 | 009 | 10000 0.94 0.88 493
Ml\?lngl? na“;my ATLASgp<p2 | 0.149 | 5329 0.54 0.47 270
Hems ATLASsg<0.3 | 0.235 20.49 0.32 0.18 0.98
] ATLASsp<o.1 | 0099 | 9322 0.82 0.69 6.30
MM(LI‘;G‘;?;’SS"“W ATLASsp<o2 | 0157 | 4821 0.48 035 3.29
‘ ATLASsp<o.3 | 0235 | 1180 0.40 0.11 0.79
A A ATLASsp<o.1 | 0040 | 8661 09122 09117 4.09
MMLU('Q??“eS; Ethics ATLASgp<qo | 0072 | 5443 05912 05729 529
1lems ATLASsE<0.3 | 0.160 13.46 0.4361 0.1417 0.63
N ATLASsp<o.1 | 0044 | 9986 0.7302 0.5043 8.69
MMLU'(CII;;‘?;‘E‘;OWIM@ ATLASgp<o2 | 0.186 | 2333 02894 0.1477 420
ATLASsp<o3 | 0244 | 1046 0.2537 0.1016 0.91
A ATLASsp<o.1 | 0031 | 10000 0.8870 0.7634 5.98
MMLlﬁgfl.}fge ?‘Ology ATLASsp<o.2 | 0.083 67.87 0.6168 05186 420
ltems ATLASsg<o.3 | 0.134 29.40 0.3380 0.2315 1.90
‘ ATLASsp<o1 | 0029 |  77.00 1.0000 1.0000 0.72
MMLU'S%%?E&S“““S“Y ATLASsp<g2 | 0070 | 5223 0.6857 0.6783 047
ATLASsp<os | 0116 | 17.84 0.4230 0.2308 0.25
A ATLASsp<o.1 | 0030 | 8271 0.9845 0.9844 0.73
MMLU'C"”;’ng f‘l’;“f)’“‘er Science ATLASsp<o2 | 0066 | 4167 0.5305 0.4961 039
ems ATLASsg<o.3 | 0.094 13.59 0.3367 0.1621 0.19
. ATLASsp<o.1 | 0025 | 6386 0.9267 0.9256 0.62
MMLU'C(‘)géeﬁ;ﬁg“hema““ ATLASsp<o2 | 0062 | 4467 0.6669 0.6478 043
ATLASsp<o3 | 0089 | 2848 0.4832 0.4128 0.29
. ATLASsp<o.1 | 0038 | 10000 0.8039 0.6369 7.02
MMLU(']CS‘;I%;ISV)M‘C‘“S ATLASsp<o.2 | 0.111 66.64 0.5986 04350 490
ATLASsp<os | 071 | 2777 0.3062 0.2061 2.02
‘ ATLASsp<o. | 0020 | 6939 09634 0.9632 0.69
MMLU(;CZ"iltl:f]‘;)P hysics ATLASsp<o.2 | 0041 61.78 0.8618 0.8580 0.63
ATLASgp<o5 | 0074 |  30.69 0.5167 0.4264 0.36
‘ ATLASsp<o.1 | 0019 |  84.00 1.0000 1.0000 0.71
MMLU?(CSZI?F l;:]er) Security ATLASsp<o.o | 0034 | 7599 0.9067 0.9049 0.65
ems ATLASsg<o.3 | 0.065 29.54 0.4484 0.3508 0.35
. ATLASsp<o.1 | 0042 |  69.43 0.5217 03417 402
MMLU'((;‘(’)‘ECEE;‘;‘)‘ Physics ATLASsp<o.2 | 0.160 13.86 0.1844 0.0713 0.98
ATLASgp<o.3 | 0205 | 10.58 0.1844 0.0596 0.78
] - ATLASsp<o1 | 0031 | 9167 0.9026 0.8992 5.38
MML(IIJO';Cif“;“;em“ ATLASsp<o2 | 0074 | 5623 0.5678 0.5508 405
ems ATLASsp<o.3 | 0.148 13.44 0.4002 0.1442 0.64
. o ATLASsp<o1 | 0032 | 10000 0.8917 0.7937 5.98
MMLU'E(lfgglictzin F;;‘gmee““g ATLASsp<o2 | 0081 | 61.94 0.5710 0.4917 4.05
ATLASgp<o.s | 0.134 | 1870 0.3021 0.1498 1.05
] o ATLASsp<o.1 | 0050 |  66.10 0.4546 0.3006 3.80
MMLU El‘:‘;ze(;‘ggryn?;“‘hemd““ ATLASsp<o.2 | 0.191 1334 02313 0.0843 0.87
‘ ATLASsp<os | 0237 | 1002 0.2020 0.0652 0.67
. ATLASsp<o.1 | 0030 |  91.05 08751 0.8359 5.43
MML(IIJ(')I;".:ma' )L"g‘c ATLASsp<o.2 | 0.098 31.64 03807 0.2895 2.18
tems ATLASsg<o.3 | 0.146 20.89 0.2762 0.1919 1.26
o ATLASsp<o. | 0022 | 6509 0.8060 0.8041 0.56
MML&?:;’I‘;“:I)F acts ATLASsp<o.2 | 0038 57.62 0.7158 07115 0.50
: ATLASsp<o3 | 0069 | 18.03 0.4382 0.2225 022
A A ATLASsp<o.1 | 0037 | 10000 0.6336 03984 6.09
MMLU—IE%? 'Stcmo)l Biology ATLASsp<o2 | 0.024 | 3774 0.2869 0.1932 278
Hems ATLASsg<0.3 | 0.171 25.49 0.2193 0.1480 1.98
. ‘ ATLASsp<o.1 | 0033 | 10000 0.7729 0.5917 5.64
MMLU'Hz%}égS;};‘I’;’:)Chem““y ATLASgp<o.2 | 0.111 36.56 03257 0.2349 2.62
ATLASsp<o.3 | 0.151 17.30 02078 0.1182 1.00

Continued on next page
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Benchmark | Method | MAE | | Avg. Item | | Test Overlap | | Exposure Rate | | Avg. Time (s) |
. . ATLASsp<o1 | 0021 |  94.00 1.0000 1.0000 0.74
MMLU-High S(Cng‘t’i S:)mp“‘er Sclence | ATIASgp<o.2 | 0041 7323 0.7911 0.7788 0.59
ATLASsp<o.5 | 0066 | 3134 0.4380 0.3330 0.34
. o ATLASsp<o.1 | 0038 | 100.00 0.8630 0.6803 6.31
MMLU-High (Slzl;";’tl i“ﬁ"p““ History | ATLASsp<g2 | 0081 75.10 0.6755 0.5368 5.16
ems ATLASsg<o.s | 0.137 27.05 0.3238 0.2001 2.15
. ATLASsp<o.1 | 0036 | 8566 0.6861 0.5039 4.89
MMLU'H‘(gl‘; g?{‘;;’if“’graphy ATLASsp<o2 | 0.095 | 4502 0.4002 0.2904 2.90
! ATLASsg<o.3 | 0.142 17.80 0.3141 0.1356 1.19
MMLU-High School Government & Politics 2?]:225 E<0.1 ggg; 19020'6%0 ggggg 823?‘1‘ ggj
. sp<oz| 0. . . . .
(154 items) ATLASsp<o3 | 0024 |  26.66 0.3425 0.1989 1.69
. . ATLASsp<o. | 0044 | 5619 04137 0.2822 331
MMLU'H‘g('I 95;'.1001 ];”a‘hema"cs ATLASsp<o2 | 0094 | 47.18 03732 0.2486 2.86
Hems ATLASsE<0.3 | 0.183 12.12 0.2503 0.0894 0.79
N . | ATLASsp<o. | 0.040 | 9317 0.7021 0.4828 5.55
MMLU-High (?;};012 Ii’i’)“oeco“"m‘“ ATLASsp<o.2 | 0.174 18.27 02907 0.1188 125
‘ ATLASsp<o3 | 0223 |  10.64 0.2579 0.1005 0.79
. ATLASsp<o.1 | 0089 | 87.94 0.48 031 10.49
" MMLU-High é%'i"“l" ) ATLASs <02 | 0.197 27.64 0.22 0.13 3.46
ACroeconomics (2oL tems ATLASsg<0.3 | 0.240 18.26 0.20 0.09 2.34
- n ATLASsp<o1 | 0026 | 6330 0.5825 0.5317 3.54
MMLU 1({11%191 lstz:‘;’s‘;l Physics ATLASs <02 | 0055 5175 0.4900 04356 3.08
ATLASsp<o3 | 0106 |  20.30 0.3393 0.1932 1.37
. ATLASsp<o.1 | 0035 | 10000 0.6086 0.3509 6.19
MMLU'Hl(gzhsgcikt‘;’I‘r’lls )P sychology ATLASsp<o2 | 0.147 | 2680 02433 0.1284 1.97
ATLASgp<o.3 | 0.196 | 1148 0.2101 0.0881 0.92
. o ATLASsp<o1 | 0038 | 6947 0.5587 03757 4.07
MMLU l'?lg;‘ssltcehr‘;‘:; Statistics ATLASsp<o2 | 0.154 | 2148 02987 0.1219 1.67
‘ ATLASsp<o3 | 0205 | 1181 0.2483 0.0700 1.03
. . ATLASsp<o1 | 0030 | 9668 0.7761 0.5283 5.77
MMLU‘H‘(gg;C.:‘O‘" )U S History ATLASsp<o2 | 0069 | 7331 06137 04027 480
tems ATLASsg<o.3 | 0.151 13.62 0.3348 0.1319 1.05
. ] ATLASsp<o.1 | 0031 | 9643 0.7407 0.4680 5.88
MMLU H‘g?z(s)ghi‘t’:;f;"’ﬂd History | ATLASgp<p.o | 0.108 | 4083 0.3806 02580 2.85
‘ ATLASsp<o3 | 0176 |  17.10 0.2629 0.1230 128
A ATLASsp<o.1 | 0034 | 10000 0.7341 0.5319 5.86
MML&‘;‘?Z‘“‘" )Ag‘“g ATLASsp<o2 | 0.108 | 4024 03546 02515 2.69
lems ATLASsg<o.3 | 0.154 27.38 0.2445 0.1802 2.00
‘ ATLASsp<o.1 | 0032 | 10000 0.9137 0.8621 6.07
MMLU('IHILé“;;‘I‘nSS)e"“amy ATLASsp<g2| 0062 |  83.66 0.7655 0.7212 5.5
ATLASsp<os | 0.154 | 2043 0.2825 0.1759 151
A ATLASsp<o.1 | 0028 | 10000 0.9780 0.9709 5.88
MMLU(‘IB?T?““O;““ Law ATLASsp<o.2 | 0.061 76.17 07582 0.7400 472
Hems ATLASsg<0.3 | 0.105 34.28 0.4298 0.3333 2.57
. ATLASsp<o1 | 0021 |  99.00 1.0000 1.0000 0.79
MML[(;’; Fl‘:frﬁg‘dem"’ ATLASsp<o2 | 0.047 | 7120 0.7262 0.7191 0.60
ATLASsp<o3 | 0.095 | 33.57 0.3986 0.3399 0.38
A A ATLASsp<o.1 | 0030 | 10000 0.8562 0.6803 5.92
MML%&‘;%‘;iga“a““ ATLASsp<o2 | 0064 | 7048 0.6483 04928 473
ATLASgp<os| 0.117 | 2221 0.2938 0.1632 1.69
. . ATLASsp<o. | 0027 | 7429 0.7619 0.7586 334
MMLU'ggii‘éﬁ)Leammg ATLASsp<o2 | 0069 | 3944 0.4402 04018 1.89
ATLASsp<o3 | 0.143 | 1381 0.3032 0.1410 0.71
ATLASsp<o1 | 0022 |  92.00 1.0000 1.0000 0.74
MML};%‘;‘;:E;’“C"‘ ATLASsp<o2 | 0024 |  90.39 0.9831 0.9831 072
ATLASsp<o3 | 0059 | 4491 0.5238 0.4881 047
. ATLASsp<o1 | 0033 | 10000 0.7974 0.5618 5.78
MM(];ES Ii‘f:fnk:)““g ATLASsp<o.2 | 0081 61.18 0.5305 0.3645 406
ATLASgp<os| 0134 | 2509 0.3035 0.1660 1.84
A . ATLASsp<o. | 0024 | 8438 0.9699 0.9698 0.74
MMLU’(Ig’;eﬂ‘e‘f}S)Ge“e““ ATLASs <02 | 0.045 69.31 0.7995 0.7967 0.62
ATLASsp<o3 | 0072 |  55.16 0.6449 0.6349 0.51
MMLUM " | ATLASs <01 | 0.048 | 6551 03154 02085 |  3.66
(314 items) Continued on next page
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Benchmark | Method | MAE | | Avg. Item | | Test Overlap | | Exposure Rate | | Avg. Time (s) |
ATLASsp<o2 | 0.156 |  24.00 0.1576 0.0991 158
ATLASsp<o3 | 0203 | 1573 0.1295 0.0697 1.10
A ATLASsp<o.1 | 0041 | 9973 0.6574 0.4355 6.03
MML[(JZ%‘:I“LD;SPWS ATLASsp<o2 | 0.142 | 2723 02498 0.1526 1.94
ems ATLASsg<0.3 | 0.195 13.45 0.2077 0.1090 0.98
. ATLASsp<o.1 | 0059 | 3418 0.1610 0.0704 224
MML%%??:‘;::;““‘OS ATLASsp<g2 | 0.114 19.23 0.1216 0.0436 1.41
i ATLASsp<o3 | 0158 | 14.14 0.0986 0.0334 1.05
N ATLASsp<o.1 | 0039 | 9550 0.6325 03914 6.00
M“&‘if‘;“;“’“ ATLASsp<o2 | 0.129 |  38.88 03028 0.1953 2.89
cems ATLASsp<o.3 | 0.176 21.25 0.2221 0.1191 1.69
. ATLASsp<o1 | 0041 | 9645 0.6360 04510 5.90
MMé?ﬂ‘ig:;Phy ATLASsp<o2 | 0.152 |  23.09 0.1983 0.1258 1.89
! ATLASsp<o.3 | 0.202 16.56 0.1657 0.0927 1.37
- ATLASsp<o.1 | 0039 | 9364 0.6004 0.3531 572
Ml\%giren}?”)“’ry ATLASsg<oo | 0099 | 4474 04126 0.2078 3.28
ems ATLASsg<o.3 | 0.190 12.29 0.2773 0.0989 0.95
. . ATLASsp<o.1 | 0047 | 63.18 0.4458 0.2861 3.83
MMLU'PrE’Zf;SIS‘f:;lS;*Ccoummg ATLASsp<o.2 | 0.170 14.16 02016 0.0682 1.03
i ATLASsp<o.5| 0220 | 1046 0.1899 0.0647 0.83
N ATLASsp<o.1 | 0064 | 2694 0.1811 0.0519 1.84
MMLU( ;rgfifbj:’?dl Law ATLASsp<o.2 | 0.151 10.88 0.1380 0.0283 0.98
cems ATLASsp<o.3 | 0.188 10.06 0.1308 0.0271 0.90
. . ATLASsp<o.1 | 0044 | 9514 0.6919 0.4363 6.11
MMLU'P(r;’fegs?t‘:I‘r‘il) Medicine ATLASsp<o2 | 0.167 | 2491 0.3403 0.1649 212
! ATLASsg<0.3 | 0.220 10.25 0.2794 0.1019 0.95
T ATLASsp<o.1 | 0051 | 5800 0.3224 0.1685 3.86
MMLU-P r;’;zzmi?:;lgf sychology ATLASsp<o.2 | 0.166 11.53 0.1850 0.0670 1.06
‘ ATLASsp<o3 | 0205 |  10.08 01715 0.0645 0.95
. . ATLASsp<o1 | 0027 |  93.05 1.0000 1.0000 0.74
MMLU(';“?’:‘C R)e‘a“"“s ATLASs <02 | 0048 72.97 0.7926 0.7854 0.61
2 Htems, ATLASsE<0.3 | 0.095 24.50 0.3729 0.2633 0.31
o - ATLASsp<o.1 | 0.038 | 10000 0.7247 0.4975 6.11
MMLLézz?Ci‘::I;yg)smdles ATLASsp<o2 | 0.119 | 3474 03103 02038 2.59
‘ ATLASsp<o.3 | 0.171 17.12 0.1992 0.1103 1.30
. ATLASsp<o1 | 0032 | 10000 0.8412 0.6024 6.02
M“ﬁgﬁ'.st"c“’;"gy ATLASgp<q | 0070 |  72.92 0.6391 0.5095 5.00
lems ATLASsg<o.3 | 0.137 37.22 0.3946 0.2712 2.70
o ATLASsp<o. | 0024 | 9000 1.0000 1.0000 0.72
MMLU’(%(S] lFt g:f);“ Policy ATLASsp<oo | 0026 | 8955 0.9950 0.9950 0.71
: ATLASsp<o3 | 0063 |  30.48 0.4204 0.3389 037
A ATLASsp<o1 | 0032 | 10000 0.8644 0.7143 6.01
Ml\fbg'i:’e‘;‘l’sl;’gy ATLASsp<o.2 | 0.081 63.64 0.5787 04711 440
ATLASgp<os | 0134 | 2411 0.2965 0.1926 1.84
. ATLASsp<o.1 | 0033 | 10000 0.8796 0.7299 6.05
MML{gig‘;‘)i‘t‘;‘i‘?‘g“’ns ATLASsp<g2 | 0.068 87.19 0.7734 0.6657 5.3
ATLASsp<os | 0.134 |  37.56 0.4063 0.2984 2.68
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TruthfulQA
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Figure 4: Comparison of raw average scores and whole-bank ability estimates on Truthful QA.
(Left) While average scores compress performance at the extremes, whole-bank ability estimates
reveal clearer separation among both low- and high-performing models, reflecting sensitivity to
item difficulty and discrimination. (Right) Rank comparison shows strong consistency between
the two measures (Spearman p = 0.97, Kendall 7 = 0.87), but ability-based ranking provides
finer resolution, especially in distinguishing weaker and stronger models beyond what raw accuracy
captures.

WinoGrande
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Figure 5: Comparison of raw average scores and whole-bank ability estimates on WinoGrande.
(Left) Whole-bank estimates show a non-linear relationship with average score and reveal clearer
separation on high-performing models, highlighting that ability captures relative item difficulty and
provides finer differentiation beyond raw accuracy. (Right) Rank comparison indicates strong but
imperfect alignment (Spearman p = 0.86, Kendall 7 = 0.70), with deviations from the diagonal
reflecting cases where ability-based ranking distinguishes models more effectively than accuracy
alone.
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ARC
Spearman Corr: 0.9143 Kendall Corr: 0.7703
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Figure 6: Comparison of raw average scores and whole-bank ability estimates on ARC. (Left)
Whole-bank estimates exhibit a non-linear relationship with average scores, providing clearer sepa-
ration on high-performing models by accounting for item difficulty and discrimination. (Right) Rank
comparison shows strong but not perfect alignment between the two metrics (Spearman p = 0.91,
Kendall 7 = 0.77), with deviations from the diagonal highlighting cases where ability-based rank-
ing offers more informative distinctions than raw accuracy alone.

Accuracy by Difficulty Level (ARC)

Model A

Model B

o o O o o® o0 O LR

Figure 7: Two models with the similar average accuracy (0.713) and (0.714) on ARC nevertheless
receive very different whole-bank ability estimates. Model A (mera-mix—4x7B) attains a whole-
bank ability rank of 270 because its correct responses are concentrated on more difficult items. In
contrast, Model B (LLaMAAntino—-3-ANITA-8B-Inst-DPO-ITA) is assigned a much lower
whole-bank ability rank of 2612, as its successes occur primarily on easier items. This divergence
shows how IRT-based ability estimation can distinguish models that appear identical under raw
accuracy by accounting for item difficulty.

24



Under review as a conference paper at ICLR 2026

Accuracy by Difficulty Level (HellaSwag)
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Figure 8: Two models with the same average accuracy (0.853) on HellaSwag nevertheless receive
very different whole-bank ability estimates. Model A (supermario_v1) attains a whole-bank
ability rank of 347 because its correct responses are concentrated on more difficult items. In contrast,
Model B (contaminated-proof_7b_vl.0_safetensor) is assigned a much lower whole-
bank ability rank of 3074, as its successes occur primarily on easier items. This divergence shows
how IRT-based ability estimation can distinguish models that appear identical under raw accuracy
by accounting for item difficulty.
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