SemShareKYV: Efficient KVCache Sharing for Semantically Similar
Prompts via Fuzzy Token Matching

Anonymous ACL submission

Abstract

As large language models (LLMs) continue to
scale, the memory footprint of key-value (KV)
caches during inference has become a signif-
icant bottleneck. Existing approaches primar-
ily focus on compressing KV caches within a
single prompt or reusing shared prefixes or fre-
quently ocurred text segments across prompts.
However, such strategies are limited in sce-
narios where prompts are semantically similar
but lexically different, which frequently occurs
in tasks such as multi-document summariza-
tion and conversational agents. We propose
SemShareKV, a KV cache sharing and com-
pression framework that accelerates LLM in-
ference by reusing KVCache in semantically
similar prompts. Instead of relying on exact
token matches, SemShareKV applies fuzzy to-
ken matching using locality-sensitive hashing
(LSH) on token embeddings and incorporates
Rotary Position Embedding (RoPE) to better
preserve positional information. By selectively
reusing relevant key-value pairs from a refer-
ence prompt’s cache, SemShareKV reduces re-
dundant computation while maintaining output
quality. Experiments on diverse summarization
datasets show up to 6.25x speedup and 42%
lower GPU memory usage with 5k tokens input,
with negligible quality degradation. These re-
sults highlight the potential of semantic-aware
cache sharing for efficient LLM inference.
The code is available at https://anonymous.
4open.science/r/SemShareKV-B53C.

1 Introduction

Large Language Models (LLMs) have exhibited
strong capability to understand and process human
languages, and have been proved to perform com-
parably as human beings in several fields, such
as math inference, text memorization, information
extraction, story telling (Naveed et al., 2023). Re-
cently released LLMs have significantly advanced
in processing and comprehending extremely long
prompts. However, this progress introduces a

notable challenge: increased computational de-
mand due to the quadratic time complexity of their
Decoder-Only Transformer architecture when han-
dling lengthy text sequences. The issue is fur-
ther compounded during inference, as the auto-
regressive decoding process repeats the computa-
tion for each newly generated token (Luohe et al.,
2024).

Existing KVCache optimization approaches
primarily focus on single-prompt compression
through various techniques: Yang et al. (2024a)
leverage decaying key-value importance across
layers for selective extraction (though with lim-
ited small-batch gains), Gim et al. (2024) employ
restrictive markup schemas for text chunk reuse,
and Yao et al. (2024) propose deviation-based re-
computation that requires impractical per-chunk
precomputation for long inputs. Crucially, these
methods operate within the constrained paradigm
of single-prompt optimization, failing to exploit
the substantial efficiency potential of cross-prompt
cache reuse, a significant oversight given the preva-
lence of semantically similar queries in real-world
applications where shared computational savings
could be substantial.

Motivated by this challenge, we aim to address
the following research question: Can we reuse the
precomputed KVCache for another semantically
similar prompt?

To answer this question, we proposed
SemShareKV, a KVCache framework that can
reuse the cache from one prompt for another that is
semantically similar to each other via fuzzy token
match. It speeds up prefill phase and compress KV
cache in memory. We show that our method can
reduce the pre-fill phase time by 6.25x and save
42% GPU memory space. We make the following
contributions.

* We introduce SemShareKV, which, to the
best of our knowledge, is the first to explore

https://anonymous.4open.science/r/SemShareKV-B53C
https://anonymous.4open.science/r/SemShareKV-B53C
https://anonymous.4open.science/r/SemShareKV-B53C

KVCache sharing across semantically similar
prompts.

* We evaluate SemShareKV across multiple
datasets, demonstrating its effectiveness in
accelerating the prefill phase while simulta-
neously reducing KVCache size.

* We proposed another angle of studying the
importance position encoding in KVCache,
by introducing position encoding into vector
embeddings.

2 Related Work

Prior research on KVCache optimization can be
categorized into three key directions: (i) Conven-
tional KVCache Compression, which focuses on
reducing the storage and computational overhead
of KVCache by applying quantization, pruning, or
other compression techniques; (ii) KVCache Shar-
ing, which explores methods to reuse KVCache
across different queries or tasks to improve effi-
ciency while maintaining response quality; and (iii)
KVCache Reusing, which investigates strategies
to adapt and repurpose precomputed KVCache for
semantically similar inputs, minimizing redundant
computation while preserving model accuracy.

2.1 Conventional KVCache Compression

To address long-context processing, many works
propose optimizing inference by retaining only in-
formative tokens. Token-level compression often
uses attention-based token selection (Zhang et al.,
2023; Xiao et al., 2024; Li et al., 2024; Yang et al.,
2024a; Zhong et al., 2024), low-rank decompo-
sition (Sun et al., 2024), or quantization (Zhang
et al., 2024; Wang et al., 2024). Model-level ap-
proaches redesign architectures to improve reuse
(Sun et al., 2025; Yan et al., 2024), while system-
level methods focus on memory and scheduling
(Kwon et al., 2023; Sheng et al., 2023). Recent
work has highlighted the use of value vectors to
facilitate compression (Guo et al., 2024).

2.2 KVCache Sharing

Some also emphasize reusing portions of the cache
for future or similar queries and prompts. For exam-
ple, PromptCache (Gim et al., 2024) stores text seg-
ments that appear frequently on an inference server
using a schema, although this approach hampers
usability, as users must conform their natural lan-
guage to the schema format. Mooncake (Qin et al.,

2024), KVSharer (Yang et al., 2024b) and Mini-
Cache (Liu et al.) exploit the high similarity of at-
tention scores among adjacent transformer layers to
improve KVCache reuse. By consolidating or shar-
ing Key-Value pairs between similar layers, these
methods improve memory efficiency and stream-
line token processing. However, their approaches
are restricted to sharing in the layer or text segment
within adjacent layers or the same LLM, limiting
the broader applicability; GPTCache (Regmi and
Pun, 2024), (Rasool et al., 2024) and (Bang, 2023)
utilize similarity search among queries to reuse
KVCache. However, they have a high probability
of missing a hit and require the entire query to be
similar, offering limited flexibility.

2.3 KVCache Reusing

Limited attention has been directed toward the
sharing of KVCache in LLMs. DroidSpeak (Liu
et al., 2024b) improves context sharing between
fine-tuned LLMs by identifying critical KV cache
layers and selectively re-computingg them for ef-
ficient reuse while maintaining accuracy. LM-
Cache (Cheng et al., 2024) introduces a Knowl-
edge Delivery Network (KDN) to optimize KV
cache storage and transfer, allowing cost-effective
knowledge injection in LLM inference.

3 Observations and Insights

We present three key insights derived from our ex-
periments on three LLMs: Mistral-7B (Jiang et al.,
2023), LLaMA-3.1-8B (Grattafiori et al., 2024),
and MPT-7B (Team, 2023). These insights show
consistent patterns across different LLMs, support-
ing the generality of our observations.

Insights 1 HD tokens stay consistent across layers.

When reusing KV caches from semantically simi-
lar prompts, we ensure the reused cache maintains
high fidelity with fully recomputed caches to pre-
vent performance degradation. To compare the
similarity between two KV matrices, we used our
augmented MultiNews dataset, where each sample
consists of a pair of semantically similar prompts:
the Target Prompt, which serves as the primary in-
put to the model, and the Reference Prompt, which
acts as the semantically similar counterpart. For
each of the aforementioned LLMs, we first com-
puted the KV caches for the prompt pairs indepen-
dently. Subsequently, we calculated the deviations
between the KV caches of the target and reference
prompts using the previously mentioned L2 norm.

D Simantically Similar E Cache

l:l Identical E Cache

Vector
Embeddings

Target -ﬁ |
e - +
Vector | @ LSH
Embeddings

e'=\‘> -'H—‘—L—JM

Ref Prompt
Cache

Rearranged

Layer 1

\

- OD@EODT :

ILLMLWM DOzZEBEOD? |

Cache Layer N [—\DDDGBDQD@D !

Recomputed Token D Reused Token Q Evicted Token

Figure 1: Comparison of retention patterns for Llama3.1-8B, Mistral-7B, and MPT-7B.

o
©
&

SRt x/f\

°
©
8

/7

°
®
g

"

—— LlLama3.1-8B
Mistral-7B
—— MPT-7B

Spearman Correlation
o
@

°
b

~ A >) o) 3
N4 lod i £

%2,

K
Layer Pair

Figure 2: Insight 1: High-deviation tokens remain con-
sistent across layers.

Tokens with the highest 40% deviation were identi-
fied as High Deviation (HD) tokens.

To further quantify this observation, we compute
the Spearman correlation of HD tokens between
adjacent layers. As shown in Figure 2, adjacent
layers exhibit relatively high consistency in HD
token positions.

Insights 2 Self-attention from deeper layers focus
on fewer tokens.

To analyze attention patterns across layers, we first
averaged the attention scores across all heads in
each layer and then computed the mean along the
first dimension, resulting in a one-dimensional vec-
tor per layer. To quantify this behavior, we intro-
duce Attention Recovery (AR), defined as follows:

n n
>~ T
Stotal = ZTZ szk :
i=1

Stotal
Where T is a sorted vector of average attention
scores for each token, Sy, represents the total
attention score derived from the averaged self-
attention matrices, and T'hres indicates the thresh-
old of attention score. AR indicates the number of
tokens that must be summed from highest to low-
est based on their average attention scores in order
to cover Thres% of the total attention score. We

> Thres (1)

100%

2

g

x/ K><\/

Attention Recovery (AR)
]
\
/
\
/S
/‘/
~
=
iy
/
\
I

—— LLama3.1-8B
Mistral-7B
—— MPT-7B

~/
\~
1
<
%
—
o/ ~/
L%
~ O\
//f/
£

o 5 10 T 2 B 30
Layer

Figure 3: Insight 2: Deeper layers attend to fewer to-
kens.

computed AR for each layer, and the results (Fig-
ure 3) reveal a consistent trend: as depth increases,
AR decreases across all three LLMs, despite minor
fluctuations. This suggests that deeper layers con-
centrate attention on progressively fewer tokens,
reflecting more selective focus.

Insights 3 Deeper layers have more redundant
information.

To reduce memory overhead from the KV cache,
a key optimization strategy is to remove tokens
containing redundant information. Such tokens
contribute minimally to the prediction of next to-
kens during decoding but occupy substantial GPU
memory. However, selective token retention risks
information loss, necessitating careful trade-offs
between memory savings and generation quality.
To address this, we evaluated three token retention
strategies and assessed their impact on model per-
formance using perplexity as our primary metric.
Figure 5 illustrates three retention patterns for
KVCache: Constant Retention, where each layer
retains the same percentage of KVCache; Expo-
nential Growth Retention, where the shallow lay-
ers retain more KVCache and the retention ratio
decreases in the deeper layers; and Exponential
Decay Retention, where shallow layers retain less
KVCache, with the retention ratio increasing in

Perplexity

%
%
;

Perplexity

[N
Retention Ratio

(a) Llama3.1-8B Retention Pattern

S P S F S P E S

P E S L LSS

uuuuuuuuu

K
Retention Rati

(b) Mistral-7B Retention Pattern

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

5
o Retention Ratio

(c) MPT-7B Retention Pattern

Figure 4: Insight 3: Deeper layers contain more redundant information.

—— Pattern 1: Constant
—— Pattern 2: Exponential Growth
—— Pattern 3: Exponential Decay

Retention ratio

i
Layer

Figure 5: The three retention patterns start from the
same retention ratio.

deeper layers.

We applied these three retention patterns to
LLMs, and utilized perplexity to benchmark the
generation performance, shown in Figure 5. For
all three LLMs, the Exponential Decay pattern
achieves the lowest perplexity score, indicating the
best generation performance. This finding further
validates that this pattern aligns with how LLMs
interpret knowledge from prompts.

4 Methodology

4.1 Model Overview

The design of SEMSHAREKYV, illustrated in Fig-
ure 1, is based on three key insights from Section 3.
Our approach employs two core strategies:

* Recomputation Strategy (Insights 1 & 2): Pri-
oritize the recomputing of more tokens in shal-
low layers while reducing the recomputation in
deeper layers, reflecting the varying importance
of the layer depth in attention mechanisms.

* Retention Strategy (Insights 1 & 3): Preserve
more tokens in shallow layers while evicting to-
kens from deeper layers, optimizing memory us-
age without significant accuracy degradation.

When the LLM processes the target prompt, its
vector embedding is first integrated with RoPE po-

sition encoding. Using Locality-Sensitive Hash-
ing (LSH), each token in the target prompt is
then matched to the most similar tokens from
the reference prompt. Based on these LSH map-
pings, the precomputed KV Cache of the reference
promptrompt is rearranged token by token and in-
jected into LLM transformer layers. On the first
transformer layer, all tokens undergo full recompu-
tation. The recomputed outputs are compared with
the rearranged cache values via L2 norm, identify-
ing high-deviation tokens for prioritized recomputa-
tion in subsequent layers. Simultaneously, the sys-
tem evicts tokens with the lowest attention scores
from recent computations, optimizing KVCache
memory usage dynamically.

4.2 Relevant Concepts

Our work focuses on three critical cache compo-
nents in modern LLMs:

* Key Cache (K): Key vectors encode the struc-
tural relationships among tokens in a sequence.

* Value Cache (V): Value vectors containing
the actual content representations aggregated
through attention weights. These preserve the
contextual information of each token.

* Embedding Cache (E): Caches static word em-
beddings capturing fundamental semantic and
syntactic relationships (Mikolov et al., 2013),
providing the foundational token representations
before transformer processing.

4.2.1 Fuzzy Token Match
4.3 KVCache Sharing Challenge

The primary challenge in cross-prompt KVCache
sharing stems from length disparity between
prompts. Inspired by (Liu et al., 2024b), we in-
corporates positional encoding within the E Cache
to enable accurate token alignment while preserv-
ing contextual relationships.

Specifically, we use LSH to identify, for each
token in the target prompt, the most similar token
in the reference prompt based on their vector rep-
resentations. We use Locality-Sensitive Hashing
(LSH) for efficient token similarity search. Addi-
tional details on LSH are provided in Appendix A.3.
This process allowed us to reorder the KVCache
of the reference prompt to align with the token se-
quence of the target prompt. Consequently, the
reordered KVCache matches the target prompt’s
length, with its key-value pairs entirely derived
from the original KVCache of the reference prompt.
The reordered KVCache is then input into the LLM,
enabling the transfer of cached values to the target
prompt.

Use Relative Position Encoding to Facilitate
Fuzzy Token Match

A fundamental limitation of naive fuzzy matching
using the E cache arises from the absence of po-
sitional context in its representation. Since raw
vector embeddings lack inherent positional infor-
mation, LSH fails to maintain crucial sequential
relationships when identifying reference-target to-
ken correspondences. This positional agnosticism
in the E cache consequently produces semantically
inferior mapping results.

To address this, we introduced position encod-
ing into E cache to improve fuzzy token match
performance. Two commonly used position en-
coding mechanisms are absolute position encoding
(Vaswani et al., 2017), which directly embeds posi-
tion information into the cache, and relative posi-
tion encoding (Su et al., 2024), which captures po-
sitional relationships between tokens. In this work,
we incorporate RoPE in the E cache, we evaluate
the impact of incorporating positional information
into the E cache. Specifically, we compare the per-
plexity of a plain E cache, paired with the default
precomputed KVCache from the reference prompt,
with that of an E cache encoded with RoPE. The
results, shown in Figure 8, indicate using RoPE in
the E cache reduces perplexity, demonstrating its
effectiveness in preserving positional context.

These findings support our claim that encoding
the E cache with RoPE helps preserve meaning-
ful semantics when using LSH for token matching.
By maintaining positional relationships, RoPE im-
proves alignment accuracy, leading to better token
retrieval and overall performance, which is further
illustrated in Figure 7. Figure 7a compares the
token positions in the original E cache with the re-

V Cache V Cache

(a) Standard KVCache Store (b) Modified KVCache Store

Figure 6: Comparison of default and modified KV cache

storage mechanisms.

Token Position

Original

Rearranged

(a) Only E Cache

Rearranged ‘I ||
[50 100 150 200 250 300 350

Token Position

(b) E Cache with Relative Position Encoding

Figure 7: Comparison of fuzzy token matching with and
without position encoding.

arranged positions after passing through the fuzzy
token matching block, while Figure 7b presents the
results when using an E cache with positional en-
coding. Notably, the first 20 tokens remain in their
original positions, as they represent query tokens.
This demonstrates that LSH correctly identifies and
preserves query positions.

Beyond the initial tokens, a key difference
emerges: without positional encoding, many to-
kens in the target prompt map to the initial tokens,
whereas with positional encoding, they align more
accurately with later tokens. We interpret this as a
manifestation of "attention sink"—a phenomenon
in self-attention mechanisms where a significant
portion of attention scores is consistently assigned
to the initial tokens, regardless of their actual rele-
vance to the task (Xiao et al., 2023; Fei et al., 2025).
Incorporating positional encoding into the E cache
effectively mitigates this issue, leading to more ac-
curate token matching and improved performance.

4.3.1 Impact from Position Encoding in
KVCache

The second challenge in KVCache mapping from

a reference prompt to target prompts is the impact
of position encoding. Rearranging tokens based

3.25

3.00 p-value: 3.133e-09

2.75 2

Perplexity
o

- N
~ o
o S

-
u
=]

1.25

E cache without Pos Encoding E cache with Pos Encoding

(a) Comparison of PPL With and Without Position Encoding

600

o
o
k=

IS
o
k=

KV Deviation

w
1=
k=

—— With Pos Encoding
Without Pos Encoding
—— Reapplied Pos Encoding

200

15 20 25 30
Layer

(b) KV deviation with three position encoding strategies.

Figure 8: Impact of position encoding on E cache and KV cache deviation.

on LSH search alters their order in the precom-
puted KVCache, which in turn affects the position
information encoded in the KV matrices during
the prefill phase. The impact of different position
encoding mechanisms is discussed in previous stud-
ies (Gao et al., 2024), position encoding could be
easily removed from KVCache by moving the em-
coding function after storing KVCache, which is
shown in Figure 6.

Building on our previous discussion on the role
of RoPE in E, we compare three configurations:
(i) KVCache with position encoding, which fol-
lows the standard approach in LLMs; (ii) KVCache
without position encoding, where the KVCache is
stored before applying position encoding; and (iii)
KVCache without position encoding but with reap-
plied position encoding after reordering, which is
similar to (ii) but with RoPE reapplied to the K'V-
Cache after rearrangement. Ideally, the KVCache
rearranged using LSH should closely match the
ground-truth KVCache of the target prompt. To
quantify this deviation, we compute the L norm
between the rearranged and ground-truth caches,
with results shown in Figure 8. The results indicate
that KVCache with position encoding exhibits the
lowest deviation, followed by KVCache without
position encoding, while KVCache with reapplied
ROPE has the highest deviation. This highlights
the importance of aligning position information be-
tween ¥ and KV—only when they share the same
position encoding can the LLM fully utilize them,
leading to the best generation quality.

4.3.2 Recomputation Strategy

We divide the layers into two groups: the first and
subsequent layers. Given that LLMs tend to focus
more on later tokens (Liu et al., 2024a; Yang et al.,
2024a), we categorize tokens into Cold (c) and Hot

(h) using a dynamic ratio Tgynamic from Atten-
tion Recovery with a threshold of 55%, meaning
rdynamic% of tokens with the highest cumulative
attention are selected as Hot, and the rest as Cold.
The total number of recomputed tokens is defined
as Recomputed = w, - ¢ + wy, - h, where w, = 0.1
and wyp, = 0.5 in the SemShareKV setting.

Starting from the second layer, token selection
follows this rule: based on Insight 1, the tokens
selected in the next layer are derived from those
chosen in the previous layer based on a recompute
ratio Qtpecomp /0 of this layer. Based on Insight
2, 0trecompo in shallow layers will be relatively
small while in deeper layers will be relatively large.
Therefore, the total number of tokens being recom-
puted on layer i is represented as

Recomp[i] =T H Olrecomp []] (2)
j=1

Where T denotes the total number of tokens, 2
represents the layer index.

4.3.3 Retention Strategy

Similar to token recomputation, we categorize the
layers into two groups: the first and the subse-
quent layers. On the first layer, the retention
ratio is determined also by rgynamic, follows
Retained = max(0.8, rdynamic). And retained
tokens are selected based on average attention
scores across the last (1 — rqynamic)% tokens,
and only retain the top Tgynamic’0 tokens with
highest avg attention scores. In detail, the intuition
behind selecting retained tokens is as follows: In
the first layer, all hot tokens will be retained. To-
ken eviction occurs only among Cold tokens that
are not marked as recomputed. The underlying
principle is that recomputed tokens provide better

Method SAMSum MultiNews PubMed BookSum BigPatent | % from Best (Avg |)
Fully Recompute 18.79 22.10 24.66 22.44 25.47 —4.73%
SemShareKV 21.22 23.15 24.30 22.50 26.62 —0.91%
SnapKV 20.16 23.07 24.58 23.22 25.78 -1.77%
H20 20.50 23.04 23.53 22.77 24.99 -3.30%

Table 1: Benchmarking SemShareKV with ROUGE-L score (%). The rightmost column reports the average
percentage gap to the best-performing method per dataset.

representations of the target prompt. If these to-
kens are evicted, the computational resources and
time spent on recomputing them will be wasted. In
subsequent layers, based on Insight 3, we should
retain fewer tokens, which is defined as:

Retain[z’] =T H Olretain []] (3)
j=1

Where T' denotes the total number of tokens, ¢
represents the layer index, and cvein[7] is the token
retention ratio at layer j; the remaining tokens are
evicted from the KV cache. Intuitively, cuetain 18
typically larger in shallower layers and smaller in
deeper ones.

5 Evaluation and Results

5.1 Experiments Setup

We select datasets to evaluate various types of
summarization tasks: MultiNews from Long-
Bench (Bai et al.,, 2023) for summarization
across multiple passages; SAMsum (Gliwa et al.,
2019) for understanding multi-turn conversations;
and BookSum, PubMed, and BigPatent from
MA4LE (Kwan et al., 2023) to assess comprehension
of narrative stories, scientific medical papers and
patent documents, respectively. Further details on
data preparation are provided in Appendix B.

We compared SemShareKV against three base-
lines: (i) Fully Recompute: standard inference
using the unmodified model from the Transform-
ers library, where the entire prompt is input with-
out any KVCache reuse; (ii) SnapKYV (Li et al.,
2024): a KVCache management method that ac-
celerates the prefill phase by efficient caching but
does not compress the KVCache; (iii) H20 (Zhang
et al., 2023): a dynamic KVCache eviction strat-
egy that compresses KV memory by prioritizing
important tokens, but does not optimize the prefill
phase. We employ a modified version of H20 that
compresses 10% of the cache at each layer. We
selected SnapKV and H2O as baselines to sepa-
rately represent optimization for the prefill phase

and KVCache compression. All experiments were
conducted on a single A100 GPU. The details of the
implementation are discussed in the Appendix D.

To the best of our knowledge, no existing dataset
benchmarks LLMs on KVCache sharing across
semantically similar prompts. To bridge this gap,
we constructed evaluation samples by randomly
selecting portions of entries from existing datasets
and rewriting them using the Llama3 model. Then,
these rewritten samples were manually verified to
ensure that they remained semantically close to the
originals. For each dataset, we curated 100 such
samples. More details on the data preparation are
provided in Appendix B.

5.2 Benchmarking Evaluation

We argue that using Fuzzy Token Match introduces
only a negligible overhead to model inference. Ta-
ble 1 reports the ROUGE-L scores (Lin, 2004).
Benchmarking results show that SemShareKV
achieves performance comparable to or better than
other baseline methods. Notably, in 4 out of the
5 evaluated datasets, Fully Recompute fails to at-
tain the highest performance scores. We attribute
this phenomenon to the token eviction mechanisms
employed by SemShareKV, SnapKV, and H20. By
selectively retaining only the most semantically sig-
nificant tokens for self-attention computation, these
methods effectively reduce redundant information
in the semantic representation, thereby enhancing
the model’s generation quality.

5.3 Efficiency Evaluation

We evaluate SemShareKV based on Time To First
Token (TTFT) and KV Cache GPU KV memory
usage, benchmarking it against Fully Recompute,
SnapKYV, and the unmodified H20 model. Fig-
ure 9 demonstrates the efficiency advantages of
SemShareKV on the MultiNews dataset, showing
consistent improvements over baseline methods:
SemShareKV achieves 6.25 x faster Time-To-First-
Token (TTFT) than Fully Recompute and H2O,
2.23x faster TTFT than SnapKV, while reducing
memory usage by 42%. However, as illustrated

—e— Fully Recompute /"
1000
—=— SemSharekKV s
SnapkV /
8001 . 120 P
£ 600 %
£ S
': 400 ,/
i/ 1
200 /ﬂ/ R R—
. =
0.5k 1k 15k 2k 25k 3k 35k 4k 45k 5k
Input Length
(a) TTFT Comparison
col T Fully Recompute /‘x
—=— SemShareKV /:/
2 500 SnapKV /
= —x— H20 x
& 400 /!/
] /‘;('/ —"
L300 /“/ ./
% 4 /./
o ¥ i
> 200 ,‘/ —
& / ./
% -/
100 //_/

0.5k 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k
Input Length

(b) KVCache Size Comparison

Figure 9: Efficiency Evaluation Results.

Method SAMSum(1) MultiNews(1)
SemShareKV 21.22 23.15
Ablation-Zero 14.63 17.71
Ablation-Random 5.38 12.67

Table 2: Ablation study on ROUGE-L for SemShareKV
and its ablations across datasets.

in Figure 9b, SemShareKV offers limited perfor-
mance improvements for shorter prompts (fewer
than 700 tokens), which we attribute to the over-
head caused by fuzzy token matching and the rear-
rangement of tokens from the precomputed cache
of the reference prompt. In future work, our goal
is to minimize this overhead.

5.4 Ablation Study

We conducted two ablation studies to assess
whether the rearranged cache produced by the
fuzzy token matching process helps the model bet-
ter capture semantic information.

In the first ablation, we examined the role of
semantically matched tokens by altering the con-
tents of the KV cache. Specifically, we evalu-
ated model performance (measured by ROUGE-
L) under two conditions: (i) zeroing out the KV
values of the matched tokens after fuzzy match-
ing, and (ii) replacing the matched tokens with

—— SemSharekV
---- Full Cache

100% 80% 60% 40%
KV Cache Retention

Figure 10: Ablation Study of KV Cache Compression
Ratio

random tokens from the precomputed cache. As
shown in Table 2, both settings result in signifi-
cantly lower ROUGE-L scores compared to the full
SemShareKV method, confirming that the fuzzy to-
ken matching mechanism contributes meaningfully
to semantic understanding.

The second ablation investigates the relationship
between the KVCache compression ratio and the
performance of the model during the token reten-
tion phase based on Multinews dataset. As illus-
trated in Figure 10, we observe that retaining too
much of the cache introduces redundant informa-
tion and degrades performance, while retaining too
little leads to information loss. This highlights the
importance of striking an effective balance in cache
retention to preserve useful semantic context.

6 Conclusion

We proposed SEMSHAREKYV, a KVCache shar-
ing framework that enables reuse across semanti-
cally similar prompts through fuzzy token match-
ing using locality-sensitive hashing. SemShareKV
achieves a speed of 6.25x and saves up to 42%
kvcahce memory space compared to conventional
KVCache, with a minimum performance drop.

Limitations

While SEMSHAREKYV demonstrates effective KV
cache sharing for semantically similar prompts,
our current evaluation is limited to summariza-
tion tasks. It exhibits diminishing speedups for
shorter prompts due to computational overhead
from fuzzy token matching and introduces several
hyper-parameters requiring careful optimization for
new domains. These limitations suggest opportuni-
ties for future work.

References

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023. Longbench: A bilingual, mul-
titask benchmark for long context understanding.
arXiv preprint arXiv:2308.14508.

Fu Bang. 2023. Gptcache: An open-source semantic
cache for Ilm applications enabling faster answers
and cost savings. In Proceedings of the 3rd Work-
shop for Natural Language Processing Open Source
Software (NLP-OSS 2023), pages 212-218.

Yihua Cheng, Kuntai Du, Jiayi Yao, and Junchen Jiang.
2024. Do large language models need a content
delivery network? arXiv preprint arXiv:2409.13761.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Va-
hab S Mirrokni. 2004. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceed-
ings of the twentieth annual symposium on Computa-
tional geometry, pages 253-262.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The faiss library.

Weizhi Fei, Xueyan Niu, Guoqging Xie, Yingqing Liu,
Bo Bai, and Wei Han. 2025. Efficient prompt com-
pression with evaluator heads for long-context trans-
former inference. arXiv preprint arXiv:2501.12959.

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang,
Djordje Jevdjic, Junbo Deng, Xingkun Yang, Zhou
Yu, and Pengfei Zuo. 2024. Cost-efficient large lan-
guage model serving for multi-turn conversations
with cachedattention. In USENIX Annual Technical
Conference.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda,
Anurag Khandelwal, and Lin Zhong. 2024. Prompt
cache: Modular attention reuse for low-latency infer-

ence. Proceedings of Machine Learning and Systems,
6:325-338.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70-79, Hong
Kong, China. Association for Computational Linguis-
tics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe.
2024. Attention score is not all you need for token
importance indicator in kv cache reduction: Value
also matters. arXiv preprint arXiv:2406.12335.

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth an-
nual ACM symposium on Theory of computing, pages
604-613.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Wai-Chung Kwan, Xingshan Zeng, Yufei Wang, Yusen
Sun, Liangyou Li, Lifeng Shang, Qun Liu, and Kam-
Fai Wong. 2023. MA4LE: A Multi-Ability Multi-
Range Multi-Task Multi-Domain Long-Context Eval-
uation Benchmark for Large Language Models.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
Llm knows what you are looking for before genera-
tion. arXiv preprint arXiv:2404.14469.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gho-
lamreza Haffari, and Bohan Zhuang. Minicache:
Kv cache compression in depth dimension for
large language models, 2024b. URL https://arxiv.
org/abs/2405.14366.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024a. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157-173.

Yuhan Liu, Esha Choukse, Shan Lu, Junchen Jiang,
and Madan Musuvathi. 2024b. Droidspeak: En-
hancing cross-llm communication. arXiv preprint
arXiv:2411.02820.

Shi Luohe, Zhang Hongyi, Yao Yao, Li Zuchao, and
Zhao Hai. 2024. Keep the cost down: A review on
methods to optimize 1lm’s kv-cache consumption.
arXiv preprint arXiv:2407.18003.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word
representations in vector space. In International Con-
ference on Learning Representations.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad
Saqib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A

https://arxiv.org/abs/2401.08281
https://api.semanticscholar.org/CorpusID:268793498
https://api.semanticscholar.org/CorpusID:268793498
https://api.semanticscholar.org/CorpusID:268793498
https://api.semanticscholar.org/CorpusID:268793498
https://api.semanticscholar.org/CorpusID:268793498
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482

comprehensive overview of large language models.
arXiv preprint arXiv:2307.06435.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang,
Yongwei Wu, Weimin Zheng, and Xinran Xu.
2024. Mooncake: A kvcache-centric disaggre-
gated architecture for llm serving. arXiv preprint
arXiv:2407.00079.

Zafaryab Rasool, Scott Barnett, David Willie, Stefanus
Kurniawan, Sherwin Balugo, Srikanth Thudumu,
and Mohamed Abdelrazek. 2024. Llms for test in-
put generation for semantic caches. arXiv preprint
arXiv:2401.08138.

Sajal Regmi and Chetan Phakami Pun. 2024. Gpt
semantic cache: Reducing llm costs and latency
via semantic embedding caching. arXiv preprint
arXiv:2411.05276.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Inter-
national Conference on Machine Learning, pages

31094-31116. PMLR.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng,
Ningxin Zheng, Xin Liu, Harry Dong, Yuejie Chi,
and Beidi Chen. 2024. Shadowkv: Kv cache in shad-
ows for high-throughput long-context llm inference.
arXiv preprint arXiv:2410.21465.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,
and Furu Wei. 2025. You only cache once: Decoder-
decoder architectures for language models. Advances

in Neural Information Processing Systems, 37:7339—
7361.

MosaicML NLP Team. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable

Ilms. Accessed: 2023-05-05.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Neural Information Processing Systems.

Zihao Wang, Bin Cui, and Shaoduo Gan. 2024.
Squeezeattention: 2d management of kv-cache in
IIm inference via layer-wise optimal budget. arXiv
preprint arXiv:2404.04793.

10

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian
Guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. 2024. Duoattention: Efficient long-context llm
inference with retrieval and streaming heads. arXiv
preprint arXiv:2410.10819.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Ruiqing Yan, Linghan Zheng, Xingbo Du, Han Zou,
Yufeng Guo, and Jianfei Yang. 2024. Recurformer:
Not all transformer heads need self-attention. arXiv
preprint arXiv:2410.12850.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024a. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm
inference. arXiv preprint arXiv:2405.12532.

Yifei Yang, Zouying Cao, Qiguang Chen, Libo
Qin, Dongjie Yang, Hai Zhao, and Zhi Chen.
2024b. Kvsharer: Efficient inference via layer-
wise dissimilar kv cache sharing. arXiv preprint
arXiv:2410.18517.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua
Cheng, Qizheng Zhang, Kuntai Du, Shan Lu, and
Junchen Jiang. 2024. Cacheblend: Fast large lan-
guage model serving with cached knowledge fusion.
arXiv preprint arXiv:2405.16444.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu,
Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin
Cui. 2024. Pqcache: Product quantization-based kv-
cache for long context llm inference. arXiv preprint
arXiv:2407.12820.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, and 1 oth-
ers. 2023. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Ad-
vances in Neural Information Processing Systems,
36:34661-34710.

Meizhi Zhong, Xikai Liu, Chen Zhang, Yikun Lei, Yan
Gao, Yao Hu, Kehai Chen, and Min Zhang. 2024.

https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Zigzagkv: Dynamic kv cache compression for long-
context modeling based on layer uncertainty. arXiv
preprint arXiv:2412.09036.

A Formula and Inference

A.1 Rotary Position Encoding

In our methodology, we introduced the application
of Rotary Position Embedding (RoPE) to the E
cache, which improves the performance of fuzzy
token matching. RoPE is designed to incorporate
positional information directly into embeddings,
allowing for improved alignment between tokens
in a sequence. This is particularly important in
natural language processing tasks where the order
of words can significantly impact the meaning and
context.

The formula of RoPE in a 2-D case is shown
below:

cos(0x)
sin(&k)

Lo

RoPE(x) 1
L2k+1

ol

In this equation, 6, = 10000~2%/4, where d repre-
sents the embedding dimension. The use of RoPE
allows for the effective encoding of relative po-
sitional information, enabling the model to bet-
ter capture the relationships between tokens in a
sequence. Integrating RoPE into the E cache fa-
cilitates the identification of semantically similar
tokens using LSH, leading to more accurate and
efficient fuzzy token matching. This enhancement
helps the model perform more accurately on tasks
that require strong semantic understanding.

A.2 Key-Value Deviation

We define Key-Value Deviation with L2 norm as
below:

oK = || Kreused . Krecomputed”2
- M

oy = Hvreused o VrecomputedH2
-)

4)
OKV = 0K + 0y

Where I™Us¢d and V/™eused represent the Key and

Value matrices in cache reused from the semantic

similar prompt; Krecomputed apnd j/recomputed pofer

to the Key and Value matrices recomputed at the
current layer.

A.3 Locality-Sensitive Hashing (LSH)

Locality-Sensitive Hashing (LSH) is a technique
that enables efficient approximate nearest neighbor

11

searches in high-dimensional spaces by ensuring
similar input items are hashed into the same bucket
with high probability (Indyk and Motwani, 1998).
This reduces the number of distance computations
required, making LSH particularly useful for large
datasets in applications such as image retrieval and
natural language processing (Datar et al., 2004).
In LSH for Euclidean distance, a common hash
function is:

x-r+b
=l

where 7 is a random vector, b is a random offset,
and w is the hash width. This overview encapsu-
lates the theory and practical application of LSH in
our framework.

The LSH (Locality-Sensitive Hashing) in
SemShareKV is implemented using the FAISS
Python library (Douze et al., 2024). Further config-
uration details can be found in the provided code

repository.

h(z)

B Data Preparation

We categorize these five datasets into two groups
based on how semantically similar samples are pre-
pared, all datasets are in English, with a focus on
English-language text:

1. MultiNews (Bai et al., 2023): This datasets
contain samples composed of multiple inde-
pendent passages or articles. To generate se-
mantically similar samples, we randomly se-
lect one passage or article from each sample
and use the Llama 3 model to rewrite it while
preserving the original semantics. The rewrit-
ten passage is constrained to have a similar
length to the original (within a 10% difference
in token count). We then replace the original
passage with the rewritten one to construct a
semantically similar prompt. The position of
the rewritten passage naturally varies across
samples, appearing at the beginning, middle,
or end of the context.

SAMSum (Gliwa et al., 2019), PubMed,
BigPatent and BookSum (Kwan et al.,
2023): These datasets consist of semantically
continuous text. For each sample, we divide
the context into individual sentences and ran-
domly select a contiguous segment of the to-
tal sentence count. This segment is rewrit-
ten using the Llama 3 model, with the con-
straint that the token count deviates by less

Metric SAMSum MultiNews PubMed BookSum BigPatent
N of Samples 100 100 100 100 100
Rewrite % (Avg) 46.75 54.58 45.64 44.31 28.55
ROUGE-L(%) 50.90 84.71 88.15 78.15 90.03
BERTScore(%) 86.97 95.85 95.48 95.58 96.07
BLEU(%) 24.68 90.40 89.22 81.16 89.29

Table B1: Similarity evaluation on benchmarking datasets using ROUGE-L, BERTScore, and BLEU. All datasets

contain 100 semantically similar rewritten samples.

than 10% from the original. The rewritten
segment replaces the original to create a se-
mantically similar prompt, with its position
varying within the context in a similar manner.

Table B1 presents the results of the similar-
ity evaluation, measured using ROUGE-L (Lin,
2004), BLEU (Papineni et al., 2002), and
BERTScore (Zhang et al., 2019). We include
both longest common subsequence-based metrics
(ROUGE-L), n-gram-based metrics (BLEU) and
embedding-based metrics (BERTScore) to provide
a comprehensive evaluation of semantic similarity
across rewritten datasets.

C Artifact Use and Compliance with
Intended Purpose

The datasets used in this study are publicly avail-
able and are consistent with their intended use, as
specified by the respective sources. In preparing the
data, we adhered to ethical guidelines and ensured
that the use of these publicly released datasets was
for research purposes only.

For the created artifacts, such as the semantically
similar samples, we have ensured that the use of
these modified datasets remains consistent with the
original intended research purpose. The generated
data serves the purpose of advancing research in
semantic similarity and does not extend beyond the
intended scope of the original datasets.

D Implementation and Hyperparameters

SemShareKV is implemented in Python using
the transformers library (Wolf et al., 2020),
with the monkeypatching technique. We use the
Locality Sensitive Hashing from FAISS (Douze
et al, 2024) library. The code is avail-
able at: https://anonymous. 4open.science/r/
SemShareKV-B53C. Details of the key functions
and their roles are outlined below:

¢ conventional_forward_simp: A modified
version of MistralAttention.forward

12

from the transformers library, incorpo-
rating the SemShareKV mechanism. The
hyperparameters used in our experiments are
also specified in this function.

* replace_mistral_forward: Applies monkey-
patching to substitute the original attention
forward function in the transformers library
with our customized SemShareKV implemen-
tation.

 prepare_fuzzy_caches: Encodes ROPE into
E caches and performs fuzzy token matching
using locality-sensitive hashing (LSH).

Overall, SemShareKYV is built on the transformer
architecture and consists of fewer than 300 new
lines of code, making it lightweight and easily
transferable to other LLMs.

https://anonymous.4open.science/r/SemShareKV-B53C
https://anonymous.4open.science/r/SemShareKV-B53C
https://anonymous.4open.science/r/SemShareKV-B53C

	Introduction
	Related Work
	Conventional KVCache Compression
	KVCache Sharing
	KVCache Reusing

	Observations and Insights
	Methodology
	Model Overview
	Relevant Concepts
	Fuzzy Token Match

	KVCache Sharing Challenge
	Impact from Position Encoding in KVCache
	Recomputation Strategy
	Retention Strategy

	Evaluation and Results
	Experiments Setup
	Benchmarking Evaluation
	Efficiency Evaluation
	Ablation Study

	Conclusion
	Formula and Inference
	Rotary Position Encoding
	Key-Value Deviation
	Locality-Sensitive Hashing (LSH)

	Data Preparation
	Artifact Use and Compliance with Intended Purpose
	Implementation and Hyperparameters

