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Abstract001

As large language models (LLMs) continue to002
scale, the memory footprint of key-value (KV)003
caches during inference has become a signif-004
icant bottleneck. Existing approaches primar-005
ily focus on compressing KV caches within a006
single prompt or reusing shared prefixes or fre-007
quently ocurred text segments across prompts.008
However, such strategies are limited in sce-009
narios where prompts are semantically similar010
but lexically different, which frequently occurs011
in tasks such as multi-document summariza-012
tion and conversational agents. We propose013
SemShareKV, a KV cache sharing and com-014
pression framework that accelerates LLM in-015
ference by reusing KVCache in semantically016
similar prompts. Instead of relying on exact017
token matches, SemShareKV applies fuzzy to-018
ken matching using locality-sensitive hashing019
(LSH) on token embeddings and incorporates020
Rotary Position Embedding (RoPE) to better021
preserve positional information. By selectively022
reusing relevant key-value pairs from a refer-023
ence prompt’s cache, SemShareKV reduces re-024
dundant computation while maintaining output025
quality. Experiments on diverse summarization026
datasets show up to 6.25× speedup and 42%027
lower GPU memory usage with 5k tokens input,028
with negligible quality degradation. These re-029
sults highlight the potential of semantic-aware030
cache sharing for efficient LLM inference.031
The code is available at https://anonymous.032
4open.science/r/SemShareKV-B53C.033

1 Introduction034

Large Language Models (LLMs) have exhibited035

strong capability to understand and process human036

languages, and have been proved to perform com-037

parably as human beings in several fields, such038

as math inference, text memorization, information039

extraction, story telling (Naveed et al., 2023). Re-040

cently released LLMs have significantly advanced041

in processing and comprehending extremely long042

prompts. However, this progress introduces a043

notable challenge: increased computational de- 044

mand due to the quadratic time complexity of their 045

Decoder-Only Transformer architecture when han- 046

dling lengthy text sequences. The issue is fur- 047

ther compounded during inference, as the auto- 048

regressive decoding process repeats the computa- 049

tion for each newly generated token (Luohe et al., 050

2024). 051

Existing KVCache optimization approaches 052

primarily focus on single-prompt compression 053

through various techniques: Yang et al. (2024a) 054

leverage decaying key-value importance across 055

layers for selective extraction (though with lim- 056

ited small-batch gains), Gim et al. (2024) employ 057

restrictive markup schemas for text chunk reuse, 058

and Yao et al. (2024) propose deviation-based re- 059

computation that requires impractical per-chunk 060

precomputation for long inputs. Crucially, these 061

methods operate within the constrained paradigm 062

of single-prompt optimization, failing to exploit 063

the substantial efficiency potential of cross-prompt 064

cache reuse, a significant oversight given the preva- 065

lence of semantically similar queries in real-world 066

applications where shared computational savings 067

could be substantial. 068

Motivated by this challenge, we aim to address 069

the following research question: Can we reuse the 070

precomputed KVCache for another semantically 071

similar prompt? 072

To answer this question, we proposed 073

SemShareKV, a KVCache framework that can 074

reuse the cache from one prompt for another that is 075

semantically similar to each other via fuzzy token 076

match. It speeds up prefill phase and compress KV 077

cache in memory. We show that our method can 078

reduce the pre-fill phase time by 6.25× and save 079

42% GPU memory space. We make the following 080

contributions. 081

• We introduce SemShareKV, which, to the 082

best of our knowledge, is the first to explore 083
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KVCache sharing across semantically similar084

prompts.085

• We evaluate SemShareKV across multiple086

datasets, demonstrating its effectiveness in087

accelerating the prefill phase while simulta-088

neously reducing KVCache size.089

• We proposed another angle of studying the090

importance position encoding in KVCache,091

by introducing position encoding into vector092

embeddings.093

2 Related Work094

Prior research on KVCache optimization can be095

categorized into three key directions: (i) Conven-096

tional KVCache Compression, which focuses on097

reducing the storage and computational overhead098

of KVCache by applying quantization, pruning, or099

other compression techniques; (ii) KVCache Shar-100

ing, which explores methods to reuse KVCache101

across different queries or tasks to improve effi-102

ciency while maintaining response quality; and (iii)103

KVCache Reusing, which investigates strategies104

to adapt and repurpose precomputed KVCache for105

semantically similar inputs, minimizing redundant106

computation while preserving model accuracy.107

2.1 Conventional KVCache Compression108

To address long-context processing, many works109

propose optimizing inference by retaining only in-110

formative tokens. Token-level compression often111

uses attention-based token selection (Zhang et al.,112

2023; Xiao et al., 2024; Li et al., 2024; Yang et al.,113

2024a; Zhong et al., 2024), low-rank decompo-114

sition (Sun et al., 2024), or quantization (Zhang115

et al., 2024; Wang et al., 2024). Model-level ap-116

proaches redesign architectures to improve reuse117

(Sun et al., 2025; Yan et al., 2024), while system-118

level methods focus on memory and scheduling119

(Kwon et al., 2023; Sheng et al., 2023). Recent120

work has highlighted the use of value vectors to121

facilitate compression (Guo et al., 2024).122

2.2 KVCache Sharing123

Some also emphasize reusing portions of the cache124

for future or similar queries and prompts. For exam-125

ple, PromptCache (Gim et al., 2024) stores text seg-126

ments that appear frequently on an inference server127

using a schema, although this approach hampers128

usability, as users must conform their natural lan-129

guage to the schema format. Mooncake (Qin et al.,130

2024), KVSharer (Yang et al., 2024b) and Mini- 131

Cache (Liu et al.) exploit the high similarity of at- 132

tention scores among adjacent transformer layers to 133

improve KVCache reuse. By consolidating or shar- 134

ing Key-Value pairs between similar layers, these 135

methods improve memory efficiency and stream- 136

line token processing. However, their approaches 137

are restricted to sharing in the layer or text segment 138

within adjacent layers or the same LLM, limiting 139

the broader applicability; GPTCache (Regmi and 140

Pun, 2024), (Rasool et al., 2024) and (Bang, 2023) 141

utilize similarity search among queries to reuse 142

KVCache. However, they have a high probability 143

of missing a hit and require the entire query to be 144

similar, offering limited flexibility. 145

2.3 KVCache Reusing 146

Limited attention has been directed toward the 147

sharing of KVCache in LLMs. DroidSpeak (Liu 148

et al., 2024b) improves context sharing between 149

fine-tuned LLMs by identifying critical KV cache 150

layers and selectively re-computingg them for ef- 151

ficient reuse while maintaining accuracy. LM- 152

Cache (Cheng et al., 2024) introduces a Knowl- 153

edge Delivery Network (KDN) to optimize KV 154

cache storage and transfer, allowing cost-effective 155

knowledge injection in LLM inference. 156

3 Observations and Insights 157

We present three key insights derived from our ex- 158

periments on three LLMs: Mistral-7B (Jiang et al., 159

2023), LLaMA-3.1-8B (Grattafiori et al., 2024), 160

and MPT-7B (Team, 2023). These insights show 161

consistent patterns across different LLMs, support- 162

ing the generality of our observations. 163

Insights 1 HD tokens stay consistent across layers. 164

When reusing KV caches from semantically simi- 165

lar prompts, we ensure the reused cache maintains 166

high fidelity with fully recomputed caches to pre- 167

vent performance degradation. To compare the 168

similarity between two KV matrices, we used our 169

augmented MultiNews dataset, where each sample 170

consists of a pair of semantically similar prompts: 171

the Target Prompt, which serves as the primary in- 172

put to the model, and the Reference Prompt, which 173

acts as the semantically similar counterpart. For 174

each of the aforementioned LLMs, we first com- 175

puted the KV caches for the prompt pairs indepen- 176

dently. Subsequently, we calculated the deviations 177

between the KV caches of the target and reference 178

prompts using the previously mentioned L2 norm. 179
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Figure 1: Comparison of retention patterns for Llama3.1-8B, Mistral-7B, and MPT-7B.
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Figure 2: Insight 1: High-deviation tokens remain con-
sistent across layers.

Tokens with the highest 40% deviation were identi-180

fied as High Deviation (HD) tokens.181

To further quantify this observation, we compute182

the Spearman correlation of HD tokens between183

adjacent layers. As shown in Figure 2, adjacent184

layers exhibit relatively high consistency in HD185

token positions.186

Insights 2 Self-attention from deeper layers focus187

on fewer tokens.188

To analyze attention patterns across layers, we first189

averaged the attention scores across all heads in190

each layer and then computed the mean along the191

first dimension, resulting in a one-dimensional vec-192

tor per layer. To quantify this behavior, we intro-193

duce Attention Recovery (AR), defined as follows:194

Stotal =
n∑

i=1

Ti

∑n
i=k Ti

Stotal
> Thres (1)195

Where T is a sorted vector of average attention196

scores for each token, Stotal represents the total197

attention score derived from the averaged self-198

attention matrices, and Thres indicates the thresh-199

old of attention score. AR indicates the number of200

tokens that must be summed from highest to low-201

est based on their average attention scores in order202

to cover Thres% of the total attention score. We203
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Figure 3: Insight 2: Deeper layers attend to fewer to-
kens.

computed AR for each layer, and the results (Fig- 204

ure 3) reveal a consistent trend: as depth increases, 205

AR decreases across all three LLMs, despite minor 206

fluctuations. This suggests that deeper layers con- 207

centrate attention on progressively fewer tokens, 208

reflecting more selective focus. 209

Insights 3 Deeper layers have more redundant 210

information. 211

To reduce memory overhead from the KV cache, 212

a key optimization strategy is to remove tokens 213

containing redundant information. Such tokens 214

contribute minimally to the prediction of next to- 215

kens during decoding but occupy substantial GPU 216

memory. However, selective token retention risks 217

information loss, necessitating careful trade-offs 218

between memory savings and generation quality. 219

To address this, we evaluated three token retention 220

strategies and assessed their impact on model per- 221

formance using perplexity as our primary metric. 222

Figure 5 illustrates three retention patterns for 223

KVCache: Constant Retention, where each layer 224

retains the same percentage of KVCache; Expo- 225

nential Growth Retention, where the shallow lay- 226

ers retain more KVCache and the retention ratio 227

decreases in the deeper layers; and Exponential 228

Decay Retention, where shallow layers retain less 229

KVCache, with the retention ratio increasing in 230
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(a) Llama3.1-8B Retention Pattern
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(b) Mistral-7B Retention Pattern
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(c) MPT-7B Retention Pattern

Figure 4: Insight 3: Deeper layers contain more redundant information.
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Figure 5: The three retention patterns start from the
same retention ratio.

deeper layers.231

We applied these three retention patterns to232

LLMs, and utilized perplexity to benchmark the233

generation performance, shown in Figure 5. For234

all three LLMs, the Exponential Decay pattern235

achieves the lowest perplexity score, indicating the236

best generation performance. This finding further237

validates that this pattern aligns with how LLMs238

interpret knowledge from prompts.239

4 Methodology240

4.1 Model Overview241

The design of SEMSHAREKV, illustrated in Fig-242

ure 1, is based on three key insights from Section 3.243

Our approach employs two core strategies:244

• Recomputation Strategy (Insights 1 & 2): Pri-245

oritize the recomputing of more tokens in shal-246

low layers while reducing the recomputation in247

deeper layers, reflecting the varying importance248

of the layer depth in attention mechanisms.249

• Retention Strategy (Insights 1 & 3): Preserve250

more tokens in shallow layers while evicting to-251

kens from deeper layers, optimizing memory us-252

age without significant accuracy degradation.253

When the LLM processes the target prompt, its254

vector embedding is first integrated with RoPE po-255

sition encoding. Using Locality-Sensitive Hash- 256

ing (LSH), each token in the target prompt is 257

then matched to the most similar tokens from 258

the reference prompt. Based on these LSH map- 259

pings, the precomputed KVCache of the reference 260

promptrompt is rearranged token by token and in- 261

jected into LLM transformer layers. On the first 262

transformer layer, all tokens undergo full recompu- 263

tation. The recomputed outputs are compared with 264

the rearranged cache values via L2 norm, identify- 265

ing high-deviation tokens for prioritized recomputa- 266

tion in subsequent layers. Simultaneously, the sys- 267

tem evicts tokens with the lowest attention scores 268

from recent computations, optimizing KVCache 269

memory usage dynamically. 270

4.2 Relevant Concepts 271

Our work focuses on three critical cache compo- 272

nents in modern LLMs: 273

• Key Cache (K): Key vectors encode the struc- 274

tural relationships among tokens in a sequence. 275

• Value Cache (V): Value vectors containing 276

the actual content representations aggregated 277

through attention weights. These preserve the 278

contextual information of each token. 279

• Embedding Cache (E): Caches static word em- 280

beddings capturing fundamental semantic and 281

syntactic relationships (Mikolov et al., 2013), 282

providing the foundational token representations 283

before transformer processing. 284

4.2.1 Fuzzy Token Match 285

4.3 KVCache Sharing Challenge 286

The primary challenge in cross-prompt KVCache 287

sharing stems from length disparity between 288

prompts. Inspired by (Liu et al., 2024b), we in- 289

corporates positional encoding within the E Cache 290

to enable accurate token alignment while preserv- 291

ing contextual relationships. 292
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Specifically, we use LSH to identify, for each293

token in the target prompt, the most similar token294

in the reference prompt based on their vector rep-295

resentations. We use Locality-Sensitive Hashing296

(LSH) for efficient token similarity search. Addi-297

tional details on LSH are provided in Appendix A.3.298

This process allowed us to reorder the KVCache299

of the reference prompt to align with the token se-300

quence of the target prompt. Consequently, the301

reordered KVCache matches the target prompt’s302

length, with its key-value pairs entirely derived303

from the original KVCache of the reference prompt.304

The reordered KVCache is then input into the LLM,305

enabling the transfer of cached values to the target306

prompt.307

Use Relative Position Encoding to Facilitate308

Fuzzy Token Match309

A fundamental limitation of naive fuzzy matching310

using the E cache arises from the absence of po-311

sitional context in its representation. Since raw312

vector embeddings lack inherent positional infor-313

mation, LSH fails to maintain crucial sequential314

relationships when identifying reference-target to-315

ken correspondences. This positional agnosticism316

in the E cache consequently produces semantically317

inferior mapping results.318

To address this, we introduced position encod-319

ing into E cache to improve fuzzy token match320

performance. Two commonly used position en-321

coding mechanisms are absolute position encoding322

(Vaswani et al., 2017), which directly embeds posi-323

tion information into the cache, and relative posi-324

tion encoding (Su et al., 2024), which captures po-325

sitional relationships between tokens. In this work,326

we incorporate RoPE in the E cache, we evaluate327

the impact of incorporating positional information328

into the E cache. Specifically, we compare the per-329

plexity of a plain E cache, paired with the default330

precomputed KVCache from the reference prompt,331

with that of an E cache encoded with RoPE. The332

results, shown in Figure 8, indicate using RoPE in333

the E cache reduces perplexity, demonstrating its334

effectiveness in preserving positional context.335

These findings support our claim that encoding336

the E cache with RoPE helps preserve meaning-337

ful semantics when using LSH for token matching.338

By maintaining positional relationships, RoPE im-339

proves alignment accuracy, leading to better token340

retrieval and overall performance, which is further341

illustrated in Figure 7. Figure 7a compares the342

token positions in the original E cache with the re-343
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(a) Standard KVCache Store
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V
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Figure 6: Comparison of default and modified KV cache
storage mechanisms.
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Figure 7: Comparison of fuzzy token matching with and
without position encoding.

arranged positions after passing through the fuzzy 344

token matching block, while Figure 7b presents the 345

results when using an E cache with positional en- 346

coding. Notably, the first 20 tokens remain in their 347

original positions, as they represent query tokens. 348

This demonstrates that LSH correctly identifies and 349

preserves query positions. 350

Beyond the initial tokens, a key difference 351

emerges: without positional encoding, many to- 352

kens in the target prompt map to the initial tokens, 353

whereas with positional encoding, they align more 354

accurately with later tokens. We interpret this as a 355

manifestation of "attention sink"—a phenomenon 356

in self-attention mechanisms where a significant 357

portion of attention scores is consistently assigned 358

to the initial tokens, regardless of their actual rele- 359

vance to the task (Xiao et al., 2023; Fei et al., 2025). 360

Incorporating positional encoding into the E cache 361

effectively mitigates this issue, leading to more ac- 362

curate token matching and improved performance. 363

4.3.1 Impact from Position Encoding in 364

KVCache 365

The second challenge in KVCache mapping from 366

a reference prompt to target prompts is the impact 367

of position encoding. Rearranging tokens based 368
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Figure 8: Impact of position encoding on E cache and KV cache deviation.

on LSH search alters their order in the precom-369

puted KVCache, which in turn affects the position370

information encoded in the KV matrices during371

the prefill phase. The impact of different position372

encoding mechanisms is discussed in previous stud-373

ies (Gao et al., 2024), position encoding could be374

easily removed from KVCache by moving the em-375

coding function after storing KVCache, which is376

shown in Figure 6.377

Building on our previous discussion on the role378

of RoPE in E, we compare three configurations:379

(i) KVCache with position encoding, which fol-380

lows the standard approach in LLMs; (ii) KVCache381

without position encoding, where the KVCache is382

stored before applying position encoding; and (iii)383

KVCache without position encoding but with reap-384

plied position encoding after reordering, which is385

similar to (ii) but with RoPE reapplied to the KV-386

Cache after rearrangement. Ideally, the KVCache387

rearranged using LSH should closely match the388

ground-truth KVCache of the target prompt. To389

quantify this deviation, we compute the L2 norm390

between the rearranged and ground-truth caches,391

with results shown in Figure 8. The results indicate392

that KVCache with position encoding exhibits the393

lowest deviation, followed by KVCache without394

position encoding, while KVCache with reapplied395

RoPE has the highest deviation. This highlights396

the importance of aligning position information be-397

tween E and KV—only when they share the same398

position encoding can the LLM fully utilize them,399

leading to the best generation quality.400

4.3.2 Recomputation Strategy401

We divide the layers into two groups: the first and402

subsequent layers. Given that LLMs tend to focus403

more on later tokens (Liu et al., 2024a; Yang et al.,404

2024a), we categorize tokens into Cold (c) and Hot405

(h) using a dynamic ratio rdynamic from Atten- 406

tion Recovery with a threshold of 55%, meaning 407

rdynamic% of tokens with the highest cumulative 408

attention are selected as Hot, and the rest as Cold. 409

The total number of recomputed tokens is defined 410

as Recomputed = ωc · c+ ωh · h, where ωc = 0.1 411

and ωh = 0.5 in the SemShareKV setting. 412

Starting from the second layer, token selection 413

follows this rule: based on Insight 1, the tokens 414

selected in the next layer are derived from those 415

chosen in the previous layer based on a recompute 416

ratio αrecomp% of this layer. Based on Insight 417

2, αrecomp% in shallow layers will be relatively 418

small while in deeper layers will be relatively large. 419

Therefore, the total number of tokens being recom- 420

puted on layer i is represented as 421

Recomp[i] = T
i∏

j=1

αrecomp[j] (2) 422

Where T denotes the total number of tokens, i 423

represents the layer index. 424

4.3.3 Retention Strategy 425

Similar to token recomputation, we categorize the 426

layers into two groups: the first and the subse- 427

quent layers. On the first layer, the retention 428

ratio is determined also by rdynamic, follows 429

Retained = max(0.8, rdynamic). And retained 430

tokens are selected based on average attention 431

scores across the last (1 − rdynamic)% tokens, 432

and only retain the top rdynamic% tokens with 433

highest avg attention scores. In detail, the intuition 434

behind selecting retained tokens is as follows: In 435

the first layer, all hot tokens will be retained. To- 436

ken eviction occurs only among Cold tokens that 437

are not marked as recomputed. The underlying 438

principle is that recomputed tokens provide better 439
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Method SAMSum MultiNews PubMed BookSum BigPatent % from Best (Avg ↓)
Fully Recompute 18.79 22.10 24.66 22.44 25.47 –4.73%
SemShareKV 21.22 23.15 24.30 22.50 26.62 –0.91%
SnapKV 20.16 23.07 24.58 23.22 25.78 –1.77%
H2O 20.50 23.04 23.53 22.77 24.99 -3.30%

Table 1: Benchmarking SemShareKV with ROUGE-L score (%). The rightmost column reports the average
percentage gap to the best-performing method per dataset.

representations of the target prompt. If these to-440

kens are evicted, the computational resources and441

time spent on recomputing them will be wasted. In442

subsequent layers, based on Insight 3, we should443

retain fewer tokens, which is defined as:444

Retain[i] = T
i∏

j=1

αretain[j] (3)445

Where T denotes the total number of tokens, i446

represents the layer index, and αretain[j] is the token447

retention ratio at layer j; the remaining tokens are448

evicted from the KV cache. Intuitively, αretain is449

typically larger in shallower layers and smaller in450

deeper ones.451

5 Evaluation and Results452

5.1 Experiments Setup453

We select datasets to evaluate various types of454

summarization tasks: MultiNews from Long-455

Bench (Bai et al., 2023) for summarization456

across multiple passages; SAMsum (Gliwa et al.,457

2019) for understanding multi-turn conversations;458

and BookSum, PubMed, and BigPatent from459

M4LE (Kwan et al., 2023) to assess comprehension460

of narrative stories, scientific medical papers and461

patent documents, respectively. Further details on462

data preparation are provided in Appendix B.463

We compared SemShareKV against three base-464

lines: (i) Fully Recompute: standard inference465

using the unmodified model from the Transform-466

ers library, where the entire prompt is input with-467

out any KVCache reuse; (ii) SnapKV (Li et al.,468

2024): a KVCache management method that ac-469

celerates the prefill phase by efficient caching but470

does not compress the KVCache; (iii) H2O (Zhang471

et al., 2023): a dynamic KVCache eviction strat-472

egy that compresses KV memory by prioritizing473

important tokens, but does not optimize the prefill474

phase. We employ a modified version of H2O that475

compresses 10% of the cache at each layer. We476

selected SnapKV and H2O as baselines to sepa-477

rately represent optimization for the prefill phase478

and KVCache compression. All experiments were 479

conducted on a single A100 GPU. The details of the 480

implementation are discussed in the Appendix D. 481

To the best of our knowledge, no existing dataset 482

benchmarks LLMs on KVCache sharing across 483

semantically similar prompts. To bridge this gap, 484

we constructed evaluation samples by randomly 485

selecting portions of entries from existing datasets 486

and rewriting them using the Llama3 model. Then, 487

these rewritten samples were manually verified to 488

ensure that they remained semantically close to the 489

originals. For each dataset, we curated 100 such 490

samples. More details on the data preparation are 491

provided in Appendix B. 492

5.2 Benchmarking Evaluation 493

We argue that using Fuzzy Token Match introduces 494

only a negligible overhead to model inference. Ta- 495

ble 1 reports the ROUGE-L scores (Lin, 2004). 496

Benchmarking results show that SemShareKV 497

achieves performance comparable to or better than 498

other baseline methods. Notably, in 4 out of the 499

5 evaluated datasets, Fully Recompute fails to at- 500

tain the highest performance scores. We attribute 501

this phenomenon to the token eviction mechanisms 502

employed by SemShareKV, SnapKV, and H2O. By 503

selectively retaining only the most semantically sig- 504

nificant tokens for self-attention computation, these 505

methods effectively reduce redundant information 506

in the semantic representation, thereby enhancing 507

the model’s generation quality. 508

5.3 Efficiency Evaluation 509

We evaluate SemShareKV based on Time To First 510

Token (TTFT) and KV Cache GPU KV memory 511

usage, benchmarking it against Fully Recompute, 512

SnapKV, and the unmodified H2O model. Fig- 513

ure 9 demonstrates the efficiency advantages of 514

SemShareKV on the MultiNews dataset, showing 515

consistent improvements over baseline methods: 516

SemShareKV achieves 6.25× faster Time-To-First- 517

Token (TTFT) than Fully Recompute and H2O, 518

2.23× faster TTFT than SnapKV, while reducing 519

memory usage by 42%. However, as illustrated 520

7
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Figure 9: Efficiency Evaluation Results.

Method SAMSum(↑) MultiNews(↑)
SemShareKV 21.22 23.15
Ablation-Zero 14.63 17.71
Ablation-Random 5.38 12.67

Table 2: Ablation study on ROUGE-L for SemShareKV
and its ablations across datasets.

in Figure 9b, SemShareKV offers limited perfor-521

mance improvements for shorter prompts (fewer522

than 700 tokens), which we attribute to the over-523

head caused by fuzzy token matching and the rear-524

rangement of tokens from the precomputed cache525

of the reference prompt. In future work, our goal526

is to minimize this overhead.527

5.4 Ablation Study528

We conducted two ablation studies to assess529

whether the rearranged cache produced by the530

fuzzy token matching process helps the model bet-531

ter capture semantic information.532

In the first ablation, we examined the role of533

semantically matched tokens by altering the con-534

tents of the KV cache. Specifically, we evalu-535

ated model performance (measured by ROUGE-536

L) under two conditions: (i) zeroing out the KV537

values of the matched tokens after fuzzy match-538

ing, and (ii) replacing the matched tokens with539

40%60%80%100%
KV Cache Retention

0.14

0.16

0.18

0.20

0.22

Ro
ug

e-
L

SemShareKV
Full Cache

Figure 10: Ablation Study of KV Cache Compression
Ratio

random tokens from the precomputed cache. As 540

shown in Table 2, both settings result in signifi- 541

cantly lower ROUGE-L scores compared to the full 542

SemShareKV method, confirming that the fuzzy to- 543

ken matching mechanism contributes meaningfully 544

to semantic understanding. 545

The second ablation investigates the relationship 546

between the KVCache compression ratio and the 547

performance of the model during the token reten- 548

tion phase based on Multinews dataset. As illus- 549

trated in Figure 10, we observe that retaining too 550

much of the cache introduces redundant informa- 551

tion and degrades performance, while retaining too 552

little leads to information loss. This highlights the 553

importance of striking an effective balance in cache 554

retention to preserve useful semantic context. 555

6 Conclusion 556

We proposed SEMSHAREKV, a KVCache shar- 557

ing framework that enables reuse across semanti- 558

cally similar prompts through fuzzy token match- 559

ing using locality-sensitive hashing. SemShareKV 560

achieves a speed of 6.25× and saves up to 42% 561

kvcahce memory space compared to conventional 562

KVCache, with a minimum performance drop. 563

Limitations 564

While SEMSHAREKV demonstrates effective KV 565

cache sharing for semantically similar prompts, 566

our current evaluation is limited to summariza- 567

tion tasks. It exhibits diminishing speedups for 568

shorter prompts due to computational overhead 569

from fuzzy token matching and introduces several 570

hyper-parameters requiring careful optimization for 571

new domains. These limitations suggest opportuni- 572

ties for future work. 573
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A Formula and Inference797

A.1 Rotary Position Encoding798

In our methodology, we introduced the application799

of Rotary Position Embedding (RoPE) to the E800

cache, which improves the performance of fuzzy801

token matching. RoPE is designed to incorporate802

positional information directly into embeddings,803

allowing for improved alignment between tokens804

in a sequence. This is particularly important in805

natural language processing tasks where the order806

of words can significantly impact the meaning and807

context.808

The formula of RoPE in a 2-D case is shown809

below:810

RoPE(x) =
[
cos(θk) − sin(θk)
sin(θk) cos(θk)

] [
x2k
x2k+1

]
(1)811

In this equation, θk = 10000−2k/d, where d repre-812

sents the embedding dimension. The use of RoPE813

allows for the effective encoding of relative po-814

sitional information, enabling the model to bet-815

ter capture the relationships between tokens in a816

sequence. Integrating RoPE into the E cache fa-817

cilitates the identification of semantically similar818

tokens using LSH, leading to more accurate and819

efficient fuzzy token matching. This enhancement820

helps the model perform more accurately on tasks821

that require strong semantic understanding.822

A.2 Key-Value Deviation823

We define Key-Value Deviation with L2 norm as824

below:825

σK = ∥Kreused −Krecomputed∥2,
σV = ∥V reused − V recomputed∥2,

σKV = σK + σV

(4)826

Where Kreused and V reused represent the Key and827

Value matrices in cache reused from the semantic828

similar prompt; Krecomputed and V recomputed refer829

to the Key and Value matrices recomputed at the830

current layer.831

A.3 Locality-Sensitive Hashing (LSH)832

Locality-Sensitive Hashing (LSH) is a technique833

that enables efficient approximate nearest neighbor834

searches in high-dimensional spaces by ensuring 835

similar input items are hashed into the same bucket 836

with high probability (Indyk and Motwani, 1998). 837

This reduces the number of distance computations 838

required, making LSH particularly useful for large 839

datasets in applications such as image retrieval and 840

natural language processing (Datar et al., 2004). 841

In LSH for Euclidean distance, a common hash 842

function is: 843

h(x) = ⌊x · r + b

w
⌋ 844

where r is a random vector, b is a random offset, 845

and w is the hash width. This overview encapsu- 846

lates the theory and practical application of LSH in 847

our framework. 848

The LSH (Locality-Sensitive Hashing) in 849

SemShareKV is implemented using the FAISS 850

Python library (Douze et al., 2024). Further config- 851

uration details can be found in the provided code 852

repository. 853

B Data Preparation 854

We categorize these five datasets into two groups 855

based on how semantically similar samples are pre- 856

pared, all datasets are in English, with a focus on 857

English-language text: 858

1. MultiNews (Bai et al., 2023): This datasets 859

contain samples composed of multiple inde- 860

pendent passages or articles. To generate se- 861

mantically similar samples, we randomly se- 862

lect one passage or article from each sample 863

and use the Llama 3 model to rewrite it while 864

preserving the original semantics. The rewrit- 865

ten passage is constrained to have a similar 866

length to the original (within a 10% difference 867

in token count). We then replace the original 868

passage with the rewritten one to construct a 869

semantically similar prompt. The position of 870

the rewritten passage naturally varies across 871

samples, appearing at the beginning, middle, 872

or end of the context. 873

2. SAMSum (Gliwa et al., 2019), PubMed, 874

BigPatent and BookSum (Kwan et al., 875

2023): These datasets consist of semantically 876

continuous text. For each sample, we divide 877

the context into individual sentences and ran- 878

domly select a contiguous segment of the to- 879

tal sentence count. This segment is rewrit- 880

ten using the Llama 3 model, with the con- 881

straint that the token count deviates by less 882
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Metric SAMSum MultiNews PubMed BookSum BigPatent
N of Samples 100 100 100 100 100
Rewrite % (Avg) 46.75 54.58 45.64 44.31 28.55

ROUGE-L(%) 50.90 84.71 88.15 78.15 90.03
BERTScore(%) 86.97 95.85 95.48 95.58 96.07
BLEU(%) 24.68 90.40 89.22 81.16 89.29

Table B1: Similarity evaluation on benchmarking datasets using ROUGE-L, BERTScore, and BLEU. All datasets
contain 100 semantically similar rewritten samples.

than 10% from the original. The rewritten883

segment replaces the original to create a se-884

mantically similar prompt, with its position885

varying within the context in a similar manner.886

Table B1 presents the results of the similar-887

ity evaluation, measured using ROUGE-L (Lin,888

2004), BLEU (Papineni et al., 2002), and889

BERTScore (Zhang et al., 2019). We include890

both longest common subsequence-based metrics891

(ROUGE-L), n-gram-based metrics (BLEU) and892

embedding-based metrics (BERTScore) to provide893

a comprehensive evaluation of semantic similarity894

across rewritten datasets.895

C Artifact Use and Compliance with896

Intended Purpose897

The datasets used in this study are publicly avail-898

able and are consistent with their intended use, as899

specified by the respective sources. In preparing the900

data, we adhered to ethical guidelines and ensured901

that the use of these publicly released datasets was902

for research purposes only.903

For the created artifacts, such as the semantically904

similar samples, we have ensured that the use of905

these modified datasets remains consistent with the906

original intended research purpose. The generated907

data serves the purpose of advancing research in908

semantic similarity and does not extend beyond the909

intended scope of the original datasets.910

D Implementation and Hyperparameters911

SemShareKV is implemented in Python using912

the transformers library (Wolf et al., 2020),913

with the monkeypatching technique. We use the914

Locality Sensitive Hashing from FAISS (Douze915

et al., 2024) library. The code is avail-916

able at: https://anonymous.4open.science/r/917

SemShareKV-B53C. Details of the key functions918

and their roles are outlined below:919

• conventional_forward_simp: A modified920

version of MistralAttention.forward921

from the transformers library, incorpo- 922

rating the SemShareKV mechanism. The 923

hyperparameters used in our experiments are 924

also specified in this function. 925

• replace_mistral_forward: Applies monkey- 926

patching to substitute the original attention 927

forward function in the transformers library 928

with our customized SemShareKV implemen- 929

tation. 930

• prepare_fuzzy_caches: Encodes ROPE into 931

E caches and performs fuzzy token matching 932

using locality-sensitive hashing (LSH). 933

Overall, SemShareKV is built on the transformer 934

architecture and consists of fewer than 300 new 935

lines of code, making it lightweight and easily 936

transferable to other LLMs. 937
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