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ABSTRACT

We investigate LoRA in federated learning through the lens of the asymmetry
analysis of the learned A and B matrices. In doing so, we uncover that A ma-
trices are responsible for learning general knowledge, while B matrices focus on
capturing client-specific knowledge. Based on this finding, we introduce Fed-
erated Share-A Low-Rank Adaptation (FedSA-LoRA), which employs two low-
rank trainable matrices A and B to model the weight update, but only A matrices
are shared with the server for aggregation. Moreover, we delve into the rela-
tionship between the learned A and B matrices in other LoRA variants, such as
rsLoRA and VeRA, revealing a consistent pattern. Consequently, we extend our
FedSA-LoRA method to these LoRA variants, resulting in FedSA-rsLoRA and
FedSA-VeRA. In this way, we establish a general paradigm for integrating LoRA
with FL, offering guidance for future work on subsequent LoRA variants com-
bined with FL. Extensive experimental results on natural language understanding
and generation tasks demonstrate the effectiveness of the proposed method. Our
code is available at https://github.com/Pengxin-Guo/FedSA-LoRA.

1 INTRODUCTION

Large Language Models (LLMs) trained on large amounts of text, referred to as Pre-trained Lan-
guage Models (PLMs), have become a cornerstone of Natural Language Processing (NLP) (Brown,
2020; Touvron et al., 2023; Achiam et al., 2023; Chowdhery et al., 2023). Typically, to adapt PLMs
for specific tasks or enhance accuracy in real-world scenarios, fine-tuning PLMs on task-specific
data is often needed. However, in many real-world applications, data is distributed across different
institutions, and data sharing between these entities is often restricted due to privacy and regula-
tory concerns. Federated Learning (FL) (McMahan et al., 2017; Li et al., 2020a; Zhang et al.,
2021; Kairouz et al., 2021), which utilizes collaborative and decentralized training of models across
multiple institutions without sharing personal data externally, offers a promising solution to this
challenge.

Despite its promise, fine-tuning PLMs in an FL system is challenging due to the high computational
and storage demands on local clients and the communication overhead involved. To enable fine-
tuning of PLMs in an FL system with limited resources, various Parameter-Efficient Fine-Tuning
(PEFT) techniques have been explored. These include adapter-tuning-based methods (Houlsby
et al., 2019; Zhang et al., 2024b), prompt-tuning-based methods (Li & Liang, 2021; Guo et al.,
2023b; Che et al., 2023; Guo et al., 2023a; Qiu et al., 2024; Li et al., 2024; Deng et al., 2024; Sun
et al., 2024a; Cui et al., 2024; Cao et al., 2024), and LoRA-based methods (Hu et al., 2022; Yi
et al., 2023; Liu et al., 2023; Yang et al., 2024; Qi et al., 2024; Cho et al., 2023; Byun & Lee, 2024;
Chen et al., 2024; Sun et al., 2024b; Lin et al., 2024; Wu et al., 2024; Wang et al., 2024b). Among
these, LoRA-based methods have become increasingly popular, leveraging the assumption that over-
parameterized models have a low intrinsic dimension (Li et al., 2018; Aghajanyan et al., 2020). A
pre-trained model can be shared and utilized to create multiple small LoRA modules tailored for
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Figure 1: The illustration of (a) LoRA, (b) FFA-LoRA, and (c) FedSA-LoRA. In LoRA, both A
and B matrices are trainable and shared with the server for aggregation. In FFA-LoRA, only B
matrices are trainable and shared with the server for aggregation, while A matrices are fixed after
initialization. In FedSA-LoRA, both A and B matrices are trainable, but only A matrices are shared
with the server for aggregation while B matrices are kept locally.

different tasks, making them more effective and flexible. Moreover, this simple design allows us to
merge the trainable matrices with the frozen weights during deployment, introducing no inference
latency. Given these advantages, we focus on LoRA-based methods in this work.

However, aggregating LoRA matrices A and B in FL setting poses a key problem. Directly aggre-
gating the A and B matrices on the server and then broadcasting them to each client may introduce
aggregation errors. Specifically, in an FL task with m clients, each client’s model update is rep-
resented by two low-rank matrices Ai and Bi introduced by LoRA. After server aggregation and
broadcast, the model update of each client is:

1

m
(B1 +B2 + · · ·+Bm)

1

m
(A1 +A2 + · · ·+Am), (1)

which is different from the “ideal” model update, i.e., 1
m (B1A1 +B2A2 + · · ·+BmAm). 1

To solve this problem, some methods have been explored (Sun et al., 2024b; Wang et al., 2024b).
For example, Sun et al. (2024b) propose Federated Freeze-A LoRA (FFA-LoRA), which freezes the
A matrices and only updates and aggregates the B matrices, as illustrated in Figure 1(b). Thus, the
local update of each client under FFA-LoRA is 1

m (B1 +B2 + · · ·+Bm)A0, where A0 denotes the
initialized and fixed weights. They point out that this term is equal to the “ideal” model update intro-
duced by FFA-LoRA, i.e., 1

m (B1A0+B2A0+ · · ·+BmA0). However, fixing A matrices can impair
the learning ability of LoRA and result in suboptimal performance (Zhang et al., 2023). Meanwhile,
many works have demonstrated that a uniform model update for all clients is not optimal, especially
under the non-IID scenario (Zhao et al., 2018; Zhu et al., 2021; Li et al., 2022), which motivates the
development of personalized FL (T Dinh et al., 2020; Collins et al., 2021; Xu et al., 2023). To this
end, we aim to explore a better way to combine LoRA and FL in this work and move beyond the
constraint that the model update of each client should be the same.

To achieve this, we start by analyzing the distinct roles of the learned A and B matrices when com-
bining LoRA with FL, resulting in Lemma 1. This lemma suggests that when combing LoRA with
FL, A matrices are responsible for learning general knowledge while B matrices focus on capturing
client-specific knowledge. To verify this empirically, we locally fine-tuned a RoBERTa-large model
(Liu et al., 2019) with LoRA (Hu et al., 2022) on the RTE task from the GLUE benchmark (Wang
et al., 2018) with three clients under different levels of data heterogeneity. The results, illustrated in
Figure 2, show that the learned A matrices are more similar across clients than the B matrices, and
with increased data heterogeneity, the similarity of B matrices between different clients decreases.
These results demonstrate our argument that A matrices are used to learn general knowledge while
B matrices focus on modeling client-specific knowledge.

Based on our findings, we introduce the Federated Share-A Low-Rank Adaptation (FedSA-LoRA)
method in this work. Similar to LoRA (Hu et al., 2022), we utilize two trainable low-rank matrices,
denoted as A and B, to model the weight updates during local training. However, only the A
matrices are shared with the server for aggregation, as illustrated in Figure 1(c). Then, the model

1Refer to Section A.3 in Appendix for more explanations about the derived aggregation errors.
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update of client i after server aggregation and broadcast is:

Bi
1

m
(A1 +A2 + · · ·+Am), (2)

where the first part Bi is responsible for capturing client-specific knowledge while the second part is
used to model general knowledge. By sharing the A matrices that learn general knowledge with the
server for aggregation, while keeping the B matrices that capture client-specific knowledge locally
during training, the learning abilities of LoRA combined with FL can be enhanced. Note that this
method differs from previous works (Sun et al., 2024b; Wang et al., 2024b) that require each client
to share a uniform model update. Instead, it allows for different model updates, placing it in the
realm of personalized FL (T Dinh et al., 2020; Collins et al., 2021; Xu et al., 2023), which is more
efficient under the non-IID scenario (Zhao et al., 2018; Zhu et al., 2021; Li et al., 2022).

Moreover, we delve into the relationship between the learned A and B matrices in other LoRA vari-
ants, such as rsLoRA (Kalajdzievski, 2023) and VeRA (Kopiczko et al., 2024). The observations,
illustrated in Figures 5 and 6 in Appendix, demonstrate a similar phenomenon to LoRA. Build-
ing upon these insights, we extend our FedSA-LoRA method to these LoRA variants, resulting in
FedSA-rsLoRA and FedSA-VeRA. By extending the proposed method to other LoRA variants, we
establish a general paradigm for integrating LoRA with FL, offering guidance for future work on
subsequent LoRA variants combined with FL.

We summarize our contributions as follows:

• We investigate the relationship between learned A and B matrices in LoRA and other LoRA
variants (e.g., rsLoRA and VeRA) across different clients, delineating their distinct roles.
Specifically, A matrices are responsible for learning general knowledge, while B matrices
focus on capturing client-specific knowledge.

• Building upon our findings, we establish a general paradigm for integrating LoRA with
FL. Specifically, we introduce Federated Share-A LoRA (FedSA-LoRA), where both A
and B matrices are trainable, but only the A matrices are shared with the server for aggre-
gation. We then generalize the FedSA-LoRA framework to other LoRA variants, resulting
in FedSA-rsLoRA and FedSA-VeRA.

• Extensive experimental results demonstrate the superiority of the proposed FedSA-LoRA,
FedSA-rsLoRA, and FedSA-VeRA compared to other methods.

2 RELATED WORK

2.1 FEDERATED LEARNING

Federated Learning (FL) (McMahan et al., 2017; Li et al., 2020a; Zhang et al., 2021; Kairouz et al.,
2021), a commonly used distributed learning method for tasks requiring privacy, has gained signifi-
cant attention in recent years. However, its application faces challenges due to the non-IID nature of
distributed datasets, resulting in accuracy discrepancies compared to centralized training. Numerous
works (Li et al., 2020b; Xu et al., 2023; Yan et al., 2023; Chan et al., 2024; Xu et al., 2024; Zeng
et al., 2024) have been proposed to mitigate this performance degradation, including optimizing lo-
cal learning (Li et al., 2020b), optimizing server aggregation (Zeng et al., 2024), and personalized FL
(Xu et al., 2023). Recently, some studies demonstrate that fine-tuning pre-trained models, especially
Pre-trained Language Models (PLMs), through FL suffers less from the non-IID issue (Qu et al.,
2022; Chen et al., 2023; Nguyen et al., 2023; Weller et al., 2022). The experimental results in (Weller
et al., 2022) show that when applying PLMs, even the vanilla FedAvg can achieve performance
comparable to centralized training. However, these large-scale PLMs usually introduce significant
communication overheads in FL scenarios, leading to slow and impractical federated training in
real-world applications. Additionally, local clients are often constrained by limited computational
capacity and memory, making the local fine-tuning of PLMs challenging. To enable fine-tuning
of PLMs in an FL system with limited resources, various Parameter-Efficient Fine-Tuning (PEFT)
techniques have been explored, such as adapter-tuning-based methods (Houlsby et al., 2019; Zhang
et al., 2024b), prompt-tuning-based methods (Li & Liang, 2021; Guo et al., 2023b; Che et al., 2023;
Guo et al., 2023a; Qiu et al., 2024; Li et al., 2024; Deng et al., 2024; Sun et al., 2024a; Cui et al.,
2024; Cao et al., 2024), and LoRA-based methods (Hu et al., 2022; Yi et al., 2023; Liu et al., 2023;
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Yang et al., 2024; Qi et al., 2024; Cho et al., 2023; Byun & Lee, 2024; Chen et al., 2024; Sun et al.,
2024b; Lin et al., 2024; Wu et al., 2024; Wang et al., 2024b). Among these, LoRA-based methods
have become increasingly popular, leveraging the assumption that over-parameterized models have a
low intrinsic dimension (Li et al., 2018; Aghajanyan et al., 2020). A pre-trained model can be shared
and utilized to create multiple small LoRA modules tailored for different tasks, making them more
effective and flexible. Moreover, this simple design allows us to merge the trainable matrices with
the frozen weights during deployment, introducing no inference latency. Given these advantages,
we focus on LoRA-based methods in this work.

2.2 LORA IN FEDERATED LEARNING

Low-Rank Adaptation (LoRA) (Hu et al., 2022), which introduces low-rank adaptation matrices to
simulate gradient updates while keeping the pre-trained model weights frozen, has recently gained
significant attention due to its efficiency, effectiveness, and flexibility (Hayou et al., 2024; Liu et al.,
2024; Kopiczko et al., 2024; Wang et al., 2024a). With this trait, LoRA can be utilized to mitigate the
communication overhead in FL, which primarily relies on the size of model update parameters. Yi
et al. (2023) propose FedLoRA, incorporating LoRA in FL to increase model fine-tuning efficiency.
Liu et al. (2023) introduce DP-LoRA, ensuring differential privacy in FL for LLMs with minimal
communication overhead. Yang et al. (2024) propose a dual-personalizing adapter (FedDPA), and
Qi et al. (2024) introduce FDLoRA. Both adopt the similar idea where each client contains a per-
sonalized LoRA module and a global LoRA module to capture personalized and global knowledge,
respectively.

Another line of such work is heterogeneous LoRA. For example, Cho et al. (2023) introduce het-
erogeneous LoRA, where they deploy heterogeneous ranks across clients, aggregate the heteroge-
neous LoRA modules through zero-padding, and redistribute the LoRA modules heterogeneously
through truncation. However, this simple zero-padding strategy can make the training process unsta-
ble (Byun & Lee, 2024). To solve this issue, Byun & Lee (2024) propose a replication-based strategy
for aggregating rank-heterogeneous LoRA. Chen et al. (2024) propose Rank-Based LoRA Aggrega-
tion (RBLA) that performs a weighted aggregation for heterogeneous LoRA structures. Wang et al.
(2024b) introduce a stacking-based aggregation method for heterogeneous LoRA.

The most related work to ours is Federated Freeze-A LoRA (FFA-LoRA) (Sun et al., 2024b), which
fixes the randomly initialized non-zero A matrices and only fine-tunes the zero-initialized B matrices
to further halve the communication cost. However, since some matrices are fixed, the learning ability
of LoRA is impaired, resulting in suboptimal performance (Zhang et al., 2023). In contrast, we
propose Federated Share-A LoRA (FedSA-LoRA), where both A and B matrices are trainable and
only the A matrices are shared with the server for aggregation.

3 MOTIVATING EXAMPLE

Preliminary Building upon the hypothesis that updates to the weights during the fine-tuning ex-
hibit a low “intrinsic rank”, LoRA (Hu et al., 2022) proposes using the product of two low-rank ma-
trices to update the pre-trained weights incrementally. For a pre-trained weight matrix W0 ∈ Rk×d,
LoRA models the weight update ∆W ∈ Rk×d utilizing a low-rank decomposition, expressed as
BA, where B ∈ Rk×r and A ∈ Rr×d represent two low-rank matrices, with r ≪ min(k, d). Dur-
ing training, W0 is frozen and does not receive gradient updates, while A and B contain trainable
parameters. Consequently, the fine-tuned weight W ′ can be represented as: W ′ = W0 + BA. The
matrix A is initialized with random Gaussian distribution, while B is initially set to zero, resulting
in ∆W = BA being zero at the start of training.

To analyze the role of learned A and B matrices, let’s consider a simple example analogous to a
single network layer with least-squares linear regression task. Specifically, suppose there is a pre-
trained linear model weight W0 ∈ Rk×d. With this model held constant, our goal is regressing
(xt, yt) pairs where yt is given by:

yt = Wtxt,

with Wt = W0 +∆W . In LoRA, the target ∆W is modeled by a low rank update to the pre-trained
W0, i.e., W ′ = W0 +BA:

ŷ = (W0 +BA)xt,
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Figure 2: Mean of pairwise cosine similarity of the learned A and B matrices across layers of
a RoBERTa model locally fine-tuned with LoRA on the RTE task, with different levels of data
heterogeneity. (a)-(c): value matrices; (d)-(f): query matrices. The learned A matrices are more
similar across clients than the B matrices, and with increased data heterogeneity, the similarity of B
matrices between different clients decreases.

where B ∈ Rk×r and A ∈ Rr×d, with r ≪ min(k, d). Then, the least squares loss is defined on
the difference between ŷ and yt:

L = E(xt,yt)[∥yt − (W0 +BA)xt∥22]. (3)

Below, we present the lemma on minimizing this loss while freezing either A or B. The proof is
provided in Section A.1 in Appendix.
Lemma 1. Fine-tuning B while fixing A = Q, with the goal of optimizing Eq. (3), yields:

B∗ = ∆WE[xtx
T
t ]Q

T (QE[xtx
T
t ]Q

T )−1. (4)

Fine-tuning A while fixing B = U and assuming U−1 exists, with the goal of optimizing Eq. (3),
yields:

A∗ = U−1∆W . (5)
Remark 1. From this lemma, we can conclude that the optimal solution of A∗ is independent of
the input data distribution, while B∗ is related to the input data distribution captured by E[xtx

T
t ].

This indicates that A is responsible for learning general knowledge, while B focuses on modeling
client-specific knowledge.

To verify this empirically, we locally fine-tune a RoBERTa-large model (Liu et al., 2019) with LoRA
(Hu et al., 2022) on the RTE task from the GLUE benchmark (Wang et al., 2018) using three clients.
We model an IID data distribution and two non-IID data distributions. The two non-IID distributions
are modeled by a Dirichlet distribution with α = 1 and α = 0.5, referred to as moderate non-IID and
severe non-IID. Figure 2 shows the mean pairwise cosine similarity of the learned A and B matrices
across clients. These results indicate that the learned A matrices are more similar across clients than
the B matrices, and with increased data heterogeneity, the similarity of B matrices between different
clients decreases. To demonstrate that the A matrices are indeed updated, as they are similar across
different clients, we further illustrate the difference between the learned and initialized A matrices
for each client in Figure 4 in Appendix. These results confirm that the A matrices are updated.
This phenomenon is consistent with previous study about the asymmetry analysis in LoRA (Zhu
et al., 2024). Based on these results, we argue that A matrices are responsible for learning general
knowledge while B matrices focus on capturing client-specific knowledge.

To demonstrate the generalizability of our findings, we further explore the relationship between the
learned A and B matrices in other LoRA variants, such as rsLoRA (Kalajdzievski, 2023) and VeRA
(Kopiczko et al., 2024). The observations, illustrated in Figures 5 and 6 in Appendix, show a similar
phenomenon to LoRA. In this way, we uncover a general phenomenon when combining LoRA with
FL, which serves as the foundation for our proposed method.
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There are some works analyzing the asymmetry of A and B within LoRA in other areas (Zhu et al.,
2024; Tian et al., 2024). However, our work distinctly considers the asymmetry analyses of A and
B within LoRA in the context of federated learning, while these related papers (Zhu et al., 2024;
Tian et al., 2024) can further serve as verification of the effectiveness of our method. In particu-
lar, we further analyzed different non-IID scenarios, as data heterogeneity is a significant issue in
FL. Through our analysis, we not only found that the learned A matrices are more similar across
clients than the B matrices (consistent with previous findings), but more importantly, we discov-
ered that with increased data heterogeneity, the similarity of B matrices between different clients
decreases. Moreover, we further extended this asymmetry analysis to other LoRA variants, such
as rsLoRA (Kalajdzievski, 2023) and VeRA (Kopiczko et al., 2024), and found similar phenomena.
This generalization was previously lacking in the literature (Zhu et al., 2024; Tian et al., 2024).

4 OUR METHOD

4.1 FEDERATED SHARE-A LOW RANK ADAPTATION

Drawing from the insights of our findings, we introduce Federated Share-A Low-Rank Adaptation
(FedSA-LoRA), illustrated in Figure 1(c), which utilizes two low-rank trainable matrices A and
B to model the weight update, but only A matrices are shared with the server for aggregation.
Specifically, similar to LoRA (Hu et al., 2022), we employ two low-rank matrices, namely B ∈
Rk×r and A ∈ Rr×d with r ≪ min(k, d), to model the weight update ∆W ∈ Rk×d for a pre-trained
weight matrix W0 ∈ Rk×d. This approach allows us to represent the fine-tuned weight as W0+BA.
During the local training process, W0 is frozen and does not receive gradient updates, while A and
B contain trainable parameters. Following LoRA (Hu et al., 2022), the matrix A is initialized with
a random Gaussian distribution, whereas B is initially set to zero, ensuring that ∆W = BA is zero
at the start of training. Then, for global aggregation, only the A matrices are shared with the server
for aggregation. Once the server averages these A matrices, they are broadcast to each client for
the subsequent training round. By sharing the A matrices that learn general knowledge with the
server for aggregation, while keeping the B matrices that model client-specific knowledge locally,
the learning abilities of LoRA combined with FL can be enhanced.

Moreover, based on the similar phenomena observed in other LoRA variants (i.e., rsLoRA (Kala-
jdzievski, 2023) and VeRA (Kopiczko et al., 2024)), we extend the FedSA-LoRA method to these
variants, resulting in FedSA-rsLoRA and FedSA-VeRA. Specifically, rsLoRA (Kalajdzievski, 2023)
is similar to LoRA, differing only in the scaling factor. Thus, the difference between FedSA-rsLoRA
and FedSA-LoRA also lies in the scaling factor. In VeRA (Kopiczko et al., 2024), the low-rank ma-
trices A and B are initialized using the uniform version of Kaiming initialization, fixed, shared
across all layers, and adapted with trainable scaling vectors d and b. The b vectors are initialized
to zero, and the d vectors are initialized with a value of 0.1. To make the notation consistent with
our work, we rewrite the scaling vectors d and b as Ad and Bb to reflect the position of each scaling
vector. Thus, in FedSA-VeRA, only the scaling vector Ad is shared with the server for aggregation,
while Bb is trained locally. By extending the proposed method to other LoRA variants, we establish
a general paradigm for integrating LoRA with FL, offering guidance for future work on subsequent
LoRA variants combined with FL.

4.2 CONVERGENCE ANALYSIS

To facilitate the convergence analysis of the proposed method, we make assumptions commonly en-
countered in the literature (Li et al., 2020c) to characterize the smooth and non-convex optimization
landscape.
Assumption 1. L1, · · · ,Lm are all L-smooth. For all Wi,j and Wi,k:

Li(Wi,k) ≤ Li(Wi,j) + ⟨Wi,k −Wi,j ,∇Li(Wi,j)⟩F +
L

2
∥Wi,k −Wi,j∥2F .

Here, m is the number of clients, Wi,j and Wi,k represent any different model weights of client i,
Li is the empirical loss on client i, ∇Li(Wi,j) represents the gradient of Li with respect to Wi,j ,
⟨·, ·⟩F is the Frobenius inner product, and ∥ · ∥F denotes the Frobenius norm.
Assumption 2. Let ξi,t be sampled from the i-th client’s local data uniformly at random at t-
th training step. The expected squared norm of stochastic gradients is uniformly bounded, i.e.,
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E∥∇Li(W
(t)
i ; ξi,t)∥2 ≤ G2, for all i = 1, · · · ,m and t = 0, · · · , T − 1. Here T denotes the total

number of every client’s training steps.

Assumption 3. Let W (t)
i = W0+B

(t)
i A

(t)
i represent the model parameters for the i-th client at the

t-th step. There exist constants CB > 0, CA > 0, cB > 0, and cA > 0 such that:

∥B(t)
i ∥F ≤ CB ,

∥A(t)
i ∥F ≤ CA,

⟨A(t)
i

⊤
A

(t)
i ,∇Li(W

(t)
i )⊤∇Li(W

(t)
i )⟩F ≥ cA∥∇Li(W

(t)
i )∥2F ,

⟨B(t)
i

⊤
B

(t)
i ,∇Li(W

(t)
i )⊤∇Li(W

(t)
i )⟩F ≥ cB∥∇Li(W

(t)
i )∥2F ,

for all i = 1, · · · ,m and t = 0, · · · , T − 1.

Assumptions 1 and 2 are widely used L-smoothness and bounded second moment assumption in FL
papers (Li et al., 2020c; Yu et al., 2019; Basu et al., 2019). For Assumption 3, according to the def-

inition of the Frobenius norm ∥A∥F =
√∑m

i

∑n
j |aij |

2, we know that the first two inequalities in

Assumption 3 hold when all parameter values in A
(t)
i and B

(t)
i are finite. If we denote the eigenval-

ues of A(t)
i by {λ1, . . . , λK}, then the eigenvalue of (A(t)

i )⊤A
(t)
i are {λ2

1, . . . , λ
2
K}. Similarly, if the

eigenvalues of ∇Li(W
(t)
i ) are {µ1, . . . , µK}, then the eigenvalues of (∇Li(W

(t)
i ))⊤∇Li(W

(t)
i )

are {µ2
1, . . . , µ

2
K}. Noting that ⟨A(t)

i

⊤
A

(t)
i ,∇Li(W

(t)
i )⊤∇Li(W

(t)
i )⟩F =

∑
k λ

2
kµ

2
k, and

∥∇Li(W
(t)
i )∥2F =

∑
k µ

2
k, the third inequality of Assumption 3 holds when there exist a con-

stant cA such that λ2
k ≥ cA,∀k. In other words, the third inequality of Assumption 3 holds when

all the eigenvalues of A(t)
i are non-zero (choose cA = min{|λ1|, . . . , |λK |}). Similarly, the last

inequality of Assumption 3 holds when all the eigenvalues of B(t)
i are non-zero. Then we present

the convergence rate for our method, with the proof provided in Section A.2 in Appendix.

Theorem 1. Let Assumptions 1, 2, and 3 hold and L, G, CA, CB , cA, cB be defined therein.
Denote E as the number of local training iterations between two communication rounds. Then, for
a learning rate η, we have:

1

mT

m∑
i=1

T∑
t=1

E
[∥∥∥∇Li(W

(t)
i )
∥∥∥2
F

]
≤ 2

cA + cB

√
DM

T
, (6)

where Li(W
(0))−Li(W

∗) ≤ D,∀i, and (2C2
BE

2G2 + 1
2G

2)η + 3
2η

4C2
AC

2
BG

4L+ (CACBG
2 +

3
2C

2
ALG

2 + 3
2C

2
BLG

2 + 2C4
BE

2LG2)η2 ≤ Mη2.

According to Theorem 1, we can obtain an O( 1√
T
) convergence rate towards the stationary solution

under smooth and non-convex conditions. This convergence rate is comparable to that of traditional
FedAvg in the non-convex scenario (Yu et al., 2019)

5 EXPERIMENTS

In this section, we evaluate and compare the performance of the proposed method with other meth-
ods on two types of tasks: natural language understanding and natural language generation. For the
natural language understanding tasks, we use the RoBERTa model (Liu et al., 2019) evaluated on
the GLUE benchmark (Wang et al., 2018), including MNLI, SST2, QNLI, QQP, and RTE. For the
natural language generation tasks, we employ the LLaMA model (Touvron et al., 2023) evaluated on
the GSM8K dataset (Cobbe et al., 2021). Our implementation is based on the FederatedScope-LLM
library (Kuang et al., 2023). The experiments for LoRA-based methods are conducted on NVIDIA
GeForce RTX 4090 and 3090 GPUs, while the rsLoRA-based and VeRA-based methods are car-
ried out on NVIDIA L40S GPUs. All experiments are performed with half-precision enabled for
efficiency. For the main results in Table 1, they are based on multiple runs to report the mean and
standard deviation, while other results in our paper are based on a single run.
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5.1 NATURAL LANGUAGE UNDERSTANDING

Model Performance. For the natural language understanding tasks, similar to FFA-LoRA (Sun
et al., 2024a), we randomly split the data across three clients for federated learning. We model
a non-IID data distribution using a Dirichlet distribution with α = 0.5, i.e., Dir (0.5). We use
the pre-trained RoBERTa-large (355M) (Liu et al., 2019) from the HuggingFace Transformers li-
brary (Wolf et al., 2020) as the base model. For LoRA-based methods optimization, we adopt the
SGD optimizer (Ruder, 2016) for all approaches. We set the batch size to 128, local update steps
to 10, and total communication rounds to 1000, consistent across all experiments. Similar to Hu
et al. (2022), we only apply LoRA to Wq and Wv in the attention layers in our experiments. The
rank r = 8 and scaling factor α = 16 are fixed for all algorithms. We report the best result
from experiments run with learning rates η ∈ {5E-3, 1E-2, 2E-2, 5E-2, 1E-1}. The optimization of
rsLoRA-based methods is similar to LoRA-based methods, only the learning rates are searched from
η ∈ {1E-3, 2E-3, 5E-3, 1E-2, 2E-2, 5E-2}. For VeRA-based methods, following VeRA (Kopiczko
et al., 2024), we set the rank r = 256. We adopt the AdamW optimizer (Loshchilov & Hutter, 2017),
introduce separate learning rates for the classification head and the adapted layers, and determine
the learning rates through hyperparameter tuning. Other settings are the same as for LoRA-based
methods. The learning rates used for each method are shown in Tables 6, 7, and 8 in Appendix.

Table 1: Performance of different methods on the GLUE benchmark. MNLI-m denotes MNLI with
matched test sets, and MNLI-mm denotes MNLI with mismatched test sets. For all tasks, we report
accuracy evaluated across 3 runs with mean and standard deviation.

Method MNLI-m MNLI-mm SST2 QNLI QQP RTE Avg.

LoRA

LoRA 88.71±0.09 88.19±0.02 95.16±0.09 91.16±0.72 85.33±1.33 87.49±0.15 89.33
FFA-LoRA 88.83±0.02 88.27±0.03 94.95±0.04 91.52±0.59 86.71±0.07 86.08±1.16 89.39

FedDPA-LoRA 88.99±0.06 88.43±0.05 95.50±0.06 90.74±1.38 85.73±1.73 87.44±0.13 89.47
FedSA-LoRA 90.18±0.02 88.88±0.02 96.00±0.04 92.13±0.24 87.48±0.22 87.93±0.11 90.43

rsLoRA

rsLoRA 88.91±0.15 88.33±0.04 95.02±0.24 91.21±0.39 86.73±0.98 85.99±0.34 89.36
FFA-rsLoRA 89.21±0.11 88.45±0.08 95.42±0.17 91.42±0.44 86.93±1.18 85.24±0.21 89.44

FedDPA-rsLoRA 89.34±0.11 88.53±0.05 95.56±0.21 90.97±0.76 86.81±0.53 86.26±0.11 89.57
FedSA-rsLoRA 90.35±0.11 89.02±0.03 95.78±0.08 92.03±0.22 87.97±0.16 88.00±0.10 90.52

VeRA

VeRA 85.54±0.10 85.09±0.07 93.53±0.13 91.90±0.17 82.07±0.35 86.31±0.12 87.40
FFA-VeRA 86.63±0.13 86.22±0.08 93.44±0.05 92.05±0.23 82.23±0.07 83.54±0.59 87.35

FedDPA-VeRA 86.74±0.11 86.35±0.07 93.61±0.32 90.73±0.54 82.11±0.41 86.12±0.12 87.61
FedSA-VeRA 87.21±0.10 86.52±0.04 93.68±0.07 92.91±0.09 82.56±0.05 87.83±0.09 88.45

The experimental results are shown in Table 1. From this table, we can observe that the proposed
FedSA-LoRA, FedSA-rsLoRA, and FedSA-VeRA consistently outperform other methods across all
tasks, demonstrating the effectiveness of the proposed method.

System Efficiency. We further compare the proposed method with baselines in terms of system
efficiency, following Qu et al. (2022); Zhang et al. (2024a); Lai et al. (2022). The system efficiency in
FL consists of communication cost and computation cost. To provide a comprehensive comparison,
we detail the number of trainable parameters, the number of communication model parameters per
FL round, the computation cost per FL round, and the number of communication rounds needed
to reach the predefined target performance on the RTE and QNLI tasks in Table 2. The target
performance is defined as 95% of the prediction accuracy provided in LoRA (Hu et al., 2022).
Specifically, we define the target performance of the RTE and QNLI tasks as 80.94% and 90.06%,
respectively.

Communication cost is a critical factor in FL, as it significantly impacts the overall system effi-
ciency. The communication cost can be roughly estimated by considering the number of transmitted
messages required to achieve a target performance, calculated as # transmitted messages= # com-
munication round × # communicated model parameter. As shown in Table 2, our FedSA-LoRA
requires the smallest communication cost to reach the target performance (with smallest commu-
nication rounds and per-round communication parameters). Additionally, while our FedSA-LoRA
requires more trainable model parameters and incurs slightly more computation cost per FL round
than the baseline FFA-LoRA (22s compared to 20s on RTE task), it is important to note that our
model reaches the target performance with fewer communication rounds (#91 compared to #229 on
RTE task). These computation and communication costs demonstrate the overall efficiency of our
model.

8



Published as a conference paper at ICLR 2025

Table 2: Time and space costs for each method on the RTE and QNLI tasks. # Communication
round denotes the number of communication rounds to reach the predefined target performance.

# Trainable Parm. # Per-round Communicated Parm. # Per-round Computation Cost # Communication Round

RTE QNLI RTE QNLI

LoRA 1.83M 0.78M 22s 35s 167 397
FFA-LoRA 1.44M 0.39M 20s 33s 229 374
FedDPA-LoRA 2.62M 0.78M 23s 37s 128 325
FedSA-LoRA 1.83M 0.39M 22s 34s 91 224

5.2 IN-DEPTH ANALYSES

In this section, we utilize LoRA-based methods to perform in-depth analyses on the natural language
understanding tasks of QNLI, SST2, and MNLI-m to assess the impact of factors such as data
heterogeneity, the number of clients, and LoRA rank on model performance.

5.2.1 EFFECT OF DATA HETEROGENEITY

To investigate the effect of data heterogeneity on model performance, we model an IID partition
(Split-1) and two non-IID partitions with Dir (1) and Dir (0.5). The latter two non-IID partitions are
referred to as moderate non-IID (Split-2) and severe non-IID (Split-3). The training settings are the
same as in Section 5.1.

Table 3: Performance comparison on the QNLI, SST2, and MNLI-m tasks with various degrees of
data heterogeneity.

Method QNLI SST2 MNLI-m

Split-1 Split-2 Split-3 Split-1 Split-2 Split-3 Split-1 Split-2 Split-3

LoRA 92.92 92.44 90.60 95.30 95.53 95.26 88.52 88.35 88.80
FFA-LoRA 92.68 92.29 91.72 95.87 95.47 94.91 88.15 88.03 88.83

FedSA-LoRA 92.95 93.32 92.00 96.10 96.24 95.92 89.57 89.71 90.20

The results are provided in Table 3. From these results, we can observe that the proposed FedSA-
LoRA consistently outperforms other baselines, demonstrating its adaptability and robustness in
various heterogeneous data scenarios. Additionally, as data heterogeneity increases, the improve-
ment of the proposed method also increases. Specifically, FedSA-LoRA improves accuracy by
0.03%, 0.88%, and 1.84% on the QNLI task from IID to severe non-IID compared with LoRA, and
by 1.05%, 1.36%, and 1.4% on the MNLI-m task. This indicates that the proposed method is more
effective when non-IID conditions are more severe. This phenomenon is consistent with Figure 2,
which shows that with increased data heterogeneity, the similarity of B matrices between different
clients decreases. Therefore, when the non-IID conditions are more severe, the advantages of keep-
ing B locally become more pronounced. In this case, the learned B will be less similar, highlighting
the need for personalization.

5.2.2 EFFECT OF NUMBER OF CLIENTS

In Section 5.1, we demonstrated the effectiveness of the proposed method on a small number of
clients, i.e., three clients. In this section, we show the superiority of FedSA-LoRA compared to
other baselines on a larger number of clients, i.e., from 10 to 100 clients. Specifically, we use the
same non-IID split, i.e., Dir (0.5), to divide the data into 10, 20, and 100 clients. The training settings
are the same as in Section 5.1 and the results are shown in Table 4.

It can be concluded that FedSA-LoRA not only outperforms other methods with a small number
of clients (i.e., 3 clients) but also shows superior performance with a large number of clients (i.e.,
from 10 to 100 clients), demonstrating the adaptability and robustness of the proposed FedSA-LoRA
across various client numbers.
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Table 4: Performance comparison on the QNLI, SST2, and MNLI-m tasks with different number of
clients. We apply full participation for FL system with 10 and 20 clients, and apply client sampling
with rate 0.3 for FL system with 100 clients.

Method QNLI SST2 MNLI-m

10 clients 20 clients 100 clients 10 clients 20 clients 100 clients 10 clients 20 clients 100 clients

LoRA 91.32 91.23 90.32 96.68 93.16 96.68 86.94 88.50 88.13
FFA-LoRA 91.47 91.70 91.27 96.59 93.31 96.33 86.76 88.60 87.86

FedSA-LoRA 91.97 92.54 91.48 96.83 94.21 97.02 88.59 89.05 88.82

5.2.3 EFFECT OF LORA RANK

The adapter parameter budget (i.e., rank r) is a key factor in LoRA performance. In this section, we
experiment with rank r ∈ {2, 4, 8, 16} on the QNLI, SST2, and MNLI-m tasks to test its influence
on model performance, keeping other settings unchanged compared to Section 5.1.

Table 5: Performance comparison on the QNLI, SST2, and MNLI-m tasks with different LoRA
ranks r.

Rank Method QNLI SST2 MNLI-m Rank Method QNLI SST2 MNLI-m

r = 2
LoRA 92.07 94.69 88.29

r = 4
LoRA 92.71 94.20 88.43

FFA-LoRA 91.02 93.95 87.98 FFA-LoRA 92.97 94.61 88.24
FedSA-LoRA 92.69 95.67 89.14 FedSA-LoRA 93.10 95.69 88.98

r = 8
LoRA 90.69 95.26 88.80

r = 16
LoRA 90.59 94.98 88.78

FFA-LoRA 91.72 94.91 88.83 FFA-LoRA 91.62 94.13 89.25
FedSA-LoRA 92.00 95.92 90.20 FedSA-LoRA 92.03 95.78 89.59

The results, as shown in Table 5, demonstrate that the proposed FedSA-LoRA outperforms other
methods across various LoRA rank values, showcasing the adaptability and robustness of FedSA-
LoRA in different scenarios.

5.3 NATURAL LANGUAGE GENERATION

For the natural language generation tasks, we adopt the pre-trained LLaMA3-8B (Meta, 2024) from
the HuggingFace Transformers library (Wolf et al., 2020), using the GSM8K dataset (Cobbe et al.,
2021) and the CodeSearchNet dataset (Husain et al., 2019) for evaluation. For the GSM8K dataset
(Cobbe et al., 2021), Following (Kuang et al., 2023), we split the data into three clients under an IID
distribution, and other optimization hyperparameters are the same as in that work. The results of
LoRA, FFA-LoRA, and FedSA-LoRA are 46.23, 46.32, and 46.63, respectively, and the generated
examples are shown in Table 9 in Appendix. From the given example, it can be seen that both LoRA
and FFA-LoRA have reasoning errors, but FedSA-LoRA can reason accurately, demonstrating the
superiority of the proposed method in complex natural language generation tasks.

For an additional dataset on the code generation task. We choose the CodeSearchNet dataset (Hu-
sain et al., 2019) and use the default non-IID partitioning provided in (Kuang et al., 2023). The
performance scores for LoRA, FFA-LoRA, and our FedSA-LoRA are 58.34, 58.57, and 59.66, re-
spectively, which further validates the effectiveness of our method in generation tasks.

6 CONCLUSION

In this work, we discover that when combining LoRA with FL, A matrices are responsible for learn-
ing general knowledge, while B matrices focus on capturing client-specific knowledge. Building
upon this finding, we introduce Federated Share-A Low-Rank Adaptation (FedSA-LoRA), which
employs two low-rank trainable matrices A and B to model the weight update, but only A matrices
are shared with the server for aggregation. By sharing the A matrices that learn general knowledge
with the server for aggregation, while keeping the B matrices that model client-specific knowledge
locally, the learning abilities of LoRA combined with FL can be enhanced. Moreover, we explore
the relationship between the learned A and B matrices in other LoRA variants, such as rsLoRA and
VeRA, revealing a consistent pattern. Consequently, we extend our FedSA-LoRA method to these
LoRA variants, resulting in FedSA-rsLoRA and FedSA-VeRA. By doing so, we establish a general
paradigm for integrating LoRA with FL, offering guidance for future work on subsequent LoRA
variants combined with FL.
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A APPENDIX

A.1 PROOF OF LEMMA 1

Proof. Consider fine-tuning B while freezing A = Q. The loss function in Eq. (3) becomes:

L = E(xt,yt)[∥yt − (W0 +BQ)xt∥22]. (7)

Then, the gradient of Eq. (7) w.r.t. B is:

∂L
∂B

=
∂E(xt,yt)[∥yt − (W0 +BQ)xt∥22]

∂B

=
∂E[∥Wtxt − (W0 +BQ)xt∥22]

∂B

=
∂E[∥(W0 +∆W )xt − (W0 +BQ)xt∥22]

∂B

=
∂E[∥(∆W −BQ)xt∥22]

∂B

= E[2[(∆W −BQ)xt](−xT
t Q

T )]

= E[2(BQ−∆W )xtx
T
t Q

T ].

(8)

To obtain the optimal B∗, we set Eq. (8) to zero, which means:

E[2(BQ−∆W )xtx
T
t Q

T ] = 0

2BQE[xtx
T
t ]Q

T − 2∆WE[xtx
T
t ]Q

T = 0

2BQE[xtx
T
t ]Q

T − 2∆WE[xtx
T
t ]Q

T = 0

BQE[xtx
T
t ]Q

T = ∆WE[xtx
T
t ]Q

T

B = ∆WE[xtx
T
t ]Q

T (QE[xtx
T
t ]Q

T )−1.

(9)

Therefore, we obtain B∗ = ∆WE[xtx
T
t ]Q

T (QE[xtx
T
t ]Q

T )−1.

When fine-tuning A with fixed B = U . The loss function in Eq. (3) becomes:

L = E(xt,yt)[∥yt − (W0 + UA)xt∥22]. (10)

Then, the gradients of Eq. (7) w.r.t. A is:

∂L
∂A

=
∂E(xt,yt)[∥yt − (W0 + UA)xt∥22]

∂A

=
∂E[∥Wtxt − (W0 + UA)xt∥22]

∂A

=
∂E[∥(W0 +∆W )xt − (W0 +BQ)xt∥22]

∂A

=
∂E[∥(∆W − UA)xt∥22]

∂A

= E[2UT [(∆W − UA)xt]x
T
t ]

(11)

To obtain the optimal A∗, we set Eq. (11) to zero, which means:

E[2UT [(∆W − UA)xt]x
T
t ] = 0

2UT∆WE[xtx
T
t ]− 2UTUAE[xtx

T
t ] = 0

UTUAE[xtx
T
t ] = UT∆WE[xtx

T
t ]

A = U−1∆W .

(12)

Thus, we obtain A∗ = U−1∆W .
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A.2 PROOF OF THEOREM 1

Proof. Let W (t)
i = W0 + B

(t)
i A

(t)
i be the model parameters maintained in the i-th client at the

t-th step. Let IE be the set of global synchronization steps, i.e., IE = {nE | n = 1, 2, · · · }. If
t + 1 ∈ IE , which represents the time step for communication, then the one-step update of the
proposed method for the i-th client can be described as follows:(

B
(t)
i

A
(t)
i

)
−→

update of B(t)
i andA(t)

i

(
B

(t+1)
i

A
(t+1)
i

)
−→

if t+1∈IE

(
B

(t+1)
i

1
m

∑m
j=1 A

(t+1)
j

)
.

For convenience, we denote the parameters in each sub-step above as follows:

W
(t)
i = W0 +B

(t)
i A

(t)
i ,

U
(t)
i = W0 +B

(t+1)
i A

(t+1)
i ,

V
(t)
i = W0 +B

(t+1)
i

1

m

m∑
j=1

A
(t+1)
j ,

W
(t+1)
i =

{
U

(t)
i if t+ 1 /∈ IE ,

V
(t)
i if t+ 1 ∈ IE .

Here, the variable U (t)
i represents the immediate result of one sub-step update from the parameter of

the previous sub-step W
(t)
i , and V

(t)
i represents the parameter obtained after communication steps

(if applicable). Furthermore, we denote the learning rate for the i-th client at the t-th step as ηi,t,
and the stochastic gradient at step t as follows:

∇BLi(W
(t)
i , ξi,t) = ∇WLi(W

(t)
i , ξi,t)A

(t)
i

⊤
,

∇ALi(W
(t)
i , ξi,t) = B

(t)
i

⊤
∇WLi(W

(t)
i , ξi,t),

∇BLi(W
(t)
i ) = E[∇BLi(W

(t)
i , ξi,t)],

∇ALi(W
(t)
i ) = E[∇ALi(W

(t)
i , ξi,t)],

where ξi,t is the data uniformly chosen from the local data set of client i at step t.

Next, we apply the inequality from the smoothness Assumption 1 to each sub-step of the one-step
update for client i. Firstly, by the smoothness of Li, we have:

Li(U
(t)
i ) ≤ Li(W

(t)
i ) + ⟨U (t)

i −W
(t)
i ,∇WLi(W

(t)
i )⟩F +

L

2

∥∥∥U (t)
i −W

(t)
i

∥∥∥2
F
. (13)

Since
B

(t+1)
i = B

(t)
i − ηi,t∇BLi(W

(t)
i , ξi,t)

= B
(t)
i − ηi,t∇WLi(W

(t)
i , ξi,t)A

(t)
i

⊤
,

and

A
(t+1)
i = A

(t)
i − ηi,t∇ALi(W

(t)
i , ξi,t)

= A
(t)
i − ηi,tB

(t)
i

⊤
∇WLi(W

(t)
i , ξi,t),

we have:

U
(t)
i −W

(t)
i

= B
(t+1)
i A

(t+1)
i −B

(t)
i A

(t)
i

=

(
B

(t)
i − ηi,t∇WLi(W

(t)
i , ξi,t)A

(t)
i

⊤
)(

A
(t)
i − ηi,tB

(t)
i

⊤
∇WLi(W

(t)
i , ξi,t)

)
−B

(t)
i A

(t)
i

= η2i,t∇WLi(W
(t)
i , ξi,t)A

(t)
i

⊤
B

(t)
i

⊤
∇WLi(W

(t)
i , ξi,t)− ηi,t∇WLi(W

(t)
i , ξi,t)A

(t)
i

⊤
A

(t)
i

− ηi,tB
(t)
i B

(t)
i

⊤
∇WLi(W

(t)
i , ξi,t).
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Then, for the second term on the right side of Eq. (13), according to the law of total expectation, we
have:

E
[〈

U
(t)
i −W

(t)
i ,∇WLi(W

(t)
i )
〉
F

]
= η2i,tE

[〈
∇WLi(W

(t)
i , ξi,t)A

(t)
i

⊤
B

(t)
i

⊤
∇WLi(W

(t)
i , ξi,t),∇WLi(W

(t)
i )

〉
F

]
− ηi,tE

[〈
∇WLi(W

(t)
i , ξi,t)A

(t)
i

⊤
A

(t)
i ,∇WLi(W

(t)
i )

〉
F

]
− ηi,tE

[〈
B

(t)
i B

(t)
i

⊤
∇WLi(W

(t)
i , ξi,t),∇WLi(W

(t)
i )

〉
F

]
= η2i,t

〈
∇WLi(W

(t)
i )A

(t)
i

⊤
B

(t)
i

⊤
∇WLi(W

(t)
i ),∇WLi(W

(t)
i )

〉
F

− ηi,t

〈
∇WLi(W

(t)
i )A

(t)
i

⊤
A

(t)
i ,∇WLi(W

(t)
i )

〉
F

− ηi,t

〈
B

(t)
i B

(t)
i

⊤
∇WLi(W

(t)
i ),∇WLi(W

(t)
i )

〉
F

.

Since 〈
∇WLi(W

(t)
i )A

(t)
i

⊤
B

(t)
i

⊤
∇WLi(W

(t)
i ),∇WLi(W

(t)
i )

〉
F

≤
∥∥∥∥∇WLi(W

(t)
i )A

(t)
i

⊤
B

(t)
i

⊤
∇WLi(W

(t)
i )

∥∥∥∥∥∥∥∇WLi(W
(t)
i )
∥∥∥
F

≤
∥∥∥A(t)

i

∥∥∥∥∥∥B(t)
i

∥∥∥
F

∥∥∥∇WLi(W
(t)
i )
∥∥∥3
F

≤ CACBG
3,

and if we assume there exists cA > 0 such that ∀t:〈
A

(t)
i

⊤
A

(t)
i ,∇WLi(W

(t)
i )⊤∇WLi(W

(t)
i )
〉
F
≥ cA

∥∥∥∇WLi(W
(t)
i )
∥∥∥2
F
,

then we have:〈
∇WLi(W

(t)
i )A

(t)
i

⊤
A

(t)
i ,∇WLi(W

(t)
i )

〉
F

= Tr
[(

∇WLi(W
(t)
i )A

(t)
i

⊤
A

(t)
i

)⊤
∇WLi(W

(t)
i )
]

= Tr
[
A

(t)
i

⊤
A

(t)
i ∇WLi(W

(t)
i )⊤∇WLi(W

(t)
i )
]

=
〈
A

(t)
i

⊤
A

(t)
i ,∇WLi(W

(t)
i )⊤∇WLi(W

(t)
i )
〉
F

≥ cA

∥∥∥∇WLi(W
(t)
i )
∥∥∥2
F
.

And similarly if we assume there exists cB > 0 such that ∀t:〈
B

(t)
i

⊤
B

(t)
i ,∇WLi(W

(t)
i )⊤∇WLi(W

(t)
i )
〉
F
≥ cB

∥∥∥∇WLi(W
(t)
i )
∥∥∥2
F
,

then we have:〈
B

(t)
i B

(t)
i

⊤
∇WLi(W

(t)
i ),∇WLi(W

(t)
i )

〉
F

= Tr
[(

B
(t)
i B

(t)
i

⊤
∇WLi(W

(t)
i )
)⊤

∇WLi(W
(t)
i )
]

= Tr
[
∇WLi(W

(t)
i )⊤B

(t)
i B

(t)
i

⊤
∇WLi(W

(t)
i )
]

= Tr
[
∇WLi(W

(t)
i )∇WLi(W

(t)
i )⊤B

(t)
i B

(t)
i

⊤]
=

〈
∇WLi(W

(t)
i )∇WLi(W

(t)
i )⊤, B

(t)
i B

(t)
i

⊤
〉

F

≥ cB

∥∥∥∇WLi(W
(t)
i )
∥∥∥2
F
, (14)
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where we use the cyclic property of the trace for the third equality above. We further get:

E
[〈

U
(t)
i −W

(t)
i ,∇WLi(W

(t)
i )
〉
F

]
≤ η2i,tCACBG

3 − ηi,tc
2
A

∥∥∥∇WLi(W
(t)
i )
∥∥∥2
F
− ηi,tc

2
B

∥∥∥∇WLi(W
(t)
i )
∥∥∥2
F
. (15)

Similarly, we know:

E[∥U (t)
i −W

(t)
i ∥2F ] = E[∥η2i,t∇WLi(W

(t)
i , ξi,t)A

(t)
i

⊤
B

(t)
i

⊤
∇WLi(W

(t)
i , ξi,t)

− ηi,t∇WLi(W
(t)
i , ξi,t)A

(t)
i

⊤
A

(t)
i − ηi,tB

(t)
i B

(t)
i

⊤
∇WLi(W

(t)
i , ξi,t)∥2F ]

≤ 3η4i,tC
2
AC

2
BG

4 + 3η2i,tC
2
AG

2 + 3η2i,tC
2
BG

2. (16)

Plugging Eq. (14), Eq. (15), and Eq. (16) into Eq. (13), we have:

Li

(
U

(t)
i

)
≤ Li

(
W

(t)
i

)
+ η2i,tCACBG

3 − ηi,tcA

∥∥∥∇WLi(W
(t)
i )
∥∥∥2
F
− ηi,tcB

∥∥∥∇WLi(W
(t)
i )
∥∥∥2
F

+
3

2
η4i,tC

2
AC

2
BG

4L+
3

2
η2i,tC

2
AG

2L+
3

2
η2i,tC

2
BG

2L. (17)

Secondly, by the smoothness of Li, we have:

Li

(
V

(t)
i

)
≤ Li

(
(U

(t)
i

)
+
〈
V

(t)
i − U

(t)
i ,∇WLi(U

(t)
i )
〉
F
+

L

2

∥∥∥V (t)
i − U

(t)
i

∥∥∥2
F
. (18)

Since

V
(t)
i − U

(t)
i = B

(t+1)
i A

(t+1)
i − 1

m
B

(t+1)
i

m∑
j=1

A
(t+1)
j

= B
(t+1)
i

1

m

m∑
j=1

(
A

(t+1)
i −A

(t+1)
j

)
,

and

A
(t+1)
j = A

(t−E+1)
j −

t∑
t0=t−E+1

ηj,t0∇ALj(W
(t0)
j ; ξj,t0)

= A
(t−E+1)
j −

t∑
t0=t−E+1

ηj,t0B
(t0)
j

⊤
∇WLj(W

(t0)
j ; ξj,t0),

we know:

V
(t)
i − U

(t)
i = B

(t+1)
i

(
− 1

m

m∑
j=1

t∑
t0=t−E+1

ηj,t0B
(t0)
j

⊤(
∇Li(W

(t0)
i ; ξi,t0)−∇Lj(W

(t0)
j ; ξj,t0)

))
.

Therefore,

E
[∥∥∥V (t)

i − U
(t)
i

∥∥∥2
F

]
= E

[∥∥∥B(t+1)
i

∥∥∥2
F

∥∥∥− 1

m

m∑
j=1

t∑
t0=t−E+1

ηj,t0B
(t0)
j

⊤(
∇Li(W

(t0)
i ; ξi,t0)−∇Lj(W

(t0)
j ; ξj,t0)

)∥∥∥2
F

]

≤ C2
B

E

m

m∑
j=1

t∑
t0=t−E+1

η2j,t0E
[∥∥∥B(t0)

j

⊤(
∇Li(W

(t0)
i ; ξi,t0)−∇Lj(W

(t0)
j ; ξj,t0)

)∥∥∥2
F

]

≤ C4
BE

m

m∑
j=1

t∑
t0=t−E+1

η2j,t0E
[∥∥∥∇Li(W

(t0)
i ; ξi,t0)−∇Lj(W

(t0)
j ; ξj,t0)

∥∥∥2
F

]

≤ 4C4
BEG2

m

m∑
j=1

t∑
t0=t−E+1

η2j,t0 , (19)
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where we use Assumption 2 to derive that:

E
[∥∥∥∇Li(W

(t0)
i ; ξi,t0)−∇Lj(W

(t0)
j ; ξj,t0)

∥∥∥2
F

]
≤ 2E

[∥∥∥∇Li(W
(t0)
i ; ξi,t0)

∥∥∥2
F

]
+ 2E

[∥∥∥∇Li(W
(t0)
j ; ξj,t0)

∥∥∥2
F

]
≤ 4G2.

Furthermore,〈
V

(t)
i − U

(t)
i ,∇WLi(U

(t)
i )
〉
≤ 1

2ηi,t

∥∥∥V (t)
i − U

(t)
i

∥∥∥2
F
+

1

2
ηi,t

∥∥∥∇WLi(U
(t)
i )
∥∥∥2
F

≤ 2C4
BEG2

ηi,tm

m∑
j=1

t∑
t0=t−E+1

η2j,t0 +
1

2
ηi,tG

2. (20)

Plugging Eq. (19) and Eq. (20) into Eq. (18), we have (choose constant learning rate ηi,t = η):

Li

(
V

(t)
i

)
≤ Li

(
U

(t)
i

)
+
(
2C2

BE
2G2 +

1

2
G2
)
η + 2η2C4

BE
2G2L. (21)

Combining Eq. (17) and Eq. (21), we have (choose constant learning rate ηi,t = η):

Li

(
W

(t+1)
i

)
≤ Li

(
(W

(t)
i

)
+ (2C2

BE
2G2 +

1

2
G2)η +

3

2
η4C2

AC
2
BG

4L

+ (CACBG
2 +

3

2
C2

ALG
2 +

3

2
C2

BLG
2 + 2C4

BE
2LG2)η2

− η(cA + cB)
∥∥∥∇WLi(W

(t)
i )
∥∥∥2 ,

which is equivalent to:

η(cA + cB)
∥∥∥∇WLi(W

(t)
i )
∥∥∥2
F
≤ Li

(
(W

(t)
i

)
− Li

(
W

(t+1)
i

)
+ (2C2

BE
2G2 +

1

2
G2)η +

3

2
η4C2

AC
2
BG

4L

+ (CACBG
2 +

3

2
C2

ALG
2 +

3

2
C2

BLG
2 + 2C4

BE
2LG2)η2.
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Now, by repeatedly applying Eq. (22) for different values of t and summing up the results, we get:
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Dividing both side of Eq. (23) by T , we get:
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Let us assume that Li(W
(1)
i )− Li(W

∗
i ) ≤ D,∀i, and we set η =

√
D

MT . Then, we have:
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Thus, we can obtain:
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A.3 FURTHER EXPLANATIONS ABOUT AGGREGATION ERRORS.

In this section, we provide more explanation about what aggregation errors are and why people do
not achieve the “ideal” model update.

When introducing LoRA into FL, the update for the i-the client is given by ∆Wi = BiAi. The
“ideal” model update for server aggregation should be:

∆∗
W =

1

m

m∑
i=1

∆Wi =
1

m

m∑
i=1

BiAi =
1

m
(B1A1 +B2A2 + · · ·+BmAm). (27)

However, in practical LoRA training, the matrices Ai and Bi, not the original Wi, are trainable.
Thus, we cannot directly average the ∆Wi

; instead, we can only separately average Ai and Bi, and
then combine them to obtain the update:

∆W =(
1

m

m∑
i=1

Bi)(
1

m

m∑
i=1

Ai)

=
1

m
(B1 +B2 + · · ·+Bm)

1

m
(A1 +A2 + · · ·+Am)

=
1

m2
(B1A1 +B1A2 + · · ·+B1Am +B2A1

+B2A2 + · · ·+B2Am + · · ·+BmA1 +BmA2 + · · ·+BmAm),

(28)

which differs from the “ideal” model update in Eq. (27). This difference introduces aggregation
errors.

Regarding why the “ideal” model update is not achieved, it is because the matrices Ai and Bi are
trainable, not the original Wi. While it is possible to first combine Ai and Bi to obtain ∆Wi

and then
average them to achieve the “ideal” update, we cannot decompose W back into A and B for further
federated training. This limitation prevents people from performing the “ideal” model update.

A.4 HYPERPARAMETERS

Tables 6 and 7 show the learning rates used for LoRA-based methods and rsLoRA-based methods,
respectively. For the VeRA-based methods, we first tried using the SGD optimizer (Ruder, 2016)
with a search learning rate from η ∈ {5E-3, 1E-2, 2E-2, 5E-2, 1E-1} as adopted in LoRA-based
methods, but we found the performance to be significantly worse than that of LoRA-based methods.
For example, the best performance among the three VeRA-based methods (i.e., VeRA, FFA-VeRA,
and FedSA-VeRA) is 53.73% on the MNLI-m task, which is significantly worse than that of the
LoRA-based methods (90.20%). Thus, we chose the AdamW optimizer (Loshchilov & Hutter,
2017) and introduced separate learning rates for the classification head and the adapted layers as
used in VeRA (Kopiczko et al., 2024). The learning rates used for VeRA-based methods are shown
in Table 8.

Table 6: The learning rates used for LoRA-based methods on the GLUE benchmark.

Method MNLI-m MNLI-mm SST2 QNLI QQP RTE

LoRA 1E-2 1E-2 2E-2 1E-2 1E-2 1E-2
FFA-LoRA 5E-2 5E-2 5E-2 2E-2 5E-2 2E-2
FedDPA-LoRA 1E-2 1E-2 1E-2 5E-2 5E-2 1E-2
FedSA-LoRA 2E-2 2E-2 1E-2 5E-3 2E-2 1E-2

A.5 EXAMPLES OF GENERATED ANSWER FOR GSM8K DATASETS

The results of the GSM8K dataset are shown in Table 9, demonstrating that the proposed FedSA-
LoRA outperforms other methods in complex natural language generation tasks. From the given
example, it can be seen that both LoRA and FFA-LoRA have reasoning errors, but FedSA-LoRA
can reason accurately, demonstrating the superiority of the proposed method.
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Table 7: The learning rates used for rsLoRA-based methods on the GLUE benchmark.

Method MNLI-m MNLI-mm SST2 QNLI QQP RTE

rsLoRA 5E-3 5E-3 1E-2 2E-3 5E-3 2E-3
FFA-rsLoRA 2E-2 2E-2 2E-2 1E-2 2E-2 1E-2
FedDPA-reLoRA 5E-3 5E-3 1E-2 1E-3 5E-3 1E-2
FedSA-rsLoRA 5E-3 5E-3 5E-3 1E-3 2E-3 2E-3

Table 8: The learning rates used for VeRA-based methods on the GLUE benchmark.

Method Position MNLI-m MNLI-mm SST2 QNLI QQP RTE

VeRA VeRA 1E-2 1E-2 2E-2 2E-3 2E-3 1E-2
Head 6E-3 6E-3 2E-3 3E-4 3E-4 2E-4

FFA-VeRA VeRA 2E-2 2E-2 1E-2 1E-2 1E-2 1E-2
Head 2E-3 2E-3 6E-3 2E-4 6E-3 2E-4

FedDPA-VeRA VeRA 1E-2 1E-2 1E-2 2E-3 2E-2 1E-2
Head 6E-3 6E-3 6E-3 3E-4 2E-3 2E-4

FedSA-VeRA VeRA 2E-3 2E-3 1E-2 1E-2 2E-3 1E-2
Head 3E-5 3E-5 3E-4 3E-4 3E-4 1E-4

Table 9: Performance of different methods on the GSM8K dataset and example answers generated
by each method.

LoRA FFA-LoRA FedSA-LoRA

Accuracy 46.24 46.32 46.63
Question: In a student council election, candidate A got 20% of the votes while candidate

B got 50% more than candidate A’s votes. The rest of the votes was given to
candidate C. If there were 100 voters, how many votes did candidate C get?

Output: Candidate A got 20% of
the votes. That is 20% of
100 = 20% × 100 = 20 ×
100 = 2000 votes. Candi-
date B got 50% more than
candidate A. That is 50%
of 2000 = 50% × 2000 =
50 × 2000 = 10000 votes.
The rest of the votes was
given to candidate C. So
there are 10000 + 2000 =
12000 votes in total. Can-
didate C got 10000 votes.
The answer is 10000. [✘]

Candidate A got 20% of
100 = 100 × 20% = 100
× 20/100 = 20. Candidate
B got 20% more than can-
didate A’s votes, which is
20% + 20% = 40%. 40%
of 100 = 100 × 40% = 100
× 40/100 = 40. So the two
candidates together got 20
+ 40 = 60. The rest of the
votes were given to candi-
date C. So candidate C got
100 - 60 = 40. The answer
is 40. [✘]

Candidate A got 20% of
the votes or 20% ∗ 100
= 20 votes. Then candi-
date B got 50% more than
candidate A’s 20 votes so
50% of 20 is 20 ∗ 50% =
10. Then candidate B got
20 + 10 = 30 votes. So
candidate C got 100 - 20
- 30 = 50 votes. The an-
swer is 50. [✔]
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A.6 LEARNED MATRICES COMPARISON

A.6.1 LEARNED AND INITIALIZED LORA MATRICES COMPARISON

Since the learned LoRA A matrices are similar across different clients in Figure 2, we separately
plotted the relationships of A from Figure 2 in Figure 3 to show the relationships in A more clearly.
This shows they are similar but not identical. Moreover, we further illustrate the difference between
the learned and initialized A matrices for each client under the IID partition in this section. The
results, shown in Figure 4, confirm that the A matrices are updated.
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Figure 3: Mean of pairwise cosine similarity of the learned A matrices across layers of a RoBERTa
model locally fine-tuned with LoRA on the RTE task, with different levels of data heterogeneity.
(a)-(c): value matrices; (d)-(f): query matrices. The learned A matrices across client are similar but
not identical.
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Figure 4: Cosine similarity of learned and initialized A matrices across layers of different clients of
a RoBERTa model locally fine-tuned with LoRA on the RTE task. (a)-(c): value matrices; (d)-(f):
query matrices. The learned A matrices are different from the initialized A matrices, indicating that
the A matrices are updated.

A.6.2 LEARNED RSLORA MATRICES COMPARISON

In this section, we present the mean of pairwise client relationships for the learned rsLoRA (Kala-
jdzievski, 2023) matrices. These results, shown in Figure 5, demonstrate a similar phenomenon to
the learned LoRA matrices. That is, the learned A matrices are more similar across clients than the

23



Published as a conference paper at ICLR 2025

B matrices, and with increased data heterogeneity, the similarity of B matrices between different
clients decreases.
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Figure 5: Mean of pairwise cosine similarity of the learned A and B matrices across layers of
a RoBERTa model locally fine-tuned with rsLoRA on the RTE task, with different levels of data
heterogeneity. (a)-(c): value matrices; (d)-(f): query matrices. The learned A matrices are more
similar across clients than the B matrices, and with increased data heterogeneity, the similarity of B
matrices between different clients decreases.

A.6.3 LEARNED VERA MATRICES COMPARISON

In this section, we show the mean of pairwise client relationships for the learned VeRA (Kopiczko
et al., 2024) matrices. In VeRA, the low-rank matrices A and B are initialized using the uniform
version of Kaiming initialization, fixed, shared across all layers, and adapted with trainable scaling
vectors d and b. The b vectors are initialized to zero, and the d vectors are initialized with a value of
0.1. To make the notation consistent with our work, we rewrite the scaling vectors d and b as Ad and
Bb to reflect the position of each scaling vector. These results, illustrated in Figure 6, demonstrate
a similar phenomenon to the learned LoRA matrices. That is, the learned scaling vectors Ad are
more similar across clients than the scaling vectors Bb, and with increased data heterogeneity, the
similarity of scaling vectors Bb between different clients decreases.
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Figure 6: Mean of pairwise cosine similarity of the learned scaling vectors Ad and Bb across layers
of a RoBERTa model locally fine-tuned with VeRA on the RTE task, with different levels of data
heterogeneity. (a)-(c): value matrices; (d)-(f): query matrices. The learned scaling vectors Ad are
more similar across clients than the scaling vectors Bb, and with increased data heterogeneity, the
similarity of scaling vectors Bb between different clients decreases.
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A.7 FURTHER RESULTS ON COMPRESSING A MATRICES

Based on the reviewers’ comments during the review stage, we further conduct experiments on
compressing the A matrices. Specifically, we chose FetchSGD (Rothchild et al., 2020) to compress
around 50% of the A matrices, given that the updates across the A matrices are trivial but necessary.
The experimental results are shown in Table 10, which indicates that FedSA-LoRA with a compres-
sion method achieves performance comparable to the original FedSA-LoRA. This confirms that the
A matrices can indeed be further compressed to reduce communication overhead while maintaining
satisfactory performance, validating the reviewer’s hypothesis that “there must exist a compression
method or a sparse structure to significantly reduce the number of parameters in the A matrices that
need to be updated”.

Table 10: Time and space costs for each method on the RTE and QNLI tasks. # Communication
round denotes the number of communication rounds to reach the predefined target performance. ‡

denotes equipped with the compressing method FetchSGD.

# Trainable Parm. # Per-round Communicated Parm. # Per-round Computation Cost # Communication Round Accuracy

RTE QNLI RTE QNLI RTE QNLI

LoRA 1.83M 0.78M 22s 35s 167 397 87.49±0.15 91.16±0.72

FFA-LoRA 1.44M 0.39M 20s 33s 229 374 86.08±1.16 91.52±0.59

FedDPA-LoRA 2.62M 0.78M 23s 37s 128 325 87.44±0.13 90.74±1.38

FedSA-LoRA 1.83M 0.39M 22s 34s 91 224 87.93±0.11 92.13±0.24

FedSA-LoRA‡ 1.83M 0.20M 22s 34s 79 155 87.88±0.13 92.16±0.20
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