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ABSTRACT

Dynamic graph forecasting has become increasingly important in various do-
mains, such as social networks and transportation systems. While dynamic graph
neural networks (GNNs) have shown promise in predicting future node attributes,
they often fail to capture the complex spatial-temporal interactions between nodes,
limiting their performance. In this paper, we introduce STDMD, a novel dynamic
GNN model that incorporates meta spatial-temporal decoupling to effectively cap-
ture both spatial and temporal dependencies in node attributes. By leveraging
meta-learning, STDMD adapts to the evolving spatiotemporal patterns of node
data, improving the accuracy and robustness of predictions. Specifically, our
model dynamically refines spatial and temporal representations through an iter-
ative meta-optimization process, allowing for more effective learning of dynamic
node interactions. Furthermore, STDMD is designed to generalize across differ-
ent dynamic graph structures, making it highly scalable and adaptable to real-
world applications. Experimental results on real-world datasets demonstrate that
STDMD outperforms state-of-the-art baselines, showcasing its ability to model
dynamic node attributes with greater precision and robustness.

1 INTRODUCTION

Node attribute forecasting plays a critical role across a variety of domains, including traffic flow
prediction, disease transmission monitoring, and web page access detection. Accurate and reli-
able forecasting of dynamic node attributes is essential for controlling the development of dynamic
graphs and preventing potentially catastrophic consequences. For example, by monitoring traffic
flow on road maps, we can provide real-time guidance to vehicles, reduce congestion, and optimize
traffic management. Similarly, in healthcare, tracking the number of people infected with a disease
allows for predicting infection rates and identifying potential transmission paths, which is crucial
for controlling outbreaks. Therefore, developing methods that accurately forecast node attributes
and capture the complex variations in dynamic graphs is of paramount importance.

Recent advancements in graph neural networks (GNNs) have significantly enhanced node represen-
tation learning, with many models integrating GNNs with time series networks (RNN, Transformer)
Jiang et al.| (2021); [L1 et al.| (2018 |2023a); [Liu et al.| (2023); |Chen et al.| (2025); |Weng et al.| (2023);
Fan et al.| (2025) to capture the temporal dynamics of evolving graphs. These hybrid approaches
have demonstrated strong potential in modeling sequential dependencies within dynamic graphs.
However, they often suffer from an issue denoted as the dynamic graph mirage: i) the difficulty of
capturing complex spatial-temporal dependencies. ii) the inability to adapt to evolving dynamic
graph patterns.

For i), Conventional models often treat spatial and temporal information independently—focusing
either on structural connectivity between nodes or temporal changes in node attributes—while ne-
glecting their intricate interdependence. As illustrated in Figure [I] at time step 7}, disease trans-
mission follows local mobility patterns (e.g., A — C, B — FE) via direct regional connections.
However, by time step 75, the infection unexpectedly spreads to regions C, D, F, and even distant
G, driven by long-range transport effects. This mismatch stems from the dynamic nature of spatial
structures and the irregularity of temporal variations. Failing to model their joint influence leads to
limited adaptability and suboptimal forecasting, particularly in rapidly evolving environments.
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Figure 1: The virus originates from sources A and B. Traditional models mainly rely on direct
spatial connections (solid blue arrows), focusing on vehicle movement and local spread. Yet, sudden
outbreaks in regions C, D, and E suggest the presence of hidden spatiotemporal factors that such
models fail to capture. Moreover, long-range transmission through public transport and airborne
spread to region G (red dashed arrow) further expose the limitations of static approaches.

For ii), In real-world dynamic graphs, node attributes evolve irregularly under the influence of
complex spatial-temporal factors—such as cascading failures in transportation, fluctuating infec-
tion rates, or shifting user behaviors. As shown in Figure|l} although traditional models anticipate
local transmission based on static adjacency (solid blue arrows), the infection spreads non-linearly
to regions like C, D, and E, which are not directly connected to the original sources A and B. This
spread is driven by latent influences like public transport and air travel, which static models fail to
account for. Without mechanisms to adapt to evolving graph topologies and hidden dependencies,
traditional forecasting approaches often mispredict future states in highly dynamic settings.

These challenges arise because conventional models typically focus on either the spatial structure of
nodes or their temporal dependencies in isolation, failing to capture their intricate interdependencies
over long time spans. Node attribute changes are inherently irregular and influenced by a wide array
of spatial and temporal factors, such as cascading effects in transportation systems, fluctuating in-
fection rates in epidemiology, or evolving user behavior in online platforms. Consequently, current
approaches struggle to generalize effectively across diverse and highly dynamic environments. This
limitation hinders their predictive accuracy and restricts their practical deployment in real-world ap-
plications that require adaptability to rapidly changing conditions, such as intelligent traffic control,
epidemic forecasting, and financial market analysis.

To address these challenges, we propose STDMD, a novel dynamic GNN model that integrates meta-
learning to enhance GNN for node attribute forecasting. Specifically, we design three key modules:
the encoding layer, task construction, and meta optimization. The encoding layer leverages a GNN
combined with a gating mechanism to generate robust node embeddings that capture both spatial
and temporal dependencies. In the task construction module, we create support sets and query sets
for both spatial and temporal tasks, enabling the model to effectively learn from different types of
graph interactions. Finally, the meta optimization step applies meta-learning to dynamically update
both the spatial and temporal tasks, as well as the model parameters, to better capture the evolving
patterns in the dynamic graph. This process allows STDMD to significantly improve its ability to
predict future node attributes by more accurately modeling the spatiotemporal dependencies inherent
in dynamic graphs. In summary, our key contribution is threefold:

* We propose STDMD, a novel dynamic graph neural network model that integrates meta
spatial-temporal graph learning to effectively capture the complex spatiotemporal depen-
dencies in dynamic node attributes, improving the forecasting accuracy.

* We design a meta-learning framework that dynamically updates both spatial and temporal
tasks, enhancing the model’s ability to adapt to varying patterns of node attribute evolution
in dynamic graphs.

* We demonstrate the effectiveness of STDMD through extensive experiments on multiple
real-world datasets. Our results show that STDMD outperforms state-of-the-art baselines,
both in terms of quantitative forecasting performance and its ability to capture meaningful
spatiotemporal interactions.
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2 RELATED WORK

2.1 SPATIOTEMPORAL FORECASTING

Spatiotemporal forecasting |Jiang et al.|(2021); |[Dong et al.[(2024); |Cini et al.| (2023)) aims to predict
future trends by modeling historical spatiotemporal patterns, essential for dynamic node attribute
learning. Recent works combine graph neural networks (GNNs) with recurrent architectures to
jointly capture spatial and temporal dependencies. For example, Graph WaveNet |Wu et al.| (2019)
uses wavelet-based graph convolution for dynamic relationship modeling, while StemGNN |Cao
et al.| (2020) leverages DFT and GFT to extract frequency-domain features. MTGNN Wu et al.
(2020) integrates graph learning and temporal convolution to learn patterns and structures simul-
taneously. ST-Norm [Deng et al.|(2021) applies spatial and temporal normalization to disentangle
high-frequency components in complex systems. Pre-training approaches like GPT-ST |Li et al.
(2023b) and STD-MAE |Gao et al.| (2024)) further enhance performance via masked autoencoders.
Transformer-based models Jiang et al| (2023a); |[Liu et al| (2023)) also show strong capabilities in
long-range dependency modeling. However, most existing methods focus on macro-level spatiotem-
poral features, overlooking fine-grained dynamics in evolving node attributes.

2.2 DYNAMIC GRAPH META LEARNING

Dynamic graph learning addresses scenarios where both graph structures and node attributes evolve
over time. Traditional models often struggle to capture such dynamics effectively. Meta-learning
Hospedales et al.| (2022); (Son et al.| (2025)); Wang et al.| (2025) provides a promising solution by
enabling rapid adaptation to new tasks with limited data, making it well-suited for dynamic graphs.
Recent studies have integrated meta-learning into dynamic GNNs to improve adaptability and pre-
dictive accuracy. For example, MegaCRN Jiang et al.| (2023b)) introduces a MetaNode Bank within
a graph convolutional recurrent encoder-decoder framework. MetaDGE |[Mao et al.| (2024) lever-
ages Model-Agnostic Meta-Learning to learn dynamic graph embeddings. DMetaGCRN Guo et al.
(2025) proposes a meta-graph generator and a dynamic meta-graph recurrent unit to jointly model
spatial and temporal dependencies.

3 PROBLEM DEFINITION
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Figure 2: Given a dynamic graph snapshot G, STDMD constructs spatiotemporal tasks by sam-
pling nodes and edges to form support and query sets. A GNN encoder processes input features
X to produce dynamic node embeddings, integrating spatial and temporal dependencies via gating
mechanisms (Z, R, H’). Meta-optimization is performed at both spatial and temporal levels, en-
abling joint adaptation of node and edge embeddings. This design ensures robust generalization for
forecasting over evolving graph structures.

Graph Snapshot G,

Dynamic Graph. Given a dynamic graph G = (V, &, X'), where V represents the set of nodes, £
denotes the set of edges, and X = {x; |t =1,...,T} is the sequence of node attribute matrices
over time, the goal is to predict the future attributes of nodes.

Node Attribute Forecasting. Formally, the problem can be defined as learning a function f :
(Gt,x¢) = X¢41, where G = (V, &;) represents the graph structure at time ¢, x; € RIVI*d 5 the
node attribute matrix at time ¢, x4 is the predicted node attribute matrix at time ¢ + 1.
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4 METHODOLOGY

Our model consists of three modules, namely encoding layer, task construction, and meta-learning.

4.1 TASK CONSTRUCTION

In this section, we describe the construction of spatial and temporal tasks in dynamic graphs, which
are essential for training a meta-learning framework capable of capturing evolving spatiotemporal
dependencies. By partitioning the graph into support and query sets, the model learns to generalize
across different spatial structures and temporal dynamics, enabling fast adaptation to unseen graph
patterns.

Dynamic graphs exhibit both spatial correlations and temporal dependencies, where spatial relation-
ships determine how nodes interact within each snapshot, while temporal dependencies define how
node attributes evolve over time. To effectively learn from these dynamic interactions, we construct
two types of tasks:

* Spatial tasks (7): These focus on learning relationships between nodes and their neighbors
by sampling edges.

» Temporal tasks (7;): These focus on modeling the evolution of node attributes by sampling
nodes over different time steps.

Each task consists of a support set (used for adaptation) and a query set (used for evaluation), follow-
ing the standard meta-learning paradigm. While we decouple spatial and temporal tasks for meta-
learning, these two components are not treated in isolation. Through the joint meta-optimization
step, spatial-level and temporal-level adaptations are optimized simultaneously, enabling implicit
modeling of spatiotemporal interactions. This design ensures that cross-dependencies are captured
without introducing the instability often observed in monolithic spatiotemporal objectives.

Spatial Task Construction. Consider a dynamic graph G = (W, &, X, Z), where V is the set of
nodes, & is the set of edges, X represents node attributes, and Z represents the temporal states of the
graph. To capture spatial dependencies, we define a spatial task 75 as a pair of mutually exclusive
subsets of edges:

To = (Ss ={(u,v) €€}, Qs = {(p. ) € €}) 0
5.t.8:N Qs =1,
S5 (Support Set): A subset of edges sampled from £, used to train the model on spatial structures.
Qs (Query Set): Another subset of edges sampled from &, but disjoint from the support set, used to
evaluate the model’s ability to generalize to unseen spatial patterns. Each sampled edge (u,v) € S
contains nodes v and v, and the model learns to predict the relationship between them. The key
challenge is that spatial relationships are dynamic, meaning that new edges may form, or existing
edges may disappear over time. By training on S, and testing on Q, the model learns to generalize
spatial interactions beyond the observed connections.

Example: In a transportation network, roads (edges) connect different locations (nodes). Some roads
may experience congestion, temporary closures, or new route openings. The spatial task enables the
model to predict new road connections and adapt to network changes.

Temporal Task Construction. While spatial relationships describe how nodes interact within a
snapshot, temporal dependencies define how node attributes evolve over time. To model temporal
evolution, we construct a temporal task 7, where nodes are sampled at different time steps:

Ti=(Si={v; €V}, 0 = {v; €V}),st.5 N Q; = 0. 2)

S (Support Set): A set of nodes sampled from V at earlier time steps, used for training the model to
learn temporal patterns. Q; (Query Set): A set of nodes sampled at later time steps, used to evaluate
the model’s ability to predict future node attributes. By using disjoint sets S; and Q;, we ensure
that the model learns temporal representations from past observations and generalizes to future time
steps.
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Example: In an epidemic forecasting scenario, the number of infections (node attributes) changes
over time. The model trained on past infections (support set) should be able to predict future out-
breaks (query set) based on temporal patterns.

By separately defining spatial and temporal tasks, we enable meta-learning to effectively decouple
spatial and temporal dependencies, allowing the model to adapt efficiently to unseen dynamic graph
structures. The support-query task split ensures that the model learns generalizable patterns, making
it robust to real-world dynamic environments where both spatial structures and temporal behaviors
continuously evolve.

4.2 DYNAMIC NODE EMBEDDING

This section describes the method for encoding the dynamic graph and generating high-quality node
embeddings. The encoding process is divided into two stages: applying the GCN layer to capture
the spatial structure and using a gating mechanism to enhance the temporal dynamics of the node
embeddings.

To begin with, the GCN layer encodes the structural information of the graph. We define the opera-
tion of the GCN layer as follows:

X':= GCN(X) =D "/?AD"'/?Xe@, 3)

where A = A + I denotes the adjacency matrix of the graph augmented with self-loops. Here,
A is the original adjacency matrix, and I is the identity matrix. The diagonal degree matrix D is
calculated as D,-i =53 =0 Aij. X represents the initial node attribute matrix, which contains the
features of all nodes. ® represents the learnable weights of a multi-layer perceptron (MLP) that

transforms the node features. This operation computes X', the node embeddings that incorporate
the graph’s structural information and prepare the input for the subsequent temporal update process.

Next, to capture the temporal evolution of the dynamic graph, we employ a gating mechanism
inspired by LSTM. This mechanism enables the model to update node embeddings adaptively based
on historical states. The process consists of several steps: The update gate regulates the extent to
which the current node information X’ and the historical state H are incorporated into the new
embedding:

Z — o(X' + H), )
where H is initialized as a zero matrix of the same shape as X, and ¢ denotes an activation function
such as ReLU or Sigmoid. The matrix Z thus determines the degree to which past information is
preserved.

The reset gate controls how much of the historical state is forgotten when computing the current
embedding:

R =o(X' + H), 5)
yielding the reset gate matrix R.

Based on this gating mechanism, the candidate state H’ is derived by integrating the gated historical
information with the current graph structure:

H' =o(X'+GCN(H-R)), (©6)

where H - R applies the reset gate to the historical embeddings, and the GCN layer propagates
spatial dependencies.

Finally, the output embedding is obtained as a weighted combination of the previous state H and the
candidate state H’, modulated by the update gate Z:

H=Z H+(1-Z) H. 7)

This adaptive update enables the embeddings to capture both spatial and temporal information, while
the initial state H is set to a zero matrix to ensure consistency with the dimensionality of X.This
design effectively combines the structural information captured by GCN with temporal dynamics
through the gating mechanism. The activation functions (e.g., ReLU or Sigmoid) ensure non-linear
transformations, enabling the model to learn complex patterns in dynamic graphs. As a result, this
encoding layer serves as the backbone for extracting high-quality node embeddings that form the
basis for downstream tasks.
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4.3 META OPTIMIZATION.

Meta-learning intends to learn a form of general knowledge across similar learning tasks so that the
learned knowledge can be quickly adapted to new tasks [Peng| (2020). In our work, we intend to
explore the spatial interaction and temporal change rules of nodes in the dynamic graph and predict
the future value of node attributes through meta-learning under limited current information.
Spatial-Level Adaptation. To effectively capture the spatial connections between nodes in a dy-
namic graph, we design a spatial task that focuses on modeling the relationships among nodes. This
task is implemented using a contrastive learning approach, which encourages embeddings of con-
nected nodes to be similar while ensuring embeddings of unconnected nodes remain distinct. The
spatial task loss is formulated as:

Liw,S)= Y —o(hh])-Ino(~h,h)), (8)
(u,v)ESs

where v’ is a negative node sample that is not linked with u. The learnable parameters w (i.e., ®)
for both space and temporal tasks represent meta-knowledge.

Temporal-Level Adaption. Then, we design a temporal task to simulate the change happening on
node attributes, formulated as

Li(w,S) = ﬁ 3 (o(hy) - 9%, ©)

v; €St

where y is the target value of the node attribute in the future. Besides, we combine the spatial and
temporal tasks to provide significant gain for capturing inherent evolving patterns in the dynamic
graph. With the space and temporal adaptations on the query set, we can obtain a more scalable
dynamic GCN model. The adaptation loss is formulated as

00 —vVy(Ls(Qs)+ BL(Qr)) (10)

where the parameters 6 (i.e., ® ) is optimized to quickly adapt the model to changes on node at-
tributes in the dynamic graph. The + is the learning rate of the model, and 5 denotes the balance
coefficient between two task losses.

The proposed meta-optimization framework offers several key advantages. It enables the model
to generalize effectively to new and unseen scenarios in dynamic graphs by leveraging meta-
knowledge from both spatial and temporal tasks, enhances scalability through joint spatial-temporal
optimization to adapt to diverse patterns of node attribute evolution, and facilitates rapid adapta-
tion to changes in node states with minimal computational overhead using gradient-based meta-
optimization. This integrated approach allows the dynamic GCN model to efficiently capture and
predict the evolution of node attributes in complex dynamic graph environments.

5 EXPERIMENT

5.1 DATASETS

We conduct extensive experiments on three real-world datasets to validate the effectiveness and ro-
bustness of our proposed approach. WikiMaths [Rozemberczki et al.| (2021)), which captures user
interactions and content updates on a collaborative platform between March 16th 2019 and March
15th 2021 which results in 731 periods. EnglandCovid |[Panagopoulos et al.|(2021), a dataset reflect-
ing the spatiotemporal dynamics of COVID-19 case distributions across different regions in England
from 3 March to 12 of May. PedalMe Rozemberczki et al.|(2021), which tracks the operational and
mobility data of a sustainable urban logistics service in London between 2020 and 2021. Each
dataset presents unique challenges in terms of dynamic graph structure, temporal dependencies, and
heterogeneous features, enabling a comprehensive evaluation of our method’s performance across
diverse scenarios. The detailed information of datasets are summarized in Table [Tl

5.2 BASELINES

To comprehensively evaluate the effectiveness of our proposed method, we benchmark it against
several state-of-the-art models. The selected baselines include GCN Kipf & Welling (2017)), GCon-
vGRU |Seo et al.[(2018), and GConvLSTM |Chen et al.[(2022), which primarily focus on spatial and
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Table 1: Summary of the datasets used in our experiments.

Dataset # Nodes # Edges (avg.) # Time Steps
WikiMaths 1,068 27,079 722
EnglandCovid 129 1,743 52
PedalMe 15 225 30

sequential dependencies. We also consider spatiotemporal forecasting methods, including DCRNN
Lietal|(2018), STGCN|Yu et al.|(2018)), and STSGCN Song et al.| (2020), which explicitly integrate
spatial and temporal information. Furthermore, dynamic graph models such as EvolveGCNO |Pareja
et al.|(2020) and TGCN [Zhao et al| (2020) are evaluated to assess their adaptability to evolving
graph structures. In addition, we include recent transformer-based approaches such as STAEformer
Liu et al.[(2023), PDFormer |Li et al.| (2023a), and STWave |Fang et al.| (2023). We compare it with
recent meta-learning-enhanced dynamic graph models, including MegaCRN |Jiang et al.| (2023b)),
MetaDGE Mao et al.| (2024)) and DMetaGCRN |Guo et al.|(2025).

5.3 SETTINGS

We configure the experimental settings as follows. For training Configuration, the training pro-
cess spans 100 epochs, with the dataset split into training, validation, and test sets according to a
8:1:1 ratio. For each task, we randomly sample 100 edges/nodes for the support set (kspt) and 100
edges/nodes for the query set (kqry). For model architecture, the model takes an input dimension of
4 and uses a hidden dimension of 32. A dropout rate of 0.5 is applied to prevent overfitting. For
optimization parameters, The meta-learning rate and inner update learning rate both set to 0.01. The
number of update steps for both spatial tasks and temporal tasks is set to 1. Balance coefficient 3 is
set to 0.5. We evaluate the test performance with the mean squared errors (MSE), root mean squared
error (RMSE), and mean absolute percentage error (MAPE(%)). (Our environment: CPU: Intel(R)
Xeon(R) Silver 4210 CPU @ 2.20GHz, GPU: NVIDIA RTX 4090@24GB, Memory: 128GB. The
implementation of our model and all baselines are based on Pytorch 1.9.0 and Python 3.9)

Table 2: Forecasting errors evaluated by MSE, MAPE, and RMSE on three real-world datasets.
Bold values indicate the best results. * and ** denote p-value < 0.05 and 0.01 respectively in paired
t-test against the second-best method.

Models | MSE | MAPE | RMSE

\ WikiMaths  EnglandCovid PedalMe \ WikiMaths  EnglandCovid  PedalMe \ WikiMaths EnglandCovid PedalMe

GCN 0.8211 0.9723 1.1512 9.12% 12.34% 15.45% 0.9062 0.9860 1.0730
GConvGRU 0.7931 0.9412 1.2016 8.89% 11.78% 14.98% 0.8906 0.9702 1.0962
GConvLSTM 0.7991 0.9541 1.2141 8.93% 11.92% 15.12% 0.8940 0.9767 1.1019
DCRNN 0.8061 0.8323 1.2213 8.95% 11.35% 15.21% 0.8980 0.9123 1.1042
EvolveGCNO 0.7783 0.9793 1.2013 8.80% 12.48% 15.10% 0.8822 0.9896 1.0960
TGCN 0.7875 0.8587 1.2515 8.85% 11.69% 15.65% 0.8874 0.9266 1.1186
STGCN 0.7823 0.8432 1.2015 8.79% 11.40% 15.00% 0.8845 0.9182 1.0961
STSGCN 0.7795 0.8211 1.1753 8.76% 11.23% 14.85% 0.8830 0.9051 1.0841
STWave 0.7704 0.7983 1.1421 8.65% 10.98% 14.62% 0.8776 0.8935 1.0683
STAEformer 0.7875 0.8587 1.2515 8.85% 11.69% 15.65% 0.8874 0.9266 1.1186
PDFormer 0.7875 0.8587 1.2515 8.85% 11.69% 15.65% 0.8874 0.9266 1.1186
MegaCRN 0.7721 0.7453 1.1135 8.58% 9.85% 14.05% 0.8791 0.8632 1.0554
MetaDGE 0.7672 0.6987 1.0896 8.53% 9.12% 13.92% 0.8755 0.8365 1.0433
DMetaGCRN 0.7625 0.6451 1.0543 8.48% 8.77% 13.68% 0.8728 0.8036 1.0271
STDMD \ 0.7650** 0.5411** 1.0106* \ 8.50%* 8.32%** 13.45%* \ 0.8747* 0.7354* 1.0053*

5.4 OVERALL PERFORMANCE

As summarized in Table 2] STDMD consistently delivers the best forecasting accuracy across all
three datasets, significantly outperforming both classical spatiotemporal models (e.g., DCRNN,
STGCN, STWave) and more recent meta-learning based approaches (e.g., MegaCRN, MetaDGE,
DMetaGCRN). In particular, STDMD achieves the lowest errors on EnglandCovid and PedalMe,
two datasets characterized by highly volatile temporal dynamics and heterogeneous spatial interac-
tions, underscoring its robustness to complex and noisy real-world conditions. Statistical signifi-
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cance tests further confirm the superiority of STDMD, with most improvements achieving p < 0.05
or p < 0.01 when compared against the second-best methods.

The performance gain of STDMD arises from three core design choices. First, the GCN-based en-
coder with gating generates expressive spatiotemporal embeddings by dynamically refining spatial
features, allowing the model to capture both stable structures and transient variations. Second, the
unified meta-learning framework jointly optimizes spatial and temporal objectives through a sup-
port—query mechanism, which improves generalization to unseen temporal fluctuations and struc-
tural perturbations. Third, the dual-level meta-optimization strategy provides adaptive parameter
updates across tasks, balancing accuracy with training efficiency and avoiding the overfitting com-
monly observed in prior methods.

5.5 ABLATION STUDY

To assess the contribution of individual components in our framework, we conduct a systematic
ablation study with two model variants. S-STDMD removes the temporal task (£;) and optimizes
only with the spatial task (L), thereby testing the role of temporal dynamics in dynamic graphs.
Conversely, T-STDMD removes the spatial task (L) and relies solely on the temporal task (£;),
highlighting the importance of spatial dependencies. As shown in Figure [3] STDMD consistently
achieves the best results across all datasets, demonstrating its effectiveness in capturing and fore-
casting dynamic graph patterns. Both S-STDMD and T-STDMD yield competitive but inferior
performance, confirming the necessity of jointly modeling spatial and temporal components.

[ STDMD S-STDMD =3 T—STDMD‘

‘WikiMaths EnglandCovid PedalMe Normalized Performance

Values
>

Values
I

-

Normalized Score
e s s
S = B
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Metrics Metrics Metrics Model Variants

Figure 3: Ablation study on WikiMaths, EnglandCovid, PedalMe.

5.6 HYPERPARAMETERS ANALYSIS

We investigate the effects and sensitivity of our proposed STDMD on WikiMaths dataset to different
hyperparameters, including meta learning rate o and update learning rate -y, number of support k¢
and query samples kg, hidden dimension size d and balance coefficient 3. Figure E] shows the
influence of key parameters on model performance. For learning rates, both meta learning rate
and update learning rate demonstrate a U-shaped relationship with MSE, where extremely low or
high values degrade performance. The optimal range, observed around a=0.01 and y=0.01, ensures
efficient optimization and stable convergence. Regarding sample sizes, increasing ksp: and kqpry
improves performance up to a point, with the best results at k,;=100 and k=100, balancing
generalization and computational cost. Lastly, the hidden dimension size d exhibits diminishing
returns. Performance stabilizes with dimensions above 128. A range of 32-128 is recommended
for good accuracy while avoiding overfitting or unnecessary complexity. The balance coefficient
(8) determines the trade-off between spatial and temporal dependencies. Our results show that
B = 0.5 achieves the lowest MSE, indicating an optimal balance. Higher or lower values lead to
performance degradation. These findings offer practical guidelines for hyperparameter tuning to
enhance the model’s prediction performance on the WikiMaths dataset.

5.7 EFFICIENCY TEST

Table [3| reports the efficiency results across WikiMaths, EnglandCovid, and PedalMe. STDMD
achieves the lowest training times (110s, 90s, and 100s) and inference times (4.2s, 4.0s, and
4.1s), demonstrating clear computational advantages. Its time complexity is approximately
O(EF 4+ NF? + kg F? + kqry F?), where E, N, and F denote the number of edges, nodes, and
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(a) Learning Rate Sensitivity

éb) Support/Query Sample Size

(c) Hidden Dimension Size

(d) Loss Balance Coefficient
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Figure 4: Hyperparameters Analysis on WikiMaths Dataset (MSE).
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DCRNN 175s 7.0s | 140s  6.9s |160s 7.1s 0
EvolveGCNO | 180s 7.2s | 160s  7.0s |175s 7.1s
TGCN 165s 6.9s |145s  6.7s | 1555 6.8s L] L
STWave 155s 6.5s |135s  6.3s | 145s 6.4s
STAEformer |190s 7.5s |170s  7.3s |200s 7.4s  Figure 5: Comparison of actual vs. predicted node
PDFormer 210s 7.8s |195s  7.6s |220s 7.7s  attributes.
STDMD 110s 4.2s | 90s  4.0s |100s 4.1s

feature dimensions, and kg, and kq., denote the sizes of the support and query sets, respectively.
In contrast, baselines such as GConvGRU, STWave, and TGCN offer moderate efficiency, while
DCRNN and EvolveGCNO incur higher costs due to more complex architectures. The heaviest
models, STAEformer and PDFormer, exhibit the largest overhead, reflecting their larger parame-
terization. These results highlight STDMD’s ability to balance accuracy and efficiency, making it
particularly suitable for deployment in resource-constrained environments.

5.8 CASE STUDY

Figure [§ illustrates the comparison between actual and predicted feature values for two represen-
tative nodes over 100 time steps. The blue dashed lines correspond to the ground truth, while the
red solid lines denote the predictions generated by STDMD. Overall, the model is able to accurately
capture temporal patterns and fluctuations, demonstrating strong alignment with the observed tra-
jectories. Nonetheless, its performance declines in scenarios with abrupt variations, such as sharp
peaks and sudden drops, indicating limitations in temporal adaptability. Moreover, the close corre-
spondence between the two nodes’ feature dynamics highlights the model’s ability to capture spatial
dependencies within the graph. This case study underscores the robustness of STDMD for dynamic
graph modeling, while also pointing to future opportunities for enhancing its capacity to handle
rapid structural or temporal transitions.

6 CONCLUSIONS

In this paper, we introduced STDMD, a spatiotemporal dynamic meta-learning framework that en-
hances dynamic GCNs for node attribute forecasting. By innovatively constructing support and
query sets, STDMD integrates spatial and temporal tasks into a unified optimization process, en-
abling effective capture of both structural dependencies and temporal dynamics. Extensive experi-
ments on three real-world datasets demonstrate that STDMD consistently outperforms state-of-the-
art baselines in terms of accuracy, efficiency, and robustness.
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