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Abstract

This paper presents a comprehensive compari-
son of temperature prediction models for HVAC
systems using the CO-BUILD Smart Buildings
Competition dataset. We evaluate five modeling
approaches—Naive Mean, Light Gradient Boost-
ing Machine (LightGBM), Time-series Dense En-
coder (TiDE), Time Series Foundation Model
(TimesFM), and a Multimodal Large Language
Model—across prediction horizons from 5 min-
utes to 2 weeks. Through exploratory data anal-
ysis, we identify key building characteristics, de-
vice relationships, and operational patterns that
inform our preprocessing pipeline, which includes
timezone conversion, missing data handling, and
feature selection incorporating both direct VAV
measurements and cross-device CO5 influences.
Our results demonstrate that LightGBM achieves
superior short-term performance (up to 3 hours),
while TiDE proves effective for longer horizons.
TimesFM accurately predicts weekly temperature
patterns in a zero-shot setting, and a multimodal
LLM exhibits unique reasoning capabilities, suc-
cessfully forecasting temperature shifts during
operational transitions. This study provides practi-
cal insights for model selection in building energy
management systems.

1. Introduction

Smart buildings leverage high-resolution temporal and spa-
tial data collection to monitor occupant behavior, indoor
environmental conditions, and system states. This rich data
ecosystem enables the deployment of sophisticated appli-
cations for analysis, prediction, and control optimization.
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For HVAC (Heating, Ventilation, and Air Conditioning)
systems, achieving optimal operation requires balancing
occupant comfort with energy efficiency through dynamic
optimization approaches that account for the inherent vari-
ability in building and system behavior. Such optimization
strategies necessitate accurate predictive models for bound-
ary conditions, including occupancy patterns and outdoor
weather conditions.

Since most HVAC systems are operated to maintain indoor
temperatures within a specific comfort range, accurate pre-
diction of future indoor temperatures plays a critical role
in implementing dynamic optimal control. While typical
HVAC systems operate on a daily schedule (e.g., from 8:00
AM to 7:00 PM), making a prediction time horizon of sev-
eral hours to one day generally sufficient, systems with
greater thermal capacity, such as those incorporating ther-
mal energy storage, may require longer horizons spanning
several days. Additionally, for integrated energy demand-
supply control at district or urban scale (e.g., demand re-
sponse systems), even longer prediction horizons of several
weeks may be required.

In this competition, we set a practical prediction time hori-
zon ranging from five minutes up to two weeks. We investi-
gate the prediction accuracy of various modeling approaches
over short- to long-term forecasting horizons.

2. Data Overview

This section provides an overview of the provided dataset.
The dataset consists of one year of HVAC system operation
data with five-minute interval from a building (Goldfeder
et al., 2025). First half of the data is used for training and
the second half is used for testing. The prediction target is
the indoor temperature obtained from temperature sensors
in 123 VAV (Variable Air Volume) boxes. We refer to this
temperature time series data as target and all other data as
covariates, which can be used as features for prediction. The
covariates are further classified into three categories: past
covariates are covariates known only into the past, future
covariates are covariates known into the future, and static
covariates are covariates that remain constant over time.
Table 1 shows the details of each covariate.
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Table 1. Data overview.

Category Variable Description

Target Zone air temperature  Zone air temperature of each VAV

All measurement data of each VAV

All measurement data of 2 AHUs

All measurement data of weather station
All CO; setpoints of all devices

VAV sensor values
AHU sensor values
Outdoor conditions
COx setpoints

TMY data
Scheduled setpoints
Time features

Device ID

Past covariates

Future covariates Typical Meteorological Year data
Estimated setpoint schedules

Month, day, hour, day of week, etc.

Static covariates Unique ID of each target device

2.1. Building Location and Weather Data

Since the only locational information provided was that the
buildings are located in the United States, we estimated
the geographical region based on the provided outdoor air
temperature data. The temperature patterns suggest a re-
gion with four distinct seasons but relatively mild winters,
indicating a likely location in the southern United States.
By comparing monthly statistical values of the provided
weather data with TMY (Typical Meteorological Year)
datasets (OneBuilding, 2025) and actual weather data in
2022 (Time & Date, 2025) for several cities, we estimated
that the building is located in or near San Francisco, Cali-
fornia, as shown in Figure 1. Based on this assumption, we
used the TMY data for San Francisco as future covariates in
our modeling.

The provided timestamps appear to be in UTC format. Con-
sistent with our location analysis placing the building in
California, we converted all timestamps to Pacific Time
(America/Los_Angeles, GMT-8/GMT-7) to facilitate accu-
rate temporal analysis and account for daylight saving time
transitions.

2.2. Connections between Zones and Devices

The target building is a two-story facility that regulates in-
door temperature and CO- concentration across over 500
rooms using 123 VAV boxes equipped with thermostats.
While the device registry lists six Air Handling Units
(AHUs), analysis of the naming conventions and operational
status indicates that duplicated and non-functional entries
exist, suggesting that two primary AHUS are responsible for
air conditioning operations.

Analysis of VAV-zone relationships revealed that the num-
ber of zones connected to a single VAV ranges from 1 to
41, and the number of VAVs connected to a single zone
ranges from 1 to 8. Since mechanical drawings were not
provided, it is difficult to determine the control logic or spa-
tial relationships for devices connected to multiple zones.
Including all connected VAV through zones as features may
overcomplicate the modeling with excessive inter-VAV in-
teractions. Therefore, for single-VAV modeling, we decided

to limit features to those directly relevant to the target VAV,
including associated AHU data and outdoor air conditions.

To elucidate relationships between measurement variables,
we applied Dynamic Mode Decomposition (DMD) (Schmid,
2010) and analyzed the resulting coefficient matrix shown
in Figure 2. This analysis revealed that CO; setpoints from
VAVs actively managing CO- levels significantly influence
room temperatures of VAVs not directly involved in COq
control. We hypothesize that when a VAV adjusts its op-
eration to satisfy CO» control requirements, it affects the
operational state of the connected AHU, which subsequently
influences room temperatures of other VAVs served by the
same AHU. To capture this cross-device influence, we in-
cluded CO, setpoints from all devices as past covariates in
our modeling approach.

2.3. Cooling and Heating Temperature Setpoints

Analysis of cooling and heating zone air temperature set-
point data revealed a one-hour shift in HVAC operation
timing due to daylight saving time and seasonal changes in
the setpoint values themselves. Using the training period
data and weekly average outdoor temperatures calculated
from San Francisco’s TMY data, we identified a threshold
of 14 °C as a decision point for adjusting setpoints. This out-
door temperature-dependent schedule was used as a future
covariate to predict targets.

2.4. Missing and Duplicated Data

Both training and test periods contain intervals where target
zone air temperatures are continuously recorded as zero.
Given the physical implausibility of sustained zero tem-
peratures, we treated these periods as missing data. Since
missing target values preclude meaningful error evaluation,
these intervals were excluded from both training and eval-
uation procedures. Additionally, we identified complete
data gaps (e.g., June 30) where timestamps themselves are
absent.

The test period data also contains duplicate entries, specif-
ically complete data duplication for July 29, 2022. These
duplicates were removed to ensure valid model evaluation.

2.5. Temperature Unit Inconsistency

While all devices report temperature measurements in
Fahrenheit, device ID 16286830034440683520 uses
Kelvin units. To maintain evaluation consistency across all
targets, we converted this device’s temperature values to
Fahrenheit for both training and evaluation phases.
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Figure 1. Monthly statistics of outdoor temperatures in US cities.
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Figure 2. The DMD coefficient matrix.

3. Modeling Approach

This section details our modeling methodology for the com-
petition. Our fundamental strategy involves training unified
machine learning models capable of predicting target values
across all VAVs. Given that observable fields vary slightly
across devices, we standardized the feature space by tak-
ing the union of all observable fields and imputing missing
values with -1 for devices lacking specific measurements.

We evaluated five distinct modeling approaches—Naive
Mean, Light Gradient Boosting Machine, Time-series Dense

Encoder, Time Series Foundation Model, and Multimodal
Large Language Model—across ten forecasting horizons
ranging from 5 minutes to 2 weeks. To ensure implementa-
tion consistency and evaluation reliability, we utilized the
Darts library (Herzen et al., 2022). Detailed descriptions of
each model follow.

Unless otherwise specified, models utilize historical input
windows matching the prediction horizon length. Specif-
ically, for n-step ahead forecasting, models incorporate:
ordinally encoded static covariates, past n steps of past co-
variates and target values, and both past and future n steps of
future covariates. This design enables models to capture his-
torical patterns while leveraging known future information
such as scheduled setpoints and temporal features.

To prevent overtuning to the test data (Schneider et al.,
2025), we strictly excluded all evaluation period data (July
1st onwards) from the modeling pipeline, including hyper-
parameter tuning. Model optimization was conducted using
validation splits of the training data (through June 30th).

3.1. Naive Mean

We implemented a naive mean baseline that predicts future
target values as the average of past values within a window
equal to the prediction horizon. For instance, 6-hour fore-
casts use the mean of the preceding 6 hours of target values.
This simple baseline provides a performance reference for
evaluating more sophisticated approaches.
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3.2. Light Gradient Boosting Machine

Light Gradient Boosting Machine (LightGBM) is a gradient
boosting framework utilizing tree-based learning algorithms
(Ke et al., 2017). We employed a multi-step forecasting
strategy that trains separate models for each prediction step.
For n-step forecasting, this approach involves training n spe-
cialized models, each targeting a specific time step ahead.
This step-specific design enables the capture of distinct tem-
poral patterns at different horizons, potentially improving
accuracy over single models predicting all steps simultane-
ously.

All hyperparameters were maintained at Darts library de-
faults.

3.3. Time-series Dense Encoder

Time-series Dense Encoder (TiDE) (Das et al., 2023) is
a multi-layer perceptron (MLP) architecture designed for
long-term time series forecasting. Unlike traditional recur-
rent or convolutional approaches, TiDE employs a stream-
lined dense encoder-decoder framework that captures com-
plex temporal patterns while maintaining computational
efficiency.

The architecture features a dense encoder processing histor-
ical time series and covariates to extract temporal features,
coupled with a dense decoder generating multi-step predic-
tions. This design enables TiDE to handle both short-term
dependencies and long-term trends while seamlessly inte-
grating past and future covariates—capabilities particularly
well-suited for HVAC systems where scheduled setpoints
and temporal features provide valuable predictive informa-
tion.

We configured TiDE with L1 loss, 512 hidden units, 3 en-
coder and decoder layers, 32-dimensional decoder output,
and 0.1 dropout. The batch size was set to 1024, with
learning rates determined via the Darts learning rate finder
(Smith, 2017). Training proceeded for 20 epochs with learn-
ing rate reductions by factor 10 at epochs 10 and 15.

3.4. Time Series Foundation Model

Foundation models such as TimesFM (Das et al., 2024) and
Chronos (Ansari et al., 2024) represent emerging paradigms
for time series forecasting. These pre-trained transformer-
based models leverage diverse temporal patterns learned
from large-scale datasets to achieve competitive perfor-
mance across domains with minimal task-specific adapta-
tion.

We employed the pre-trained TimesFM model for one-week
(168-hour) predictions using four-week (672-hour) input
contexts. Each VAV zone was treated as an independent time
series, with zone-specific predictions performed separately

rather than multivariate forecasting. No model fine-tuning
was conducted.

Foundation models offer several advantages for this appli-
cation: reduced training data requirements, robustness to
operational anomalies, and the ability to capture complex
temporal patterns without domain-specific architecture de-
sign. However, they also present limitations including lack
of physical constraints, limited interpretability, and signifi-
cant computational overhead.

Additionally in this competition, it should be noted that the
target dataset may have been included in the foundation
model’s pre-training data, which could potentially influence
the evaluation results and should be considered when inter-
preting performance comparisons.

3.5. Multimodal Large Language Model

We present a novel methodology for time series forecasting
using multimodal Large Language Models (LLMs). While
conventional forecasting relies on sequence models, recent
advances suggest that LLM reasoning capabilities can en-
hance predictive accuracy. Specifically, providing time se-
ries data across multiple modalities—text, image, and au-
dio—has shown promise for improving model performance.

Daswani et al. (2024) compared the predictive accuracy of
a multimodal LLM when time series data were provided
as either text or image. It showed that image-based inputs
led to a classification accuracy improvement of up to 120%
and a tenfold reduction in token usage and cost. However,
the study addressed a classification task, fall detection from
wearable sensor data. In this paper, we extend the multi-
modal approach to a time series forecasting task. Addition-
ally, we examine whether converting time series data into
audio format and supplying it to the LLM yields further
benefits.

We employed the latest Gemini 2.5 Pro (Comanici et al.,
2025), which features an extended context window and
enhanced visual reasoning capabilities. However, due to the
constraint of LLM inference cost, we limited the scope of
our experiments as follows:

» Forecast Horizons: Constrained by Gemini’s maxi-
mum output token limit (65,535 tokens), three horizons
were chosen: 6 hours, 24 hours, and 3 days.

* Devices: Four devices were randomly selected.

* Observable Fields: A common set of fields was used
to ensure data consistency: zone air temperature, cool-
ing temperature setpoint, heating temperature setpoint,
supply air flowrate setpoint, supply air flowrate sensor,
and outside air temperature sensor.

* Prediction Start Dates: To ensure data stability, three
start dates were selected: Oct 15th 00:00, Oct 17th
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00:00, and Oct 20th 00:00.

For the context for the LLM, time series data from the six
observable fields listed above were visualized as graphs and
provided to the model as images. Since this is a forecasting
task, we also provided the context data for the target variable
as raw text in addition to the image. The length of the
historical data provided to the model was set to be identical
to the forecast horizon (e.g., a 3-day context for a 3-day
forecast). Finally, to investigate the potential impact of an
additional modality, we converted the indoor temperature
time series into an audio file and included it in the context.

We prompted the model to return structured output, contain-
ing 5-minute interval forecasts for the indoor temperature.
The input prompt was structured to first present a series of
time-series graphs, each accompanied by a brief text descrip-
tion (e.g., “This graph shows the outside air temperature.”).
Following the images, the full raw text data for the target
indoor temperature was provided, along with the audio file.
Finally, a set of instructions detailed the forecasting task, in-
cluding the horizon, interval, and required structured output
format. Each experiment was repeated five times with dif-
ferent random seeds, and the overall MAE for each forecast
horizon was calculated by averaging the results across all
seeds, start dates, and devices.

4. Results and Discussion

This section presents the evaluation results for each model
across different prediction horizons. The evaluation uses
Mean Absolute Error (MAE) as specified in the competition
rule. The ground truth data consists of all data from the
test period (July 1st onwards) where target values are not
missing. Note that the number of evaluation points varies
by device due to slight differences in missing data periods
across devices.

For prediction evaluation, we performed forecasting by slid-
ing the prediction window one step at a time with overlap-
ping predictions over the entire test period. The absolute
error between each prediction and the corresponding ground
truth was calculated, and the final MAE was computed as
the average across all predictions on all devices.

Table 2 summarizes the MAE results for each model across
different prediction horizons. The results demonstrate dis-
tinct performance characteristics for each modeling ap-
proach across various temporal scales.

4.1. Naive Mean

The Naive Mean model serves as our baseline, predicting
future temperatures as the mean of past values within the
same time period as the prediction horizon. As shown in
Table 2, the model achieves low MAE values for short-term

predictions (0.0704 °F to 0.418 °F for 5 minutes to 1 hour),
reflecting the temporal stability of indoor temperatures in
HVAC-controlled environments.

Performance deteriorates significantly for medium-term pre-
dictions (0.993 °F to 1.83 °F for 3-12 hours) as the averaging
assumption becomes less valid, particularly failing to cap-
ture diurnal temperature variations such as the transition
from daytime to nighttime temperatures.

For long-term predictions (1 day to 2 weeks), the MAE
gradually increases from 1.55 °F to 1.88 °F, indicating
progressive deterioration as the prediction horizon extends.
This degradation may occur because seasonal temperature
changes become increasingly influential over longer periods,
which the simple mean-based approach cannot capture.

4.2. Light Gradient Boosting Machine

The LightGBM model demonstrates strong performance for
short-term predictions, achieving MAE values of 0.0834 °F,
0.163 °F, 0.230 °F, and 0.434 °F for 5-minute, 30-minute,
1-hour, and 3-hour horizons respectively. These results
represent significant improvements over the Naive Mean
baseline, particularly for the 30-minute to 3-hour prediction
horizons where LightGBM achieves approximately 33-56%
lower MAE.

Interestingly, for the 5-minute prediction horizon, Light-
GBM performs slightly worse than the Naive Mean baseline
(0.0834 °F vs 0.0704 °F). A possible reason is that the
inherent temporal stability of indoor temperatures in HVAC-
controlled environments makes simple averaging highly ef-
fective for very short-term predictions, while the complexity
of the LightGBM model may introduce unnecessary noise
for such stable conditions.

However, our LightGBM implementation faces computa-
tional limitations for longer prediction horizons (6 hours
and beyond), as evidenced by the missing results in Table 2.
This limitation arises from the multi-step forecasting ap-
proach requiring separate models for each prediction step,
combined with larger feature sets needed for extended tem-
poral dependencies. The result is prohibitive computational
requirements for horizons beyond 3 hours.

To enable LightGBM for longer-term predictions, strategies
such as data subsampling, feature aggregation, and alter-
native forecasting approaches would be necessary, trading
some predictive granularity for computational feasibility.

4.3. Time-series Dense Encoder

The TiDE model demonstrates strong performance across
various prediction horizons, as shown in Table 2. For short-
term predictions, TiDE achieves competitive performance
with 0.0708°F, 0.205°F, and 0.264°F MAE for 5-minute,
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30-minute, and 1-hour horizons respectively. The model
particularly excels at medium-term predictions, achieving
the best performance for 6-hour (0.869°F), 12-hour (1.01°F),
and 1-day (1.05°F) horizons.

Figure 3 illustrates the training loss curves for different
prediction horizons, comparing the 2-week and 30-minute
forecasting tasks. The results reveal that longer prediction
horizons, particularly the 2-week forecast, suffer from re-
duced training data availability due to missing target values
in the dataset. This data scarcity leads to potentially under-
fitting, as evidenced by the learning curves. The comparison
suggests that with increased data availability, there is con-
siderable room for improvement in long-term prediction
performance. This limitation highlights the importance of
data completeness for training robust models capable of
extended forecasting horizons.

train_loss, val_lo:

— TiDE train_loss == TiDE val_loss = TiDE hos

loss == TIDE horizon=2weeks val_loss

0.015

0.005

Figure 3. Loss curves of TiDE for different prediction horizons.
The x-axis represents the training epochs, and the y-axis represents
the normalized loss value. Red lines represent the 2-week predic-
tion task, while blue lines represent the 30-minute prediction task.
Dotted lines indicate the validation loss, while solid lines indicate
the training loss.

4.4. Time Series Foundation Model

The TimesFM demonstrated excellent performance for one-
week temperature predictions in building environments. As
shown in Figure 4, the model accurately captured actual
temperature variation patterns for a specific device during a
week in August, showcasing its ability to handle complex
temporal dynamics in building systems.

For validation, we focused exclusively on datasets contain-
ing five consecutive weeks of data, incorporating both the
five-week input context and the prediction horizon. This
constraint ensured data continuity while enabling proper
evaluation of the model’s forecasting capabilities under re-
alistic operational conditions.

TimesFM Prediction for Device ID: 2788179547754974
7 Input (Context)
— True Values
TimesFM Forecast
%7 .. prediction Start

Temperature (°F)

8

20220721 2022:07-25  2022:07-29 2022-08:01  2022-08:05  2022:08-09 20220813  2022-08-17  2022-0821 20220825
Time

Figure 4. A one-week temperature prediction by TimesFM. The
blue line represents the input, the green line represents the ground
truth, and the dotted yellow line represents the prediction.

Quantitative evaluation on the entire validation dataset
yielded a Mean Absolute Error (MAE) of 1.37 degrees
Fahrenheit, demonstrating that TimesFM achieves practical-
level accuracy for building temperature prediction tasks.
This performance indicates the model’s effectiveness in cap-
turing the complex patterns inherent in building thermal
dynamics.

However, the one-week sliding window prediction approach
showed limitations when encountering behaviors that devi-
ated from historical context patterns. Specifically, prediction
accuracy degraded during periods of seasonal transitions,
unusual weather conditions, or sudden changes in building
operational patterns. These limitations suggest that the fixed
prediction horizon constraint may require more flexible fore-
casting strategies to handle exceptional circumstances effec-
tively.

4.5. LLM-based Forecasting

Since the scope of this experiment is different from the
other models, we do not compare its performance with the
others. Instead, we present here an illustrative example to
highlight the unique capabilities of the LLM in time series
forecasting.

Figure 5 shows a prediction result for a device, with a 3-day
forecast horizon starting from Oct 15, 2022, 00:00. This task
is particularly challenging because the context consists of
three weekdays, while the forecast period covers a weekend
followed by a weekday.

Remarkably, the model accurately predicted that the indoor
temperature would drop during the weekend and then rise
sharply on Monday morning, Oct 17, despite this behavioral
pattern not being present in the given 3-day weekday context.
The model’s internal reasoning (Chain-of-Thought) was as
follows:
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Table 2. Mean Absolute Error across different models and different prediction horizons. Boldfaced values indicate the best performance
for each horizon. Parentheses of Gemini indicate the performance without audio input.

Smin 30min [ hour 3 hours 6 hours 12 hours 1 day 3 days 1 week 2 weeks
NaiveMean | 0.0704 0.244  0.418  0.993 1.60 1.83 1.55 1.69 1.69 1.88
LightGBM | 0.0834 0.163 0.230  0.434 - - - - - -
TiDE 0.0708 0.205 0.264  0.870 0.869 1.01 1.05 1.29 1.27 141
TimesFM - - - - - - - - 1.37 -
Gemini - - - - 0.691 (0.730) - 1.51 143 1.89 2.09) - -

Prediction Analysis (Device: 2607531467124107)

Figure 5. A three-day temperature prediction by LLM-based fore-
casting. The black line represents the input, the red line represents
the ground truth, and the dotted blue line represents the prediction.

The forecast is based on a comprehensive anal-
ysis of the provided historical data for indoor
temperature, supply air flowrate, and outside air
temperature over the past three days. 1) **Week-
day Pattern**: The historical data revealed a con-
sistent pattern on weekdays, where the HVAC
system maintains the indoor temperature around
70.5°F during occupied hours (approx. 07:00-
19:00), followed by a gradual decrease at night,
influenced by the drop in outside air temperature.
2) **Weekend Pattern**: The forecast period in-
cludes a Saturday and a Sunday. I **assumed**
the building would be unoccupied on these days,
leading to the HVAC system operating in a mini-
mal or nighttime mode throughout the day. Con-
sequently, I **predicted** that the indoor temper-
ature would not be actively controlled and would
instead slowly follow the fluctuations of the out-
side air temperature, rising slightly during the day
and falling at night. 3) **Monday Resumption**:
I **predicted** that the regular weekday HVAC
pattern would resume on Monday. Specifically,
a warm-up sequence would cause a sharp tem-
perature increase in the early morning (around
05:30), stabilizing at 70.5°F during the day before
declining again in the evening.

As demonstrated by its reasoning, Gemini inferred the oper-
ational status of the HVAC system, successfully predicting
that the temperature would track outdoor conditions over the
weekend before rising sharply on Monday morning. This
result highlights the potential for LLMs to achieve forecast-
ing performance beyond the reach of conventional methods,
leveraging their advanced reasoning capabilities.

Furthermore, we hypothesized that augmenting the image-
based context with an audio representation of the time series
could enhance the LLM’s grasp of the data’s dynamic char-
acteristics, thereby improving forecast accuracy (Fovino
et al., 2024). However, our results did not yield conclu-
sive evidence that including audio improves forecasting
performance. The possibility remains that alternative sonifi-
cation methods or application to longer-term forecasts (e.g.,
monthly predictions at hourly intervals) could prove benefi-
cial. We leave this as a direction for future work.

5. Conclusion

This paper presented a comparative analysis of five model-
ing approaches for HVAC temperature prediction, evaluated
on the CO-BUILD Smart Buildings Competition dataset
across horizons from 5 minutes to 2 weeks.

Our results reveal that model performance is dependent on
the prediction horizon:

* 5 minutes: Naive Mean achieved the lowest error,
capitalizing on the high temporal stability of indoor
temperatures.

* 30 minutes to 3 hours: LightGBM consistently out-
performed other models, demonstrating its strength in
short-term forecasting.

* 6 hours to 2 weeks: TiDE proved effective for ex-
tended horizons, while the multimodal LLM exhibited
unique reasoning capabilities for complex operational
transitions. TimesFM and Gemini showed potential for
longer-term predictions under zero-shot conditions.

This work offers practical insights for selecting appropriate
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prediction models based on temporal requirements and com-
putational constraints in smart building implementations.
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