
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM GRAPH EMBEDDING TO LKH: BRIDGING
LEARNING AND HEURISTICS FOR A STREAMLINED
GENERAL TSP SOLVER

Anonymous authors
Paper under double-blind review

ABSTRACT

The Traveling Salesman Problem (TSP) is known as one of the most notorious
NP-hard combinatorial optimization problems. In recent decades, researchers from
fields such as computer science, operations research, and artificial intelligence in-
cluding deep learning (DL) have made numerous attempts on the problem. Among
the works, the Lin-Kernighan-Helsgaun (LKH) heuristic algorithm is one of the
most competent methods for obtaining optimal or near-optimal solutions. Despite
the rapid development in DL-based solvers, few of them can defeat LKH in terms
of both running efficiency and solution quality across different distributions. In this
paper, we would introduce a very novel approach that enhances LKH with graph
embedding (GE) techniques in solving general TSP (distances can be non-metric
and asymmetric), named as Embed-LKH. It is presented as two stages: i) in the GE
stage, it transforms the distances to transition probabilities, then conduct GE given
the transition probabilities, and finally it uses the learned embeddings to construct
the so-called ‘ghost distances’; ii) in the LKH stage, LKH generates candidates
based on the ghost distances but searches tours according to the original distances.
As the experiments show, compared with the original LKH counterpart, in
most cases, our approach can obtain better solutions within the same amount
of trials across six distance distributions (non-metric and asymmetric: nor-
mal, uniform, exponential, metric and symmetric: Euclidean 2D/10D/50D) and
two problem scales (TSP-100/1000). The source files, running scripts, and
data are in the anonymous link https://anonymous.4open.science/
r/EmbedLKH-BF80/, which will be made publicly available after the review.

If I have seen further, it is by standing on the shoulders of giants.
– Isaac Newton.

1 INTRODUCTION

The Travelling Salesman Problem (TSP) is one of the most well-known NP-hard combinatorial
optimization (CO) problems. Given a set of nodes and the distances between them, TSP aims to find
the shortest tour that visits each node exactly once and returns to the starting node. With applications
spanning logistics, telecommunications, and genetics, TSP plays a crucial role in route optimization
and network planning (Applegate et al., 2007; Rardin & Rardin, 1998; Matai et al., 2010).

General TSP and its Practical Significance. In this paper, we study the general TSP, where the costs
from node to node can be non-Euclidean (are not distances derived from Euclidean coordinates) and
asymmetric (the cost from node i to j does not have to be equal to that from j to i). Compared with
the symmetric TSP defined by 2D coordinates which is much more commonly studied by literature
(Kool et al., 2018; Kwon et al., 2020; Li et al., 2023; Qiu et al., 2022), the general TSP is more
ubiquitous in practical applications: For example, the time it takes for vehicles to travel between two
places does not entirely depend on the physical distance between the two places, but is highly affected
by road congestion and speed limits (65 mph on highway but 25 mph in residential districts). That
leads to a non-Euclidean time cost. Meanwhile, the time cost can be also asymmetric due to different
congestion situations in different directions (for example, during morning rush hours, the required
time of traveling from residential areas to work areas is much higher than the opposite direction), as
well as probably different road conditions (some roads are one-way).

1

https://anonymous.4open.science/r/EmbedLKH-BF80/
https://anonymous.4open.science/r/EmbedLKH-BF80/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

✓

✓

✓

✓

✓
Small

Large
Distances

i

j

i

j

hard instance easy instance
strong solvers may struggle human can easily handle

Figure 1: Motivation: reducing the difficulty of
the input instances helps solvers more easily find
better solutions.

Research Progress. One algorithm that can-
not go unmentioned in the context of the TSP
is LKH (Lin-Kernighan-Helsgaun (Helsgaun,
2000; 2017)), widely regarded as one of the
most effective heuristic algorithms for TSP due
to its near-optimal solutions, high speed, and
good scalability. Huge success has been made
in neural solvers for TSP in 2D Euclidean space.
Notably, some of the works (Sun & Yang, 2023;
Li et al., 2024) achieve a comparable perfor-
mance with LKH. However, on general TSP,
there remains a considerable gap between cur-
rent neural solvers and LKH. In this paper, we are going to bridge this gap by innovatively utilizing
graph embedding to enhance LKH, which falls in the so-called Embed-LKH. And for the first time,
Embed-LKH outperforms LKH on the general TSP (including the Euclidean ones) within the same
amount of trials. Just as we quoted Newton in the preface, we believe that the shortcut to surpassing
LKH is to stand on LKH’s shoulder, and as shown by experiments, our Embed-LKH does see further.

Motivation. The motivation is straightforward: to reduce the difficulty of input TSP instances. As
illustrated in Fig. 1, there are hard cases and easy cases. For hard instances, even strong solvers like
LKH struggle to find the optimal solution, whereas for easier instances, a simple greedy algorithm
(e.g., nearest neighbor) suffices. Our objective is to transform a difficult instance into an easier
one that likely shares the same optimal solution, allowing LKH to find a shorter tour with fewer
trials. Importantly, while we adjust the distances during the transformation, the tour length is always
computed using the original distances of the hard instance.

We notice that the graph embedding (GE) techniques (e.g., Perozzi et al. (2014); Grover & Leskovec
(2016)), originally developed for graph mining tasks (e.g., community discovery, social link prediction,
etc.), possess remarkable properties that could be highly effective for general TSP solving, including:
i) Scalability. With a single machine of 128GB memory, GE methods (e.g., Tang et al. (2015);
Qiu et al. (2019a)) can easily deal with graphs of millions of nodes. ii) Unsupervised learning.
Most GE methods work in an unsupervised style, making it particularly suitable for the general TSP,
where optimal solutions are usually inaccessible as supervisory information. iii) Applicability on
non-attributed graphs. GE directly learns from graph topology without node attributes. These
virtues of GE also motivate us to apply GE in the challenge of solving general TSP.

Our Techniques and Highlighted Features. In our Embed-LKH, we first apply GE techniques on
the transition probability matrix transformed from the distance matrix of the general TSP. This allows
us to construct a ‘ghost distance matrix’, a modified distance matrix that we expect will be easier to
solve compared to the original distances. We then generate candidates based on the ghost distances
while searching tours according to the original distances to ensure the accuracy of the computed tour
length. Below, we summarize the main virtues of Embed-LKH:
• Effectiveness. We investigate six distance distributions including three non-metric and asymmetric

(normal, uniform, exponential), and three metric and symmetric (Euclidean 2D/10D/50D). Results
show that in most cases Embed-LKH can outperform learning-based solvers, as well as the original
LKH within the same number of searching trials.

• High efficiency and scalability. We utilize closed-form solution for GE, avoiding gradient descent
thus achieving higher efficiency of the GE steps. We further propose an asynchonization scheme for
Embed-LKH where GE steps and the LKH step are conducted in different threads asynchronously.
These technical points endow Embed-LKH with high efficiency and good scalability.

• One-shot. Unlike popular learning-based (Kool et al., 2018; Qiu et al., 2022; Li et al., 2023)
and learning-enhanced heuristic (Hudson et al., 2021; Xin et al., 2021) methods for solving TSP,
Embed-LKH runs in the one-shot manner, allowing it to be applied to instances of different scales
without a typical resource-consuming pre-training stage, while also avoiding generalization issues
from training data to testing data.

• Invariance to perturbations. Most supervised (Joshi et al., 2019; Fu et al., 2021) or reinforcement
learning-based methods (Kool et al., 2018; Qiu et al., 2022; Kwon et al., 2021) suffer from
performance collapse due to the fragility of neural predictions which can be immensely affected
by any perturbations on the input distances, largely hindering their applicability to real-world

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

cases. As we prove in Sec. 6, Embed-LKH is invariant to row-wise distance disturbances and node
permutations which would not change the optimality of the solutions.

2 RELATED WORKS

For space limit, we put related works in Appendix B where we detailedly analyze the differences
between our work and others and summarize the main points in Table 5.

3 BACKGROUNDS AND PRELIMINARIES

We give a formal definition of our studied general TSP in Sec. 3.1. Then in Sec. 3.3, we give
preliminaries of the Graph Embedding (GE) techniques. We will elaborate on how to bridge the gap
of the two seemingly totally irrelevant worlds in the last.

3.1 GENERAL TSP DEFINED BY DISTANCE MATRICES

Definition 1 (General Traveling Salesman Problem). Given a node set V (V = {1, 2, · · · , N})
along with a distance matrix Di,j ∈ [0,+∞)N×N where the entry Di,j is the distance from node i
to j, the problem is to find the tour (a Hamiltonian cycle that visits all the nodes exactly once and
returns to the starting node) τ = (τ1, · · · , τN , τ1) to minimizes the cost

∑N−1
i=1 Dτi,τi+1 +DτN ,τ1 .

Without losing generality or decreasing the hard level of the problem, we assume that Dij is a positive
value. In this paper, we consider TSP in the general cases, namely

• Asymmetric. The symmetry, i.e. Di,j = Dj,i, does NOT have to hold.
• Non-Metric. The triangle inequality, i.e. Di,j +Dj,k ≥ Di,k, does NOT have to hold.

3.2 LKH ALGORITHM

LKH is a highly encapsulated tool tailored for vehicle routing problems including TSP with abundant
of technical tricks in it. Diving deep into the working mechanisms of LKH is not the purpose
of the paper. Readers who are interested in the technical details of LKH may refer to Appendix
C. We highly recommend readers to regard LKH as a black box which works by two steps: 1)
LKH_GeneCand(D): Given a distance matrix D, it generates candidates for each node. Here
‘candidates’ are indicating how likely the edge from the node to a candidate shows in the final
solution; 2) LKH_SearchTour(D, Candidates): Given distance matrix D, it searches tours based
on the generated candidates.

3.3 WORD2VEC-BASED GRAPH EMBEDDING TECHNIQUES

Technical Overview of Word2vec. Word2vec (Mikolov et al., 2013) is one of the most well-known
algorithms in NLP, winning NeurIPS 2023 Test of Time Awards. It is a shallow neural network model
that learns to represent words in a continuous vector space from a given corpus. The training objective
of Skip-gram model in word2vec is to predict surrounding context words for the center words.
Word2vec assigns each word i one word embedding xi ∈ Rd, and one hidden embedding hi ∈ Rd.
From the natural language text corpus, we can obtain the empirical co-occurence probability that a
word j shows as the context word of another center word i, denoted by p(j|i), and the frequency that
the word i is selected as the center word, denoted by p(i). Then we have the objective:

maximize J :=
∑
i,j∈V

p(i)p(j|i) log expx⊤
i hj∑

j′∈V expx⊤
i hj′

, (1)

where V is the vocabulary (minor notation abuse with node set V of similar meaning). Notice that the
denominator of the objective Eq. 1 is too computationally expensive to be practical. To this end, the
negative sampling technique is proposed (Mikolov et al., 2013), whose objective is defined as:

maximize J :=
∑
i,j∈V

p(i)p(j|i)
[
log σ(x⊤

i hj) +

S∑
s=1

Ej′∼Pneg
log σ(−x⊤

i hj′)
]
, (2)

where S is the number of negative samples for each positive sample term log σ(x⊤
i hj) in the objetive,

and Pneg is an empirical distribution of negative samples.

Word2vec-Based GE. Similar to word embedding that aims to represent words as vectors, given
an input graph G = (V, E) (V: nodes, E : edges), GE aims to represent the nodes of as vectors
for further node-level downstream tasks. Word2vec-based GE methods (e.g., Perozzi et al. (2014);
Grover & Leskovec (2016)) first design a random walk strategy (where p(i) and p(j|i) are explicitly

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Step 1: transform to
probabilities

2

1

2

4

3 3

4

Distance Domain

1

2

4

3

Transition Probability Domain Embedding Domain

Step 2: word2vec
embedding

Step 3: build the ghost distance matrix from the learned embeddings

LKH

Step 4: solve
with knowledge

from

1

original distances

ghost
distances

original transition probability

(information
processed & filtered)

(no information loss)

learned transition probability

LKH step Graph Embedding (GE) steps
Figure 2: The 4-step workflow of Embed-LKH which contains three GE steps and one LKH step.

or implicitly defined) to convert the graph-structure data into node sequence data, and then feed
the node sequences to word2vec just like dealing with the natural language corpus, after which we
would obtain the node embeddings. From this perspective, these word2vec-based GE methods are
essentially the art of designing p(i) and p(i|j) for the input graph G. We write such a procedure as
the following formula:

X := [xi]
N
i=1, H := [hi]

N
i=1 ← word2vec

(
V, p(i), p(j|i)

)
(3)

where X,H ∈ Rd×N are the node embedding matrix and hidden embedding matrix respectively.

So far, we’ve already introduced basic techniques of word2vec-based GE. The key step of applying
the techniques to general TSP, is to define p(i) and p(j|i) for a given distance matrix D. We will
explain the methodology in detail in the next section.

4 EMBED-LKH: GRAPH-EMBEDDING-ENHANCED LKH
4.1 METHOD OVERVIEW AND NOTATION EXPLANATIONS

As presented in the backgrounds of last section, GE learns from p(i) and p(j|i). So, step 1 is to
transform D ∈ [0,+∞)N×N in the distance space to a transition probability matrix P ∈ [0, 1]N×N

in the probability space, whose element Pij is the transition probability from node i to j. Step 2 is
conducting a word2vec-based GE for P. Step 3 is to construct a ghost distance matrix D̂ which is
supposed to be an easier case than original distance matrix D. And the final step 4 is running LKH
to solve D but using candidates generated from D̂.

The method framework is illustrated by Fig. 2, with the complete algorithm presented in Alg. 1
where we give detailed analysis of time complexity of each step. As the supplementary for easy
reading, we give the notation list in Table 4, Appendix A.

4.2 STEP 1: TRANSFORM DISTANCES TO TRANSITION PRBABILITY

The Relation between Distances and Probabilities. We consider such a path1 π = (π1, π2, . . . , πM)
of M nodes. In the distance space, the length of π is defined by the sum of the distances between
adjacent nodes in π. While in the probability space, the probability p(π) of formulating such a π can
be given by cumulative product of the transition probabilities Pπiπi+1 between adjacent nodes πi and
πi+1 in the path. The differences can be mathematically shown by the below Eq. 4:

length (for TSP): L(π) =
M−1∑
i=1

Dπi,πi+1
, probability (for GE): p(π) =

M−1∏
i=1

Pπi,πi+1
. (4)

Methodology. Based on the observation above, we can define a simple way to transform D to P
with a row-wise softmax function over −D as below:

(step 1) Pi,j ← Softmax(−Di,:)j :=
exp(−Di,j)∑N

j′=1 exp(−Di,j′)
, (5)

By Eq. 5, we can see that the smaller Di,j is, the higher transition probability Pi,j will be, which is
in accordance with the intuition of TSP. More strictly, Eq. 5 also ensures the following Proposition 1:

1Notation clarification: a tour τ is a special type of paths π where the starting node is also the last node and
other nodes show exactly once, see Definition 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Embed-LKH: Graph-Embedding-Enhanced LKH.

1: Input: Distance matrix D ∈ RN×N ;
2: Parameters for GE: embedding dimension d, number of negative samples for each node K.
3: Parameters for LKH: the number of runs #runs, the number of maximum trial times #max_trials.
4: ▶ Step 1: Distance transformation (Sec. 4.2). Time: O(N2).
5: P← diag(exp(−D)1)−1 exp(−D) ▶ Transform from distance space to probability space
6: ▶ Step 2: Graph embedding (Sec. 4.3 and 5.1).
7: Q← fp(P) Time: O(N3W) for random walk, O(N2 logN) for sparsification (optional);
8: Ud,Σd,V

⊤
d ← SVD

(
log(NQ/K); d

)
; X←

√
ΣdU

⊤
d ; H←

√
ΣdV

⊤
d Time: O(N2 log d+Nd2)

9: ▶ Step 3: Build ghost distance matrix(Sec. 4.4).
10: P̂← K

N
exp(X⊤H); P̂← P̂/sum(P̂, dim = 1) ▶ Reconstruct the transition probability by embeddings

11: D̂← − log(P̂); D̂← D̂−min(D̂) ▶ Build ghost distance matrix D̂
12: ▶ Step 4: Run LKH with candidates generated from ghost distances (Sec. 4.5)
13: Time: O(N3) for line 14 step and O(N #runs · #max_trials · #cand) for line 15, the same as original LKH
14: Cand← LKH_GenCand(D̂) ▶ Generate candidates from ghost distance matrix
15: τ∗ ← LKH_SearchTour(D, Cand) ▶ Search for a best tour τ∗ from candidates,

Proposition 1 (Distance 7→ Transitional Probability). We consider a TSP instance attached with a
distance matrix D. We then define the transition probability P by Eq. 5. Observing that the length
and probability of a path π defined in Eq. 4 also fit a tour τ , we have:

1. For two tours τ and τ ′, if L(τ) < L(τ ′), then p(τ) > p(τ ′).
2. The tour τ of the shortest length L(τ) is also the tour that has the highest probability p(τ).

Proof. Substituting π in Eq. 4 with τ , we have

p(τ) =
exp(−DτNτ1)∑N
j′=1 exp(−DτN j′)

N−1∏
i=1

exp(−Dτiτi+1)∑N
j′=1 exp(−Dτij′)

=
exp

(
− L(τ)

)∏N
i=1

[∑N
j′=1 exp(−Dτij′)

] , (6)

whose denominator is a constant that is independent of τ and only related to D, so p(τ) monotonically
decreases with respect to L(τ). Then the first proposition holds. And the second proposition is
obvious with the first proposition proven.

Proposition 1 ensures that the transformation from distance space to probability space by Eq. 5 does
not compromise the optimality of the tour, while enabling GE at the same time.

4.3 STEP 2: GRAPH EMBEDDING IN THE TRANSITIONAL PROBABILITY DOMAIN

Recall in Sec. 3.3, we said that word2vec-based GE is the art of designing p(i) and p(j|i). Therefore,
the main content of this step is to design a strategy fp : P 7→ p(i), p(j|i), so that we can obtain
embeddings X and H by the below formula following Eq. 1:

(step 2) X,H← word2vec
(
V, fp(P)

)
. (7)

A trivial strategy: p(i) = 1/N , p(j|i) = Pi,j for large instances which saves running time.

Random-walk-based Strategy. Borrowing ideas from deepwalk (Perozzi et al., 2014), we set
p(i) = 1/N and p(j|i) = (

∑W
w=1

1
wPw)ij , where W is the ‘window size’, representing how

many hops of information will be integrated. The coefficient 1
w indicates that the weight of w-hop

information reduces as the hop increases. Excessive focus on the one-hop distance between nodes
may be detrimental to solving the TSP. Random walk helps to ‘see further’.

Sparsification for Large Instances. Before random walk, we select top-K probabilities for each node
and mask the rest. It helps to filter out many edges that are unlikely to be candidates in the solution.
Note that thought sparsification may improve results significantly, it can also be time-consuming.

4.4 STEP 3: CONSTRUCT GHOST DISTANCES FROM EMBEDDINGS

After obtaining the embeddings X and H, we construct the learnt transition probability matrix P̂ by

(step 3.1) P̂i,j ←−
exp(x⊤

i hj)∑N
j′=1 exp(xihj′)

, (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and then construct the ‘ghost distance’ matrix D̂ by a similarly reverse procedure of Eq. 5:

(step 3.2) D̂← − log(P̂), then D̂← D̂−min(D̂), (9)

where the second formula aims to set the minimum value of distances as 0. Just as Proposition 1, the
procedure of building such a ghost distance matrix from the learnt transitional probability does not
hurt the optimality of the tour, as formally presented in Proposition 2. For page limit, the proof is put
in Appendix D. Proposition 1 and 2 indicate that the step 1 and 3 will not cause information loss.
Proposition 2 (Transitional Probability 7→ Distance, Reverse to Proposition 1). We consider the
transition probability matrix P̂ between a set of nodes V , with the probability of a path π defined by
p̂(π) =

∏M−1
i=1 P̂πi,πi+1

(as Eq. 4). We construct a distance matrix D̂ by as Eq. 9, then we have:

1. For two tours τ and τ ′, if p(τ) < p(τ ′), then L̂(τ) > L̂(τ ′) holds in TSP.
2. The tour τ that has the highest probability p̂(τ) also has the shortest length L̂(τ) in TSP.

4.5 STEP 4: RUN LKH WITH CANDIDATES GENERATED FROM GHOST DISTANCES

In step 3 we have obtained ghost distances D̂, which we hope is an easier case to solve than original
distances D. And in Sec. 3.2 we’ve introduced how LKH works by two functions LKH_GenCand
and LKH_SearchTour. In Embed-LKH, we use the learned ghost distances D̂ to generate candi-
dates, then search tours with D, just as blow:

(step 4) Cand← LKH_GenCand(D̂), τ ← LKH_SearchTour(D, Cand). (10)

Since we compute tour length according to D, need to accurately calculate the length of the tour to
ensure that the output tour is the shortest in the original distance space but not the one in the ghost
distance space.

5 TECHNICAL DETAILS FOR HIGHER EFFICIENCY

5.1 CLOSED-FORM SOLUTION OF WORD2VEC BASED ON MATRIX FACTORIZATION

In Sec. 3.3, we’ve introduced the objective of word2vec (Eq. 1). As proven by previous works (Levy
& Goldberg, 2014; Qiu et al., 2018), once p(i) and p(j|i) are explicitly known and no other constraints
are introduced during the optimization, the embeddings that are learned from the objective can be
optimally obtained via matrix factorization. Compared with the gradient descent-based optimizers,
e.g., SGD, the matrix factorization-based optimization is much more efficient.

Methodology. We first define yij := x⊤
i hj , then we calculate the partial derivative of J with regard

to yij as follows (note that yij show not only as the positive sample term, but also as the negative
sample term for other positive sample terms):

∂J

∂yij
= −p(i)

[
p(j|i)σ(−yij) + SPneg(j)σ(yij)

]
. (11)

By setting ∂J
∂yij

to 0 and using the uniform distribution i.e. Pneg(j
′) = 1/N for negative sampling

(which means all the nodes treated equally as negative samples), we would obtain the optimal solution
y∗ij = log p(j|i)

SPneg(j)
= log Np(j|i)

S . We write p(j|i) in the matrix form as Q with Qi,j = p(j|i). Then
word2vec is indeed conducting the following matrix factorization from left to right:

log(NQ/S) ≈ X⊤H. (12)
To obtain the optimal X and H, we can conduct Singular Value Decomposition (SVD) over the
LHS term of Eq. 12, and then preserve the highest d singular values and corresponding vectors and
construct embeddings X and H just as follows:

Ud,Σd,V
⊤
d ← SVD(log(NQ/S); d), then X←

√
ΣdU

⊤
d and H←

√
ΣdV

⊤
d . (13)

Randomized SVD. An ordinary procedure of SVD may consume a O(N3) time. In Embed-LKLH,
we have d≪ N (in experiments we set d < 5). In this case, randomized SVD (Halko et al., 2009)
with a O(N2 log d + Nd2) time complexity can save much time. Randomized SVD for a given
matrix A is conducted by two stage: i) Compute an approximate basis for the range of A. The goal is
to obtain a matrix B to make A ≈ BB∗. ii) Use B which is much smaller than A to compute matrix
factorization. Readers who are interested in details are recommended to refer to the official paper.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.2 ASYNCHRONIZE EMBED-LKH

Thread-1

LKH (step 4) task1

GE (step 1-3)
task1

LKH (step 4) task2

GE (step 1-3)
task2

GE (step 1-3)
task3

...

...

Thread-2

 (task1)

time

 (task3) (task3)

Figure 3: Asynchronization of Embed-LKH.

Recall that Embed-LKH has 4 steps, includ-
ing 3 GE steps (step 1-3) and an LKH step
(step 4). To improve running efficiency of
Embed-LKH and fully maximize CPU uti-
lization, we asynchronize the GE steps and
the LKH step by two separate threads as
illustrated in Fig. 3. In this way, when
dealing with a batch of tasks, the additional
computation overheads introduced by the GE steps can be significantly mitigated in terms of their
impact on the program’s runtime efficiency. Go a further step, we can simply increase the number of
threads as plotted in Fig. 3 to achieve a higher solving speed. In experiments we use 8 threads for the
LKH step and 8 threads for the GE steps as the default.

6 THEORETICAL DISCUSSION

6.1 INVARIANCE TO THE INPUT PERTURBATIONS

Abundant works for neural TSP solvers deal with the distance perturbations that would not change
the optimal solutions by data augmentation (Jiang et al., 2022; Kwon et al., 2020; 2021; Ma et al.,
2021). In comparison, Embed-LKH is naturally invariant to some certain perturbations, as presented
by the following Proposition 3 and 4.

Proposition 3 (Row-wise Disturbance Invariance). We define a random row-wise disturbance
vector as b ∈ RN , whose entry bi represents the disturbance on node i’s distances to other nodes.
If we disturb the input distance matrix D by D′ ← D + b (D′

i,j ← Di,j + bi), one can easily
prove that such a disturbance would not change the optimality of solutions. We conclude that the GE
outputs, embeddings X and H, are also invariant to such a disturbance.

Proof. We find that the disturbance works in step 1. For the new distances D′, we denote the
transition probability as P′. By step 1 (Eq. 5), we have:

P′
i,j = Softmax(−D′

i,:) =
exp(−Di,j − bi)∑N

j′=1 exp(−Di,j′ − bi)
=

exp(−Di,j)∑N
j′=1 exp(−Di,j′)

= Pi,j . (14)

So, the disturbance would not change the output of step 1, and also has no influence on the final
embeddings X and H.

Proposition 4 (Node Permutation Invariance). We define a random permute matrix M ∈
{0, 1}N×N where each row and each column has exactly one non-zero element. A random per-
mutation over the distance matrix by D′ ←MDM⊤ would not change the optimal solution. We
conclude that node permutation does not affect the output solution generated by Embed-LKH, either.

Proof. It is obvious that, by step 1 (Eq. 5), we have the transition probability after permutation
P′ = MPM⊤; then by step 2 (Eq. 12 and 13), we have X′ = MX and H′ = MH; then by step 3
(Eq. 8 and 9), we have D̂′ = MD̂M⊤. Here we find that the ghost distance matrix D̂′ is exactly a
randomly permuted D̂. So for the same nodes of different IDs in D̂ and D̂′, the candidates generated
by LKH_GenCand would be the same. Also, the function LKH_SearchTour is irrelevant with
node orders. So, the solution given by Embed-LKH would not be affected by node permutation.

6.2 EMBED-LKH IS A ONE-SHOT SOLVER

As we presented in Alg. 1, before testing, Embed-LKH is not trained on a training dataset which
contains many instances, but conducted right on the testing instance. So, Embed-LKH is a one-
shot solver. The ‘one-shot’ property endows the method more other virtues including: i) All-scale
applicability. Unlike previous methods that require ensuring that the size of the test data is the same
as the size of the instances in the training dataset, our method can be applied to problems of any scale
(as long as the machine has enough memory). ii) Low training cost. Unlike previous deep learning
methods (e.g., Kwon et al. (2021)), Embed-LKH does not require a significant amount of time for
pre-training and has no requirements for hardware (e.g., GPUs). iii) Generalizability. Embed-LKH
does not have the issue of generalization from training data to testing data.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP

Hardware. Experiments for neural methods are conducted on a single NVIDIA RTX3090 24GB
GPU with AMD 3970X 32-Core CPU. Our Embed-LKH and other heuristics (LKH, EAX, etc.) are
conducted on a machine with Intel Xeon W-3175X CPU and 128GB memory.

Baselines. Neural solver: MatNet (Kwon et al., 2021) is the only neural solver runnable for general
TSP to our best knowledge. Heuristic solver: LKH (Helsgaun, 2017) is a very strong heuristic for
its high efficiency, good scalability, and impressive performance. Learning-enhanced heuristic
solver: VSR-LKH (Zheng et al., 2021) improves LKH’s heuristic strategy with RL-driven policies.
The improved versions (VSR-LKH-V2/3) do not support general (asymmetric) TSP solving as we
have tried. We DO NOT compare with the exact solver Gurobi since it runs out of memory for TSP
instances of 100 nodes or more on our machine; and we DO NOT compare with Concorde since it
does not support distance matrices as the input. Some newly proposed methods are not open-sourced
yet (e.g., (Drakulic et al., 2024)) or do not provide an ATSP solver (e.g., (Drakulic et al., 2023; Ye
et al., 2024b)), so we do not compare with them.

Default Parameters. For fairness, for LKH, VSR-LKH, and Embed-LKH, we set runs=1 (number
of running iterations for each instance), max_candidates=6 (maximum number of candidates for each
node). Other detailed settings (e.g., the search algorithm, the way to compute candidates, etc.) are set
as the default of the original LKH program. Embed-LKH runs with 16 threads (8 for GE steps and
8 for the LKH step) as the default. On TSP-100, we set random walk window size W = 3 without
sparsification; on TSP-100 we set W = 1 and adopt sparsification with K = 100.

Testing Data Generation. Before introducing data generation we should emphasize again that
Embed-LKH is a one-shot solver so the training data is also the testing data. We consider the scales
fo 100 nodes and 1000 nodes. The investigated distance distributions include three non-euclidean
asymmetric types of distances (normal, uniform, exponential) and three types of Euclidean (metric
and symmetric) distances: i) Euclidean 2D/10D/50D. First we generate 2D/10D/50D Euclidean
random coordinates in [0, 1]2/10/50. Then we compute the pair-wise distances, and finally re-scale
them to the range of [0, 1e4]. ii) Normal. We Generate distance Di,j from normal distribution
N (0; 1), then re-scale them to the range of [0, 1e4]. iii) Exponential. We generate distance Di,j

from exponential distribution (λ = 0.5), then re-scale them to the range of [0, 1e6]. iv) Uniform. We
generate distances from uniform distribution in [0, 1e5]. All distances are rounded to integers (since
the float number would cause inaccurate tour lengths).

Metrics. Average length (abbr. ‘Length’). We report the average length of the found tours of all the
instances. Optimal Gap (abbr. ‘Opt. Gap’). We take LKH with the largest number of trials of each
scale as the reference to compute the performance gap of all compared methods. Time. We report the
running time of the solver. For Embed-LKH, it includes the time of all the 4 steps.

7.2 MAIN RESULTS

We give results of TSP-100 (100nodes, 1000 instances) in Table 1 and TSP-1000 (1000nodes, 100
instances) in Table 2. We set d = 3 for TSP-100 and d = 1 for TSP-1000. Embed-LKH outperforms
VSR-LKH and MatNet consistently, and We provide analysis from the following aspects:

Observation 1: In most cases, Embed-LKH can find better solutions than LKH within the same
number of trials. It demonstrates the effectiveness of Embed-LKH’s generating candidates from the
ghost distances instead of the original distances.

Observation 2: Embed-LKH is better at non-metric and asymmetric data, and also competent
on high-dimensional (dimension ≥ 10) Euclidean distances. The gap between other methods and
LKH on the normal, uniform, and exponential distances is significantly higher than on the Euclidean
distances. We also observe that Embed-LKH is at the top level on high-dimensional Euclidean data.
The results demonstrate the significance of GE.

Observation 3: LKH is still competent on Euclidean data. As shown in the results, on TSP-100,
when max_trials≤1000, LKH is better than Embed LKH on Euclidean 2D data; and LKH is also
superior to Embed-LKH on TSP-1000 2D Euclidean data with max_trials=10.This demonstrates
the effectiveness of original LKH in 2D Euclidean problems. Theoretically, this is because the
search algorithm of LKH (λ-opt) by exchanging edges in a tour has a strong physical meaning in its

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Results on TSP-100. Bold: methods yielding best results with the same setting.

Setting Method Normal Uniform Exponential
Length↓ Opt. Gap↓ Time↓ Length↓ Opt. Gap↓ Time↓ Length↓ Opt. Gap↓ Time↓

MatNet 204521.857 4.753% 2m15s 793294.879 381.074% 1m45s 2323096.288 1244.204% 6m3s

max_trials
=10

LKH 196221.741 0.502% 1m18s 176221.947 6.865% 1m24s 186287.126 7.791% 3m18s
VSR-LKH 197116.059 0.960% 1m25s 182244.461 10.518% 1m28s 192711.099 11.508% 2m1s

Embed-LKH 195629.278 0.198% 21s 170434.696 3.356% 20s 179324.534 3.762% 41s

max_trials
=100

LKH 195369.814 0.065% 1m25s 166124.554 0.742% 1m27s 174487.398 0.963% 2m9s
VSR-LKH 199476.359 2.169% 3m48s 196072.837 18.904% 2m22s 208767.031 20.798% 2m48s

Embed-LKH 195311.846 0.036% 22s 165745.077 0.512% 23s 173894.059 0.620% 43s

max_trials
=1000

LKH 195274.407 0.017% 3m17s 165180.832 0.170% 3m7s 173104.776 0.163% 6m2s
VSR-LKH 201260.070 3.082% 21m19s 206323.724 25.120% 12m2s 219028.828 26.736% 11m52s

Embed-LKH 195249.138 0.004% 40s 165018.977 0.072% 40s 172987.579 0.095% 1m

max_trials
=10000

LKH 195241.982 – 17m39s 164900.749 – 16m18s 172823.147 – 16m38s
VSR-LKH Out of Time (time>3h)

Embed-LKH 195234.123 -0.004% 2m 164813.108 -0.053% 3m9s 172727.728 -0.055% 3m18s

Euclidean 2D Euclidean 10D Euclidean 50D
Length↓ Opt. Gap↓ Time↓ Length↓ Opt. Gap↓ Time↓ Length↓ Opt. Gap↓ Time↓

MatNet 93240.803 53.309% 1m43s 489627.558 37.171% 1m43s 664242.653 3.724% 5m57s

max_trials
=10

LKH 61586.028 1.261% 1m16s 359495.360 0.714% 1m29s 641949.717 0.243% 1m31s
VSR-LKH 62861.306 3.358% 1m34s 361055.618 1.151% 1m53s 642914.388 0.394% 2m14s

Embed-LKH 61598.954 1.282% 40s 358744.417 0.503% 24s 641480.050 0.170% 22s

max_trials
=100

LKH 60903.262 0.139% 1m50s 357832.551 0.248% 1m59s 640998.944 0.095% 2m14s
VSR-LKH 63106.889 3.762% 3m19s 362271.816 1.492% 3m28s 643562.573 0.495% 5m11s

Embed-LKH 60910.506 0.151% 34s 357564.439 0.173% 26s 640753.293 0.056% 25s

max_trials
=1000

LKH 60823.766 0.008% 7m45s 357235.218 0.081% 7m4s 640581.210 0.030% 8m23s
VSR-LKH 63163.195 3.854% 56m46s 363138.487 1.734% 25m30s 644148.481 0.587% 35m21s

Embed-LKH 60822.693 0.006% 1m20s 357076.636 0.036% 1m5s 640450.215 0.009% 1m

max_trials
=10000

LKH 60818.954 – 58m53s 356947.480 – 46m7s 640392.055 – 44m43s
VSR-LKH Out of Time (time>3h)

Embed-LKH 60818.497 -0.001% 7m41s 356880.873 -0.019% 6m49s 640320.954 -0.011% 6m51s

Table 2: Results on TSP-1000, 100 instances.

Setting Method Normal Uniform Exponential
Length↓ Opt. Gap↓ Time↓ Length↓ Opt. Gap↓ Time↓ Length↓ Opt. Gap↓ Time↓

max_trials
=10

LKH 1826493.81 – 6m10s 250579.77 – 7m31s 180838.91 – 6m16s
VSR-LKH 1829168.70 0.146% 6m27s 245652.75 -1.966% 6m23s 181457.10 0.342% 6m4s

Embed-LKH 1809316.69 -0.940% 42m2s 206660.97 -17.527% 42m13s 174166.86 -3.689% 8m10s

Euclidean 2D Euclidean 10D Euclidean 50D
Length↓ Opt. Gap↓ Time↓ Length↓ Opt. Gap↓ Time↓ Length↓ Opt. Gap↓ Time↓

max_trials
=10

LKH 176185.42 – 8m15s 2450987.21 – 10m47s 5570683.16 – 9m14s
VSR-LKH 175679.35 -0.287% 6m20s 2456099.77 0.209% 7m19s 5576274.90 0.100% 8m35s

Embed-LKH 176212.80 0.016% 3m38s 2445033.19 -0.243% 14m52s 5564471.29 -0.112% 14m8s

design for Euclidean 2D data: on a 2D Euclidean plane, the sum of the lengths of the diagonals of a
quadrilateral can never be shorter than the sum of the lengths of its opposite sides. We also observe
that on Euclidean 10D/50D, the gap between LKH and Embed-LKH is significantly smaller than the
gap on the non-metric data, indicating LKH’s advantages on the metric Euclidean data.

Observation 4: Asynchronized Embed-LKH is efficient in most cases. As shown by Table 1,
on TSP-100, the running time of asynchronized Embed-LKH is less than most baselines. While
on TSP-1000, time consumed by the additional steps of GE becomes non-ignorable. We leave the
discussion of how much asynchronization improves the efficiency in different cases in Sec. 7.3.

7.3 PARAMETER ANALYSIS AND ABLATION STUDIES

Window size W . Experiments are conducted on TSP-1000 of the exponential distribution with a
varying W . Results are plotted in Fig. 5 a), showing that the best window size is about W = 3.
When W = 1, it means that no random walk is conducted. W = 3 is better than W = 1 indicates
that a proper setting of random walk is beneficial.

Embedding dimension d. We conduct experiments on TSP-100, exponential distribution, with a
varying d. We plot results in Fig. 5 b), showing that either a too high or too low d can cause a decline
in performance. d = 3 is the best. This also implies that simply augmenting the transition probability
matrix through random walks is not enough. The dimensionality reduction step in GE is necessary.

Number of negative samples S. Experiments are conducted on TSP-100 of the exponential distri-
bution with a varying S. Results plotted in Fig. 5 c) show that under this certain setting, S = 20

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7
Window Size W

174

175

176

177

178

Av
g.

 L
en

gt
h

(×
10

3)

a) Avg. length w.r.t. W
length

0 20 40 60 80 10
0

Embedding Dimension d

1953

1954

1955

Av
g.

 L
en

gt
h

(×
10

2)

b) Avg. length w.r.t. d
Embed-LKH
LKH

0 20 40 60 80 10
0

#Negative Samples S

1953.1

1953.2

1953.3

Av
g.

 L
en

gt
h

(×
10

2)

c) Avg. length w.r.t. S
length

N
or

m
U

ni
Ex

p 2D 10
D

50
D

Data Distribution

−15

−10

−5

0

5

10

C
ha

ng
e

ra
te

 o
f a

vg
. l

en
gt

h
(%

)

-0.57

-18.12

7.76

0.42 -0.18 -0.09

d) Effects of sparsification
drop rate

Figure 5: Ablation studies over parameters d, W , S, and the sparsification operation. All metrics are
better when lower.

might be a good choice. However, from the absolute variation of the average length, the influence of
parameter S on the results is not significant when S ≥ 5.

50 100 200 400
20

22

24

26

Av
g.

 L
en

gt
h

(×
10

4) Sparsification factor K

w/ sparsification
w/o sparsification

Figure 4: Parameter analysis for K.

Studies over the sparsification technique (in
step 2). We conduct study from the following
two aspects: i) Effectiveness on different data.
We compare Embed-LKH with and without spar-
sification on TSP-1000 of different distributions.
We plot the percentage change in length before
and after applying the sparsification technique
in Fig. 5 d). The results show that sparsification
has a positive effect on some data distributions (uniform, normal, Euclidean 10D and 50D) but a
negative effect on others (exponential, Euclidean 2D). This implies that in some scenarios, sparsi-
fication might incorrectly mask edges that have the potential to be part of the optimal solution. ii)
Parameter analysis. We run on TSP-1000 uniform data with different sparsification factor K, with
results plotted in Fig. 4. Results show that when K < 200, the average tour length is considerably
smaller than running without sparsification, demonstrating the effectiveness of sparsification in some
cases and also highlighting the importance of selecting a proper K. iii) Efficiency-Effectiveness
trade-off. The sparsification step may lead to significant time consumption. In our experiments
of Fig. 4, we found that K = 100 would consumes 2533 seconds, which is more than 5 times of
running without sparsification (461 seconds).

Data and Setting No Asynchorinaztion Threads=2 Threads=16

TSP-100, Normal
max_trials=100 192s 172s 26s

TSP-1000, Uniform
max_trials=10

20574s
(24x of Thread=16)

16576s
(19x of Thread=16) 857s

Table 3: Running time w/ and w/o multi-thread asyn-
chronization

Efficiency improvement by multi-thread
asynchronization. In Sec. 5.2 we have in-
troduced the asynchronization of GE steps
and LKH step. We run Embed-LKH with
and without asynchronization and report
the running time as shown in Table 3. In
the table, ‘Thread=2’ means we use one
thread for GE steps and one for LKH; ‘Thread=16’ means 8 for GE and 8 for LKH. We see that when
the number of threads increases, the runtime correspondingly decreases. We also observe that the
acceleration brought by asynchronization is more significant on larger-scale problems (TSP-1000).

Other findings. We provide some interesting findings on the differences between ghost distances
and original distances in Appendix E, which align well with our motivation shown in Fig. 1.

8 CONCLUSIONS

In this paper, we present a graph-embedding-enhanced LKH (Embed-LKH) algorithm for general
TSP solving. This is the first technology to utilize graph embedding techniques to assist in solving
the general TSP, and also the first learning-enhanced one that outperforms LKH on the problem of
general TSP showing in the ML community, to our best knowledge.

Limitations and Future Works. i) The setting of parameter d and the strategy p(j|i) (especially
the inside parameter, window size W) in the GE steps may require careful consideration. We leave
automated parameter selection as the future work. ii) There is still a significant room for improving
the efficiency of Embed-LKH by more tightly coupling the two functions LKH_GenCand and
LKH_SearchTour.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

The method proposed in this paper enhances the performance of general TSP solving via the combi-
nation of neural graph embedding technique and the heuristic algorithm LKH. A dataset comprising
synthetic instances of TSPs with different distributions will be released upon publication. To our best
knowledge, no potential harmful impacts can be observed that need be otherwise stated.

REPRODUCIBILITY STATEMENT

The hardware, parameters, settings, and the generation of datasets, are provided in Sec. 7.1. An
anonymous repository is presented at the end of the abstract as to demonstrate basic implementation
and results for reviewing. Source code and datasets shall be made public upon publication.

REFERENCES

David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook. 2007.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global structural
information. In CIKM, pp. 891–900. ACM, 2015.

Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. metapath2vec: Scalable representation learning for
heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimulation
quotienting for efficient neural combinatorial optimization, 2023. URL https://arxiv.org/abs/
2301.03313.

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial optimization agent
learner, 2024. URL https://arxiv.org/abs/2406.15079.

Xingbo Du, Junchi Yan, Rui Zhang, and Hongyuan Zha. Cross-network skip-gram embedding for joint network
alignment and link prediction. TKDE, 2022.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily large tsp
instances. In Proceedings of the AAAI conference on artificial intelligence, pp. 7474–7482, 2021.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864. ACM, 2016.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness: Stochastic
algorithms for constructing approximate matrix decompositions. arXiv preprint arXiv:0909.4061, 909, 2009.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances
in neural information processing systems, pp. 1024–1034, 2017.

Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic. European journal
of operational research, 126(1):106–130, 2000.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and
vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network guided local
search for the traveling salesperson problem. arXiv preprint arXiv:2110.05291, 2021.

Yuan Jiang, Yaoxin Wu, Zhiguang Cao, and Jie Zhang. Learning to solve routing problems via distributionally
robust optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
9786–9794, 2022.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network technique
for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural combinatorial
optimization. Advances in Neural Information Processing Systems, 35:1936–1949, 2022.

11

https://arxiv.org/abs/2301.03313
https://arxiv.org/abs/2301.03313
https://arxiv.org/abs/2406.15079

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In Inter-
national Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=SJU4ayYgl.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. Pomo: Policy
optimization with multiple optima for reinforcement learning. Advances in Neural Information Processing
Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix encoding
networks for neural combinatorial optimization. Advances in Neural Information Processing Systems, 34:
5138–5149, 2021.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. Advances in neural
information processing systems, 27, 2014.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training to gradient search
in testing for combinatorial optimization. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=JtF0ugNMv2.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training to gradient search
in testing for combinatorial optimization. Advances in Neural Information Processing Systems, 36, 2024.

Weiyi Liu, Pin-Yu Chen, Sailung Yeung, Toyotaro Suzumura, and Lingli Chen. Principled multilayer network
embedding. In 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 134–141.
IEEE, 2017.

Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial optimization by graph
pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936, 2019.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang. Learning to
iteratively solve routing problems with dual-aspect collaborative transformer. Advances in Neural Information
Processing Systems, 34:11096–11107, 2021.

Rajesh Matai, Surya Prakash Singh, and Murari Lal Mittal. Traveling salesman problem: an overview of
applications, formulations, and solution approaches. Traveling salesman problem, theory and applications, 1
(1):1–25, 2010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words
and phrases and their compositionality. In NIPS, 2013.

Yimeng Min, Yiwei Bai, and Carla P. Gomes. Unsupervised learning for solving the travelling salesman problem,
2024. URL https://arxiv.org/abs/2303.10538.

Yuichi Nagata and Shigenobu Kobayashi. A powerful genetic algorithm using edge assembly crossover for the
traveling salesman problem. INFORMS Journal on Computing, 25(2):346–363, 2013.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserving graph
embedding. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 1105–1114, 2016.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 701–710. ACM, 2014.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as matrix
factorization: Unifying deepwalk, line, pte, and node2vec. In WSDM, 2018.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang. Netsmf: Large-scale
network embedding as sparse matrix factorization. In The World Wide Web Conference, pp. 1509–1520. ACM,
2019a.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang. Netsmf: Large-scale
network embedding as sparse matrix factorization. In The World Wide Web Conference, pp. 1509–1520. ACM,
2019b.

12

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=JtF0ugNMv2
https://arxiv.org/abs/2303.10538

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
optimization problems. In Advances in Neural Information Processing Systems 35, 2022.

Meng Qu, Jian Tang, Jingbo Shang, Xiang Ren, Ming Zhang, and Jiawei Han. An attention-based collaboration
framework for multi-view network representation learning. In CIKM, 2017.

Ronald L Rardin and Ronald L Rardin. Optimization in operations research, volume 166. Prentice Hall Upper
Saddle River, NJ, 1998.

Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node representations
from structural identity. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 385–394. ACM, 2017.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with physics-inspired
graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

Jingyan Sui, Shizhe Ding, Boyang Xia, Ruizhi Liu, and Dongbo Bu. Neuralgls: learning to guide local
search with graph convolutional network for the traveling salesman problem. Neural Comput. Appl., 36
(17):9687–9706, October 2023. ISSN 0941-0643. doi: 10.1007/s00521-023-09042-6. URL https:
//doi.org/10.1007/s00521-023-09042-6.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial optimization. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale information
network embedding. In Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077.
International World Wide Web Conferences Steering Committee, 2015.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. Verse: Versatile graph embeddings
from similarity measures. In Proceedings of the 2018 World Wide Web Conference, pp. 539–548. International
World Wide Web Conferences Steering Committee, 2018.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/
2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In KDD, pp. 1225–1234. ACM,
2016.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model with lin-
kernighan-helsgaun heuristic for solving the traveling salesman problem. In Advances in Neural Information
Processing Systems, volume 34, 2021.

Hao Xiong, Junchi Yan, and Li Pan. Contrastive multi-view multiplex network embedding with applications to
robust network alignment. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery;
Data Mining, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826, 2018.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: neural-enhanced ant systems for
combinatorial optimization. Advances in Neural Information Processing Systems, 36, 2024a.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning global partition
and local construction for solving large-scale routing problems in real-time. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2024b.

Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu. Arbitrary-order proximity
preserved network embedding. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2778–2786, 2018.

Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. Combining reinforcement learning with
lin-kernighan-helsgaun algorithm for the traveling salesman problem. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(14):12445–12452, May 2021. doi: 10.1609/aaai.v35i14.17476. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/17476.

13

https://doi.org/10.1007/s00521-023-09042-6
https://doi.org/10.1007/s00521-023-09042-6
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/17476
https://ojs.aaai.org/index.php/AAAI/article/view/17476

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

A Notations 15

B Related Works 15

B.1 TSP Solvers . 15

B.2 Word2vec-Based Graph Embedding . 16

C Some Technical Key Points of LKH 17

D Proof to Proposition 2 17

E Other Interesting Findings 17

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: Main notations and descriptions.

Notations Descriptions

N The number of nodes in TSP
D ∈ RN×N Distance matrix
D̂ ∈ RN×N Ghost distance matrix

L(τ) Length of a tour τ or a path π in TSP
P ∈ RN×N Transition probability transformed from D

p(j|i) Empirical co-occurance probability that node/word j
shows in the neighborhood of node/word i

Q p(j|i) in the matrix form
P̂ ∈ RN×N , p̂(j|i) Transition probability learned by embeddings, in matrix

form and scalar form respectively
p(π) Probability that a path π (or a tour τ) forms in the proba-

bility space
J Objective for GE

xi,hi ∈ Rd Node embedding and hidden embedding of node i
X,H ∈ Rd×N Node embedding and hidden embedding in the matrix form

yij The value of x⊤
i hj

Ud,Vd ∈ RN×d, Σd ∈ Rd×d Results of SVD

A NOTATIONS

We list the main notations in Table 4 for reference in reading.

B RELATED WORKS

B.1 TSP SOLVERS

Exact Solvers. Solvers for linear programming and mixed integer linear programming, e.g., Gurobi
and CPLEX, can be used to solve general TSP with exact optimal solutions as output. These methods
can be time-consuming in real-world applications where the scale of instances may go large. Concorde
is a solver developed for TSP but it fails to deal with general TSP where only distances are available.

Heuristic Solvers. Some trivial heuristic algorithms include nearest neighbor (NN), furthest insertion
(FI), etc. After decades of optimizations, strong heuristics such as Lin-Kernighan-Helsgaun (LKH by
Helsgaun (2017)) and EAX (Nagata & Kobayashi, 2013)) have been well developed and are able to
give satisfying results with good efficiency and scalability.

Neural Solvers. Compared with the heuristics and exact solvers, neural solvers are believed to
be more efficient when the solving procedure is run parallelly on GPUs. Also, the learning-based
approaches are believed to have a stronger capability in solving TSP instances from a specific
known distribution. Most neural TSP solvers are developed for TSP with coordinates (Kool et al.,
2018; Kwon et al., 2020; Li et al., 2023; Qiu et al., 2022; Sun & Yang, 2023; Vinyals et al., 2015;
Min et al., 2024). This is due to the current lack of neural networks that can effectively learn in
scenarios with only pairwise feature information, such as the distances in TSP. MatNet (Kwon
et al., 2021) is one of the works that can be applied to BiTSP. It proposes a Transformer-based
solver for asymmetric TSP (ATSP) whose input is a distance matrix. However, the heavy-encoder
heavy-decoder neural architecture and the DRL-based training put limitations to its scalability and
consequently its applicability to real-world problems whose scales are varying. Recently, several
works (Drakulic et al., 2023; 2024; Ye et al., 2024b) conducted experiments on ATSP and showed
promising results. Yet, such part regarding general TSP solving have not open-sourced.

Developing neural solvers that combine LKH and neural networks is also an important line of
research. VSR-LKH (Zheng et al., 2021) improves LKH’s heuristic strategy with RL-driven policies,
which achieves performance improvement on 2D Euclidean TSP compared with vanilla LKH. It is a

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Technical comparison of Embed-LKH and other TSP Solvers. It should be noted that
although many newly proposed neural solvers for TSP has not yet been open-sourced.

Solver Type Method Distance Type Description Open-sourced

Exact solver
Gurobi General N/A Available but

not open-sourced
CPLEX

Concorde Euclidean

Heuristic solver LKH (Helsgaun, 2017) General See Sec. C !

EAX(Nagata & Kobayashi, 2013) Symmetric Genetic algorithm !

Neural solver

PointerNet (Vinyals et al., 2015)
Ma et al. (2019)

Euclidean

GPN+RL, pre-trained !

!

AM (Kool et al., 2018)
POMO (Kwon et al., 2020)

SYM-NCO (Kim et al., 2022)
GAT+DRL, pre-trained

!

!

!

DIMES (Qiu et al., 2022) GNN+meta RL, pre-trained !

GCN(Joshi et al., 2019)
Att-GCN(Fu et al., 2021) GNN+SL, pre-trained !

!

DIFUSCO(Sun & Yang, 2023)
T2T(Li et al., 2024) Diffusion+Generative, pre-trained !

!

UTSP (Min et al., 2024) SAG+UL, pre-trained !

QUBO (Schuetz et al., 2022) GNN+UL, pre-trained !
BQ-NCO (Drakulic et al., 2023)

• General

GCN+Transformer+RL, pre-trained ATSP solver not provided
GOAL (Drakulic et al., 2024) GCN+Transformer+RL, pre-trained %

GLOP (Ye et al., 2024b) Divide-Conquer+RL, pre-trained No ATSP solver proposed
MatNet (Kwon et al., 2021) Transformer+RL, pre-trained !

Learning-enhanced
heuristic solver

GNNGLS (Hudson et al., 2021)

Euclidean

GNN+GLS, pretrained !

NeuralGLS (Sui et al., 2023) GNN+GLS, pretrained %

DeepACO (Ye et al., 2024a) GNN+ACO, pretrained !

NeuroLKH (Xin et al., 2021) SGN+LKH, pre-trained !

VSR-LKH (Zheng et al., 2021) • General RL+LKH, • one-shot !

• Embed-LKH • General GE+LKH, • one-shot !(Upon publication)

learning-based solver yet without neural networks. NeuroLKH (Xin et al., 2021), improves LKH with
the Sparse Graph Network (SGN) aimed at generating better edge candidates as a substitution for
LKH’s α-nearest measure. However, SGN relies on node coordinates as input, making NeuroLKH
inapplicable to general TSP.

We provide a technical comparison between Embed-LKH and all other TSP solvers in Table 5,
demonstrating the significance of our work.

B.2 WORD2VEC-BASED GRAPH EMBEDDING

We mainly discuss about Graph Embedding (GE) methods based on the language model word2vec (?).
In this branch, GE methods have been designed for different types of networks, including homoge-
neous networks (Perozzi et al., 2014; Grover & Leskovec, 2016; Tang et al., 2015), heterogeneous
networks (Dong et al., 2017) and multiplex networks (Liu et al., 2017; Qu et al., 2017; Xiong
et al., 2021). By designing the input node sequences, GE methods achieve to preserve specific
types of information, e.g., low-order proximity (LINE (Tang et al., 2015),) structure similarity
(struc2vec (Ribeiro et al., 2017)), versatile similarity measures (VERSE (Tsitsulin et al., 2018)),
and cross-network alignment relations (CENALP (Du et al., 2022)). Another line of GE research is
developing methods based on matrix factorization. GraRep (Cao et al., 2015) solves the embedding
by matrix factorization for random walk and Skip-Gram while also taking high-order proximity
information into consideration. NetMF (Qiu et al., 2018) proposes to unify some word2vec-based
GE methods including LINE, DeepWalk, and node2vec, etc. within a matrix factorization framework,
and NetSMF (Qiu et al., 2019b) treats the network embedding task as sparse matrix factorization.
AROPE and HOPE (Zhang et al., 2018; Ou et al., 2016) propose to preserve multi-order proximity by
matrix factorization with some mathematical tricks. Methods based on deep neural networks (Wang
et al., 2016) especially graph neural networks (Hamilton et al., 2017; Kipf & Welling, 2017; Xu et al.,
2018) are also influential in literature of GE.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C SOME TECHNICAL KEY POINTS OF LKH

For readers not interested in how LKH works, just skip this part and regard LKH as a black box
that works efficiently to find near-optimal tours for TSP. In LKH, there are three main components
working in series that contribute to its strong performance,

Step 1. Compute the α-Nearest Measure. Suppose L(T) is the length of the minimum 1-tree
(Def. 2) of graph G = (V, E) and L(T+(i, j)) is the length of the minimum 1-tree containing edge
(i, j), the α-measure of edge (i, j) can be calculated as α(i, j) = L(T+(i, j))− L(T). α-measures
are used for specifying the edge candidate set which consists of p edges with the smallest α-measures
connected to each node (p = 5 as default).
Definition 2 (1-tree). Let G = (V, E) be a undirected weighted graph where V = {1, 2, · · · , n} is
the set of nodes and E = {(i, j)|i ∈ V, j ∈ V} is the set of edges. A 1-tree for a graph G = (V, E)
is a spanning tree on the node set V\{1} combined with two edges from E incident to node 1. A
minimum 1-tree T is a 1-tree of minimum length.

Step 2. Node Penalties. LKH uses a subgradient optimization technique to obtain a penalty πi over
each node i, then modify the distance as Cij ← Cij + πi + πj . This operation changes the distances
but would not affect the optimal solution.

Step 3. Search Solutions by λ-Opt. λ edges in the current tour will be exchanged by another set
of λ edges, all of which should be included in the candidate sets of the original λ edges, to improve
the tour until no such exchanges can be found.

D PROOF TO PROPOSITION 2

Here we provide the proof to Proposition 2. By Eq. 4 and Eq. 9, we have

L̂(τ) =

M−1∑
i=1

D̂τi,τi+1
+ D̂τM ,τ1 −N min(D̂)

= − log
(
P̂τM ,τ1

M−1∏
i=1

P̂τi,τi+1

)
−N min(D̂)

= − log p̂(τ)−N min(D̂)

(15)

by which it is obvious that p̂(τ) monotonically decreases with respect to L̂(τ). Then the two
propositions are obviously right.

E OTHER INTERESTING FINDINGS

One of the questions that we are curious about is that what are the differences between the ghost
distances and the original distances. Our answer is that GE make the non-metric data more like
metric data. We investigate the TSP-100 instances of the normal distribution, we find that the number
of non-metric cases (Di,j +Dj,k < Di,k) decreases significantly in the ghost distance matrix after
GE (from more than 10000 cases to less than 1000 cases). As the experiments show, LKH is strong at
solving metric data. So, to LKH, making the non-metric data more like metric data may be beneficial
to non-metric TSP solving. And that is exactly our motivation as shown in Fig. 1.

17

	Introduction
	Related Works
	Backgrounds and Preliminaries
	General TSP Defined by Distance Matrices
	LKH Algorithm
	Word2vec-Based Graph Embedding Techniques

	Embed-LKH: Graph-Embedding-Enhanced LKH
	Method Overview and Notation Explanations
	Step 1: Transform Distances to Transition Prbability
	Step 2: Graph Embedding in the Transitional Probability Domain
	Step 3: Construct Ghost Distances From Embeddings
	Step 4: Run LKH with Candidates Generated from Ghost Distances

	Technical Details for Higher Efficiency
	Closed-form Solution of Word2vec Based on Matrix Factorization
	Asynchronize Embed-LKH

	Theoretical Discussion
	Invariance to the Input Perturbations
	Embed-LKH is a One-shot Solver

	Experiments
	Experimental Setup
	Main Results
	Parameter Analysis and Ablation Studies

	Conclusions
	Notations
	Related Works
	TSP Solvers
	Word2vec-Based Graph Embedding

	Some Technical Key Points of LKH
	Proof to Proposition 2
	Other Interesting Findings

