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Abstract

Availability of different single-cell multi-omic datasets provide an opportunity to1

study various aspects of the genome at the single-cell resolution. Jointly studying2

multiple genomic features can help us understand gene regulatory mechanisms.3

Although there are experimental challenges to jointly profile multiple genomic4

features on the same single-cell, computational methods have been develop to align5

unpaired single-cell multi-omic datasets. Despite the success of these alingment6

methods, studying how genomic features interact in gene regulation requires the7

alignment of features, too. However, most single-cell multi-omic alignment tools8

can only align cells across different measurements. Here, we introduce SCOOTR,9

which aligns both cells and features of the single-cell multi-omic datasets. Our10

preliminary results show that SCOOTR provides quality alignments for datasets11

with sparse correspondences, and for datasets with more complex relationships,12

supervision on one level (e.g. cells) improves alignment performance on the other13

level (e.g. features).14

1 Introduction15

Recent experimental developments have enabled us to measure various aspects of the genome, such as16

gene expression, chromatin confirmation, chromatin accessibility and methylation, at the single-cell17

resolution [1–4]. Studying the multiple views of the genome together can allow biologists to learn18

how they interact to regulate cellular processes. Although we can experimentally combine some19

measurements on the same single-cell using co-assays, for most measurement combinations, there20

are no co-assays available [4]. Moreover, simultaneous profiling of multiple features can yield more21

noisy data than single-omic experiments [5]. As a result, various computational methods [6–12],22

including the ones based on optimal transport theory [9–11], have been developed to successfully23

align single-cell measurements from non-co-assay (i.e. unpaired) experiments.24

Despite the success of these methods, studying cross-modality feature relationships also requires the25

alignment of features. Due to the number of features and the complexity of their relationship, we need26

new computational approaches to infer these alignments. Unfortunately, most single-cell alignment27

methods can only yield alignments on the cell level, with the exception of bindSC [12]. Although28

bindSC performs both cell and feature alignments, it requires prior knowledge of feature relationships29

using a gene activity matrix. This gene activity matrix is computed between gene expression features30

and the chromatin accessibility or methylation signals in the neighborhood of these genes. Therefore,31

it can only work with a few measurements (like chromatin accessibility and methylation) that have32

known relationships with gene expression and ignores most intergenic regions.33
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We introduce SCOOTR, which simultaneously aligns both the cells and the features of unpaired34

single-cell multi-omic datasets in a modality-agnostic manner and without systematically ignoring35

intergenic regions, using co-optimal transport. Our results demonstrate that SCOOTR can yield36

quality alignments for both cells and features between datasets with sparse correspondences. For37

datasets with more complex relationships, supervision on one level (e.g. cell-type alignments)38

improves alignment performance on the other level (e.g. features, or vice-versa).39

Figure 1: Overview of the SCOOTR method on SNARE-seq dataset Given two unpaired single-cell
datasets with different genomic measurements (e.g. chromatin accessibility and gene expression),
SCOOTR simultaneously solves for two probabilistic correspondence matrices: one between features,
and one between cells across the two datasets.

2 Method40

We first give a brief introduction to optimal transport and explain how the existing optimal transport-41

based single-cell multi-omic alignment methods discard features during alignment. We then introduce42

the SCOOTR framework.43

2.1 Background on Optimal Transport44

Optimal transport is a mathematical framework for relating probability distributions or discrete45

measures to one another. Here, we focus on discrete measures because we work with sequencing46

datasets that contain empirical measurements on a finite set of samples. Consider two datasets47

with n and n′ data points in each, represented by matrices X = [x1, . . . ,xn]
T ∈ Rn×d and48

X′ = [x′
1, . . . ,x

′
n′ ]T ∈ Rn′×d. We let µ =

∑n
i=1 wiδxi and µ′ =

∑n′

j=1 w
′
jδx′

j
be two empirical49

distributions related to their samples. Here δxi is the Dirac measure, the probabilities placed on50

data points are non-negative, wi ≥ 0, w′
j ≥ 0, and sum up to one for each dataset,

∑n
i=1 wi = 1 =51 ∑n′

j=1 w
′
j . We refer in the following to w = [w1, . . . , wn]

⊤ ∈ ∆n and w′ = [w′
1, . . . , w

′
n′ ]⊤ ∈ ∆n′52

as sample weights vectors that both lie in the simplex.53

Given a cost function L(xi,x
′
j) that describes how “expensive” it is to match one data point (xi)54

with another (x′
j) across the two datasets, Kantorovich formulation of optimal transport sets out to55

find an optimal coupling π that attains:56

min
π∈Π(w,w′)

∑
i,j

L(xi,x
′
j)πij (1)

such that Π(w,w′) = {π|π ≥ 0,π1n′ = w,π⊤1n = w′}. (2)

Here, the coupling π holds the alignment probabilities between each pair of data points across the two57

datasets to optimally transform one into the other and Equation 2 defines the set of linear transport58

constraints. Most of the practical applications of optimal transport includes an entropic regularization59

over the coupling matrix to split the alignment probabilities across multiple samples and also to60

make the optimization computationally more efficient. For more detailed background on optimal61

transport, we refer readers to Villani, 2008 [13] (for theory), and Peyré and Cuturi (2019) [14] (for62

computational aspects).63
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2.2 Previous Optimal Transport-Based Single-cell Alignment Methods64

Previously, three single-cell multi-omic alignment algorithms have been proposed based on optimal65

transport: SCOT [9], Pamona [10], and SCOTv2 [11]. In a single-cell multi-omic alignment task,66

the datasets to be aligned contain measurements from different modalities (with potentially different67

number of features d and d′). Performing alignment using the formulation in Equation 1 would68

require defining a cost function over samples of different metric spaces, which is not possible. To get69

around this, SCOT [9] used Gromov-Wasserstein optimal transport, which extends the formulation70

in 1 with a cost function defined over intra-domain sample distances, making it amenable to use for71

multi-omic datasets:72
GW (w,w′) = min

π∈Π(w,w′)

n∑
ik

n′∑
jl

L(DX
ik, D

X′

jl )πijπkl (3)

such that Π(w,w′) = {π|π ≥ 0,π1n′ = w,π⊤1n = w′}. (4)

With this formulation, Gromov-Wasserstein optimal transport considers aligning a pair of samples73

xi,xk in one dataset (X) with a pair of samples x′
j ,x

′
l in the other dataset (X′) by comparing the74

distances between sample pairs in each domain DX
ik and DX′

jl . Similarly to 2, the linear constraints75

placed on the coupling matrix requires that the probability distributions in its column marginals76

and row marginals match the empirical probabilities defined over the datasets. Observing that this77

constraint in practice can lead to undesirable alignments for datasets with different representations78

of cell-type proportions, Pamona [10] and SCOTv2 [11] proposed variations on SCOT to relax this79

constraint in different ways. Despite these variations, all three methods construct nearest neighbor80

graphs on the input datasets and compute pairwise distances on these graphs to extract intra-domain81

sample distances. This procedure discards the features, which are not considered in the alignment.82

2.3 Single-cell Co-Optimal Transport (SCOOTR)83

Unlike the previous optimal transport-based single-cell alignment methods, SCOOTR does not84

discard dataset features and optimizes over two coupling matrices, one over the samples (πs) and85

one over the features (πf ) to attain:86

min
πs∈Π(w,w′),πf∈Π(v,v′)

∑
i,j,k,l

L(Xi,k, X
′
j,l)π

s
ijπ

f
kl +Ω(πs,πf ) (5)

where Ω(πs,πf ) is the entropic regularization term with Ω(πs,πf ) = ε1H(πs|ww′T ) +87

ε2H(πf |vv′T ) and H(πs|ww′T ) =
∑

i,j log(
πs
ij

wiw′
j
)πs

ij being the relative entropy. Here, w ∈ ∆n88

and w′ ∈ ∆′
n represent the empirical measures defined over samples, as described in Section 2.1,89

and similarly, v ∈ ∆d and v′ ∈ ∆′
d are uniform measures defined over the features. This time,90

while the scripts i and j still refer to sample indices, k and l refer to feature indices in the datasets91

X and X′, respectively. Intiutively, L(Xi,k, X
′
j,l) = (Xi,k −X ′

j,l)
2 compares each feature in each92

pair of cells across the two modalities after both the cells and the features of one modality have93

been transformed with respect to the two coupling matrices. Since the feature space is also being94

transformed by πf , this formulation allows us to compare multi-omic datasets without discarding95

features. The hyperparameters ε1 and ε2 control the extent of entropic regularization over the two96

coupling matrices, which controls their sparsity.97

This optimization formulation is based on Co-Optimal Transport, introduced by Redko et al [15],98

which uses and alternating block coordinate descent procedure to solve for both πs and πf . We99

describe the details of the optimization procedure in Supplementary Algorithm 1.100

One of the advantages of aligning both the samples and the features is the opportunity to provide101

supervision on one of them (e.g. cell-type alignments) to improve alignments on the other (e.g.102

features, or vice-versa). To do this, we optionally provide a “penalization matrix” to scale the cost of103

certain alignments, as detailed in Supplementary Materials.104

3 Results105

We apply SCOOTR to three real-world datasets with some ground-truth information to benchmark its106

alignment performance: (1) a CITE-seq dataset, with gene expression measurements and antibody107
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abundance profiles for ten antibodies from human peripheral blood mononuclear cells [2], (2) a108

SNARE-seq dataset, with chromatin accessibility and gene expression profiles from a mixture of four109

cell lines: BJ, H1, K562, and GM12878 [1], and finally (3) a multi-species scRNA-seq dataset with110

gene expression measurements from mouse prefrontal cortex and bearded lizard pallium [16]. For111

CITE-seq, SCOOTR yields quality alignments for both cells and features in its unsupervised setting.112

Figure 2(A) visualizes the feature alignment matrix (πf ) recovered by SCOOTR, where the rows113

are antibodies and the columns are the ten genes that encode them, in their respective order. We114

observe that SCOOTR recovers some correspondence for all antibodies and their encoding gene115

(along the diagonal), and ∼ 72% of the antibodies were assigned the highest coupling probability116

with their encoding gene. Figure S1(B) visualizes the cell alignments by projecting cells from the117

one domain (gene expression) onto the cells of the other domain (antibody abundance) by taking a118

weighted average of cells in the latter domain according to their coupling probabilities the cells in119

the former domain, as recovered in (πs) (a.k.a. “barycentric projection”, also used by the previous120

optimal transport-based alignment methods [9–11]). We visualize that the cells are correctly aligned121

with their corresponding cell-types and yield a low alignment error of 0.141 (compared to 0.154 by122

bindSC), as measured by the commonly used “average fraction of sample closer than true match”123

metric (FOSCTTM) [7, 9, 11, 12].124

Figure 2: SCOOTR feature alignment results A. Feature coupling matrix between the ten antibodies
and their encoding genes of the CITE-seq dataset. Larger and darker circles correspond to higher
alignment probabilities. B. Sankey plot visualizing example feature alignments for the four cell-
type marker genes and their strongest chromatin accessibility correspondences in the SNARE-seq
dataset. The table below indicates feature alignment accuracy at increased level of supervision on
cell-type alignments. C. Cell-type coupling matrix when full supervision is provided on paralogous
genes between the two species. The green boxes indicate relevant cell-type pairings based on prior
knowledge.

We observe that, when aligning datasets with more complex relationships, such as chromatin accessi-125

bility and gene expression alignments for the SNARE-seq dataset, where the underlying correspon-126

dences are not expect to be 1− 1, supervision on cell-type annotations improves feature alignment127

performance. Figure 2(B) visualizes an example of feature alignments recovered by SCOOTR for the128

four cell-type marker genes in this dataset, with validations from the literature described in Supple-129

mentary Materials. The table below this figure shows the increase in feature alignment accuracy with130

supervision, as benchmarked against the regulatory relationships predicted by CellOracle software131

[17], which contructs gene regulatory networks based on gene expression and chromatin accessibility132

data. Similarly, we observe that supervision on the feature level improves cell-type alignments for133

the cross-species gene expression dataset. In Figure 2(C), we visualize the cell-type alignments134

between the gene expression datasets for the two species, after averaging cell alignment probabilities135

based on cell-type annotations. Here, we provide full supervision on the feature-level alignments by136

only penalizing the alignment of non-paralogous gene pairs. As the table below this figure indicates,137

cell-type alignment improves with increased percentage of the paralogous genes used for supervision.138

We compare our fully supervised alignment accuracy (82.35%) with the bindSC (76.47%), which139

is also in its fully supervised setting. Since bindSC requires a prior on feature matchings and this140

dataset involves the alignment of the same modality (gene expression), we construct this prior matrix141

(“gene activity matrix”) based on paralogous gene matches. Despite this, we find that the cell-type142

alignments by SCOOTR are more accurate than the alignments by bindSC.143
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