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Abstract
We introduce a novel approach for solving the Quadratic Assignment Problem (QAP) by combining
Riemannian optimization and control of soft-spin amplitude. By reformulating the QAP as an opti-
mization problem on the Stiefel manifold, we leverage its geometric structure to define Riemannian
gradients over continuous variables while inherently satisfying orthogonality constraints. Additional
permutation matrix constraints are enforced using auxiliary variables within a descent-ascent frame-
work, ensuring that solutions remain within the feasible set. Numerical simulations demonstrate the
effectiveness of our method in finding globally optimal solutions.

1. Problem formulation

In this work, we aim to achieve global optimization of constrained non-convex problems using a
combination of Riemannian optimization[12] and the modulation of soft-spin amplitudes, reminiscent
of descent-ascent or primal-dual method in Lagragian optimization[14, 26]. Specifically, we tackle
the following problem:

minimize
x ∈ S

f(x) (1)

where f : S ⊆ R → R is a non-convex function defined on a set of discrete elements. Such problems
are typical of NP-Hard combinatorial optimization. Relaxation to an continuous state is useful
in many approximate or heuristic algorithms, such as semi-definite programming[8], analog-state
solvers[9, 11, 14, 26], and message-passing algorithms[17]. Algorithms based on relaxation have
shown competitive performance against discrete-state solvers when S is simple enough, such as
binary states without constraints, as seen in QUBO solvers[9, 14, 26], motivating their implementa-
tion on special-purpose analog hardware[26]. However, the generalization to more complex discrete
sets, such as permutation matrices, has been more elusive. Here, we show that the combination of
Riemannian optimization and dynamic correction of soft-spin amplitude similar to ascent-descent
(or primal-dual) algorithm allows extending the recent high-performance solvers to a broader set of
applications.
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Although our methodology is general, in this work we apply it specifically to the Quadratic Assign-
ment Problem (QAP) in which S is a set of permutations and f is a quadratic function. The QAP
is itself quite general, as it models a variety of important problems such as the Traveling Salesman
Problem, the Facility Layout Problem, and the Graph Partitioning Problem.

2. Related works

2.1. Quadratic Assignment Problem

The seminal work on solving constrained non-convex optimization problems using gradient descent
on a quadratic cost function with augmented Lagrangian penalty terms [11] was quickly demonstrated
to underperform [29] when compared to alternative Markov Chain Monte Carlo (MCMC)-based
approaches [3, 4, 28]. This led to the development of various other heuristic methods, including tabu
search [16, 24, 27], genetic algorithms [6], ant colony optimization [7, 25], iterated local search [22],
alternative neural network-based approaches [10, 13, 23], and other meta-heuristics [5].

2.2. Riemannian optimization

While continuous-state dynamics offer the distinctive advantage of providing a smooth trajectory
from the origin to the solution space, a significant challenge in methods based on continuous-state
spaces lies in connecting the subspaces of solutions that satisfy the imposed constraints. Techniques
such as the valid subspace method [2] aim to identify linear subspaces connecting feasible solutions.
Riemannian optimization [12] generalizes this concept to arbitrary manifolds, enabling optimization
over curved spaces that inherently satisfy the constraints. Current state-of-the-art approaches focus
on developing efficient algorithms tailored to specific manifolds which are crucial in applications
like machine learning, signal processing, and computer vision [1, 18].

2.3. Amplitude control methods

To achieve improved mapping between continuous and discrete states, an alternative to the Lagrangian
penalty approach is the introduction of auxiliary variables, which ensure that the continuous state
converges to a discrete one. This technique has been utilized in gradient-descent-ascent methods [30]
and primal-dual Lagrangian approaches [26]. Notably, amplitude control of soft spin dynamics has
shown strong performance in solving QUBO [14, 15, 19, 26] and Boolean satisfiability problems [20].
However, few studies have combined primal-dual inspired methods with Riemannian optimization
for non-convex combinatorial optimization [21], presenting a promising direction for future research.

3. Method

3.1. Riemmanian optimization

In the following, we show how to reformulate the QAP problem into a Riemannian optimization
problem. The QAP problem with n sites is defined as follows:

min
P

f(P ) := Tr(DPT TP T ) + Tr(P TC) (2a)

s.t. P is a permutation matrix. (2b)
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where: D ∈ Rn×n is the distance matrix; T ∈ Rn×n, the interaction matrix (e.g., representing a
cyclic graph in the case of TSP with C = 0); C, the linear cost of placing a facility at site j.

We reformulate QAP as a Riemannian optimization problem on the square Stiefel manifold O to
breakdown constraint in relation to the algorithm’s design:

min
Z ∈ Rn×n

fZ(Z) := Tr(DZT TZT ) + Tr(ZTC) (3a)

s.t.

ZTZ = I (Z ∈ O), (3b)

Z ∈ {0, 1}n×n. (3c)

3.2. Amplitude modulated Riemannian gradient

We consider the relaxation of Z to Y ∈ Rn×n with Y a matrix of “soft-spins” and define the
following coupled ordinary differential equations in Y constituting the algorithm for solving QAP as
formulated in eqs. (3a-3b):

dY

dt
= − 2

a2
∇Of

c
Y (Y,E) (Riemannian gradient descent), (4)

dE

dt
= −ξ((2(Y + b)− a)2 − a2)E (Amplitude modulation) , (5)

where the Riemannian gradient on the square Stiefel manifold is given as follows (see supplementary
materials):

∇Ofc(Y,E) = Y {Y,∇fc(Y,E)}, (6)

where {A,B} is the Lie bracket {A,B} = 1
2(A

TB −BTA) and ∇f c
Y (Y,E) the Euclidian gradient

of the cost function f c
Y . The function f c

Y is given as follows:

f c
Y (Y ) = ϵE ◦ [fY (Y ) + q(f1

Y (Y ) + f2
Y (Y ))], (7)

where fY (Y ) is equal to fZ evaluated at Z = Y+b
a . The symbol ◦ denotes the Hadamard product.

To help guide the direction of the Euclidian gradient, the cost function is penalized by the auxiliary
costs f1

Y (Y ) and f2
Y (Y ) that correspond to the constraints of a doubly stochastic matrix. That is,

f1
Y (Y ) and f2

Y (Y ) are equal to f1
Z(Z) = (Z1−1)T (Z1−1) and f2

Z(Z) = (ZT1−1)T (ZT1−1),
respectively (1 is the vector of all ones). These constraints are satisfied at the steady-state, but adding
these penalty terms in the cost function improve numerical stability. The parameters q, ϵ, ξ are
positive constants.

Note that when Z is orthogonal (ZTZ = I), Y is such that Y TY = a2I + b(bN − 2a)J . We
choose in the following b = 2a

N , in which case we have Y TY = a2I .

3



AMPLITUDE MODULATED RIEMANNIAN OPTIMIZATION FOR QAP

The dynamics of auxiliary variables E (see eq. (5)) ensure that constraint of a binary state (see
eq. (3c)) is satisfied at the steady-state. The Riemannian gradient of eq. (4) satisfy condition of
orthogonality (see eq. (3b)) at all times. When simulating the ODEs, a retraction operator is applied
at fixed intervals to correct for numerical errors. This is done using a scaled Newton-Schulz Iteration
as follows (I is the identity matrix):

Y (t+ dt) =
1

2
Y (t)

(
3I − Y (t)⊤Y (t)

)
. (8)

4. Experiments

To illustrate the effectiveness of combining the Riemannian gradient with amplitude control, numeri-
cal simulations of the convergence to a permutation matrix is shown Fig. 1.
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Figure 1: Numerical simulations of ODEs shown in eqs. (4-6) showing X(t) (a), Y (t) (b), and
the distance to the closest permutation matrix. The matrix-state quickly converges from a random
orthogonal matrix to a permutation matrix staying on the Stiefel manifold. Each colored line
correspond to Yij(t). n = 12.

In practice, the parameters are set such that dynamics exhibits chaotic behavior. We evaluate the
algorithm on the QAP library1. The algorithm is solely deterministic and optimal solutions are found
after chaotic transient dynamics, as shown in Fig. 2 and 3.
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Figure 2: (a) and (b) are the same as in Fig. 1. 144 variables are shown per panel. (c) Ratio f(P )/f∗

to the optimal cost f∗. n = 12 (Tai12a). The optimal solution is found after approximately 10
normalized time units.

1. https://coral.ise.lehigh.edu/data-sets/qaplib/
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Figure 3: The same as Fig. 3 for n = 20 (Tai20a).

We conducted ablation experiments to evaluate the impact of the Riemannian gradient on the
quality of the solutions obtained. In Fig. 4, the density of the cost f(P ) for solutions found with
and without auxiliary variables e (i.e., E = 1 and ξ = 0) and the Riemannian gradient is compared.
The highest solution quality is achieved when auxiliary variables are used in conjunction with the
Riemannian gradient.
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Figure 4: Density of the cost f(P ) of solutions found with and without auxiliary variables correcting
amplitude heterogeneity (i.e., E = 1 and ξ = 0) and the Riemannian gradient. In the case without
Riemannian, a simple Euclidient gradient is used instead. n = 20 (Tai20a).

5. Discussion

The proposed framework demonstrates a promising application of differential geometry and contin-
uous flow for solving NP-Hard combinatorial optimization problems. The algorithm described in
this paper is particularly suited for special-purpose analog hardware and is highly parallelizable on
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GPUs, given its reliance on matrix-matrix multiplications. Future work will focus on optimizing the
GPU implementation to assess the scalability of the approach on large-scale QAP problems.
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Supplementary materials

Riemannian gradient descent: some explanations

Let M be a Riemannian manifold with a Riemannian metric gx at each point x ∈ M. For a smooth
function f : M → R, the Riemannian gradient of f at a point x ∈ M, denoted by ∇xf ∈ TxM, is
the unique vector in the tangent space TxM that satisfies:

gx(∇xf, v) = dfx(v) ∀v ∈ TxM

where dfx : TxM → R is the differential of f at x, representing the directional derivative of f in the
direction of v ∈ TxM, given as follows:

dfx(v) = lim
t→0

f(γ(t))− f(x)

t

where γ(t) is a smooth curve on the manifold M such that γ(0) = x and γ̇(0) = v. Intuitively,
dfx(v) represents the rate of change of f at x in the direction of the tangent vector v. gx(u, v) is the
Riemannian metric, providing the inner product between two tangent vectors u and v in TxM.

In local coordinates (x1, x2, . . . , xn) around a point x ∈ M, the Riemannian metric is repre-
sented by the positive-definite metric tensor gij(x). The Riemannian gradient in local coordinates is
computed by:

∇xf = g−1
x ∇f(x)

where g−1
x is the inverse of the metric tensor gij(x), ∇f(x) is the Euclidean gradient of f in these

local coordinates. In the case of the Stiefel manifold, the metric tensor is simply the identity matrix.

Retraction Operator

The retraction operator Rx(v) is a map that projects a tangent vector v ∈ TxM back to the manifold
M. It provides an approximation of the exponential map, which moves along geodesics on the
manifold, but is often computationally simpler. The retraction ensures that after a gradient descent
step in the tangent space, the next point lies on the manifold. Mathematically, it is defined as:

Rx(v) : TxM → M, Rx(v) ≈ expx(v)

where expx(v) is the exponential map, which follows the geodesic curve starting at x in the direction
v. The exponential map expx(v) takes a tangent vector v ∈ TxM at a point x ∈ M and maps it to a
point on the manifold M by following the geodesic emanating from x in the direction of v.

Inner Product on the Stiefel Manifold

On the Stiefel manifold O(n, n), the Riemannian metric at a point X ∈ O(n, n) is the standard
Euclidean inner product between two tangent vectors A,B ∈ TXO(n, p). The inner product is
defined as:

gX(A,B) = Tr(A⊤B),

where Tr(·) denotes the matrix trace, and A⊤ is the transpose of A.
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To derive the tangent space condition, we recall that the Stiefel manifold consists of matrices
X ∈ Rn×n with orthonormal columns, i.e., X⊤X = In. Let X(t) be a curve on the Stiefel manifold
such that X(0) = X and Ẋ(0) = V ∈ TXO(n, n). Differentiating the orthogonality condition
X(t)⊤X(t) = In with respect to t at t = 0, we obtain:

d

dt

(
X(t)⊤X(t)

) ∣∣∣
t=0

= 0,

which leads to:

X⊤V + V ⊤X = 0.

This is the condition that any tangent vector V ∈ TXS(n, p) must satisfy.

Symmetric and Antisymmetric Components

From the tangent space condition X⊤V + V ⊤X = 0, we see that X⊤V must be antisymmetric.
Given the Euclidean gradient ∇f(X), we need to project it onto the tangent space to ensure that the
resulting vector satisfies the tangent space condition.

We can achieve this by removing the symmetric part of X⊤G for any matrix G ∈ Rn×n. The
projection of G onto the tangent space is given by:

ProjTXS(n,p)(G) = G−X sym(X⊤G),

where sym(X⊤G) is the symmetric part of X⊤G, defined as:

sym(X⊤G) =
1

2
(X⊤G+G⊤X).

Thus, the Riemannian gradient on the Stiefel manifold is:

∇xf = ∇f(X)−X sym(X⊤∇f(X)), (9)

∇xf = X{X,∇f(X)}. (10)

This ensures that the Riemannian gradient lies in the tangent space by removing the symmetric
component of X⊤∇f(X).
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