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Abstract

Evaluating instruction following capabilities
in multimodal, multi-turn dialogue presents
significant challenges, particularly when multi-
ple instructions are distributed throughout the
conversation. Current evaluation approaches
often rely either on time-intensive human rat-
ings or LLM-based judges, which we show
have systematic bias toward responses from
their own model family. We address these
challenges by introducing MMMT-IF, a bench-
mark that augments image-based question-
answering with global answer format instruc-
tions distributed between conversation turns.
All instructions are verifiable through code
execution, enabling objective evaluation. To
measure performance, we introduce the Pro-
grammatic Instruction Following (PIF) met-
ric, which quantifies the fraction of correctly
followed instructions during reasoning tasks.
This metric shows 60% correlation with hu-
man ratings, validating its reliability. Eval-
uation of leading models (Gemini 1.5 Pro,
GPT-40, and Claude 3.5 Sonnet) reveals sig-
nificant performance degradation as conversa-
tions progress, with average PIF scores drop-
ping from 0.81 at turn 1 to 0.64 at turn 20.
Model performance deteriorates significantly
when testing for consistency; when generat-
ing four responses per turn, GPT-40 and Gem-
ini successfully follow all instructions only
11% of the time. Notably, when instructions
are appended to the conversation end rather
than distributed throughout, PIF scores im-
prove by 22.3 points on average, indicating
that retrieving multiple instructions from dif-
ferent parts of the input context, rather than
instruction following itself, is the major chal-
lenge. The MMMT-IF dataset and metric com-
putation code will be open-sourced.

1 Introduction

Despite the significant success of Large Founda-
tion Models (LFMs) (Gemini et al., 2024; Open
Al 2024; Anthropic, 2024), instruction following

is still a challenging task (Zhou et al., 2023a). This
challenge becomes more pronounced when there
are multiple instructions spread out over several
turns in a chat setting between a user and a LFM,
where the model needs to reason over various turns
of the conversation. While there are several in-
struction following evaluation datasets, for exam-
ple (Zhou et al., 2023a; Zhang et al., 2024), these
evaluations are usually single-turn and most often
use text input. Another key challenge is devel-
oping objective evaluation criteria for instruction
following. In collecting human annotated refer-
ence answers for our evaluation dataset, annotators
reported that, at each answer turn, rewriting the
answer to follow all given instructions took 10 min-
utes on average, highlighting that human evaluation
is time intensive. Recent developments have sug-
gested using LLMs as judges of answer quality, but
we found that there was a bias in the LLM judge to
favor responses coming from the same model.

A new development has been to create tasks
where model answers can be programmatically
checked, in the domains of coding (Yang et al.,
2023), data science (Huang et al., 2022), and
text (Dong et al., 2025), ensuring an objective eval-
uation. Among these, (Dong et al., 2025) also fo-
cus on instruction following, but only in the single-
turn, single modality setting. Current chat use cases
are often multimodal and multi-turn, showing the
need for objective instruction following evaluation
datasets in this domain.

To address these limitations, we propose an in-
struction following benchmark, MMMT-IF, along
with new metrics for multimodal multi-turn dia-
logue. Our proposal extends the MMDU evalua-
tion dataset (Liu et al., 2024d), a multimodal, multi-
turn chat task with independent question turns. An
overview of our evaluation benchmark and key met-
ric is shown in Figure 1. The MMMT-IF extension
augments the MMDU by adding code verifiable
format instructions between dialogue turns. Each
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Figure 1: Upper left: The MMMT-IF evaluation benchmark is created by adding global instructions before each
question turn in the MMDU benchmark. Upper right: The MMMT-IF benchmark focus on instruction following
and information retrieval over multiple question turns and is evaluated with the programmatic instruction follow-
ing (PIF) metric, this is disjoint from the MMDU benchmark which focuses on Q&A accuracy and multimodal
reasoning, evaluated with an LLM judge. Lower: To compute the PIF metric at the current turn, Python functions
are used to programmatically check the fraction of the given instructions that are followed.

instruction constrains the response format in a way
that can be checked by code execution. Instruc-
tions accumulate throughout the conversation, with
each new instruction adding to rather than replacing
previous ones. This challenges the models as the
task requires long context reasoning and retrieval
of the instructions from different chat turns, cre-
ating a dataset that not only measures single-turn
instruction following performance, but also how
well a model can follow multiple instructions given
throughout a conversation, a common chat use case.
The task is not particularly challenging for human
raters, who follow on average 94% of given instruc-
tions at each turn when writing reference answers
for the MMMT-IF evaluation dataset.

We develop two metrics to measure instruction
following capabilities: Programmatic Instruction
Following (PIF), the fraction of given instructions
in the chat that are followed at a certain turn, and
(PIF-N-K), to stress test the ability of the models
to consistently generate responses that follow all
the instructions. To compute the PIF-N-K met-
ric at a turn, we generate N responses, and the
PIF-N-K metric is the fraction of the responses
where at least K of the response candidates at a
given turn follow all instructions, i.e., has PIF
metric of 1. We conducted a human study to rate
the instruction following capabilities at each turn,
and found out that annotators’ ratings have a cor-

relation of 60% with the proposed PIF metric on
the full MMMT-IF evaluation dataset. This high-
lights the relevance of the metric. We show that
the evaluation suite is challenging for the models
with evaluate it on: Gemini 1.5 Pro (Gemini et al.,
2024), Claude 3.5 Sonnet (Anthropic, 2024) and
GPT-40 (Open Al 2024), with a significant loss
in performance both over multiple turns and over
multiple given instructions, as measured by the
PIF metric. The average PIF across the models at
turn 1 is high at 0.81, while at turn 20, it declines
to 0.64. We develop a more nuanced measure by
comparing empirical distributions of PIF scores at
each question turn. Interestingly, Sonnet 3.5’s PIF
scores are consistently higher than Gemini’s - not
just on average, but across the entire distribution of
performance outcomes. This means that regardless
of how much one values higher PIF scores, Son-
net 3.5 would be preferred over Gemini 1.5 Pro at
every turn with respect to the PIF metric.

A similar pattern is seen when conditioned on
the number of given instructions. Conditional on
having given 6 instructions, the best model in our
benchmark, Sonnet 3.5 has a PIF score of 0.74, and
Gemini 1.5 Pro has a PIF score of only 0.4. This
is in stark contrast to the PIF metric conditional
on 1 instruction given, where Gemini 1.5 Pro has
an average PIF score of 0.68 and Sonnet 3.5 has
an average PIF score of 0.97 on the evaluation



dataset.

For the PIF-4-K metric, the PIF-4-4 metric is
only 11% for both Gemini 1.5 Pro and GPT-4o,
and 28% for Claude 3.5 Sonnet, showing that all
models fail to robustly follow all given instructions
correctly.

We show that a significant part of the challenge
with the evaluation set is not following the instruc-
tions, but rather retrieving the instructions from the
model context and then reasoning over the instruc-
tions. When all instructions are added in the end
of the model input context in addition to the model
context, the average PIF increased 22.3 points
across all models, with Gemini 1.5 Pro improving
from 0.473 to 0.739, GPT-40 from 0.647 to 0.856,
and Sonnet from 0.771 to 0.974, highlighting that
in addition to following the instructions, retrieving
the instructions from the input model context re-
mains challenging. This shows similarities with
tasks such as multiple needles in a haystack, where
the needles are instructions that needs to be rea-
soned over. Furthermore, our most challenging
metric, the PIF-4-4 metric, showed an average im-
provement of 27 points, from an average of 0.16
across all models to an average of 0.43 when all
given instructions were added in the end of the
input model context.

To summarize, our main contributions in this
work are:

1. We propose a methodology to extend mul-
timodal multi-turn chat datasets to measure
answer format instruction following, imple-
mented on the MMDU dataset.

2. Two metrics, PIF and PIF-N-K, to measure,
through code execution, the effectiveness for
models to follow instruction, as well as their
robustness in correctly following all given in-
structions.

3. We uncover a significant PIF performance
degradation for all the models (Gemini 1.5
Pro, GPT-40 and Claude 3.5 Sonnet) as the
number of given instructions increases.

4. We show that the main difficulty is not follow-
ing the given instructions, but rather retrieving
the instructions from the input model context
and reasoning over them.

2 Dataset

This section describes the MMMT-IF evaluation
dataset, as well as the human data we collect to

create reference answers and preference ratings.

2.1 Instruction Following Extension

The extension is visualized in Figure 1. The exten-
sion adds answer format constraint instructions in
between questions in the dialogue from the MMDU
benchmark. All instructions are chosen so that the
correctness of a response can be verified through
code execution, enabling an unbiased and auto-
mated evaluation of instruction adherence. The
instructions are global within a chat, meaning that
all instructions from previous turns needs to be fol-
lowed for future turns. Each instruction is chosen
from separate categories (for example, one category
dictates the start character for answer sentences,
and another category dictates the end character for
answer sentences). All the categories are indepen-
dent from each other. Each category has either 2 or
3 instruction options. Before each question, with
probability 1 — Z-Instruction givenso far o, her jnstruc-
tion is added, uniformly at random chosen from a
category (in total there are 6 categories) not yet
added, hence dialogues includes a maximum of 6
instructions. As a result, most chats will receive 6
instructions between turns 6 and 10. Given an aver-
age chat length of 14, this means that 6 instructions
will be the most common number received across
all turns, as shown in Figure 2. This increases the
task’s difficulty, as turns with more instructions are
harder to satisfy completely. A partial set of all the
instructions are in Figure 1. I; corresponds to cate-
gory ’sentence start character’, I corresponds to
category ’favorite word’, and I corresponds to cat-
egory ’sentence end character’. The full set of all
instructions and instruction categories are available
in Appendix D.

Note that the extension makes the task also re-
quire more long context abilities in the models, as
instructions needs to be retrieved from multiple
parts of the input model context. We view it as a
strength of the work that we are able to reuse the
base questions and images from a previous bench-
mark, as we test model capabilities disjoint from
the original benchmark, and use different evalua-
tion metrics. Our method is a general way to extend
a Q&A benchmark to test instruction following. Ta-
ble 1 shows several statistics about the properties
of the MMMT-IF evaluation set. We describe the
details we used to filter the dataset in Appendix D.
Most of the 71 conversations are at least 10 turns,
and none are more than 20 turns. The full distribu-
tion of conversation lengths are in Appendix D.
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Figure 2: For all 990 turns, the distribution of the num-
ber of instructions that were given so far in the chat.

Table 1: Descriptive Statistics of the MMMT-IF dataset

Quantity Value
# Chat turns 990
# Chats 71
# Images per chat 2-5
# Turns per chat 1-20
# Instructions per chat 1-6

2.2 Human written reference labels

We collect human labels for a reference response
that both answers the questions correctly and fol-
lows all the constraints from the given instructions.
In addition, the human annotators were asked to
rate the answer accuracy from 1 to 10, the instruc-
tion following accuracy from 1 to 10 and give a pair-
wise preference score between each of the models
(Gemini 1.5 Pro, GPT-40, and Claude 3.5 Sonnet)
in our evaluation set. The full set of instructions
given to the human annotators is in the Appendix G.

3 Evaluation Metrics

This section introduces the PIF and PIF-N-K met-
rics, and provides a rationale for their use.

3.1 Programmatic Instruction Following
Metric

Given model input context X (containing the input
images, previous instructions, previous questions,
and previous answers), and model response Y, we
can define the sample PIF metric for that response

to be

PIF(X,Y) =
# Instructions in X followed in response Y

# Instructions in input context X ’

where we use ’instruction’ to refer to the constraints
we give on the answer format. Note that the PIF
considers whether the response follows all given
instructions in previous turns, not just the instruc-
tion given at the current turn. The PIF metric does
not take into account if the question was answered
correctly, but rather, it focuses on if the instructions
given to constrain the answer were followed. For
our evaluation set, we have M = 71 chats, and chat
i € {1,..., M} have N; turns. This gives us our
evaluation set: D = {(Xj j, Yi,j)}i]\i’lj?;?:l, where
X j is the input model context for chat 7 at turn j,
and Y; ; is the model response for chat 7 at turn j.
We define the corpus level (mean) PIF score as

1 L
PIF(D) = i YN A PIF(X; ;,Y; ;).
i=1 j=1

The corpus level Programmatic Instruction Follow-
ing Score conditioned on turn j, is given by

PIF (Dt = j) = PIF({(Xy;, Yij) i),

where chats with less than j turns are excluded. It
will be clear from the context whether we refer to
the corpus or sample PIF metric.

The PIF metric captures the following aspects:

1. The ability for a model to retrieve several
pieces of information from different parts of
an input text context and reason over them

2. The ability for the model to follow objective
instructions

Of these, we think the most important is the first, as
this is a very common scenario for real use-cases,
and it’s a feature that single-turn based metrics are
not capturing well.

3.2 Consistency Metric, PIF-N-K

In addition to having a high average score, we want
models to consistently produce the same high qual-
ity results. We propose a metric to capture this
intuition; for each turn N responses are sampled,
and PIF-N-K will then denote the fraction of sam-
ples where at least K samples have PIF score 1.
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Figure 3: The distribution of the input context lengths for Gemini 1.5 Pro, Claude 3.5 Sonnet and GPT-4o0, in the
evaluation dataset, along with the mean input context length in characters.

Thus the sample level PIF-N-K, for input model
context X, and sampled responses Y'!, ... YV is

PIF-N-K(X, V!, ..., YY) =

. N
Loif 300 Ippx,yi)=1 = K
0, otherwise

The intuition is that we want to measure how con-
sistently the models can follow all the instructions
correctly. We overload notation and define the cor-
pus level (mean) PIF-N-K for a dataset with L
turns, D = {X;, ;' ... ) YN} as

PIF-N-K (D) =
1 L
7 Y PIF-N-K(X;, Y}, ..., vY).

i=1 Z

With this definition it holds that, for any dataset D,
PIF-N-i(D) < PIF-N-j(D)

when ¢ > j.

4 Evaluated Models

This section describes the models evaluated, and
provides an analysis of the answer lengths of the
models.

4.1 Model Endpoints

We access Gemini 1.5 Pro (abbreviated as Gem-
ini) through the Vertex Al API, using the fol-
lowing model version: *Gemini-1.5-pro-preview-
0514’. We access Claude 3.5 Sonnet (abbreviated
as Sonnet) through the Anthropic Vertex API, with
the model version ‘claude-3-5-sonnet@20240620°.
We access GPT-40 from the OpenAl API with the

model version ‘gpt-40-2024-05-13°. The hyperpa-
rameters for all models are the default settings. The
default temperature for all models is 1. The safety
filters for all models are the default settings. We
don’t see questions that are marked as unsafe with
the default setting for the models.

4.2 Context Lengths

Figure 3 shows that the mean input context length
for Gemini 1.5 Pro is the smallest, as the input
context is made up from the questions and model
outputs in the previous turns, and the average out-
put generated is shortest by Gemini 1.5 Pro. This
does not take into account the images that are in-
putted at the beginning of each chat. It also shows
that the average input context is rather long, thus
requiring long context reasoning.

5 [Evaluation Results

The section describes the results from the eval-
uation experiments, starting with results for the
PIF metric, then considering similarities with the
needle in a haystack experiment, results for the
PIF-N-K metric, before finally considering human
evaluation results, and inherent biases with a popu-
lar alternative approach using LLM judges to mea-
sure instruction following performance.

5.1 PIF Metric

Figure 4 shows the PIF conditional on question
turn. We note that the PIF metric decreases with
the question turn. The 95% confidence bounds for
the PIF metric are done on a per-turn basis, us-
ing a Bernoulli confidence interval approximation.
This gives conservative confidence bounds as the
Bernoulli distribution is the distribution that for
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Figure 4: The mean PIF metric conditioned on the
question turn with 95% confidence intervals. For
a fixed turn 7, the mean is taken across all chats at
with at least ¢ turns.

a given mean maximizes the variance among all
distributions on [0,1].

From Figure 5 we see that the scores decrease
with the number of given instructions, as it’s harder
for the models to follow multiple instructions at
the same time. Also note that Gemini 1.5 Pro
has a significantly lower score for high number
of instructions compared with Sonnet and GPT-4o,
highlighting an area for improvement. Finally, note
that the programmatic instruction following met-
rics is automatically evaluated by code execution,
which increases the reliability of the shown results.
The 95% confidence intervals are computed with a
Bernoulli approximation.

Figure 6 shows the empirical cumulative distribu-
tion function for the PIF metric. The interpretation
of the left graph in Figure 6 is that at turn 2, the
programmatic instruction following score can be 0,
0.5, or 1. For Gemini 1.5 Pro, it’s 0 with probability
18%, while for GPT-40 it’s zero with probability
around 10%. The probability that the program-
matic instruction following score is less than 1 (i.e.,
0.5 or 0) is around 35% for GPT-40, 52% for Gem-
ini and 10% for Sonnet. Not only is the average
PIF score better for Sonnet at each question turn,
it’s also true that P(PIFsopnet(X,Y) > z|turn =
i) > P(PIFGemini(X,Y) > z|turn = i) for all
x € [0, 1], and for all turns i, for any model input
context X and model response Y in the evaluation
set at turn i, and P is the empirical measure from
all samples in the MMMT-IF evaluation set.

5.2 [Extension of Needles In a Haystack

The Needle in a Haystack test involves embedding
a random statement ("needle") within a long con-

Mean PIF Conditional on Number of Given Instructions
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Figure 5: The mean PIF metric conditioned on the
number of instructions given in the chat so far. The
metric defaults to 1 if no instruction has been given.

text ("haystack") and prompting an LLM to retrieve
it. Our experimental setup has several similarities
and differences with a needle in a haystack experi-
ment. In our setting, the complex reasoning across
the needles (given instructions) is important, in ad-
dition to the retrieval of the needles. To understand
the impact of where in the input model context the
instructions are located, we run the following abla-
tion: In addition to having instructions throughout
the input context, we add all given instructions at
the end of the input model context. Table 2 shows
the results, where we see that the corpus level PIF
increased 22.3 points on average across all mod-
els, highlighting that in addition to following the
instructions, retrieving the instructions from the
input model context remains challenging. This
suggests a practical method to improve instruction
following capabilities in multi-turn chat: find all
the instructions and add them to the end of the input
model context.

The first row of Table 2 also highlights statisti-
cally significant differences in the corpus level (all
990 turns) PIF metric between the evaluated mod-
els. We see that the programmatic instruction fol-
lowing score is best for Sonnet, and Gemini has the
weakest performance. Using the (non parametric)
Wilcoxon Signed Rank test, we reject the hypothe-
ses Hy : P(PIFGemini > PIFsonnet) >= 0.5 with
p-value smaller than 10~°. Using the Wilcoxon
Signed Rank test, we also reject the hypotheses
Hy : P(PIFGemini > PIFGpr4o) >= 0.5 with p-
value smaller than 10~°. The difference between
the models for the mean programmatic instruction
following metric is significant.
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Table 2: Mean PIF metric on the MMMT-IF evaluation dataset.

Metric Gemini 1.5 Pro  GPT-40  Sonnet 3.5
Programmatic Instruction Following (PIF) 0.473 0.647 0.771
PIF with all instructions added at end of input | 0.739 0.856 0.974

prompt

5.3 PIF-N-K Metric

We now consider the results for the PIF-N-K, mea-
suring the robustness for following all given instruc-
tions correctly. In our experiments we set N = 4.
Figure 7 shows the results. As expected PIF-4-4,
meaning the fraction of turns where all N = 4 sam-
pled turn answer candidates got all the instructions
correct is quite low, for both Gemini and GPT-40
it’s 11%, highlighting that this is a very challeng-
ing metric with significant headroom for model
improvement. However, note that also for Sonnet
3.5, the model with the strongest performance, the
metric rapidly becomes more challenging as we
move from PIF-4-1 to PIF-4-4. This points to a
significant robustness issue with the models we
have studied in this work, as if the model always
had the same percentage of instructions followed
in its responses, we would not see a decrease in the
PIF-N-K metric.

5.4 Human Evaluation

As described in Section 2.2 we collect human eval-
uations of instruction following, chat accuracy and
pairwise preferences. In Figure 8 with human eval-
uations, we observe that Gemini underperforms
GPT-40 and Sonnet, and Sonnet and GPT-40 are

Table 3: Correlation between the PIF metric and the
human rated instruction following metric for 990 sam-
ples from human raters.

Overall Gemini 1.5 GPT-4 Sonnet
Correlation Pro 0 3.5
0.60 0.44 0.68 0.63

broadly similar. We also find that the correlation
between the human instruction rating and the PIF
metric, the results are shown in Table 3. We note
that the average correlation across all models is
high, 0.60, indicating the usefulness of the PIF
metric to capture the instruction following of the
models. In Table 4 we see that the average hu-
man evaluation score for accuracy is highest for
GPT-40, highlighting that while PIF score is an
important metric, there are several aspects of model
performance the metric does not cover.

5.4.1 How hard is the task for human raters?

Starting with a reference answer from the original
MMDU dataset, human raters were instructed to
rewrite the responses to both be correct and to fol-
low all the given instructions. The human raters
had access to the LLM model responses, the orig-
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inal reference answer for the MMDU dataset, as
well as a list of all instructions given in the chat, so
they did not have to look at the chat history to find
the instructions. The raters reported that it took
on average 10 minutes to write the answer and re-
ported that the hardest instructions to satisfy where
the constraints on the sentence start word and the
constraints on the sentence lengths. The program-
matic instruction following scores for the human
raters have an average of 0.94, significantly higher
than both Gemini and GPT-40 with all instructions
in the end of the input context, but actually lower
than Sonnet 3.5 in the setting with all instructions
added at the end of the input model context, at
a mean PIF score of 0.97. This highlights that
while the task is challenging, the human raters are
able to complete it with great proficiency, indicat-
ing that there is headroom for models to improve.
The raters reported that having access to the model
answers helped speed up the rewriting process by
giving inspiration to ways to follows the given con-
straints.

Table 4: Gemini vs GPT-40 as auto-rater vs human eval-
uation on the MMMT-IF dataset.

Judge Gemini GPT-40 Human
1.5 Pro
Avg Accuracy
Gemini-1.5 Pro 6.95 7.36 6.04
GPT-40 7.07 7.82 6.70
Sonnet 3.5 6.92 7.44 6.33
Avg Instruction
Following
Gemini-1.5 Pro 7.61 8.33 3.80
GPT-40 7.65 9.06 441
Sonnet 3.5 7.81 9.01 5.32
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HEE Win Rate
B Lose Rate
B Tic Rate

Sonnet vs GPT-40

Gemini vs Sonnet
Pairwise Comparisons

Gemini vs GPT-4o

Figure 8: Win, Tie, and Loss rate using human
preference rankings for Gemini vs GPT-40, Gem-
ini vs Sonnet, and Sonnet vs GPT-40.

5.5 Auto-Rater Bias

To understand the reliability of using LLM-judges
as auto-raters of response quality, we use the an
extension of the LLM-based judge as in (Liu et al.,
2024d), with different models as the LLLM judge.
We focus on instruction following and answer accu-
racy, with the same prompt format for the LFMs as
for the human evaluators, described in Appendix G.
From Table 4 we observe that with GPT-40 as
judge, GPT-40 performs better, and with Gemini
as a judge, Gemini has a better performance. The
Gemini based auto-rater gets the relative order of
the instruction following correct (relative to human
evaluation) whereas the GPT-40 judge ranks the
GPT-40 as having better instruction following than
Sonnet. In addition, we see that the human rater
scores are in general more conservative. For the
accuracy ratings, the GPT-40 judge has the same
relative ranking as the human raters, which the
Gemini judge does not. This underscores the need
for using objective evaluation criteria.

6 Conclusion

In this work we proposed the MMMT-IF LFM in-
struction following evaluation set for multimodal,
multi-turn dialogue, along with several metrics ver-
ifiable by code execution that are highly correlated
with human evaluations. We show that all evalu-
ated models have a strongly degrading performance
with the number of conversation turns. Our anal-
ysis shows that the main difficulty of the task lies
not within the instruction following, but rather to
retrieve the instructions from different parts of the
input context and then reason over them.



7 Limitations

One limitation of our paper is that only a subset of
all possible instructions are suitable to be used in
our evaluation set. Critically, only instructions that
can be confirmed by code execution are used, this
often limits it to constraints on the answer format.
Many subjective instruction types can’t be used.
Another limitation is that the benchmark is focused
only on English language, limiting cross-lingual
insights. Due to resource constraints (each turn
takes 10 minutes on average for the annotators),
we only used one human annotation per chat turn,
with more resources it would have been useful to
consider inter-annotator agreement. Finally, the
PIF metric only captures binary compliance for
each instruction, while sometimes an instruction is
almost followed but still get zero score.

8 Ethical Considerations

We declare that all authors of this paper acknowl-
edge the ACL Code of Ethics and honor the code
of conduct. We believe our benchmark to be ac-
cessible to researchers with low resources, as our
main PIF metric relies solely on executing short
Python code, rather than using human evaluation or
an LLM based evaluation through an API. While
our PIF metric shows good correlation with human
judgment (0.60), we acknowledge a significant risk
that future language models may be trained on this
benchmark, potentially compromising its effective-
ness as an evaluation tool even if human correlation
remains high. We have thoroughly scanned the cre-
ated evaluation benchmark for offensive content
and personally identifying information, none of
which were present. The annotators were based in
the United States and paid fair wages. We commit
to open-sourcing the MMMT-IF dataset and metric
computation code under the Apache-2.0 License.
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A Overview of Appendix

The appendix provides supplementary information
across six main sections:

* B. Literature Review: Related work in instruc-
tion following evaluation, programmatic in-
struction following, multimodal evaluation
datasets, long context retrieval, and LLM
judges.

C. Additional Experiments: Detailed perfor-
mance analysis on specific instruction types,
model response lengths, and correlation be-
tween PIF metric and human accuracy scores.

D. Additional Dataset Details: Dataset ques-
tion characteristics, filtering criteria used to
create the final dataset and complete set of
code verifiable instructions used in the evalua-
tion.

E. Example Chat: A partial conversation with
corresponding images demonstrating the inter-
action format and instruction following evalu-
ation.

F. Error Analysis: An examination of com-
mon failure modes and error patterns observed
across different models.

G. Human Annotator Instructions: Complete
guidelines and rubrics provided to human an-
notators for dataset creation and evaluation.

B Literature Review

B.1 Instruction Following Evaluation

There are several instruction following evaluation
benchmarks focusing on instructions related to an-
swer constraints on a Q&A task, (Xia et al., 2024,
Zhou et al., 2023a; Zhang et al., 2024; Tam et al.,
2024; He et al., 2024). Compared with these works,
we focus on multiple instructions spread out over a
long context, testing not only instruction following
but also retrieval and complex reasoning from the
input context. There have been many other instruc-
tion following evaluation sets (Chen et al., 2024c;
Zhou et al., 2023b; Adlakha et al., 2024; Sun et al.,
2024; Yan et al., 2024; Jiang et al., 2024; Chia et al.,
2024; Skopek et al., 2023; Qin et al., 2024), but
their focus in not on multiple instructions spread
out in the input context for multimodal multi-turn
chat.
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B.2 Programmatic Instruction Following

Several previous papers use program execution
to determine instruction following capability, for
code (Yang et al., 2023), Data science (Huang et al.,
2022), and text (Dong et al., 2025). Our work is
most related to (Dong et al., 2025), but we fix a set
of instructions, and instead of a single instruction
use case, we focus on multiple instructions, over
multiple turns of multimodal question answering.

B.3 Multimodal Evaluation Datasets

There have been several benchmarks suggested for
multimodal models, for the multi-turn chat use case
(Liu et al., 2024d,b). However, while the datasets
are multi-turn, the chat turns can be independently
answered, thus making it less relevant for long
context models. By introducing given at several
locations throughout the chat, we introduce long
range dependencies in the data needed to answer
questions. Other work for evaluating multimodal
models include (Yue et al., 2024; Liu et al., 2024c;
Srinivasan et al., 2021; Yu et al., 2024; Xu et al.,
2025; Chen et al., 2024b; Wang et al., 2024). None
of these focus on multi-turn instruction following.

B.4 Long context Retrieval

There have been several works focusing on the ef-
fect of long input context on model performance
on downstream tasks, including (Liu et al., 2024a;
Levy et al., 2024; An et al., 2024). Similar to the
Lost-in-the-middle paper (Liu et al., 2024a), our
paper examines the effect of where in the input
context information is located. The results in (Levy
et al., 2024) are also complementary, as both ob-
serve performance degradation with input context
length increases. Our evaluation set can also be
viewed as a task similar to multiple needles in the
haystack (a task where several tokens needs to be
retrieved from a long input context), where each
needle is an instruction that the model needs to
reason over.

B.5 LLM judges

There have been several previous works on using
LLMs to judge quality of other LLM responses,
including (Dubois et al., 2023; Zheng et al., 2023;
Chen et al., 2024a; Dubois et al., 2024; Zeng et al.,
2024; Liu et al., 2024d). While these work mostly
focus on using LLLM judges, we focus on some
of the potential drawbacks due to a bias in which
a model LLM judge tend to rates higher answers
from models within the same model family.
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C Additional Experiments

C.1 Performance on Specific Instructions

Mean Programmatic Instruction Following Score conditioned
on an instruction having been given in the chat so far

EEE Claude 3.5 Sonnet
= Gemini 1.5 Pro
. GPT-40

Figure 9: the mean conditional programmatic instruc-
tion following score conditioned on an instruction hav-
ing been given in the chat.

In Figure 9 the PIF score conditional on an in-
struction having been given is shown. We note
that Gemini 1.5 Pro has a hard time following an
instruction to end sentences with a question mark,
and GPT-4o0 has some issues with following instruc-
tions related to outputting even or odd numbers in
its responses. The definition of the categories are
presented in Table 5.

C.2 Analysis of Dataset Questions

Mean Model Response Length Conditional on LLM Capability

1200

EEm Cemini 1.5 Pro
I Claude 3.5 Sonnet
. GPT-40

1000

800

600

100

200

Figure 10: The mean answer length conditional on the
LLM capability the question most closely targets.

In Figure 10, we show the average response
length of conditioned on the LLM capability the
question targets. We see that questions classified as
Creativity and Visual Comparative Analysis have
longer average answer lengths compared with those
classified as visual object description.
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Figure 11: Mean response length (in characters) condi-
tional on question turn in the MMMT-IF evalution set.

C.3 PIF Metric and Human Accuracy

Human Accuracy vs. Programmatic Instruction Following
with Point Size Representing Frequency
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Figure 12: Scatter plot for Gemini 1.5 Pro, GPT-40 and
Claude 3.5 Sonnet responses with PIF scores on the y
axis and human accuracy scores on the x axis. The size
of the points is proportional to the number of samples
with the same PIF score and human accuracy score.

While the PIF score is an important metric for
instruction following, it’s also important to answer
the image based questions in the MMMT-IF dataset
correctly, not only following the answer constraints.
Figure 12 shows a scatter plot with PIF score on
the y axis and human accuracy score for each turn
on the x axis. It’s desirable to both have high accu-
racy score and high PIF score, but this is relatively
uncommon as shown in the Figure, highlighting the
challenge of the task. In the Figure the cluser cen-
troids are also shown. Note that GPT-40 responses
have the highest average human accuracy scores
and Claude 3.5 Sonnet have the highest average
PIF scores. Also note that the Sonnet responses
have more robustly high PIF score, and the GPT-40
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responses have more robustly high human accuracy
scores.

D Additional Dataset Details

D.1 Analysis of Dataset Questions

In Figure 13 we display the model capabilities tar-
geted in each question turn, where the classification
is done by GPT-40. We manually reviewed the clas-
sifications to ensure they were aligned with human
categorizations. Rather then focus on the LLM
capability, Figure 14 shows the distribution of the
questions topics in the dataset, classified by GPT-
40. Many questions are related to flowers, plants,
architecture, food and vehicles.

D.2 Data Filtering

The initial evaluation set, had a total of 1342 turns,
from 98 chats, the data was filtered down to 990
turns, with 71 full chats, based on the following
criteria:

1. Removing chats where some image is cor-
rupted: 23 chats.

Removing chats with more than 5 images: 3
chats.

. Removing chats containing skipped turns due
to model error or content filters: 1 chat.

. Truncating chats to have a maximum length
of 20 turns.

D.3 Full Instructions

The full set of instructions is given in Table 5.

E Example Chat

In Table 6 we show an example chat and Figure 15
shows the images corresponding to the chat. In
Table 6, the column "All instructions" shows all
the instructions given in previous and current chat
turns. However, the model will not be directly
given the data in this column, but rather needs to
find the instructions in the input context, where
each instructions appear before questions in the
user turns. The PIF column shows the PIF score
for the considered chat turn.

F Error Analysis

In this section we explore a few chats and the errors
made. While the average performance of the PIF
metric for human raters was at 0.94, the lowest
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Figure 13: The distribution of LLM capabilities that
the questions in the dataset targets.

Distribution of Question Topics

Count

Figure 14: The questions topics, as rated by an GPT-
40 with access to the associated images and verified
by a human for each turn in the MMMT-IF eval set.

Table 5: Full set of instructions in the MMMT-IF dataset.

Instruction

Name
Response length short  Instruction:
Response length long  Instruction:
Sentence start char S Instruction:
Sentence start char B Instruction:
Sentence end char ? Instruction:
Sentence end char ! Instruction:
Favorite word like Instruction:
Favorite word itself Instruction:
Favorite word per se Instruction:
Sentence length short  Instruction:

Make all the following responses no more than 4 sentences.
Make all the following responses at least 5 sentences.

Start every sentence with the letter (S).

Start every sentence with the letter (B).

End every sentence with a question mark (?).

End every sentence with an exclamation mark (!).

Use the word ’like’ at least once in all future responses.
Use the word ’itself” at least once in all future responses.
Use the word "per se’ at least once in all future responses.
Only use responses to questions where each sentence in the

response is at most 18 words in all future responses.

Sentence length long

Instruction: Only use responses to questions where each sentence in the

response is at least 18 words in all future responses.

Number even

Instruction: Include at least one even number

bigger than 5 in each of your responses.

Number odd

Instruction: Include at least one odd number

bigger than 5 in each of your responses.

observed PIF score for a chat turn was 0.4, the
chat turn is shown in Table 7. Note that the word
’like’ is not in the response, and that sentence 7 is
both longer than 18 words and start with the letter T,
hence the PIF score of 0.4. Notice that the answer
looks broadly correct and it requires a careful view
to spot the errors.

Gemini repeats the same answer One error pat-
tern noticed for Gemini 1.5 Pro was that it’s repeat-
ing the same answer to multiple questions, see row
1-4 in Table 8, which are consecutive turns in a
conversation.

Gemini gives up In Table 9, we show a response
where Gemini-1.5 Pro claims the task is impossible,
when it’s not, and hence fails to adhere to any of
the six given instructions.
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GPT-40 ignores number instruction In Ta-
ble 10, we show several chats where GPT-40 ig-
nores instructions related to numbers.

G Human Annotator Instructions

In this section the instructions given to human an-
notators are presented. There were 8 human anno-
tators working on separate partitions (split by chat)
of the MMMT-IF dataset. In Figure 16 we show
the instructions (lightly edited to remove details on
how to operate the software application used for
the task) given to human annotators.



Table 6: Several turns in one of the chats in the MMMT-IF benchmark.

All instructions Turn Question Gemini Response PIF
Instruction: Include at least one even | 1 What activ- | The individuals in Image 1 are | 1(1/1)
number in the range bigger than 5 in ity are the | performing Tinikling, a tradi-
each of your responses. individuals in | tional Philippine folk dance

the Imagel | characterized by rhythmic and
engaged in, | fast-paced footwork, often us-
which is char- | ing bamboo poles. Dancers
acterized by | need a lot of agility to avoid
rhythmic and | getting their feet caught be-
fast-paced tween the poles, especially as
footwork? the pace increases to 10 or 12
beats per second.
Instruction: Include at least one even | 15 Identify the | Stage props can enhance the | 0.5
number in the range bigger than 5 in possible sig- | narrative or symbolism of a | (3/6)

each of your responses. Instruction:
End every sentence with a exclama-
tion mark (!). Instruction: Use the
word ’itself” at least once in all future
responses. Instruction: Only use re-
sponses to question where each sen-
tence in the response is at most 18
words in all future responses. Instruc-
tion: Make all the following responses
no more than 4 sentences. Instruction:
Start every sentence with the letter (S).

nificance of
the props or
lack thereof
in the settings
of  Imagel
and Image?2.

performance. Simple props,
like the bamboo poles in Im-
age 1, become integral to the
dance itself. Conversely, the
absence of props in Image 2
might emphasize the dancers’
movements and stage presence.
Such choices reflect deliberate
artistic decisions in conveying
a performance’s message.

(a) Image 1 in example chat.

(b) Image 2 in example chat.

Figure 15: Images for the example chat.

Table 7: The chat turn with the lowest PIF score for the human rater.

All instructions Question Human Rater Answer PIF
Instruction: Include at | What could be the | Both food items in Imagel and Image2 convey different | 0.4
least one even number | symbolic meanings | storylines and sentiments within their culinary cultures! | (2/5)

in the range bigger than
5 in each of your re-
sponses. Instruction:
Only use responses to
question where each sen-
tence in the response is
at most 18 words in all
future responses. Instruc-
tion: Start every sentence
with the letter (B). Instruc-
tion: Use the word ’like’
at least once in all fu-
ture responses. Instruc-
tion: End every sentence
with a exclamation mark

0.

of the food items
in Imagel and Im-
age?2 in the context
of their respective
culinary cultures?

Being round and sweet, doughnuts, as depicted in Imagel,
often symbolize indulgence and reward! Because of their
round shape, they can also denote eternity and complete-
ness! By comparison, spaghetti and tomato sauce shown
in picture 2, hold deep-rooted symbolism in Italian cul-
ture! Being central to many meals, spaghetti symbolizes
unity and family cohesion for more than 6 centuries! By
making pasta from scratch or preparing a family recipe
the second dish speaks to continuity and heritage! The
tomato sauce signifies prosperity and abundance, often
representative of the lush Italian gardens and the health-
ful Mediterranean diet! Beyond its flavor, tomato sauce
symbolizes prosperity, reflecting Italy’s lush gardens, as
well as a healthy Mediterranean diet! Both pasta and
tomato sauce embody Italy’s identity and cultural pride
with connection to land, tradition, and family!
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Table 8: A chat where Gemini is repeating the same answer.

All instructions Question Answer PIF
Instruction: Start every sentence | What type of en- | Swamps are the typical environment in image 1. 1(/1)
with the letter (S). vironment is de-

picted in the Im-
agel?
Instruction: Start every sentence | Based on the | Swamps are the typical environment in image 1. | 1(1/1)
with the letter (S). Imagel, how are | Spatially, they appear to be clustered together in
the cattail plants | dense stands.
predominantly
arranged or po-
sitioned in their
natural habitat?
Instruction: Start every sentence | Considering the | Swamps are the typical environment in image 1. | 0.5
with the letter (S). Instruction: | Imagel, what | Spatially, they appear to be clustered together in | (1/2)
Only use responses to question | practical uses do | dense stands. Serving a multitude of purposes, the
where each sentence in the re- | the cattail leaves | leaves of the cattail plant have been ingeniously
sponse is at least 18 words in all | serve in various | incorporated into diverse aspects of life in various
future responses. cultures? cultures throughout history. Specifically, the leaves
are recognized for their strength and pliability, mak-
ing them ideal for weaving into mats, baskets, and
even temporary shelters, providing both comfort
and protection from the elements.
Instruction: Start every sentence | What type of flow- | Swamps are the typical environment in image 1. | 0.33
with the letter (S). Instruction: | ers are depicted in | Spatially, they appear to be clustered together in | (1/3)
Only use responses to question | the Image2, and | dense stands. Serving a multitude of purposes, the
where each sentence in the re- | what might be their | leaves of the cattail plant have been ingeniously in-
sponse is at least 18 words in | historical signif- | corporated into diverse aspects of life in various cul-
all future responses. Instruction: | icance in floral | tures throughout history. [...]. The exquisite flowers
Include at least one even num- | arrangements? depicted in Image 2 are Cattleya orchids, renowned
ber in the range bigger than 5 in for their vibrant hues and intricate blooms, captivat-
each of your responses. ing hearts for centuries. [...]
Table 9: Gemini-1.5 Pro response claim the task is impossible, when it’s solvable.
All instructions Question Gemini Answer PIF
Instruction: Only use responses to question where | How does the | Sorry, butI cannot fulfill this re- | 0
each sentence in the response is at most 18 words | structure in Image2 | quest. Combining the existing | (0/6)

in all future responses. Instruction: Include at least
one even number in the range bigger than 5 in each
of your responses. Instruction: Make all the fol-
lowing responses at least 5 sentences. Instruction:
Use the word ’per se’ at least once in all future re-
sponses. Instruction: End every sentence with a
question mark (?). Instruction: Start every sentence
with the letter (S).

reflect the impor-
tance of the arts
within the context
of its location?
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instructions — to end every sen-
tence with a question mark and
to begin every sentence with the
letter "S" — creates an impossi-
ble grammatical structure for a
coherent response.




Table 10: GPT-40 ignores instructions related to numbers.

All instructions Question GPT-40 Answer PIF
Instruction: Include at | Describe the pat- | In the third image, the pattern and texture are indicative | 0
least one odd number big- | terns and textures | of delicate lacework. The lace features intricate floral de- | (0/6)

ger than 5 in each of your
responses.

you can observe in
the Image3.

signs, with a repeated motif showcasing varying flower
shapes and sizes. The detailed, openwork design creates

a sense of depth and complexity, with elements of sym-
metry that contribute to the overall aesthetic. This type of
lace pattern may require numerous stitches and precision,
reflecting skilled craftsmanship.

Instruction: Include at | What activity are
least one even number in | the individuals
the range bigger than Sin | in the Imagel
each of your responses. engaged in, which
is  characterized

In Image 1, the individuals appear to be engaged in a tradi- | 0

tional dance involving rhythmic and fast-paced footwork, | (0/1)
likely Tinikling, a popular folk dance from the Philippines
that involves stepping deftly between bamboo poles. The
dance is known for its vibrant and energetic movements,

by rhythmic | often done in groups of 2 or more participants.

and fast-paced

footwork?
Instruction: Include at | What type of en- | In Image 1, the environment depicted appears to be a | 0
least one odd number big- | vironment is de- | natural setting with tall grassy vegetation, which suggests | (0/1)

ger than 5 in each of your that this environment is likely a forested or grassland area.

responses.

picted in Image1?

Annotation Guidelines

For each sample (total 71), several images (up to 5) are shown and multiple questions and instructions (average 14
questions and 6 instructions be sample) related to the images are asked based on this. Answers from several models are
provided for each question.

Part 1: Each question has a reference answer that should be rewritten to ensure it follows the given instructions in addition
to correctly answering the question about the images. All given instructions in the chat so far will be given for convenience.
True facts can be added in order to fulfill the instructions. You will have access to answers from the three models when
rewriting, which can be used for inspiration.

Part 2: For each of the three models and for each question, individual ratings for instruction following and answer
accuracy should also be evaluated on a scale from 1 to 10 (see next paragraph).

For each question, 3 model answers will be compared, Gemini 1.5 Pro, GPT-40, and Sonnet 3.5. The second part is to
provide a side-by-side preference ranking between Gemini 1.5 Pro and GPT-40, Gemini and Sonnet, as well as between
Sonnet and GPT-40. For each comparison, write down the winner model’s name (“Gemini”, “GTP-40”, or “Sonnet”),
or “tie” (use sparingly, only when strictly necessary). The comparison should be based on the similarity to the rewritten
reference answer from Part 1.

Metrics

Answer Accuracy

» Scores 1-2 when the answer is significantly inconsistent with the question or contains obvious errors.

* Scores 3-4 when the answer is partially correct but contains some errors or is incomplete, significantly worse
accuracy compared to the rewritten reference answer.

* Scores 5-6 when the answer is basically correct but lacks details or is not sufficiently detailed, the accuracy is worse
than the reference answer.

* Scores 7-8 when the answer is accurate and detailed, fully corresponding to the question, on par with the reference
answer.

¢ Scores 9-10 when the answer is not only accurate and detailed but also provides additional useful information,
exceeding the rewritten reference answer.

Instruction Following

¢ Scores 1-2 when the answer is completely ignoring most or all of the previously given instructions.

* Scores 3-4 when several of the instructions are followed but some are not followed, significantly worse than the
rewritten reference answer.

* Scores 5-6 when most of the instructions are correctly followed, but there are some errors, worse quality than the
rewritten reference answer.

* Scores 7-8 when all instructions except perhaps 1 is followed in a good way, on par with the rewritten reference
answer.

* Scores 9-10 when all instructions are followed in a clear and insightful way, exceeding the rewritten reference
answer.

Figure 16: instructions (lightly edited) given to human annotators when creating reference answers, model scores,
and pairwise preferences for the MMMT-IF benchmark.
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