
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC NEURAL FORTRESSES: AN ADAPTIVE
SHIELD FOR MODEL EXTRACTION DEFENSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Model extraction aims to acquire a pre-trained black-box model concealed behind a
black-box API. Existing defense strategies against model extraction primarily con-
centrate on preventing the unauthorized extraction of API functionality. However,
two significant challenges still need to be solved: (i) Neural network architecture of
the API constitutes a form of intellectual property that also requires protection; (ii)
The current practice of allocating the same network architecture to both attack and
benign queries results in substantial resource wastage. To address these challenges,
we propose a novel Dynamic Neural Fortresses (DNF) defense method, employing
a dynamic Early-Exit neural network, deviating from the conventional fixed archi-
tecture. Firstly, we facilitate the random exit of attack queries from the network at
earlier layers. This strategic exit point selection significantly reduces the computa-
tional cost for attack queries. Furthermore, the random exit of attack queries from
earlier layers introduces increased uncertainty for attackers attempting to discern
the exact architecture, thereby enhancing architectural protection. On the contrary,
we aim to facilitate benign queries to exit at later layers, preserving model utility,
as these layers typically yield meaningful information. Extensive experiments on
defending against various model extraction scenarios and datasets demonstrate the
effectiveness of DNF, achieving a notable 2× improvement in efficiency and an
impressive reduction of up to 12% in clone model accuracy compared to SOTA
defense methods. Additionally, DNF provides strong protection against neural
architecture theft, effectively safeguarding network architecture from being stolen.

1 INTRODUCTION

Deep learning models have found extensive application in diverse real-world scenarios. Major tech
companies such as OpenAI, Google, Meta, and Amazon have developed a range of black-box APIs,
offering services to users. This service-oriented paradigm is commonly referred to as Machine
Learning as a Service (MLaaS) (Ribeiro et al., 2015). The black-box pre-trained models provided by
these entities hold significant business value. However, model extraction (Oliynyk et al., 2023) aims
to steal the functionality of the victim model with some query data only. Consequently, safeguarding
these APIs from model extraction has become an urgent and critical task.

Existing model extraction defense methods primarily concentrate on safeguarding the functionality
of the API from stealing. However, two significant challenges still need to be solved. Firstly,
network architecture itself can be considered intellectual property (IP) and requires protection against
theft. This is particularly pertinent as determining the optimal architecture often involves substantial
computational resources and extensive hyperparameter search (Wistuba et al., 2019). In addition,
neural architecture stealing (Oh et al., 2018; Rolnick & Kording, 2020; Zhu et al., 2021; Carlini
et al., 2024) is attracting growing interest, driven by the significant commercial value of proprietary
model architectures used in production systems. Secondly, current defense strategies allocate the
same computational power to both benign and attack queries. We contend that this approach is
inappropriate, given that attack queries do not demand extensive computational resources.

To overcome these limitations, we propose a novel defense approach termed Dynamic Neural
Fortresses (DNF). This method utilizes a dynamic Early-Exit neural network (EENN) to enhance
the efficacy of defenses against model extraction. Our objective is to facilitate the random exit of
attack queries at the early initial layers of the network, as these layers typically yield non-semantic

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and misleading information for attackers. This strategy minimizes the consumption of computational
resources for attack queries, leading to a significant improvement in overall running efficiency.
Furthermore, by enabling attack queries to randomly exit at different layers of the victim model, it
amplifies the challenge of accurately discerning the exact network architecture of the victim model for
attackers. The substantial uncertainty introduced regarding the model architecture serves to safeguard
the intellectual property of the model. On the other hand, we aim to enable benign queries to exit at
later layers of the network, as these layers typically output meaningful and semantic information,
making them suitable for providing valuable insights to legitimate users.

To implement our strategy, we draw inspiration from the deep information bottleneck theory (Alemi
et al., 2017). Specifically, when dealing with out-of-distribution (OOD) data, we undertake a two-fold
approach. Firstly, we minimize the mutual information between latent features and data labels to
deliberately reduce the model’s prediction ability, ensuring effective defense. Concurrently, we
maximize the mutual information between input data and latent features. This action allows the
feature extractor to capture non-semantic information in the input data, leading to deliberately
inaccurate model predictions for enhanced defense. Additionally, this learning objective leads to
non-deterministic exits in the classifier to fortify the architecture against potential theft. Conversely,
when handling in-distribution (ID) data, our strategy adjusts to maintain model utility. We maximize
the mutual information between latent features and data labels, thereby enhancing the association
between these features and data labels to improve overall model performance on benign queries.
Simultaneously, we minimize the mutual information between input data and latent features. This
step enables the feature extractor to capture both compressive and semantic information present in
the input data, contributing to a more utility-driven model. We illustrate our approach in Figure 1.

To assess the efficacy of the proposed method, we conduct comprehensive experiments aimed at
defending against both data-based model extraction (where the attacker uses similar real data to query
the victim model) and data-free model extraction (where the attacker uses synthetic data only to query
the victim model) in both soft-label and hard-label attack settings. Our method is highly adaptable
and can be applied seamlessly to various victim model architectures, including both ResNet and large-
scale pre-trained Vision Transformer (ViT) models. Its simple design and ease of implementation,
using standard linear classifiers without requiring specialized exit classifiers, highlight its exceptional
scalability and flexibility. The results demonstrate that our approach consistently surpasses the
state-of-the-art (SOTA) defense method, achieving up to a 12% reduction in clone model accuracy.
Simultaneously, our method significantly enhances running efficiency compared to SOTA defense
methods, achieving 2× speedup. Additionally, our method outperforms other defense techniques in
terms of overall model utility. Crucially, our defense is notably more effective in model extraction
scenarios, regardless of whether attackers utilize OOD data or have access to in-distribution data,
highlighting its broad applicability. Furthermore, we conducted additional experiments to evaluate
our defense against the SOTA model architecture stealing method (Carlini et al., 2024). The results
demonstrate that our approach can effectively protect model architecture from theft.

Our main contributions are summarized as three-fold:

• We present the first defense framework that provides three key protective benefits simultane-
ously: (1) safeguarding the model’s functionality while substantially lowering the accuracy
of cloned models, (2) securing the model architecture, and (3) greatly improving efficiency
in defending against various model extraction scenarios.

• We propose a novel dynamic Early-Exit network defense method with adaptive deep varia-
tional information bottleneck learning objective. To the best of our knowledge, this is the
first attempt to introduce Early-Exit network into the field of model extraction defense.

• Extensive experiments on defending against various model extraction attack settings demon-
strate the superiority of the proposed method compared to SOTA defense methods.

2 RELATED WORK

Model Extraction Attack (a) Functionality Stealing: One of the objectives of model extraction is
to achieve the same functionality as the victim model or to make their predictions consistent with
those of the victim model (Oliynyk et al., 2023; Nayak et al., 2019; Pal et al., 2020; Jagielski et al.,
2020; Li et al., 2023). According to the data type used for model extraction, the techniques used in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

model extraction can be further classified into: (1) Data-based Model Extraction (DBME): DBME is
a technique that assumes attackers either have knowledge of the training dataset used for the target
victim model or possess a surrogate dataset to extract knowledge from the victim model (Papernot
et al., 2017; Orekondy et al., 2019; Tang et al., 2024). (2) Data-free Model Extraction (DFME):
DFME is a technique that assumes attackers have no prior knowledge of the training dataset and
iteratively refine the dataset used to extract knowledge from the victim model based on the model’s
output information (Kariyappa et al., 2021a; Truong et al., 2021; Sanyal et al., 2022a).

(b) Architecture Stealing: Architecture stealing is a critical model extraction attack that seeks to
uncover the internal architecture of a deployed model (Oh et al., 2018; Rolnick & Kording, 2020;
Zhu et al., 2021; Carlini et al., 2024). This type of attack is gaining increasing attention due to
the high commercial value of proprietary model architectures in production. Attackers target these
architectures to gain valuable insights that could be used to replicate or enhance their own models.

Model Extraction Defense Existing model extraction defense can be categorized into two classes.

[1] Model extraction prevention defense. Existing methods consist of: (1) output perturbation
(Orekondy et al., 2020; Mazeika et al., 2022); (2) model ensemble (Kariyappa et al., 2021b);
(3) defensive training (Wang et al., 2023). However, these methods incur significantly increased
computation or memory costs due to the need for backpropagation of the victim model during
deployment or the storage of multiple models.

[2] Model extraction verification/detection defense (Adi et al., 2018; Jia et al., 2021; Szyller et al.,
2021; Dziedzic et al., 2022). There are two classes of defense methods: (1) Detection-based defense
(Juuti et al., 2019; Kariyappa & Qureshi, 2020; Pal et al., 2021) aims to detect whether a query is
benign or malicious. These defenses become ineffective when attackers change their query data
distribution. Furthermore, OOD detectors are vulnerable to attacks (Azizmalayeri et al., 2022),
making it easy for adversaries to bypass OOD detection-based defenses. (2) Verification-based
defense (Adi et al., 2018; Jia et al., 2021; Szyller et al., 2021) can only confirm if a model has been
stolen; they do not inherently prevent theft and cannot reduce clone model accuracy. Moreover, when
attackers do not make the cloned model public, such methods are incapable of proving model theft.

Our approach falls under the category of model extraction prevention defense since our approach can
maximally reduce the clone model accuracy. Existing defense strategies primarily focus on protecting
the API functionality from theft. However, two significant challenges still need to be solved. First,
the architecture itself holds significant intellectual property value, given the substantial resources
invested in searching for the optimal network structure. Therefore, safeguarding the architecture
becomes imperative. Second, the current defense methods employ the same architecture to serve both
attackers and benign users, resulting in unnecessary resource wastage. In contrast, we introduce the
first defense framework that offers three primary protective advantages simultaneously: (1) protecting
the model’s functionality while considerably decreasing the accuracy of cloned models, (2) shielding
the internal model architecture, and (3) significantly boosting defense efficiency against a wide range
of model extraction threats.

Early-Exit Neural Networks ”Early Exiting” (EE) strategies (Teerapittayanon et al., 2016) incorpo-
rate exits into the early layers of DNN to achieve more efficient inference (Matsubara et al., 2022).
To the best of our knowledge, this paper represents the first attempt to introduce Early-Exit neural
networks (EENN) into model extraction defense. Although EENN can enhance the efficiency of
standard DNNs, they are unsuitable for direct application in defending against model extraction since
they treat ID and OOD data uniformly, making it challenging to simultaneously maintain model
utility and achieve effective defense. In contrast, our approach involves different learning objectives
tailored for ID and OOD data. This approach plays a pivotal role in preserving model utility while
concurrently ensuring effective defense.

3 PRELIMINARY

Attacker’s Knowledge and Goal During model extraction, attacker submits query samples X =

{xi}i=Q
i=0 to the victim model V (x, δV) parameterized by δV . Through V ’s API, the attacker obtains

the outputs yi = V (xi, δV). Subsequently, the attacker constructs the dataset {(xi,yi)}i=Q
i=0 . The

primary objective of the attacker is to employ the dataset {(xi,yi)}i=Q
i=0 to train a clone model C

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of DNF: ID data is expected to exit at the later layers of the EENN, after
more feature extraction operations. Conversely, OOD data (attack queries) is anticipated to exit
non-deterministically at earlier layers, undergoing fewer feature extraction operations. This figure
shows one scenario that ID data exits from the last layer, while OOD data exits from earlier layers
(It is important to note that earlier layers refer to the relatively early exits among all the exits of the
network, while the later layers refer to the relatively late exits among all the exits). This learning goal
serves two purposes: (1) enhancing uncertainty regarding the model architecture, preventing attackers
from precisely determining the victim model’s structure; (2) earlier layers may not yield meaningful
features, leading the victim model to make incorrect predictions, thereby providing attackers with
inaccurate information. Thus, we preserve model utility while achieving effective defense.

parameterized by δC , aiming to endow C with similar functionality as the victim model V . The
optimization objective for learning the clone model is: minδC

∑i=Q
i=0 l(xi,yi, δC).

When an attacker possesses information about the training data used by the victim model, it is termed
as data-based model extraction (DBME). Conversely, attacks operating without any prior knowledge
of the victim model’s training data are named as data-free model extraction (DFME). Furthermore,
two distinct settings of model extraction are identified based on the API return values: soft-label and
hard-label settings, depending on whether the API returns probability values or only the top-1 label.
More details about model extraction can be found in Appendix A.

Defender’s Knowledge and Goal Defender aims to minimize the test accuracy of the clone model
on the ID test dataset while preserving the test accuracy of the victim model on the same ID test
dataset. The defender operates with limited knowledge, unaware of the attacker’s strategy, whether
a query is malicious or benign, and details about the attacker’s model architecture. Assumptions
are widely made that the attack query data are OOD in existing model extraction attack and defense
works Orekondy et al. (2019); Kariyappa & Qureshi (2020); Kariyappa et al. (2021b); Pal et al.
(2020); Truong et al. (2021); Wang et al. (2023) for several reasons. Firstly, APIs typically offer users
limited information, often granting access solely to input-output pairs. This lack of transparency
impedes attackers from gaining insights into the specific in-distribution (ID) data used for training
Wang (2021). Secondly, the in-distribution data is typically treated as a private asset by the model
owner, and it is not disclosed to users due to concerns related to privacy and security. However, it’s
important to clarify that our assumption regarding the OOD attack query data distribution is made for
presentation simplicity. Our defense method is versatile and can be applied to defend against model
extraction attacks where the attacker has access to in-distribution data to query the victim model,
such as in the JBDA attack (Papernot et al., 2017; Juuti et al., 2019).

4 METHODOLOGY

In this section, we first present the Dynamic Neural Fortresses (DNF) (see Figure 1) learning objective
in Section 4.1. Then, we discuss the training and deployment process of DNF in Section 4.2.

4.1 LEARNING OBJECTIVE OF DNF

The training dataset Dtr utilized to train the victim model is commonly referred to as the ID dataset.
The parameters of the victim model, denoted as δV , are typically determined by optimizing:

min
δV

[
L0 = E(x,y)∼Dtr

[L(x, y, δV)]
]

(1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where L(x, y, δV) is the cross-entropy loss function for classification task. Traditional victim model
utilizes a fixed architecture, to serve both attack and benign queries. This enables the attacker to easily
steal the architecture and wastes a lot of computation resources on attack queries. To solve these
issues, we propose a dynamic network solution. In the following, we first give an overview of our
DNF defense method. Then, we discuss the learning objectives for ID and OOD data, respectively.

Overview Given a training dataset Dtr which contains M classes, the initial step involves training a
network, as depicted in Eq. (1). Subsequently, the pre-trained parameters δV are frozen, and exit
classifiers {V ∗

i }i=N
i=0 are added on top of it. V ∗

i denotes the ith exit classifier. Following this, a
pre-trained OOD dataset generator Good is employed to generate the OOD dataset Dood along with
corresponding labels obtained through the first exit of Early-Exit neural network inference process in
V ∗ , Appendix Table 20 provides a summary of the symbol notations used throughout the paper for
clarity and reference.

Given a pre-trained model V parameterized by δV , to convert it into an Early-Exit neural network
V ∗ (EENN), as shown in Appendix Figure 4. We first choose the confidence threshold for each
intermediate exit classifier during the V ∗ inference, and intermediate exit classifiers, the number
of Early-Exit N (intermediate exit classifiers), and their placements over V . Then, we can freeze
the backbone parameters of V , i.e., δV , and train the intermediate classifiers to optimize the exit
classifiers {V ∗

i }i=N
i=0 . Each exit classifier V ∗

i contains one or two Linear layers for classification, and
place the classifier in the appropriate location depending on the structure of the victim model V ,
we put more details in Appendix E. We only add a tiny number of trainable parameters (account
for 0.47% of the victim model parameters). It is important to highlight that the exit classifiers use
standard architectures without requiring any specialized design, and they can be easily integrated into
the victim model in a plug-and-play fashion. This straightforward implementation works seamlessly
across various architectures, demonstrating strong adaptability and flexibility.

To obfuscate information gathered by potential attackers, our goal is to maximize the disparity
between exit layers for OOD and ID data. We incorporate the entropy value of each exit layer as
an additional regularization measure specific to that exit layer. We denote the victim model outputs
at the ith exit classifier as h = V ∗

i (x, δ
i
V). V

∗
i,j(x, δ

i
V) denotes the jth class probability at ith exit

classifier. δiV denotes the parameters associated with the ith classifier, V ∗
i . The entropy on the victim

model outputs is defined as the following (where J denotes the number of classes.):

H(h) = −
j=J∑
j=1

V ∗
i,j(x, δ

i
V) log V ∗

i,j(x, δ
i
V) (2)

The entropy value increases with the model’s uncertainty at a given exit layer. Accordingly, we
anticipate higher entropy for ID data at earlier exits 1 through (n− 1) and a lower entropy value at
the later exit. This arrangement ensures that ID benign queries exit at later layers of the victim model
to preserve model utility. Conversely, OOD data follows the opposite pattern, with lower entropy
values at earlier exits 1 through (n − 1) and a higher entropy value at the later exit. This ensures
that OOD attack queries exit at earlier layers, contributing to effective defense (see Figure 1). In the
following, we will describe the separate learning objectives for ID and OOD data, respectively.

ID Data Learning Objective We present the following learning objectives Eq. (3) for ID queries.

Lid =

i=N∑
i=1

[I(Xid;Zi)− I(Zi;Yid) + αiK(i)H(Vi
∗(xid))] (3)

In Eq. (3), N is the number of the exit classifiers, two distinct loss terms are incorporated: entropy
regularization and Information Bottleneck (IB) regularization. Subsequently, we elaborate on each of
these loss terms in the following.

(1) Entropy Regularization: H(Vi
∗(xid)) is the entropy regularization defined in Eq. (2), αi is

the hyperparameter for the ith exit, and the piecewise function K(i) assigns values based on the
comparison of the integer i with the constant N . K(i) returns a value of 1 when i is equal to the
N . If i is less than the N , K(i) instead returns a value of −1. The objective is to minimize the
entropy at the later layer, facilitating the ID query exit at that point, as a lower entropy value indicates
a concentration of a probability distribution on a particular class, as shown in Appendix Figure 5.
Simultaneously, we aim to maximize entropy at the other layers, ensuring that probabilities in those
layers are more uniform and flat. This strategy discourages ID queries from exiting in earlier layers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(2) Information Bottleneck (IB) Regularization: Earlier layers may lack compressive feature infor-
mation, rendering those features not suitable for predicting the class label. To tackle this challenge,
we introduce the following IB learning objective for ID training data. Let I(Zi;Yid) represent the
mutual information between the two random variables, the latent features Zi and data labels Yid.
Similarly, I(Xid;Zi) denotes the mutual information between the two random variables, input ID
data Xid and latent features Zi. In Eq. (3), I(Xid;Zi) − I(Zi;Yid) is the IB loss. We maximize
the mutual information between Zi and Yid to enhance the correlation between them to improve
generalization. We minimize the mutual information between Xid and Zi to reduce the effect of
nuisance information of input Xid on the features Zi.

OOD Data Learning Objective Conversely, we put forth the following objectives for OOD queries:

Lood =

i=N∑
i=1

[I(Zi;Yood)− I(Xood;Zi) + αiJ(i)H(Vi
∗(xood))] (4)

In Eq. (4), there are two distinct loss terms incorporated: entropy regularization and Information
Bottleneck (IB) regularization. It is important to note that the learning objective for OOD data is
opposite to the case in ID data. Subsequently, we elaborate on each of these loss terms.

(1) Entropy Regularization: H(Vi
∗(xood)) is the entropy regularization defined in Eq. (2), αi is

the hyperparameter for the ith exit, and the piecewise function J(i) assigns values based on the
comparison of the integer i with the constant N . J(i) returns a value of −1 when i is equal to the N .
If i is less than the N , J(i) instead returns a value of 1. The aim is to maximize entropy at later layer,
promoting a flat and uniform probability distribution to prevent OOD data from exiting at later layer.
At the same time, we minimize entropy at the other layers, facilitating the output exit at the earlier
layers, as lower entropy indicates larger probabilities concentrated on one class.

(2) Information Bottleneck (IB) Regularization: Certain earlier layers may retain some informative
features crucial for predicting the class probabilities of OOD data. To reduce the correlations between
OOD data features and labels and to encourage more random exit of OOD data at earlier layers, we
optimize the opposite IB learning objective for OOD data as follows: Here, I(Zi;Yood) represents the
mutual information between latent features Zi and data labels Yood; I(Xood;Zi) denotes the mutual
information between OOD data Xood and latent features Zi; In Eq. (4), I(Zi;Yood)− I(Xood;Zi) is
the negative IB loss. This optimization is contrary to the IB optimization applied to the ID data. We
minimize the mutual information between Zi and Yood to diminish the correlation between features
and predictions, thereby promoting a more random behavior in exit classifiers. Simultaneously, we
maximize the mutual information between Xood and Zi to amplify the influence of the nuisance
information from input Xood on the features Zi, fostering a stronger defense mechanism.

4.2 TRAINING ALGORITHM OF DNF

While we formulate our learning objective in Section 4.1, calculating the mutual information is
intractable in general since the mutual information involves calculating an expectation, which
often requires integrating over the joint distribution of the variables involved. In many cases, this
integration is computationally or analytically intractable. Variational inference provides a framework
for approximating these intractable integrals. We derive the variational lower bound as the following:

I(Zi;Y)− I(Zi;X) ≥
∫

dxdydziP (x)P (y|x)P (zi|x) logP (y|zi) (5)

−
∫

dxdziP (x)P (zi|x) log
P (zi|x)
r(zi)

where r(zi) is a variational marginal approximation of the intractable marginal P (zi) and is set to
be r(zi) = N (0, I). We put the derivation steps in Appendix B.

To efficiently calculate Eq. (5), the P (x,y) = P (x)P (y|x) is approximated by empirical data
distribution P (x,y) = 1

N

∑N
n=1 δxn

(x)δyn
(y), δxn

is the Dirac delta function on xn and δyn
is

the Dirac delta function on yn. Assuming the EE network feature extractor has the form P (zi|x) =
N (zi|fµ

c (x), f
Σ
c (x)). An MLP fc outputs the K-dimensional mean µ of zi and the K×K covariance

matrix Σ. Then we can use the reparameterization trick (Kingma & Welling, 2013; Alemi et al.,
2017) to rewrite the P (z|x)dz = P (ϵ)dϵ, where z = f(x, ϵ) represents a deterministic function of
x and a Gaussian random variable ϵ. This enables the distribution P (z|x) to be reparameterized as a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

function of ϵ. We can calculate the KL divergence between the P (z|x) and r(z), and combine all
together to minimize the empirical IB loss function as the following Eq. (6):

Lid =
1

N

i=N∑
i=1

Eϵ[− log q(yid|V ∗
i (xid, ϵ))] +KL(P (Z|xid)|β(Z)) + αiK(i)H(Vi

∗(xid, ϵ)) (6)

In Eq. (6), ϵ ∼ N (0, I), the first term is to maximize the log-likelihood on ID data and the
second term minimizes the KL divergence w.r.t to β(Z) on ID data to make the latent features more
compressive and extract better representations.

Conversely, the empirical IB loss function for OOD data can be summarized as the following:

Lood =
1

N

i=N∑
i=1

Eϵ[log q(yood|V ∗
i (xood, ϵ))]−KL(P (Z|xood)|β(Z)) + αiJ(i)H(Vi

∗(xood, ϵ)) (7)

where in Eq. (7), ϵ ∼ N (0, I), the first term is to minimize the log likelihood on OOD data and the
second term is to maximize the KL divergence w.r.t β(Z) on OOD data to make the latent features
more diverse so that the their exit points are more diverse, achieving effective defense and protecting
the architecture from extracting. The overall learning objective is to minimize the following loss:

Ld = Lid + Lood (8)

We summarize the joint training details in Algorithm 1 in Appendix. In line 3-4, we randomly sample
ID and simulated OOD dataset. In line 5-8, we calculate the base DNF training loss by Eq. (6, 7, 8),
respectively. Then, we update the Early-Exit neural network V ∗ via SGD optimizer with respect to
the exit classifiers parameters δV ∗ .

Deployment of DNF During testing, given the input query x and the array of confidence thresholds
r = {r0, r1, .., rN}, where r0 represents the first confidence threshold for the first intermediate
exit classifier, and so forth. Starting from the input x and progressing to the position of the first
intermediate exit classifier in the model V ∗, the first intermediate exit classifier calculates the softmax
probabilities V ∗

0 (x) across all prediction classes. We denote the probability of the jth class in the
prediction at the first intermediate exit classifier as V ∗

0,j(x). The largest probability value in V ∗
0 (x) is

denoted as V ∗
0,max(x) = maxj V

∗
0,j(x). If V ∗

0,max ≥ r0, it signifies that the model V ∗ is confident
in the current result, enabling the early termination of subsequent calculations. If V ∗

0,max < r0, the
inference process continues. We summarize the DNF testing algorithm in Algorithm 2 in Appendix.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets (1) We evaluate the effectiveness of our method against DFME attack by using MNIST
(10 classes) (Deng, 2012), CIFAR-10 (10 classes), CIFAR-100 datasets (100 classes) (Krizhevsky,
2009), and ImageNet-100 (Vinyals et al., 2016) (100 classes), as these datasets are commonly used
in existing DFME research. (2) For evaluating the effectiveness of our method against DBME,
following Mazeika et al. (2022), we use Caltech256 (Griffin et al., 2007) as the query dataset for both
ImageNet200 (200 classes) and CUB200 (Wah et al., 2011) datasets trained victim models.

Baselines We evaluate the superiority of our method against five different strong defense baselines:
(1) Undefended: without any defense. (2) Random Perturb (RandP) (Orekondy et al., 2020). (3)
P-poison (Orekondy et al., 2020). (4) GRAD (Mazeika et al., 2022) (5) MeCo (Wang et al., 2023).
We put a detailed description of these baselines in Appendix C.

Implementation Details In our experiments, following (Wang et al., 2023), in DFME attack, the l1
perturbation budget is set to 1.0, for the defense baselines in order to mount a strong defense against
model extraction. This means that the l1 norm of the difference between y and ŷ, where y represents
the original output probabilities and ŷ represents the modified output, does not exceed 1.0. In DFME
attack setting, following (Truong et al., 2021), the query budget for different datasets we set is as
follows, 2M for MNIST, 20M for CIFAR10, 200M for CIFAR100, 200M for ImageNet-100. In
DBME attack, the query budget is set to be 10K for ImageNet200, 23K for CUB200. We report the
results with a mean and standard deviation with five runs. All experiments are run on a single NVIDIA
RTX A6000 GPU. Due to space limitations, we put the details of training and hyperparameter in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Appendix D, exit classifier architecture in Appendix E, and OOD generator in F, respectively. Exit
Threshold Selection Guideline: We propose a sample-efficient Bayesian optimization framework for
automatically selecting the exit threshold. The detailed selection process is outlined in Appendix H.

Early-Exit Victim Model For MNIST dataset, LeNet-5 is the backbone model. For CIFAR10&100
and ImageNet-100 datasets, ResNet34-8x (He et al., 2016) is the backbone model. For CUB200
dataset, ResNet50 is the backbone model. For ImageNet200 dataset, Swin ViT (Liu et al., 2021) is
the backbone model. During the DNF training, we freeze backbone parameters and only train exit
classifiers. We put the victim model training details in Appendix G.

5.2 DEFENSE AGAINST DATA-FREE MODEL EXTRACTION

DFME attack baselines We adopt the following DFME attack baselines: the soft-label attack method
DFME (Truong et al., 2021), and the hard-label attack method DFMS-HL (Sanyal et al., 2022a).

Results on CIFAR10 and CIFAR100 The results of defense against soft-label and hard-label
DFME attack on CIFAR10 and CIFAR100 are shown in Table 1. Our EENN’s backbone is based on
ResNet34. We use three distinct model architectures as the clone model architectures, which include
ResNet-18 (He et al., 2016), MobileNetV2 (Sandler et al., 2018) and DenseNet121 (Huang et al.,
2017). Compared to the undefended method, under soft-label attack setting, DNF can significantly
reduce clone model accuracy by 27% to 34% on the CIFAR10 dataset and by 17% to 41% on the
CIFAR100 dataset. Under hard-label attack setting, DNF can significantly reduce clone model
accuracy by 4% to 8% on CIFAR10 and by 14% to 19% on CIFAR100. The clone model accuracy
under different defense methods with varying query budgets is shown in Figure 2 in Appendix I.

Table 1: Clone model accuracy on CIFAR-10 and CIFAR-100 with ResNet34 as the victim model.
Attack Defense CIFAR-10 Clone Model Architecture CIFAR-100 Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121 ResNet18-8X MobileNetV2 DenseNet121

Undefended ↓ 87.36± 0.78% 75.23± 1.53% 73.89± 1.29% 58.72± 2.82% 28.36± 1.97% 27.28± 2.08%

DFME

(Soft-label)

RandP ↓ 84.28± 1.37% 70.56± 2.23% 70.03± 2.38% 41.69± 2.91% 22.75± 2.19% 23.61± 2.70%
P-poison ↓ 78.06± 1.73% 66.32± 1.36% 68.75± 1.40% 38.72± 3.06% 20.87± 2.61% 21.89± 2.93%
GRAD ↓ 79.33± 1.68% 65.82± 1.67% 69.06± 1.57% 39.07± 2.72% 20.71± 2.80% 22.08± 2.78%
MeCo ↓ 51.68 ± 1.96% 46.53± 2.09% 61.38± 2.41% 29.57± 1.97% 12.18± 1.05% 10.79± 1.36%
DNF ↓ 53.91 ± 2.30% 46.32 ± 1.45% 47.21 ± 2.15% 18.03 ± 3.03% 10.82 ± 1.34% 6.75 ± 1.23%
Undefended ↓ 84.67± 1.90% 79.28± 1.87% 68.87± 2.08% 72.57± 1.28% 62.71± 1.68% 63.58± 1.79%
RandP ↓ 84.02± 2.31% 78.71± 1.93% 68.16± 2.23% 72.43± 1.43% 62.06± 1.82% 63.16± 1.73%

DFMS-HL

(Hard-label)
P-poison ↓ 84.06± 1.87% 79.02± 1.96% 68.05± 2.17% 71.83± 1.32% 61.83± 1.79% 62.73± 1.91%
GRAD ↓ 84.28± 1.95% 78.83± 1.91% 68.11± 1.93% 71.89± 1.37% 62.60± 1.71% 62.57± 1.80%
MeCo ↓ 76.86 ± 2.09% 71.22 ± 1.87% 62.33 ± 2.01% 59.30 ± 1.70% 55.32 ± 1.65% 56.80 ± 1.86%
DNF ↓ 76.51 ± 2.12% 75.01± 1.25% 61.02 ± 1.21% 52.98 ± 2.24% 48.41 ± 1.78% 49.72 ± 1.24%

For MNIST and ImageNet-100 dataset, we put detailed results in Appendix J.1.

Model Utility Evaluation. We evaluate the victim model utility with various defense strategies in
Table 4. We can see the DNF maintains high test accuracy compared with other defense strategies.
This proves that our DNF method not only improves the defense capability and computational
efficiency, but also improves the victim model utility for legitimate users. We evaluate the accuracy
of ID data at each exit on CIFAR10 dataset. We use 10,000 test samples and force predictions to
occur at a single exit, as shown in Figure 3 in the Appendix, the model achieves progressively higher
accuracy at later exit points, with corresponding error bars indicating the standard deviation.

5.3 DEFENSE AGAINST DATA-BASED MODEL EXTRACTION

To evaluate the effectiveness of DNF under DBME attack, we follow the random strategy in Knockoff
Nets (Orekondy et al., 2019). The attacker randomly samples images from a different distribution
than that of ID data to extract the victim model. For uncertainty-based sampling as proposed in
ActiveThief (Pal et al., 2020), we provide the results in Table 19 in the Appendix.

Results on CUB200 and ImageNet200 To verify the effectiveness of DNF on CUB200 and Im-
ageNet200 datasets, our EENN’s backbone is ResNet50 and Swin Transformer, respectively. We
choose ResNet50, ResNet34, and VGG19 as the clone model architectures for CUB200 dataset and
Vision Transformer (ViT) (Dosovitskiy et al., 2020) (Large), CaiT (Touvron et al., 2021b), DeiT
(Touvron et al., 2021a) and Swin (Liu et al., 2021) (Large) for ImageNet200 dataset. The results
are shown in Table 2. Compared to the undefended method, under soft-label attack setting, DNF
can significantly reduce clone model accuracy by 31% to 40% on the CUB200 dataset and by 11%
to 19% on the ImageNet200 dataset. Under hard-label attack setting, DNF can significantly reduce
clone model accuracy by 10% to 15% on the CUB200 dataset and by 12% to 16% on ImageNet200.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Clone model accuracy on CUB200 and ImageNet200 with ResNet50 as the victim model.
Attack Defense CUB200 Clone Model Architecture ImageNet200 Clone Model Architecture

ResNet50 ResNet34 VGG19 ViT-Large CaiT DeiT Swin-Large

Undefended ↓ 55.49± 1.50% 36.71± 0.79% 39.85± 1.71% 73.35± 0.89% 62.26± 1.24% 56.59± 1.54% 60.67± 1.43%
RandP 39.77± 0.35% 20.59± 1.03% 24.02± 0.35% 69.69± 1.08% 59.58± 1.78% 53.97± 1.89% 56.83± 0.98%

Soft-label
P-poison 24.94± 1.25% 15.31± 1.17% 20.81± 1.33% 65.53± 1.16% 58.91± 1.74% 52.08± 0.53% 55.67± 1.58%
GRAD 24.32± 0.55% 15.06± 1.11% 20.65± 0.24% 65.32± 0.68% 59.24± 0.75% 51.97± 1.82% 55.79± 0.57%
MeCo 51.32± 0.54% 31.98± 0.73% 34.36± 0.25% 69.93± 0.32% 60.17± 0.20% 53.78± 0.79% 58.85± 0.73%
DNF ↓ 15.32 ± 1.21% 5.27 ± 1.72% 8.21 ± 2.23% 56.03 ± 1.12% 46.21 ± 0.91% 45.31 ± 1.09% 42.10 ± 1.26%
Undefended ↓ 31.29± 1.58% 21.57± 0.62% 23.27± 0.80% 63.57± 0.69% 57.73± 0.80% 53.16± 1.52% 60.26± 1.23%
RandP 30.89± 0.61% 21.68± 0.91% 23.44± 1.34% 63.18± 1.14% 57.31± 0.80% 52.86± 0.45% 59.58± 1.01%

Hard-label
P-poison 30.69± 0.91% 21.54± 1.98% 22.06± 1.01% 63.09± 0.65% 57.12± 0.51% 52.57± 1.12% 59.23± 1.87%
GRAD 31.23± 0.61% 22.38± 1.52% 22.37± 0.44% 63.21± 1.24% 57.23± 1.90% 52.34± 1.54% 59.30± 1.23%
MeCo 29.42± 0.46% 19.90± 0.42% 21.08± 0.34% 63.31± 0.48% 57.25± 0.24% 52.69± 0.45% 59.61± 0.50%
DNF ↓ 16.01 ± 1.24% 10.91 ± 1.02% 12.98 ± 1.25% 48.95 ± 2.11% 43.65 ± 0.91% 40.98 ± 1.69% 44.01 ± 0.82%

Table 3: Effect of different OOD datasets on de-
fense performance during DNF training on Ima-
geNet200 with Swin Transformer as the victim
model.
Setting Undefended ↓ DNF (Indoor67) ↓ DNF (SVHN) ↓ DNF (GAN) ↓
Soft-label 73.35± 0.89% 56.03± 1.12% 55.51± 1.81% 59.71± 1.71%
Hard-label 63.57± 0.69% 48.95± 2.11% 48.73 ± 1.72% 49.98± 1.91%

Table 4: Victim model utility measured by the
test accuracy
Method CIFAR10 CIFAR100 CUB200 ImageNet200

Undefended ↑ 94.91± 0.37% 76.71± 1.25% 81.18± 1.21% 91.55± 0.32%
RandP ↑ 93.98± 0.28% 75.23± 1.39% 80.58± 0.12% 91.37± 0.45%
P-poison ↑ 94.58± 0.61% 75.42± 1.21% 80.20± 0.34% 91.24± 0.17%
GRAD ↑ 94.65± 0.67% 75.60 ± 1.45% 80.23± 0.15% 91.28± 0.32%
MeCo ↑ 94.17± 0.56% 75.36 ± 0.68% 79.42 ± 0.53% 90.69 ± 0.58%
DNF ↑ 94.34± 0.07% 78.73± 0.30% 80.13± 0.86% 91.50± 0.24%

5.4 IN-DISTRIBUTION JBDA DEFENSE AND ARCHITECTURE STEALING DEFENSE

Defense Against JBDA with In-Distribution Data Attack: To assess the effectiveness of DNF
when the attacker has access to in-distribution data for queries, we tested its performance under the
JBDA (Papernot et al., 2017; Juuti et al., 2019) attack. As shown in Table 17, DNF achieves the
lowest clone model accuracy of 40.60% in the soft-label attack. In the hard-label attack, it reduces
the clone accuracy to 44.20%, outperforming other defense methods. Overall, DNF consistently
demonstrates robust performance in lowering clone model accuracy across both attack scenarios.

Defense against Model Architecture Stealing: To assess the effectiveness of our defense against
model architecture stealing, as proposed in (Carlini et al., 2024), we use a pre-trained ViT-Large
model with 200 output classes on the ImageNet200 dataset as the victim model. The objective is to
steal the hidden dimension prior to the class logits output. We set the hidden dimensions for different
exit classifiers to be [80, 100, 120, 140, 160]. Using 300 images from the ImageNet200 dataset,
we query the victim model and obtain an output matrix O300×200. Following the method described
in (Carlini et al., 2024), we calculate and sort the singular values of O as λ1 ≥ λ2 ≥ · · · ≥ λn.
The index that produces the largest difference between consecutive singular values is selected as the
hidden dimension. The output of the architecture stealing algorithm in (Carlini et al., 2024) identified
137 as the hidden dimension, which is entirely different from the hidden dimensions set in our exit
classifiers. This discrepancy demonstrates the effectiveness of our defense in protecting the model
architecture from being stolen.

5.5 ADAPTIVE ATTACKS

We further evaluate the robustness of DNF against potential countermeasures by attackers. We
proposed two types of adaptive attacks. Specifically, (1) we consider the DFME soft-label attack,
where attackers are aware of our defense strategy, including the early-exit network architecture and
loss function, referred to as the Adaptive Entropy Attack. In this scenario, attackers employ adaptive
attacks by incorporating the same designed entropy loss as our DNF into the clone model’s loss
function, updating the clone model together to attempt bypassing our defense. (2) We also evaluate an
EE Adaptive Entropy Attack, where attackers have even more information, using the same early-exit
architecture as the victim model. As shown in Appendix Tables 9, DNF is still effective against these
two adaptive attacks.

5.6 ABLATION STUDY

Exit Point Threshold Evaluation We evaluate the influence of the threshold choices for each exit
point. As shown in Appendix Table 10, the threshold selection does not affect the defense ability of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

DNF too much. We also propose a sample-efficient Bayesian optimization framework to automatically
select the optimal exit threshold in Appendix H.

Different OOD Dataset Evaluation We assess the impact of using different OOD datasets for DNF
training. For instance, as demonstrated in Table 3, DNF consistently reduces clone model accuracy
across different OOD datasets, including Indoor67, SVHN and GAN-generated, with small variation
in clone model accuracy. This highlights the stability of DNF regardless of the OOD dataset used.

Inference Efficiency Evaluation Compared with Fixed Architecture To assess the inference
efficiency of dynamic network architecture as opposed to fixed architecture, we conduct a comparison
of their respective efficiency in Appendix Table 11, which shows that DNF achieves a notable 2×
improvement in inference efficiency than the SOTA defense method and undefended model.

Fine-tuning Efficiency We measure the training time of DNF. As shown in Appendix Table 13 & 14,
the wall-clock time of training is about 20 seconds for the MNIST dataset, the wall-clock time of
training is about 7 hours for Swin Transformer, the fine-tuning is highly efficient.

Exit Point Evaluation To assess the exit point percentage of input query data on attack query and
benign query data, we analyze the exit point percentages for attack and benign query data in Appendix
Table 12, which reveals that 54.93% of OOD data generated by the attacker is exiting from the initial
exit point. Because the initial exit point typically doesn’t generate a lot of meaningful information,
which results in these OOD queries disrupting the training process of the attacker’s model. Some
OOD data exiting from later layers could be attributed to shifts in data distribution. Conversely,
when processing the ID data, it is noteworthy that over half of the data exited through the third exit.
This significantly reduces the time consumption for model inference. This can be attributed to the
advantages of early-exit networks in avoiding overthinking, as highlighted by (Kaya et al., 2019),
which also enhance inference efficiency for ID data. Overall, ID data tends to exit at relatively deeper
layers compared to OOD data. A more detailed explanation of the ID and OOD exit percentages
across different exit classifiers is provided in the Appendix above Table 12.

The impact of different loss weights on the results We measure if the different weights τ of ID and
OOD losses Lid + τLood in Eq. (8) will influence the final results. As shown in Appendix Table 15,
the change in clone model accuracy is not large, which illustrates DNF’s stability.

The impact of different entropy weights α on the clone model accuracy We measure the impact
of different entropy weights α in Eq. (6) and (7) on the defense performance. As shown in Appendix
Table 18, the OOD data loss term contribute significantly to the effectiveness of our approach. Despite
variations in the entropy weight, the changes in defense performance is not large, demonstrating the
stability of DNF across different α.

Effectiveness of DNF on protecting the architecture searched by neural architecture search
(NAS) In addition to the traditional network architectures, we also verified whether our method can
be used on more general architectures searched by NAS (Lu et al., 2020). Our method is still effective
as shown in Appendix Table 16.

6 CONCLUSION

We present DNF, a novel defense strategy aimed at efficiently countering model extraction attacks
by achieving three key objectives: (1) safeguarding model functionality, (2) protecting the network
architecture, and (3) improving defense efficiency. Our method steers attack queries to exit at earlier
network layers for effective protection, while allowing benign queries to exit at later layers, thereby
preserving model utility. Comprehensive experiments across various model extraction scenarios and
datasets confirm the effectiveness and efficiency of our approach.

Limitations Our approach does not protect the entire network architecture from being stolen. Even
though certain parts of the network are executed, the attacker cannot determine which inputs corre-
spond to which specific exit classifiers. This uncertainty helps preserve the protection of the network
architecture.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX
Security Symposium (USENIX Security 18), 2018.

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
bottleneck. In International Conference on Learning Representations, 2017.

Mohammad Azizmalayeri, Arshia Soltani Moakar, Arman Zarei, Reihaneh Zohrabi, Moham-
mad Taghi Manzuri, and Mohammad Hossein Rohban. Your out-of-distribution detection method
is not robust! In Advances in Neural Information Processing Systems, 2022.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan Hayase,
A. Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, Eric Wallace,
David Rolnick, and Florian Tramèr. Stealing part of a production language model. In Forty-first
International Conference on Machine Learning, 2024.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Adam Dziedzic, Muhammad Ahmad Kaleem, Yu Shen Lu, and Nicolas Papernot. Increasing the
cost of model extraction with calibrated proof of work. In International Conference on Learning
Representations, 2022.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In Advances in Neural
Information Processing Systems, 2014.

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. High
accuracy and high fidelity extraction of neural networks. In USENIX Security 2020, 2020.

Hengrui Jia, Christopher A. Choquette-Choo, Varun Chandrasekaran, and Nicolas Papernot. Entan-
gled watermarks as a defense against model extraction. In 30th USENIX Security Symposium,
2021.

Mika Juuti, Sebastian Szyller, Samuel Marchal, and N. Asokan. Prada: Protecting against dnn model
stealing attacks. In IEEE European Symposium on Security and Privacy, 2019.

Sanjay Kariyappa and Moinuddin K Qureshi. Defending against model stealing attacks with adaptive
misinformation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. Maze: Data-free model stealing attack
using zeroth-order gradient estimation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021a.

Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. Protecting {dnn}s from theft using an
ensemble of diverse models. In International Conference on Learning Representations, 2021b.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding and
mitigating network overthinking. In International conference on machine learning, pp. 3301–3310.
PMLR, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

Guanlin Li, Guowen Xu, Shangwei Guo, Han Qiu, Jiwei Li, and Tianwei Zhang. Extracting robust
models with uncertain examples. In International Conference on Learning Representations, 2023.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning Research, 23(54):1–9,
2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti.
Nsganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part I 16, pp. 35–51. Springer, 2020.

Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split computing and early exiting
for deep learning applications: Survey and research challenges. ACM Computing Surveys, 55(5):
1–30, 2022.

Mantas Mazeika, Bo Li, and David Forsyth. How to steer your adversary: Targeted and efficient model
stealing defenses with gradient redirection. In International Conference on Machine Learning,
2022.

Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, R. Venkatesh Babu, and Anirban
Chakraborty. Zero-shot knowledge distillation in deep networks. In International Conference on
Machine Learning, 2019.

Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt Schiele. Towards reverse-engineering
black-box neural networks. In International Conference on Learning Representations, 2018.

Daryna Oliynyk, Rudolf Mayer, and Andreas Rauber. I know what you trained last summer: A survey
on stealing machine learning models and defences. ACM Computing Surveys, 55(14s):1–41, 2023.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of
black-box models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction poisoning: Towards defenses
against dnn model stealing attacks. In International Conference on Learning Representations,
2020.

Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish Shevade, and Vinod Ganapathy. Ac-
tivethief: Model extraction using active learning and unannotated public data. In AAAI Conference
on Artificial Intelligence, volume 34, 2020.

Soham Pal, Yash Gupta, Aditya Kanade, and Shirish Shevade. Stateful detection of model extraction
attacks, 2021.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In ACM Asia Conference on
Computer and Communications Security, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In International Conference on Learning Represen-
tations, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mauro Ribeiro, Katarina Grolinger, and Miriam AM Capretz. Mlaas: Machine learning as a service.
In 2015 IEEE 14th international conference on machine learning and applications (ICMLA), pp.
896–902. IEEE, 2015.

Maria Rigaki and Sebastian Garcia. A survey of privacy attacks in machine learning. ACM Computing
Surveys, 56(4):1–34, 2023.

David Rolnick and Konrad Kording. Reverse-engineering deep ReLU networks. In International
conference on machine learning, pp. 8178–8187. PMLR, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018.

Sunandini Sanyal, Sravanti Addepalli, and R. Venkatesh Babu. Towards data-free model stealing in a
hard label setting. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022a.

Sunandini Sanyal, Sravanti Addepalli, and R Venkatesh Babu. Towards data-free model stealing in a
hard label setting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15284–15293, 2022b.

Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N. Asokan. Dawn: Dynamic adversarial
watermarking of neural networks. In ACM Multimedia, 2021.

Minxue Tang, Anna Dai, Louis DiValentin, Aolin Ding, Amin Hass, Neil Zhenqiang Gong, and
Yiran Chen. Modelguard: Information-theoretic defense against model extraction attacks. In 33rd
USENIX Security Symposium (Security 2024), 2024.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd international conference on pattern
recognition, pp. 2464–2469. IEEE, 2016.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021a.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 32–42, 2021b.

Jean-Baptiste Truong, Pratyush Maini, Robert J. Walls, and Nicolas Papernot. Data-free model
extraction. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 2016.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Zhenyi Wang, Li Shen, Tongliang Liu, Tiehang Duan, Yanjun Zhu, Donglin Zhan, David Doermann,
and Mingchen Gao. Defending against data-free model extraction by distributionally robust
defensive training. Advances in Neural Information Processing Systems, 36, 2023.

Zi Wang. Zero-shot knowledge distillation from a decision-based black-box model. In International
Conference on Machine Learning, 2021.

Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on neural architecture search.
arXiv preprint arXiv:1905.01392, 2019.

Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. Hermes attack: Steal DNN models
with lossless inference accuracy. In 30th USENIX Security Symposium (USENIX Security 21), pp.
1973–1988. USENIX Association, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

In this Appendix, we provide more details of Model Extraction Details in A, Derivations of the
Information Bottleneck Lower Bound in B, the details of our experiment bases in C, the training and
hyperparameter selection in Section D, exit classifier architecture in Section E, OOD Generator in
Section F, the Victim Model Backbone Training in G, and the more the Performance evaluation of
defense methods as budget increases in Section I, and the more results of experiments in Section J.

A MODEL EXTRACTION DETAILS

Soft-label Attack In a soft-label DFME attack, a generative model G is employed to generate input
data. Initially, attacker samples a random noise vector ϵ ∼ N (0, I), which is then input into the
generative model G to produce an image x, represented as x = G(ϵ, δG). Subsequently, a clone
model C is trained to align its predictions with those of the victim model V on the input data x,
expressed as the following:

min
δC

KL(C(x, δC)||V (x, δV)) (9)

Hard-label Attack In a hard-label DFME attack Sanyal et al. (2022b), a generative adversarial
network (GAN) Goodfellow et al. (2014)-based architecture is trained to generate query data for
querying the victim model and training the clone model C. Initially, a DCGAN Radford et al. (2016)
is trained by imposing an image prior using synthetic or unrelated proxy data, serving as the initial
training phase for the generator G. Subsequently, the clone model C and the generator G undergo
alternating training. The generator G synthesizes data x through x = G(ϵ, δG), where ϵ ∼ N (0, I).
The victim model V processes x and delivers the hard-label ŷ(x) to the attacker. The attacker
constructs input-label pairs (x, ŷ(x)) using this information, which are then utilized to train the clone
model C. Additionally, the generated data x is used to train the generator G through adversarial and
diversity losses.

B DERIVATIONS OF THE INFORMATION BOTTLENECK LOWER BOUND

Given I(Zi;Y) and I(Zi;X), we have the following derivation.

I(Zi, Y) ≥
∫

dx dy dzi P (x)P (y|x)P (zi|x) log q(y|zi). (10)

I(Zi, X) =

∫
dzi dx P (x, zi) log

P (zi|x)
P (zi)

=

∫
dzi dx P (x, zi) logP (zi|x)−

∫
dzi P (zi) logP (zi)

(11)

We can use β(Z) be a variational approximation to

P (zi) =

∫
dx P (zi|x) P (x) (12)

Based on Eq. (12), Eq. (11) can be rewritten as (13)

I(Zi, X) ≤
∫

dx dzi P (x)P (zi|x) log
P (zi|x)
r(zi)

. (13)

Based on (10) and (13), we have that:

I(Zi;Y)− I(Zi;X) ≥
∫

dxdydzi P (x)P (y|x)P (zi|x) log q(y|zi) (14)

−
∫

dxdzi P (x)P (zi|x) log
P (zi|x)
r(zi)

= L. (15)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C BASELINE

• RandP Orekondy et al. (2020); Rigaki & Garcia (2023): the paper proposes to perturb the
prediction vectors of the victim model, the goal is poisoning the training objective of the
attacker.

• Prediction Poisoning Orekondy et al. (2020): the paper introduces a perturbation objective
termed ’Maximizing Angular Deviation’ (MAD). The core objective of MAD is to alter
the prediction probabilities of the victim model. This alteration is strategically designed to
produce an adversarially perturbed gradient, which diverges maximally from the original
gradient of the victim model.

• GRAD Mazeika et al. (2022): the paper represents a gradient redirection method, designed
to enable the adversarial gradient update in any arbitrary direction. The purpose of this
method is to control the direction of the gradient update.

• MeCo Wang et al. (2023): the paper represents both memory and computation efficient
defense method through distributionally robust defensive training by adding a data-dependent
random perturbation generator to perturb the input data. The attacker cannot steal useful
information from the black-box model, at the same time, MeCo can keep the target model
utility.

D THE TRAINING AND HYPERPARAMETER DETAILS

When training the ResNet34-8x backbone for CIFAR10/100 datasets, we set 200 epochs in total, the
initial learning rate is 0.1, optimizer is SGD. The learning rate will be adjusted as epochs grow. If the
number of epochs is smaller than 80, the learning rate is 0.1, if the number of epochs is between 80
with 120, the learning rate is 0.01. If the number of epochs is bigger than 120, the learning rate is
0.001.

When training the DNF, we set the α = 0.1 by default, the number of epochs is 10, and the
optimizer is SGD, the learning rate is 0.001. For MNIST dataset, we set confidence thresholds
array as [0.92, 0.94, 0.96] by default. For CIFAR10/100, TinyImageNet, CUB200 and ImageNet200
datasets, we set confidence thresholds array as [0.90, 0.92, 0.94, 0.96] by default. In our design, the
default confidence thresholds are progressively increasing. Due to our loss function, this ensures
that decisions at earlier exits are made with relatively lower confidence, allowing OOD data to exit
earlier, while ID data progresses to later exits where decisions are made with higher confidence.
Additionally, we opt for different thresholds across different exit layers for two reasons. First, as this
approach enhances defense against adaptive attacks. It makes it more challenging for attackers to
accurately predict the correct threshold for all exit layers simultaneously. Second, using different
threshold values for each exit increases the separation between the exit distributions of ID and OOD
data, further improving defense performance.

E THE ARCHITECTURE DETAILS OF EXIT CLASSIFIER

If V is ResNet34-8x which contains 20 million trainable parameters, based on its structure features,
we add the exit classifier after each Residual Blocks of victim model V , in total, excluding the
original V exit, we add four more exits {V ∗

i }i=3
i=0. The architecture details for ResNet34-8x based exit

classifier as shown in Table 5, and all exit classifiers {V ∗
i }i=3

i=0 contains 100440 trainable parameters,
in total, we add 0.47% trainable parameters, which is acceptable.

Table 5: The architecture details of exit classifiers, M is the numbher of classes.
Exit Index First layer Second layer Parameters

Exit1 Linear(64, 100) Linear(100,M) 7510
Exit2 Linear(128, 100) Linear(100,M) 13910
Exit3 Linear(256, 100) Linear(100,M) 26710
Exit4 Linear(512, 100) Linear(100,M) 52310

If V is LeNet-5 which contains 61K trainable parameters, based on its structure features, we add the
exit classifier after each convolution layer of victim model V , in total, excluding the original V exit,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

we add three more exits {V ∗
i }i=2

i=0. The architecture details for LeNet-5 based exit classifier as shown
in Table 6, and all exit classifiers {V ∗

i }i=2
i=0 contains 16990 trainable parameters, in total, we add 27%

trainable parameters, which is acceptable.

Table 6: The architecture details of exit classifiers, M is the numbher of classes.
Exit Index First layer Parameters

Exit1 Linear(1176,M) 11770
Exit2 Linear(400,M) 4010
Exit3 Linear(120,M) 1210

The architecture details of exit classifiers for other networks, such as transformer-series are similar to
this, the difference is we will use LayerNorm.

F OOD GENERATOR

For generating out-of-distribution (OOD) data, we use a Deep Convolutional Generative Adversarial
Network (DCGAN) Radford et al. (2016). The training dataset for this DCGAN is the TinyImageNet
(if the TinyImageNet is the ID dataset, we choose other datasets as the training dataset, such as
SVHN), a widely recognized subset in the field of computer vision. We set the learning rate (lr) to
0.0002, and 30 epochs in total. Furthermore, we choose the Adam optimizer model training.

G VICTIM MODEL BACKBONE TRAINING

For LeNet-5 as the victim model for MNIST datasets, we run 20 epochs in total and set the initial
learning rate as 0.001, optimizer as Adam. For ResNet34-8x He et al. (2016) as the victim model for
CIFAR10&100 and ImageNet-100 datasets, we run 200 epochs in total and set the initial learning
rate as 0.1, optimizer as SGD. For Swin Transformer (Swin) Liu et al. (2021) as the victim model for
ImageNet200 datasets, we run 30 epochs in total and set the initial learning rate as 0.01, optimizer as
Adam with decoupled weight decay (AdamW) Loshchilov & Hutter (2017). Furthermore, we follow
the procedure in Truong et al. (2021); Tang et al. (2024) for the clone model training.

H BAYESIAN HYPERPARAMETER OPTIMIZATION FOR EXIT THRESHOLDS

We provide the following step-by-step guide to Bayesian Hyperparameter Optimization for Exit
Thresholds Selection

Step 1: Early exit networks have multiple exits where predictions can be made. Each exit has an
associated threshold (confidence level) that determines whether to exit or proceed to the next stage.
Let’s denote these thresholds as r = {r0, r1, .., rN} for an N -exit network. The goal is to determine
the optimal set of thresholds r = {r0, r1, .., rN} that minimize the clone model’s accuracy on the
validation set of the target dataset. To ensure generalization, we select the exit thresholds using a
different query or attack dataset than the one employed by the attacker. For example, if the victim
model is trained on CIFAR10, the attacker may use ImageNet100 for extraction. To select the exit
thresholds, we query the victim model with a third dataset, such as CIFAR100, ensuring no prior
knowledge of the attack query data distribution. We then assess the clone model’s accuracy on
CIFAR10’s validation set to evaluate the performance of the chosen thresholds. We employ the
Bayesian Optimization framework, specifically SMAC3 (Lindauer et al., 2022), which leverages a
surrogate model to approximate the objective function and efficiently guide the search for optimal
exit thresholds.

Step 2: Set the search space for each threshold ri to be within the range [0.85,1]. Start with an initial
set of samples to fit the surrogate model. The optimizer of SMAC3 will then iteratively select the next
set of thresholds to evaluate by balancing exploration (trying new values) and exploitation (refining
around known good values). For each set of thresholds r = {r0, r1, .., rN} proposed by the optimizer,
train the early exit network and measure the clone model accuracy on the validation set of the target
dataset. Return the result to the Bayesian optimizer of SMAC3 and update the surrogate model.
Once the optimization process is complete, select the set of exit thresholds r = {r0, r1, .., rN} that

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

yielded the best performance according to the objective function. Furthermore, we opt for different
thresholds across different exit layers for two reasons. First, as this approach enhances defense
against adaptive attacks. It makes it more challenging for attackers to accurately predict the correct
threshold for all exit layers simultaneously. Second, using different threshold values for each exit
increases the separation between the exit distributions of ID and OOD data, further improving defense
performance.

I PERFORMANCE EVALUATION OF DEFENSE METHODS AS BUDGET INCREASES

As shown in Figure 2, as budgets grow, the performance of clone models continues to improve, but
DNF’s defense performance is always better than other methods.

Figure 2: Performance of cloning models as budget increases for different defense methods. The plot
shows the relationship between clone model accuracy and increasing query budget (in millions) under
different defense methods. The x-axis represents the query budget, ranging from 6 to 20 million,
while the y-axis shows the clone model accuracy, which increases as the query budget grows. The
graph compares several defense strategies, including RandP, P-poison, GRAD, MeCo, and DNF.
DNF consistently yields the lowest clone model accuracy across all query budgets.

J MORE EXPERIMENT RESULTS

J.1 RESULTS ON MNIST AND IMAGENET-100

Results on MNIST For MNIST dataset, under soft-label attack setting, compared to the undefended
method, the results as shown in Table 7 that DNF can significantly reduce the effectiveness of existing
soft-label DFME attack by up to 42% when the clone model is LeNet5, 50% when the clone model is
LeNet-Half.

Results on ImageNet-100 For ImageNet-100 dataset, under soft-label attack setting, compared
to the undefended method, the results as shown in Table 8 that DNF can significantly reduce the
effectiveness of existing soft-label DFME attack by up to 25% when the clone model is ResNet-18,
22% when the clone model is MobileNetV2, and 17% when the clone model is DenseNet121.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Clone model accuracy on MNIST with LeNet5 as the victim model.
Attack Defense Clone Model Architecture

LeNet5 LeNet5-Half

Undefended ↓ 98.76± 0.27% 96.65± 0.43%

DFME

(Soft-label)

RandP ↓ 92.25± 0.32% 91.86± 0.49%
P-poison ↓ 88.34± 0.78% 86.09± 0.96%
GRAD ↓ 87.22± 0.70% 85.38± 0.91%
MeCo ↓ 85.07± 0.87% 82.93± 1.27%
DNF ↓ 55.97 ± 3.19% 46.26 ± 5.78%

Table 8: Clone model accuracy on ImageNet-100 with ResNet34-8x as the victim model.
Attack Defense Clone Model Architecture

ResNet18-8X MobileNetV2 DenseNet121

Undefended ↓ 35.89± 3.97% 28.71± 3.25% 25.05± 3.68%

DFME

(Soft-label)

RandP ↓ 30.76± 4.09% 22.06± 3.83% 20.23± 3.97%
P-poison ↓ 29.36± 4.23% 21.83± 3.77% 20.01± 3.89%
GRAD ↓ 29.87± 3.76% 21.65± 3.75% 19.82± 3.77%
MeCo ↓ 23.29± 3.83% 17.83± 3.67% 16.73± 3.88%
DNF (Ours) ↓ 10.21 ± 0.65% 6.78 ± 0.92% 7.87 ± 1.23%

J.2 ABLATION STUDY

Table 9: Clone model accuracy on CIFAR-10 with ResNet34-8x as the victim model under Adaptive
Attack.

Attack Defense Accuracy
Original Soft-label Attack Undefended ↓ 87.36± 0.78%

Adaptive Entropy Attack DNF ↑ 57.62 ± 2.24%
EE Adaptive Entropy Attack DNF ↑ 59.07 ± 2.03%

Table 10: Exit Point Threshold Effect on clone model accuracy on CIFAR-10 with ResNet34-8x as
the victim model under Original Soft-label Attack.

Method Clone model accuracy Victim model accuracy

[0.90, 0.90, 0.90, 0.90] 58.62± 1.25% 94.50± 0.19%
[0.91, 0.91, 0.91, 0.91] 57.31± 2.12% 94.78± 0.22%
[0.90, 0.92, 0.94, 0.96] 53.91± 2.30% 94.34± 0.07%
[0.95, 0.95, 0.95, 0.95] 56.53± 2.19% 95.21± 1.23%

Table 11: Running time (seconds) during deployment
Algorithm CIFAR10 CIFAR100

Undefended 10.12± 1.83 10.96± 2.09
P-poison 382.49± 2.78 1926.88± 8.71
GRAD 183.47± 1.66 543.49± 4.29
MeCo 10.36± 0.80 11.17± 0.82
DNF ID 6.42 ± 2.54 6.89 ± 2.51
DNF OOD 5.41 ± 2.21 5.93 ± 2.32

In Table 12, we observe that the majority of ID data exits at the third exit, with some exiting at earlier
points. Similarly, most OOD data exits at the first exit, and some OOD data also proceed to later exits.
We provide an explanation for this in the following:

• Why some ID data exit in earlier classifiers: Most ID samples exit at the third exit, while
the majority of OOD samples exit at the first exit classifier. The pre-trained victim model is
optimized and trained on the ID training dataset, resulting in higher prediction confidence
when predicting for ID data. This enables some test ID samples to be predicted with high
confidence at early exits, such as the third exit. This results in some ID data exits earlier.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• Why some OOD data exit in later exits: A significant portion of OOD samples exit at the first
exit, providing noisy and misleading information that disrupts attacker’s training. When the
generated attack OOD data are more challenging for the victim model to classify, resulting
in lower prediction confidence, some OOD data may exit through later exits. However,
these harder-to-classify OOD data may differ significantly from the ID training data, and
using such OOD data to extract the victim model could result in a lower-quality clone
model. Additionally, a substantial portion of OOD samples still exit at the first stage, further
ensuring that our method remains effective in defending against such attacks.

• Why our method can still effectively defend when some OOD exit later classifiers: Even
for OOD samples that exit at the fourth stage, our optimization objective encourages the
model to memroize the data representations by maximize the mutual information between
the input data and latent representations, this worse data representations reduce the model’s
generalization ability to OOD data. Furthermore, we minimize the mutual information
between features and labels, thus the correlation between data and labels is weakened,
lowering the prediction accuracy for OOD data and achieving the desired defensive effect.

Table 12: Exit point evaluation during deployment
Exit points Exit0 Exit1 Exit2 Exit3 Exit4

ID Percent (%) 5.41 33.78 52.91 6.39 1.51
OOD Percent (%) 54.90 0.84 9.10 26.32 8.84

Table 13: Victim model fine-tune time for ResNet model (seconds)
Method MNIST CIFAR10 CIFAR100 ImageNet-100

DNF 20.52 65.52 125.31 780.29

Table 14: Victim model fine-tune time for ViT model (hours)
Method ImageNet200 (GAN) ImageNet200 (Indoor67) ImageNet200 (SVHN)

DNF 6.51 7.26 6.23

Table 15: Clone model accuracy on CIFAR-10 with ResNet34-8x as the victim model under different
loss weight.

Weight τ Clone model accuracy Victim model accuracy

0.8 58.24± 1.52% 94.79± 2.10%
1.0 53.91± 2.30% 94.34± 0.07%
1.2 56.31± 1.69% 94.78± 1.19%

Table 16: Clone model accuracy on CIFAR-10 with NAS model as the victim model.
Method Clone model accuracy Victim model accuracy

Undefended 70.93± 0.46% 96.58± 2.01%
DNF 48.02± 1.23% 96.52± 1.95%

Table 17: Clone model accuracy under JBDA attack on CIFAR-10 with VGG as the victim model.
Attack Defense Accuracy

Undefended ↓ 56.63± 1.24%
RandP ↓ 48.70± 1.73%

JBDA

(Soft-label)

P-poison ↓ 42.54± 2.02%
GRAD ↓ 43.31± 1.76%
MeCo ↓ 50.02 ± 1.28%
DNF ↓ 40.60 ± 1.22%
Undefended ↓ 49.88± 2.05%
RandP ↓ 49.42± 0.85%

JBDA

(Hard-label)
P-poison ↓ 48.51± 1.97%
GRAD ↓ 48.75± 2.45%
MeCo ↓ 48.24 ± 2.96%
DNF ↓ 44.20 ± 1.24%

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 18: Clone model and victim model accuracy on CIFAR-10 with ResNet34-8x as the victim
model under different Entropy loss weight α.

Weight α Clone model accuracy Victim model accuracy (utility)

Without OOD 78.90± 1.23% 94.79± 1.98%
Entropy Weight = 0.1 52.88± 3.20% 94.34± 0.07%
Entropy Weight = 0.2 58.71± 2.02% 95.12± 0.98%

J.3 ACTIVETHIEF SAMPLING EXTRACTION DEFENSE RESULTS

Table 19: Victim and clone model accuracy with and without ActiveThief sampling.
Methods Teacher Student
Random sampling (no defense) 81.18 ± 1.21% 55.49 ± 1.50%
Random sampling (DNF, ours) 80.13 ± 0.86% 15.32 ± 1.21%
ActiveThief uncertainty-sampling (no defense) 81.18 ± 1.21% 57.85 ± 0.37%
ActiveThief uncertainty-sampling (DNF, ours) 80.13 ± 0.86% 17.01 ± 2.18%

J.4 NOTATION TABLE AND ALGORITHM

Table 20: Table of symbol notations.
Symbol Description

x Input data
y Data’s label
l Loss function
V Victim model
C Clone model
Dtr The training dataset
M The number of classes in the dataset
{V ∗

i }i=N
i=0 The exit classifiers

Good Pre-trained OOD dataset generator
V ∗ The Early-Exit neural network
jth The jth class probability
H The entropy regularization
K The piecewise function
J The piecewise function
I The mutual information
Zi The latent features
ϵ Gaussian random variable
α Entropy loss weight
δ Network weights
αi The hyperparameter for the ith exit
β(Z) A variational approximation
r = {r0, r1, .., rN} Confidence thresholds

As shown in Figure 3, We show the experiment results about the accuracy of ID data at each exit. We
use 10,000 test samples and force predictions to occur at a single exit, reporting the accuracy of the
early-exit network. Since OOD data lack true labels, their accuracy cannot be computed.

As shown in Figure 4, it is a diagram of a neural network with an early exit mechanism, where
multiple intermediate classification exits (Exit1 to Exit4) are placed at different feature extraction
stages, allowing the model to exit early when certain conditions are met to reduce computation, while
retaining the main exit (Exit5) for final classification.

The figure 5 illustrates the relationship between different probability distributions and their corre-
sponding entropy values. The distributions range from a uniform distribution with maximum entropy
(2.3026) to a deterministic distribution with zero entropy. Each bar chart represents the probability
associated with ten classes, highlighting how entropy decreases as the distribution becomes more
concentrated on specific classes. These visualizations demonstrate the fundamental principle that
entropy reflects the level of uncertainty or randomness in a probability distribution.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 1 DNF Training.
1: Require: Pre-trained victim model V with parame-

ters δV ; M is the number of training iterations; the in-
distribution (ID) training dataset, Dtr; pre-trained OOD
dataset generator.

2: for k = 1 to M do
3: randomly sample a new mini-batch data (x, y) from

Did

4: randomly sample a mini-batch of OOD data from the
pre-trained OOD dataset generator.

5: calculate empirical IB loss for ID data (Eq. (6)).
6: calculate empirical IB loss for OOD data (Eq. (7))
7: calculate the overall DNF loss function (Eq. (8))
8: update the exit classifiers {V ∗

i }i=N
i=0 of Early-Exit

model V ∗ by gradient decent with Eq. (8)
9: end for

Algorithm 2 DNF Testing.
1: Require: EENN V ∗; x is

the input data; the array of
confidence thresholds r =
{r0, r1, .., rN}.

2: for i = 0 to N do
3: V ∗

i,max = maxj V
∗
i,j(x, ϵ),

where ϵ ∼ N (0, I)
4: if V ∗

i,max ≥ ri then
5: The inference stops.
6: Return V ∗

i (x, ϵ)
7: else
8: The inference process

continues.
9: end if

10: end for

Figure 3: Model accuracy on the CIFAR-10 dataset at different exit points, utilizing ResNet34-8x as
the backbone.

Figure 4: Neural Network with Early Exit Mechanism.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 5: Visualization of Probability Distributions and Corresponding Entropy Values.

22

	Introduction
	Related Work
	Preliminary
	Methodology
	Learning Objective of DNF
	Training Algorithm of DNF

	Experiments
	Experimental Setup
	Defense against Data-free Model Extraction
	Defense against Data-based Model Extraction
	In-distribution JBDA defense and architecture stealing defense
	Adaptive Attacks
	Ablation Study

	Conclusion
	Model Extraction Details
	Derivations of the Information Bottleneck Lower Bound
	Baseline
	The training and hyperparameter details
	The architecture details of exit classifier
	OOD Generator
	Victim Model Backbone Training
	Bayesian Hyperparameter Optimization For Exit Thresholds
	Performance evaluation of defense methods as budget increases
	More Experiment Results
	Results on MNIST and ImageNet-100
	Ablation Study
	ActiveThief Sampling Extraction Defense Results
	Notation Table and Algorithm

