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Abstract
The number of parameters in large transformers
has been observed to grow exponentially. De-
spite notable performance improvements, con-
cerns have been raised that such a growing model
size will run out of data in the near future. As man-
ifested in the neural scaling law, modern learning
backbones are not data-efficient. To maintain the
utility of the model capacity, training data should
be increased proportionally. In this paper, we
study the neural scaling law under the previously
overlooked data scarcity regime, focusing on the
more challenging situation where we need to train
a gigantic model with a disproportionately lim-
ited supply of available training data. We find
that the existing power laws underestimate the
data inefficiency of large transformers. Their per-
formance will drop significantly if the training
set is insufficient. Fortunately, we discover an-
other blessing - such a data-inefficient scaling
law can be restored through a model reusing ap-
proach that warm-starts the training of a large
model by initializing it using smaller models.
Our empirical study shows that model reusing
can effectively reproduce the power law under
the data scarcity regime. When progressively ap-
plying model reusing to expand the model size,
we also observe consistent performance improve-
ment in large transformers. We release our code
at: https://github.com/VITA-Group/
Data-Efficient-Scaling.

1. Introduction
With the number of parameters growing exponentially from
a few million (Devlin et al., 2019) to hundreds of billions
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(Brown et al., 2020; Schulman et al., 2022), large trans-
former models (Vaswani et al., 2017) have been dominating
a wide range of applications (Devlin et al., 2019; Brown
et al., 2020; Rives et al., 2021; Dosovitskiy et al., 2021; Tou-
vron et al., 2021a; Jumper et al., 2021; Li et al., 2023; Zheng
et al., 2023). An interesting relation among performance,
training data, and model size has been recently revealed,
suggesting that these three variables generally should fol-
low a power law (Rosenfeld et al., 2019; Kaplan et al.,
2020; Hoffmann et al., 2022). That being said, to avoid
performance saturation, the data scale should be grown in
proportion to the model parameter number. This signifies
that large-scale training of modern transformer models is
becoming increasingly data-hungry and less affordable.

In fact, besides the shortage of computational resources, the
lack of data resources has set another prohibitive barrier for
research labs to participate in and contribute to large model
training. Additionally, given the unparalleled growth rate of
model size and data scale, it is even considered foreseeable
that all web-collected data will be used up in the near future
(Villalobos et al., 2022). What is worse, training such ever-
larger models on limited data from fine-grained specific
domains or private data will become rather difficult, if not
impossible. Although transfer learning of publicly available
pre-trained models is always an option, their domain gaps
can often pose challenges to transfer effectiveness (Jiang
et al., 2022), and sometimes even fine-tuning a large pre-
trained model can be excessively costly.

It has not escaped our notice that all the raised questions
point to a core challenge: “How can we train large trans-
former models with higher data efficiency?” We tackle this
problem through the lens of the neural scaling law under
the extremely low data regime. Both language transformers
(Devlin et al., 2019; Liu et al., 2019) and vision transformers
(Dosovitskiy et al., 2021) are studied in this paper. Existing
power laws (Kaplan et al., 2020; Zhai et al., 2022) only
consider model and dataset sizes within a reasonable ra-
tio. In contrast, our experiments focus on base-size models
(≲ 80M) trained with less than tens million tokens or tens
thousand images, where the model size is considered to be
overwhelmingly larger than the data scale. Consequently,
we provide a rectified functional relation in terms of test
error, model size, and dataset size, which can more accu-
rately characterize the model-data size frontier for large
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transformer models when the data size is excessively small.
Our key finding is that data scarcity will cause a significant
performance falloff. Such phenomena are also revealed in
Paul et al. (2021); Sorscher et al. (2022), but unfortunately,
they are underestimated by current scaling laws.

Having revealed the curse of data scarcity through the lens
of the scaling law, we propose to overcome this problem
via model reusing (Chen et al., 2015; 2021). Specifically,
model reusing techniques initialize larger models with a
pre-trained smaller model either by duplicating (Chen et al.,
2015; 2021), stacking (Gong et al., 2019), combining (Wang
et al., 2023; Yang et al., 2022b) model weights, or using
knowledge distillation (Qin et al., 2021; Yang et al., 2022a).
We reason that the root cause of performance degradation
is that limited data largely jeopardizes the trainability of
large models under stochastic gradient algorithms. The
key intuition is that reusing smaller models to warm-start
large transformer training can provide a warm initialization
point, thus stabilizing the optimization at the beginning
and saving data samples needed to “explore” optimization
trajectories. With model reusing, the model scaling law can
be reproduced within the extremely low data regime.

Our main contributions can be summarized below:

• We conduct a pilot study on the neural scaling law for
large language models under an extremely low data
regime. We find that well-known scaling laws extrap-
olate inaccurately when data amount is excessively
smaller than the parameter number, and we provide a
rectified scaling law, dubbed the Data Scarcity Neural
Scaling Law.

• We propose to break the Data Scarcity Neural Scal-
ing Law via model reusing, which initializes large
models using smaller model weights. We conduct a
comprehensive investigation on various model reusing
schemes and validate their effectiveness when scaling
the model under limited data.

• Based on our investigation, we deliver progressive
growing as a simple yet effective recipe to train a large
language model under extremely low data. As a conse-
quence, we for the first time achieve ∼60% accuracy
with ∼10k images on ViT-B and ∼2.1 log-perplexity
on BERT-Base with only ∼15M training tokens.

2. Neural Scaling Laws
Many recent works have demonstrated empirical scaling
laws with respect to model size, dataset size, and compute
for both large language models (Bahri et al., 2021; Kaplan
et al., 2020) and vision models (Zhai et al., 2022; Bello
et al., 2021). Kaplan et al. studied the scaling laws of the

decoder-only transformer language model and found that
the loss scales as a power-law with model size, dataset size,
and training compute. Similarly, works in Henighan et al.
(2020) and Hernandez et al. (2021) show scaling laws for
autoregressive generative modeling and transfer learning,
respectively. The scaling of Mixture of Experts (MoE) mod-
els up to trillion parameters is studied in Fedus et al. (2021).
A systematic study of scaling laws for different inductive
biases and model architectures is presented in Tay et al.
(2022). Recently, Geiping & Goldstein (2022) investigated
the downstream performance achievable with a transformer-
based language model trained completely from scratch for
a single day on a single GPU, through the lens of scaling
laws. Caballero et al. (2022) studied broken neural scaling
laws that generalize power laws (linear in log-log plot) to a
smoothly connected piecewise (approximately) linear func-
tion in a log-log plot. The scaling of vision transformers
and data, both up and down, is studied in Zhai et al. (2022),
which characterizes the relationships between error rate,
data, and compute. Scaling laws under few-shot fine-tuning
and multi-modal training settings are investigated in Prato
et al. (2021); Aghajanyan et al. (2023). Hoffmann et al.
(2022) find that for compute-optimal training, the model
size and the number of training tokens should be scaled
equally. The seminal work by Sorscher et al. (2022) reveals
that such power laws can be broken via proper data pruning.

Formally, we summarize the common neural scaling law as
follows (Hoffmann et al., 2022; Kaplan et al., 2020):

(Model scaling) L(N) = (N/Nc)
−αN + EN , (1)

(Data scaling) L(D) = (D/Dc)
−αD + ED, (2)

where N denotes the number of model parameters, D de-
notes the number of training examples, and Nc, Dc, αN ,
αD, EN , and ED are model/task-dependent coefficients
that express a power function. These constants are often
obtained by fitting the collected experimental data (Kaplan
et al., 2020; Hoffmann et al., 2022; Zhai et al., 2022). Fol-
lowing the interpretation from Kaplan et al. (2020), L(N)
is named the model scaling law, which measures the model
capacity, and L(D) is called the data scaling law, which re-
flects the generalization ability. In particular, the exponents
are found to be negative, indicating a diminishing pattern of
error when increasing the dataset or model sizes.

3. Data Scarcity Neural Scaling Law
In this section, we examine and rectify the scaling law for
large transformers under the data scarcity regime.

3.1. Motivation

The relationship between performance, model parameter
number, and data size has been crucially examined in the
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Figure 1: Data scaling curves for BERT and ViT. (a) and (b) depict the performance trend with data scaling for BERT and ViT,
respectively, where each curve connects points corresponding to a fixed model size but varying data fraction, and the radius of markers
indicates the standard deviations. Data scaling obeys the power law (D/Dc)

−αD . Best viewed in color.

context of large language models. This investigation plays a
vital role in informing model design choices and resource
allocation for future training endeavors. Interestingly, previ-
ous studies have identified a notable phenomenon wherein
the test error follows a power decay curve with respect to the
number of model parameters (N ) and the number of training
examples (D) (Rosenfeld et al., 2019; Kaplan et al., 2020;
Hoffmann et al., 2022). This observation holds true not only
when examining each dimension independently as captured
by the functional forms specified in Eq. 1 (i.e., varying D or
N alone), but also when simultaneously manipulating both
N and D (Kaplan et al., 2020).

However, we contend that this functional form might have
limitations in capturing the interdependence between data
and model sizes, as it treats these two factors as separate en-
tities. Intuitively, the size of the data and the model should
be intertwined because larger models are believed to have
greater data requirements, necessitating a corresponding
increase in training data to achieve convergence and prevent
overfitting. Once the number of model parameters exceeds
a certain threshold, it is reasonable to expect a significant
decline in test performance rather than a gradual saturation
to a fixed value. Specifically, if we adhere to the power law
formulation presented in Eq. 1 and hold the number of train-
ing data points (D) constant while continuously increasing
the model size (N → ∞), the predicted test error can still
exhibit a monotonically decreasing trend. This discrepancy
challenges our intuition and suggests that the power law for-
mulation (Eq. 1) may fail to accurately predict the behavior
of the model when there is a substantial imbalance between
the model and data sizes.

Indeed, we observe that the prevailing empirical power laws
are derived under the assumption that the sizes of the model

and the data are directly proportional. However, it has been
demonstrated that such fitted curves tend to yield unsatisfac-
tory extrapolation results, such as the occurrence of double
saturation phenomena at the extremes of the compute spec-
trum (Zhai et al., 2022). To address this issue, Caballero
et al. (2022) propose the utilization of piecewise functions
as an approximation of the true scaling law. In this section,
our focus lies specifically on the segment corresponding
to the low data regime, where we aim to re-establish the
scaling law through empirical analysis.

3.2. Experimental Setup

In this paper, we conduct case studies on two widely used
transformer models in both language and vision domains:
BERT (Devlin et al., 2019) and vision transformer (ViT)
(Dosovitskiy et al., 2021). For BERT, we adopt the imple-
mentation provided by Tan & Bansal (2020), and choose En-
glish Wikipedia (Merity et al., 2016) as the training dataset.
Our experiments encompass BERT models ranging from 2
to 80 million parameters and training dataset sizes varying
from 3 million to 3 billion tokens. We adopt Mask Lan-
guage modeling (MLM) as the training objective and the
log perplexity evaluated on the test set as the test score.

For ViT, we utilize the implementation provided by Tou-
vron et al. (2021a). The ImageNet1k (Deng et al., 2009)
dataset is chosen as our training data collection. In our
experimentation, we investigate the performance of vision
transformers across a range of scales from 1 to 60 million
parameters. Additionally, we vary the size of the training
dataset, ranging from one million to ten thousand images.
The ViT is trained on the image classification task with
the cross-entropy loss, and we evaluate the test error by
measuring the top-1 prediction accuracy on the test split.
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Figure 2: Model scaling curves for BERT and ViT. (a) and (b) depict the performance trend with model scaling law for BERT and
ViT, respectively, where each curve connects points of the same data fraction but varying parameter number, and the radius of markers
indicates the standard deviations. We observe a phase transition, where the power law is broken once entering the data scarcity regime.
The red curve represents the prediction of our rectified law. Best viewed in color.

Varying model size. We vary the network size by increas-
ing the width for each attention block. We fix the hidden
dimension of each attention head to 64, and increase the
number of heads from 1 to 10 for both BERT and ViT.
We simplify our experiments by fixing the number of at-
tention blocks to 12 (Devlin et al., 2019; Liu et al., 2019;
Touvron et al., 2021a) according to the following reasons:
1) compared with number of parameters, the model shape
has negligible influence on the performance for large trans-
formers as discussed in Kaplan et al. (2020). 2) increasing
the depth for transformers can cause training instability and
over-smoothing issues as revealed by (Touvron et al., 2021b;
Wang et al., 2022; Shi et al., 2022; Zhou et al., 2021; Gong
et al., 2021). We will keep all other model and training
configurations consistent with the default implementation
in (Tan & Bansal, 2020; Touvron et al., 2021a).

Varying dataset size. In order to adjust the size of the
training set, we subsample the original data collection.
For the English Wikipedia dataset, we uniformly sample
a subset of lines of examples based on a fraction among
0.1% ∼ 100%. Since we are primarily interested in the low
data regime, we select 5 fractions between [0.1%, 1.0%],
and the other 5 within [1.0%, 100%]. The pre-processed
dataset contains ˜3M to ˜3B tokens. On the other hand, for
the ImageNet1k dataset (Deng et al., 2009), we perform
uniform sampling across the entire dataset while ensuring
the preservation of the original class-wise distribution. The
subsampling ratio ranges from 1% ∼ 100%. Similarly, we
choose 5 fractions between [1%, 10%], and the other 5 frac-
tions between [10%, 100%]. The subsampled ImageNet1k
dataset contains ˜10k to ˜1M images.

3.3. Experiment Results

We plot the test error versus the number of parameters or
training samples in Figs. 1 and 2. Main findings are sum-
marized below:

Obs 1. Power law holds for data scaling. We depict the
relationship between the test error and the data fraction of
training samples under different model sizes in Fig. 1. The
curves therein suggest the power data scaling law is overall
satisfied for both BERT and ViT. When linearly scaling
the dataset size, the test error decreases at a power rate.
Each curve eventually converges to the performance ceiling
determined by the model size term (N/Nc)

−αN . Moreover,
the larger number of parameters in general induces a higher
performance ceiling.

Obs 2. Power law is broken with model scaling. We
demonstrate the dynamics of model performance with re-
spect to parameter numbers under different data fractions
in Fig. 2. Our observation is that for both BERT and ViT,
there exists a significant phase transition when the train-
ing data is continuously shrunk. When the data fraction is
equal or above 0.5% for BERT and 10% for ViT, the test
error decreases with the model size following a power scale.
In that region, we presume the data is abundant, and the
power scaling law can accurately characterize model behav-
ior. However, once the data fraction is below a threshold,
i.e., the data scale enters the low data regime, we observe
that the power law will be broken, and the test error will
start to rapidly climb up with the growing architecture size.
This result indicates that the number of training examples
should not only set a lower bound for the test error, but also
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Figure 3: Paradigm of model reusing and progressive training. Model reusing will initialize the large model with smaller model
via either of the two schemes: 1) growth or 2) distillation. After the large model is initialized, it will re-train the model through either
supervised or self-supervised learning. Progressive training iteratively leverages model reusing to gradually enlarge the model size.

have an effect on the monotonicity and slope of the scaling
curve. The existing power laws (Eq. 1) fail to reflect this
property as data and model terms are considered separately.

3.4. Rectified Scaling Law

Having revealed the limitation of current scaling laws, we
attempt to correct the law in this section. We propose the fol-
lowing form, dubbed data scarcity scaling law, to improve
the power law to better characterize the phase transition
when shrinking the data:

L(N) = (N/Nc)
−αN + (N/Nc)

βN (D)
+ EN , (3)

where in contrast to Eq. 1, we introduce a new term
(N/Nc)

βN (D) with the coefficient βN ≥ 0 depending on D.
We examine this new form and specify the generic properties
that need be satisfied:

1. Phase transition needs to be reflected in the new law.
When data is insufficient, there needs to emerge a new
term which enlarges the error. Eq. 3 achieves this
by adding a new term (N/Nc)

βN (D) conditioned on
the data scale D. It is convenient to leverage a piece-
wise function to model βN (D). When D ≤ Dthres,
βN (D) needs to be strictly positive to characterize the
increasing error.

2. When data is sufficient, then the effect of the new term
should vanish and recover the behavior of the original
law. This can also be achieved by the same piecewise
function, in which βN (D) = 0 if D > Dthres.

3. Eq. 3 should contain a inflection point in terms of N ,
after which the model size is considered overwhelm-
ingly large and test error starts to climb up with the
model size. The introduced term achieves this by form-
ing a rational function with piecewise monotonicity.

We fit the coefficients for the piece under the data scarcity
regime. The fitting algorithms is adopted from Hoffmann
et al. (2022) and the results are presented in Tab. 1. We also
plot the computed scaling curves in Fig. 2, which accurately
approximate the Pareto frontiers.

Nc αN βN EN

BERT 5.922 ×10−6 0.536 0.756 0.757
ViT 3.854 ×10−6 0.693 8.014 44.474

Table 1: Coefficient specifications for the rectified scaling law
under the data scarcity region.

4. Recover Scaling Law via Model Reusing
Our data scarcity scaling law illustrates that data scarcity
inherently undermines model scaling. As language models
continue to grow in capacity, it becomes crucial to break the
data scarcity scaling rule and restore the power law. In this
section, we highlight model reusing as a class of simple and
commonly used training techniques that can be applied to
overcome data shortage issues at no additional cost.

4.1. Model Reusing Techniques

The concept of model reusing is depicted in Fig. 3. In
essence, model reusing involves transferring the knowledge
acquired from a smaller model to initialize a larger model.
The larger model is then further trained starting from this ini-
tialization. Model reusing techniques can be broadly catego-
rized into two families: 1) model growth and 2) knowledge
distillation. We provide a summary of some representative
methods within these categories below

Net2Net. Net2Net (Chen et al., 2015), a classical model
growth method, proposes a technique to expand the width of
neural networks by duplicating neurons. In this method, the
weight matrix of the l-th layer in the smaller model, denoted
as W l ∈ RD1×D1 , is used to create a larger weight matrix
W

(new)
l ∈ RD2×D2 (D2 > D1) to fill the larger model. To

achieve this expansion, Net2Net copies the smaller weight
matrix W l to the upper-left corner of W

(new)
l . It then

randomly duplicates some columns to fill the remaining
empty columns. Finally, rows are copied and normalized
based on the selection made at the previous layer. The
procedure can be expressed as follows:

W
(new)
l =

[
I S⊤

l−1

]
D−1

l W l

[
I Sl

]
, (4)

where Dl = diag(Sl−11) + I,
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Here, Sl ∈ {0, 1}D1×(D2−D1) is a random selection matrix
that indicates the column indices to be duplicated at the l-th
layer. The larger model initialized using Net2Net retains the
functionality equivalent to the smaller model. In the case
of transformers, Chen et al. extend the Net2Net method by
introducing dedicated copying and normalization patterns
that are shared across modules.

Learning to Grow (LiGO). Wang et al. (2023) proposes a
generalized version of Net2Net, dubbed LiGO, which intro-
duces learnable components to neuron duplication. Specifi-
cally, LiGO pre-trains a linear mapping between two param-
eter spaces before expanding the model size. The optimiza-
tion goal can be written as:

argmin
M l,∀l∈[L]

Ex∼DL(x;W (new)
1 , · · · ,W (new)

L ), (5)

subject to vec
(
W

(new)
l

)
= M l vec(W l),∀l ∈ [L],

where L is defined as the number of layers, D is the data dis-
tribution, L is the training objective, and M l : RD2

1 → RD2
2

is called the LiGO operator which maps smaller model
weights to large model weights. In Wang et al. (2023),
LiGO adopts Kronecker factorization for parameter effi-
ciency, which defines W (new)

l = A⊤
l W lBl with learnable

weights Al,Bl ∈ RD1×D2 .

Knowledge Inheritance. In addition to model growth,
Qin et al. (2021) proposes a knowledge transfer strategy to
warm start a large model with a small model. It is imple-
mented by a distillation loss formulated as below:

argmin
W (new)

Ex∼D KL
(
PS(x;W )∥PL(x;W

(new))
)
, (6)

where PS and PL denote the output logits corresponding
to input x for small and large models, respectively. We
note that, unlike traditional knowledge distillation (Hinton
et al., 2015), the smaller model here is served as the teacher
model. Following Qin et al. (2021), the distillation loss will
be minimized joinlty with the self-learning objective.

4.2. Rationales

We propose several hypotheses to explain how data scarcity
can break the power law. First, we observe that training
large-scale transformer models is more data inefficient. We
postulate that larger transformers with weaker inductive
bias have a larger hypothesis space and stronger function
fitting capacity (Yun et al., 2019). Consequently, overfitting
is more likely to occur in large language models. Second,
the sophisticated computational mechanism in transformers
introduces challenges in numerical optimization, resulting
in training vulnerability and instability (Zhang et al., 2019;
Xiong et al., 2020; Molybog et al., 2023). Kim et al. has

theoretically shown that the attention mechanism is not
Lipschitz, which exacerbates the optimization complexity,
particularly for large transformers (Wang et al., 2022; Zhou
et al., 2021).

In general, model reusing techniques initialize the large
model using a pre-trained smaller model. To address the
first challenge, we argue that the knowledge learned by the
smaller model can act as a regularizer that constrains the hy-
pothesis space. In model growth methods such as Net2Net
(Chen et al., 2015) and LiGO (Wang et al., 2023), linear map-
pings are employed to transform model weights to higher
dimensions, resulting in low-rank matrices as initialization.
This approach potentially enhances model robustness (Yu
et al., 2020; Chan et al., 2022; Ma et al., 2022; Cai et al.,
2023). In distillation-based techniques, the output from the
smaller model serves a similar role to data augmentation,
where soft logits provide additional information beyond the
one-hot labels through the distribution tail. These types
of regularization assist in mitigating overfitting problems
and achieving better generalization in larger models. Ad-
ditionally, smaller models have lower complexity and are
more amenable to training with limited data. By utilizing
a pre-trained smaller model as the initialization point, the
larger model benefits from a warm start in the optimization
process. We speculate that model reusing techniques po-
sition the initial parameters closer to the optimum, where
the loss landscape is flatter and gradients are smoother (Li
et al., 2018). This reduces the optimization difficulty and
addresses the second challenge mentioned earlier.

4.3. Can Model Reusing Save the Power Law?

After clarifying the potential benefits of leveraging model
reusing to overcome training difficulty, we use experiments
to verify our hypothesis. In this section, we focus on the low
data regime (less than 10M tokens or 100k images) where
power law is shown broken.

Experimental Setup. Following the experiment details
in Sec. 3, we testify the performance of 1) BERT with
parameters ranging from 2M to 80M trained with 0.1% to
1% tokens in English Wikipedia, 2) ViT with parameters
ranging from 1M to 60M with 1% to 10% training images
in ImageNet1k. In contrast to training from scratch in Sec.
3, each time before we train a transformer, we will use a pre-
trained smaller one to initialize the model weights via the
Net2Net (Chen et al., 2015) technique. In this experiment,
the source models are trained from scratch and the one with
the closest model size to the current training model will be
chosen. For instance, to train a BERT with 80M parameters,
we will use 66M model as its initializer. For the smallest
size models, we extend their training procedure from their
last checkpoints for the same iterations/epochs as the control
groups to rule out the influence of longer training time.
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Figure 4: Comparison between training from scratch and training with Net2Net. The blue curves reproduce our data scarcity scaling
law while the orange curves display the scaling trend after applying Net2Net. The radius of markers indicates the standard deviation. We
find that model reusing effectively recovers the power law. Best viewed in color.

Observation. The main results are summarized in Fig.
4. In the plot, the blue curves reproduce the original data
scarcity scaling law, where the error increases with the
model parameters. The orange curves depict the perfor-
mance versus parameter numbers when Net2Net is enabled
to re-initialize models. We observe that by applying the
model reusing techniques, the originally increasing curves
all turn to decaying curves, which accurately fits the power
law (Kaplan et al., 2020). This manifestation gives an af-
firmative answer to our hypothesis that model reusing can
indeed restore the data scarcity law back to the original
power law. Note that performance gain is significant when
bringing data scarcity law back to a power law. With the
0.1% or 1% downsampled training data, the 80M BERT or
60M ViT are no longer trainable from scratch, leading to
collapsed perplexity or accuracy. Once applying Net2Net,
the test log-perplexity of BERT is enhanced by >1.0 and
the classification precision of ViT is improved by 20% for
free. We point out the starting points of all the curves are
overlapped, which signifies the improvement is not brought
by additional training epochs.

4.4. Ablation Studies

In this section, we study different variants of model reusing
and compare it with other alternatives. Throughout the
whole section, we choose ViT as the study objective, and
we presume all results can be extended to BERT as well.

How does the Reusing Method Affect? In Sec. 4.3, we
only test the Net2Net model reusing technique. In this ab-
lation study, we hope to examine whether other reusing
techniques introduced in Sec. 4.1 have a similar perfor-
mance. We redo the experiments for LiGO (Wang et al.,

2023) and knowledge inheritance (Qin et al., 2021). For
LiGO, we follow the original paper and search the growth
operator for 100 steps. For knowledge inheritance, we adopt
the default inheritance rate scheduler. All the subsequent
training remains the same for a fair comparison. We present
the model scaling curves in Fig. 5. The observation is that
1) generally applying model reusing is effective to recover
the scaling law from data scarcity domain. 2) Net2Net can
faithfully restore the power law while other other techniques
deviate from the law at the end. It suggests that Net2Net
is more suitable for model scaling via reusing. This is
probably because Net2Net with functionality preserving
property (Chen et al., 2015) can better inherit knowledge
to target models with less information loss. For the other
two techniques, additional training components need to be
introduced which may contribute to increased complexity
at initialization, especially with limited data. Consequently,
reaching consistent and desirable initialization with these
two methods may not always be feasible.

Does the Choice of Source Model Matter? An interest-
ing investigation is the effect of the source model selection.
In our previous experiments, the source models are always
the closest smaller one (i.e., the one with exactly one less
head). Another straightforward option is to always choose
the smallest one as the source model. We conduct this ex-
periment following the same setting stated in Sec. 4.3. The
results are reported in Tab. 2. We find that as long as model
reusing is applied, no matter which source model is being
used, the power law can be roughly recovered. However,
as the model size grows while the data size keep shrinking,
reusing from the first checkpoint underperforms reusing
from the closest checkpoint. This reflects the power law
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(a) Scaling with Net2Net

10 20 30 40 50 60
# Param. (M)

20

30

40

50

60

70

80

Te
st

 E
rro

r (
%

)

Data Frac.
2%
5%
8%
12%
25%
50%
70%
90%
100%

(b) Scaling with LiGO
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(c) Scaling with Knowledge Inheritance

Figure 5: Comparison among various model reusing techniques. We apply (a) Net2Net, (b) LiGO, and (c) Knowledge Inheritance to
initialize large model with different strategies. The comparison indicates Net2Net is the favorable solution as it can perfectly align with
the power law while other two turn out to deviate from the law at the end. Best viewed in color.

# Param. 9M 15M 22M 29M 38M 49M 60M

90%
Scratch 23.83 21.55 20.46 20.24 22.50 20.02 20.83
From Prev. 22.58 20.86 19.18 18.63 18.44 19.10 18.45
From First 22.58 21.90 19.36 18.63 18.03 18.04 17.93

70%
Scratch 24.50 22.12 21.19 20.72 20.85 21.08 19.95
From Prev. 23.52 21.37 19.80 19.06 18.90 18.99 19.59
From First 23.52 22.80 20.04 19.03 18.79 18.38 18.48

50%
Scratch 26.20 23.95 26.53 21.92 25.93 20.98 21.34
From Prev. 24.19 22.54 20.74 19.87 19.59 19.29 18.69
From First 24.19 23.60 20.84 20.00 19.27 19.01 18.69

25%
Scratch 31.66 29.62 40.63 27.03 39.04 29.66 30.72
From Prev. 27.85 25.32 23.59 24.38 22.30 21.85 22.43
From First 27.85 27.00 24.10 22.85 22.53 22.09 21.78

12%
Scratch 41.64 39.56 59.72 42.69 58.52 46.68 97.23
From Prev. 34.38 31.32 29.65 32.17 29.43 31.95 30.44
From First 34.38 33.94 31.51 30.85 30.19 29.65 28.81

8%
Scratch 49.67 51.47 48.23 52.68 60.23 58.90 98.21
From Prev. 42.46 37.97 39.15 34.96 36.30 39.64 38.11
From First 42.46 41.20 39.93 39.04 48.35 38.50 38.50

5%
Scratch 60.37 59.47 65.52 67.58 76.83 96.95 97.51
From Prev. 49.31 48.15 47.47 46.73 48.11 46.06 45.54
From First 49.31 45.55 43.67 45.87 46.41 53.88 55.00

Table 2: Comparison of model reusing from the immediately
previous one (Prev.) or the smallest one (First). Experiments are
conducted on ViT and test errors (↓) are reported in the table. Bold
font marks the best performer.

recovered from reusing the first checkpoint has a tiny diver-
gence from the standard power curve. We conjecture that
the learning capacity of 1M model is limited, which does
not learn sufficient knowledge to support the training of the
model that is way more immense in size.

Model Reusing versus the Alternatives? In addition to
model reusing, regularization (Steiner et al., 2021), sparsity
(Chen et al., 2022; Varma T et al., 2022), and data augmen-
tations (Touvron et al., 2022; 2021a) are other simple and
potent means to enhance data efficiency. To further validate
the superiority of the model reusing technique, we proceed
to conduct a comparison with the following baselines: (a)
The “three augmentations” proposed in DeiT III (Touvron
et al., 2022) as the extra data augmentation. (b) SNIP (Lee
et al., 2018) as the pruning method to sparsify ViT model by
50% at initialization. We perform experiments on relatively

Data Frac. 10% 9% 7% 5% 3% 1%

38M

Scratch 51.42 54.84 63.31 76.83 90.82 91.75
Data Aug. 59.32 63.82 68.48 72.80 78.09 84.10
Pruning 42.13 43.69 49.91 57.33 69.22 87.64
Net2Net 33.50 33.94 39.45 48.11 55.50 64.05

49M

Scratch 55.89 63.17 95.48 96.95 82.22 92.92
Data Aug. 56.56 69.12 66.41 71.11 77.50 84.06
Pruning 40.75 42.16 52.16 56.17 70.47 87.94
Net2Net 34.61 36.31 41.80 46.06 54.80 63.79

60M

Scratch 98.39 98.65 98.55 97.51 85.09 93.12
Data Aug. 57.77 59.24 65.78 71.46 77.44 83.90
Pruning 40.78 42.82 50.19 59.23 72.14 87.39
Net2Net 36.24 39.88 37.64 45.54 54.41 63.69

Table 3: Comparison of model reusing with data augmentation
and network pruning under the data scarcity regime. Experiments
are conducted on ViT and test errors (↓) are reported in the table.
Bold font marks the best performer.

large models (40 ∼ 60M) and test the performance at the low
data regime (≤ 10%). The test errors are reported in Tab. 3.
Our finding is that data augmentation and network pruning

exhibit a positive effect on the model performance under the
data scarcity regime. But both underperform the Net2Net
model reusing. These outcomes suggest that model reusing
should be regarded as a more favorable approach to fortify
the model against highly deficient data scenarios. Neverthe-
less, we believe that these techniques are complementary
and can be combined to further boost data efficiency.

5. Training Base Size Model using Scarce Data
via Progressing Growing

After a comprehensive study of the model reusing effect on
reproducing the power law, we deliver a general solution
ambitiously aimed at training a base-size language or vision
transformers with only 15M tokens or 10k images.

5.1. Training Recipe

Our objective is to train a transformer model of base size
assuming very limited data are available. Inspired by our
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Figure 6: Scaling curves for different transformers trained with 0.5% or 1% data and progressive model growing. We apply our
progressive growing to different transformer backbones (a) BERT, (b) RoBERTa, and (c) ViT. We conclude that progressive growing can
constantly suppress the test error while enlarging the model size. Best viewed in color.

former observation that model reusing can recover the power
scaling law, we adopt a progressive approach where we start
with a tiny size model and gradually increase the number
of parameters. At each stage, the optimization process can
be effectively stabilized, leading to the manifestation of
a power law that consistently reduces the test error. The
training procedure is illustrated in Fig. 3. This training
strategy, which we refer to as progressive growing, allows
us to steadily enlarge the network capacity. Based on our
observation that initializing from the nearest neighbor model
yields the best performance, we sequentially expand the
parameter count, with each newly grown model initialized
using the model from the previous stage that has the closest
size. For the model growth algorithm, we employ Net2Net,
which has demonstrated superior performance in our study.

5.2. Experiments

Experiment Settings. For the language transformer fam-
ily, we consider BERT (Devlin et al., 2019) as well as
RoBERTa (Liu et al., 2019). We increase the number of
heads to 12 which yields a 110M model. We train both
models with 0.5% English Wikipedia corpus with our pro-
gressive growing approach. Again, we follow the imple-
mentation of Tan & Bansal (2020) and train both BERT and
RoBERTa with MLM objective for 400k iterations with a
warm-up 10k steps. The sequence length is fixed to be 128
for pretraining both models. For BERT, the batch size is
256, and learning rate is set to 2e−4, while for RoBERTa,
the used batch size is 1024 and learning rate is 8e−4. The
language model starts from the 54M model, which yields
the lowest perplexity. For ViTs, we expand the number of
heads to 12 which results in an 80M model. Each training
stage will contain 300 epochs with a batch size of 1024.
The pre-trained 35M model is selected as the starting point
because we empirically find that the 35M model has the best
performance when trained from scratch with 1% images.

Results. We present our progressive training results in Fig.
6, where we also depict the performance of the intermediate
models synthesized during the growth. We find that large
models can consistently overcome data scarcity issues with
the help of progressive training. Notably, compared with
training from scratch, both BERT and RoBERTa can reach
a log perplexity of around 2.1, which cannot be achieved
without reusing initialization. Progressive training also sig-
nificantly improves the classification accuracy for ViT base
model from ≲ 10% to ≳ 60%. All the intermediate models
during the growth also demonstrate remarkable performance
gain and decaying error. Altogether, they endorse that pro-
gressive growing can be served as a universal approach to
achieve data efficiency (Villalobos et al., 2022).

6. Conclusion
We study the neural scaling law under the data scarcity
regime. Our finding is that data scarcity will break the
power law and heavily ruin the performance of large trans-
formers. We propose to leverage model reusing to recover
the desirable scaling property for transformers. We con-
duct extensive experiments to support the benefit of model
reusing in reproducing the power law. Our unified approach
of progressive growth improves the data efficiency that suc-
cessfully scales the transformer size with data scarcity.
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A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

10



Data Efficient Neural Scaling Law via Model Reusing

Kim, H., Papamakarios, G., and Mnih, A. The lipschitz
constant of self-attention. In International Conference on
Machine Learning (ICML), 2021.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot
network pruning based on connection sensitivity. arXiv
preprint arXiv:1810.02340, 2018.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.
Visualizing the loss landscape of neural nets. Advances
in neural information processing systems, 31, 2018.

Li, T., Shetty, S., Kamath, A., Jaiswal, A., Jiang, X., Ding,
Y., and Kim, Y. Cancergpt: Few-shot drug pair synergy
prediction using large pre-trained language models. arXiv
preprint arXiv:2304.10946, 2023.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Ma, Y., Tsao, D., and Shum, H.-Y. On the principles of par-
simony and self-consistency for the emergence of intelli-
gence. Frontiers of Information Technology & Electronic
Engineering, 23(9):1298–1323, 2022.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Molybog, I., Albert, P., Chen, M., DeVito, Z., Esiobu, D.,
Goyal, N., Koura, P. S., Narang, S., Poulton, A., Silva, R.,
et al. A theory on adam instability in large-scale machine
learning. arXiv preprint arXiv:2304.09871, 2023.

Paul, M., Ganguli, S., and Dziugaite, G. K. Deep learning on
a data diet: Finding important examples early in training.
Advances in Neural Information Processing Systems, 34:
20596–20607, 2021.

Prato, G., Guiroy, S., Caballero, E., Rish, I., and Chandar,
S. Scaling laws for the few-shot adaptation of pre-trained
image classifiers. arXiv preprint arXiv:2110.06990, 2021.

Qin, Y., Lin, Y., Yi, J., Zhang, J., Han, X., Zhang, Z., Su,
Y., Liu, Z., Li, P., Sun, M., et al. Knowledge inheri-
tance for pre-trained language models. arXiv preprint
arXiv:2105.13880, 2021.

Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J.,
Guo, D., Ott, M., Zitnick, C. L., Ma, J., and Fergus, R.
Biological structure and function emerge from scaling un-
supervised learning to 250 million protein sequences. Pro-
ceedings of the National Academy of Sciences, 118(15),
2021. ISSN 0027-8424. doi: 10.1073/pnas.2016239118.

Rosenfeld, J. S., Rosenfeld, A., Belinkov, Y., and Shavit,
N. A constructive prediction of the generalization error
across scales. arXiv preprint arXiv:1909.12673, 2019.

Schulman, J., Zoph, B., Kim, C., Hilton, J., Menick, J.,
Weng, J., Uribe, J., Fedus, L., Metz, L., Pokorny, M.,
et al. Chatgpt: Optimizing language models for dialogue,
2022.

Shi, H., Gao, J., Xu, H., Liang, X., Li, Z., Kong, L.,
Lee, S., and Kwok, J. T. Revisiting over-smoothing
in bert from the perspective of graph. arXiv preprint
arXiv:2202.08625, 2022.

Sorscher, B., Geirhos, R., Shekhar, S., Ganguli, S., and
Morcos, A. S. Beyond neural scaling laws: beating
power law scaling via data pruning. arXiv preprint
arXiv:2206.14486, 2022.

Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkor-
eit, J., and Beyer, L. How to train your vit? data, augmen-
tation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270, 2021.

Tan, H. and Bansal, M. Vokenization: Improving language
understanding with contextualized, visual-grounded su-
pervision. arXiv preprint arXiv:2010.06775, 2020.

Tay, Y., Dehghani, M., Abnar, S., Chung, H. W., Fedus,
W., Rao, J., Narang, S., Tran, V. Q., Yogatama, D., and
Metzler, D. Scaling laws vs model architectures: How
does inductive bias influence scaling? arXiv preprint
arXiv:2207.10551, 2022.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International Con-
ference on Machine Learning, pp. 10347–10357, 2021a.

Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., and
Jégou, H. Going deeper with image transformers. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021b.

Touvron, H., Cord, M., and Jégou, H. Deit iii: Revenge
of the vit. In Computer Vision–ECCV 2022: 17th Euro-
pean Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXIV, pp. 516–533. Springer, 2022.

Varma T, M., Chen, X., Zhang, Z., Chen, T., Venugopalan,
S., and Wang, Z. Sparse winning tickets are data-efficient
image recognizers. Advances in Neural Information Pro-
cessing Systems, 35:4652–4666, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is All You Need. In Proceedings of NeurIPS, 2017.

11



Data Efficient Neural Scaling Law via Model Reusing

Villalobos, P., Sevilla, J., Heim, L., Besiroglu, T., Hobbhahn,
M., and Ho, A. Will we run out of data? an analysis of
the limits of scaling datasets in machine learning. arXiv
preprint arXiv:2211.04325, 2022.

Wang, P., Zheng, W., Chen, T., and Wang, Z. Anti-
oversmoothing in deep vision transformers via the fourier
domain analysis: From theory to practice. arXiv preprint
arXiv:2203.05962, 2022.

Wang, P., Panda, R., Hennigen, L. T., Greengard, P., Kar-
linsky, L., Feris, R., Cox, D. D., Wang, Z., and Kim, Y.
Learning to grow pretrained models for efficient trans-
former training. International Conference on Learning
Representations, 2023.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer
normalization in the transformer architecture. In Inter-
national Conference on Machine Learning, pp. 10524–
10533. PMLR, 2020.

Yang, X., Ye, J., and Wang, X. Factorizing knowledge
in neural networks. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–
27, 2022, Proceedings, Part XXXIV, pp. 73–91. Springer,
2022a.

Yang, X., Zhou, D., Liu, S., Ye, J., and Wang, X. Deep
model reassembly. Advances in neural information pro-
cessing systems, 35:25739–25753, 2022b.

Yu, Y., Chan, K. H. R., You, C., Song, C., and Ma, Y. Learn-
ing diverse and discriminative representations via the
principle of maximal coding rate reduction. Advances in
Neural Information Processing Systems, 33:9422–9434,
2020.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J., and
Kumar, S. Are transformers universal approximators
of sequence-to-sequence functions? arXiv preprint
arXiv:1912.10077, 2019.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling
vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 12104–12113, 2022.

Zhang, B., Titov, I., and Sennrich, R. Improving deep
transformer with depth-scaled initialization and merged
attention. arXiv preprint arXiv:1908.11365, 2019.

Zheng, W., Sharan, S., Jaiswal, A. K., Wang, K., Xi, Y.,
Xu, D., and Wang, Z. Outline, then details: Syntactically
guided coarse-to-fine code generation. arXiv preprint
arXiv:2305.00909, 2023.

Zhou, D., Kang, B., Jin, X., Yang, L., Lian, X., Jiang, Z.,
Hou, Q., and Feng, J. Deepvit: Towards deeper vision
transformer. arXiv preprint arXiv:2103.11886, 2021.

12


