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Abstract

Cutting planes (cuts) are essential for solving mixed-integer linear programming
(MILP) problems, as they tighten the feasible solution space and accelerate the
solving process. Modern MILP solvers offer diverse cutting plane separators to
generate cuts, enabling users to leverage their potential complementary strengths
to tackle problems with different structures. Recent machine learning approaches
learn to configure separators based on problem-specific features, selecting effective
separators and deactivating ineffective ones to save unnecessary computing time.
However, they ignore the dynamics of separator efficacy at different stages of
cut generation and struggle to adapt the configurations for the evolving problems
after multiple rounds of cut generation. To address this challenge, we propose a
novel dynamic separator configuration (DynSep) method that models separator
configuration in different rounds as a reinforcement learning task, making decisions
based on an incremental triplet graph updated by iteratively added cuts. Specifically,
we tokenize the incremental subgraphs and utilize a decoder-only Transformer as
our policy to autoregressively predict when to halt separation and which separators
to activate at each round. Evaluated on synthetic and large-scale real-world MILP
problems, DynSep speeds up average solving time by 64% on easy and medium
datasets, and reduces primal-dual gap integral within the given time limit by 16%
on hard datasets. Moreover, experiments demonstrate that DynSep well generalizes
to MILP instances of significantly larger sizes than those seen during training. The
code is released at https://github.com/MIRALab-USTC/L20-DynSep.

1 Introduction

Mixed-Integer Linear Programming (MILP) problems are linear programs that involve both discrete
and continuous decision variables, which have been widely used in real-world optimization tasks [[1H3]].
A standard MILP problem has the form:

-

" =min{c'x | Ax <b,x € R",x; € Zforall j €I}, (1)
1 4

where ¢ € R", A € R"™" b € R™, 1 C {l,...,n} indexes those variables constrained to be integral,
and z* denotes the optimal objective value of the problem in (T)).
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Figure 1: Separation rounds at each node of B&B tree. At each tree node, the solver first solves the
current LP relaxation. Based on the LP solution x7 ,, and the current constraints, a suite of configured
separators—of which only the activated ones are invoked—generates a pool of candidate cuts. The
solver then selects the most promising cuts, adds them to the model, and re-optimizes the tightened
LP relaxation. This separation cycle repeats until a preset maximum round rpy,x is reached.

Modern MILP solvers typically follow the Branch-and-Cut (B&C) paradigm [4, 5], which unifies
Branch-and-Bound (B&B) tree search with cutting-plane techniques into a cohesive framework. At
each B&B tree node, the solver forms a Linear Programming (LP) relaxation by relaxing integer
constraints and solves it to yield a dual bound for the current node. To tighten the dual bound, the
solver runs multiple separation rounds: find inequalities satisfied by all integer-feasible solutions but
violated by the current LP solution, add them as cutting planes, re-solve the LP, and repeat—thereby
pushing the relaxation closer to the convex hull of the integer points. As shown in Fig. [I] each
separation round invokes several cut-generation algorithms (i.e., separators), each focuses on a
particular family of inequalities (e.g., Gomory cuts, Clique cuts). The solver then selects a small,
diverse set of the most effective cuts and adds them to the LP model. These separators are critical to
performance because they determine the quality of candidate cuts and thus the solver’s convergence
behavior. Modern MILP solvers offer multiple separators with tunable configurations, enabling users
to flexibly call different separators and combine their complementary strengths to tackle problems
with different structures.

To fully exploit separators’ potential for speeding up the B&C process, recent machine learning
(ML) approaches [6l [7] learn problem-aware configurations and disable ineffective separators to
save unnecessary computing time. However, they ignore how separator efficacy changes across
cut-generation stages, struggling to adapt configurations as the problem evolves across nodes and
separation rounds. We identify two main drivers of this dynamics: (i) decaying marginal gains from
successive separation rounds and (ii) interaction effects among separators. First, classic separators
(e.g., Gomory, split) exhibit diminishing marginal improvements in the dual bound and introduce
potential numerical issues as rounds accumulate [8-10]. Our pilot study (Fig. 2(a)) reveals that
solver performance is highly sensitive to the round cutoff—-more rounds do not necessarily yield better
performance. Second, interactions among separators affect their joint benefit: some separator families
yield strong cuts in early rounds, whereas others act as late-stage boosters; some separators provide
mutual reinforcement to tighten bounds [11], while others create redundancy or dilute strength when
used together [12}[13]. Our experiment that randomizes the activation status of separators at each
separation round (Fig. 2(b)) confirms that proper round-aware configurations can deliver substantial
performance gains, underscoring the need for dynamic configuration of separators.

Inspired by the analysis above, we propose DynSep, a novel dynamic separator configuration
method that models separator configuration in different rounds as a reinforcement learning (RL)
task and jointly decides when to halt separation and which separators to activate in each round at
settled B&C nodes. To avoid the overhead of re-encoding the entire MILP subproblem in each
round, DynSep ingests only the incremental subgraph—the triplet graph formed by newly added
cuts—at each decision-making step of the RL agent. Specifically, we first extract graph and node
embeddings for each incremental subgraph using a Graph Convolutional Network (GCN) and tokenize
these embeddings. We then feed the tokens produced at the current time step into a decoder-only
Transformer, which integrates temporal context from past subgraphs and autoregressively predicts
the next round’s separator configurations. Furthermore, we introduce a blocked positional encoding
for the Transformer that captures the temporal ordering of the incremental subgraphs while omitting
the incidental order of feature tokens within each subgraph. This design ensures that DynSep
performs a one-to-one mapping from each separator’s features to its configuration decisions in a
permutation-equivariant manner, which preserves token-level alignment. Our experiments show that
DynSep outperforms other state-of-the-art (SOTA) configuration methods on benchmarks of both



synthetic and large-scale real-world MILP problems. Specifically, DynSep speeds up average solving
time by 64% on five easy and medium datasets and reduces average primal-dual gap integral by 16%
on four hard datasets, including benchmarks from MIPLIB 2017 [[14] and large-scale real-world
production planning problems. Moreover, our tests show that DynSep generalizes well to unseen larger
MILP instances, and the visualization study shows it truncates unnecessary rounds and automatically
captures some known facts of separator efficacy patterns.

2 Related Work

Learning-based MILP solvers are now commonplace across industry and academia, spanning industrial
solver pipelines [[15]], solution prediction for warm-starting [[16}[17], and accelaration of core solver
modules—e.g., cut selection and branching—via machine learning [[18,[19]. Building on this landscape,
we target ML-based cut generation. Existing data-driven methods for guiding cut generation can be
categorized into three classes: generating a parameterized family of cuts [20-23]], enhancing existing
separators [24} [25]], and configuring separators to generate compound cuts [6} [7]. Our work falls
into the third category. Related work on ML-driven separator configuration includes L2Sep [6] and
LLM4Sep [7]. L2Sep uses a greedy filter to restrict the vast separator parameter space and trains an
instance-wise bandit model to guide separator activation. L2Sep can adjust configurations in a few
intermediate separation rounds, but requires training a separate model for each round, thus limiting
its scalability to arbitrary rounds and node-wise adaptation. LLM4Sep harnesses the large language
model (LLM) to generate cold-start configurations for each dataset. While both methods yield notable
gains, they remain confined to small or truncated parameter spaces, and ignore the dynamic efficacy
and order dependencies of separators, which restricts their capacity for on-the-fly adaptation as the
solver progresses.

3 Background

Branch-and-cut. In B&C, the solver builds a search tree by recursively branching on fractional
variables, thus partitioning the MILP into smaller subproblems at each node. Each subproblem is
solved via its LP relaxation, yielding an optimal fractional solution that provides a lower bound (dual
bound) on the objective of the subsequent subtree. To tighten this relaxation, cutting planes—Ilinear
inequalities of the form ax < S—are iteratively added to the LP problem. As shown in Fig.[I] these
cuts strategically remove fractional solutions from the LP relaxation region without eliminating any
feasible integer solutions, thus raising the dual bound at the node. Any subtree whose dual bound
exceeds the best-known integer solution can be pruned; thus, cutting planes are crucial in reducing
the search space and accelerating the solving process.

Reinforcement Learning. A standard MDP is formally defined as a tuple M := (S, A, R, P),
where S is the state space, A is the action space, R : S X A — R is the reward function, and
P : S X A — S is the transition function, At each time step #, the agent observes the current state
s; ~ S and generates an action a, € A from its policy 7 (s;). This action pushes the environment
towards the next state s,,1, accompanied by a scalar reward r;, = R(s;, a,). This interactive process
yields an episode of sequence 7 := (s¢, ag, o, 1,41, - , ST, a1, 1), in which T means the episode
ends or reaches the maximum time step. The goal of RL is to find an optimal policy 7* that maximizes
the expected cumulative rewards B+, a0 [Z;T:o y’r,].

4 Motivation

Set maximum separation round to decide when to halt. Empirical results in[2(a)| show that altering
the maximum separation round rp,x for each node causes significant performance variations. For the
setcover dataset, the solving process accelerates when increasing rmax to 3, after which further rounds
cause degradation. For the anonymous dataset, both solving metrics worsen monotonically as 7max
increases. Overall, these trends indicate that adding separation rounds does not universally improve
performance, and the optimal value of ry,y differs across datasets. These findings motivate us to
incorporate the maximum separation round as a decision variable for the agent.

Set activation status to decide which separator to activate. In Fig. 2(b)l we test 50 random
configurations for each instance in several datasets and choose the best configuration specific to each
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Figure 2: Motivation results. (a) Effect of varying maximum round rp,,x on solver performance for
two MILP datasets. Each plot shows the average solving time (red line, left y-axis) and PD integral
(blue line, right y-axis) across all instances in the dataset. (b) Performance improvement of the
best configurations found by different random strategies. Datasets D1-D3 use solving time (left) as
the metric, while D4-D5 use PD integral (right). The y-axis represents the relative improvement
compared to the default setting. Each bar represents a specific strategy to get random configurations.

instance, which illustrates the potential performance gains from different configuration strategies. The
yellow bars correspond to randomly varying the activation status of all separators. Specifically, each
separator’s activation status 7; € {—1,0, +1} is randomly chosen, where 0 indicates deactivation, +1
indicates eager activation, and —1 indicates deferred activation. Thus, for each selected configuration,
we randomly decide which separators are active and in which phase they are invoked. We provide
more implementation details of separator configurations in Appendix We also randomize the
separators’ priorities { pi}lK: 1» which controls the execution orders of the separators in a separation
round. As shown by the orange bar in Fig. 2(b)] perturbation in priority configs exhibits a minor effect
on performance improvement compared to activation status (yellow bars) changes (see more results
and analyses in Appendix [E.I). These findings motivate us to alter the separators’ activation status to
decide the order of separator invocation across multiple separation rounds.

Node-wise&Round-wise Dynamic configurations. The last two bars of Fig. correspond to
randomizing the activation status of all separators either at each separation round (red: round-level) or
at nodes with regular depths (pink: node-level). Both round- and node-level random configurations
show great potential in finding high-quality configurations. This indicates structural shifts exist in the
evolving problems when moving to a new separation round or a new node, which leads to the shift
of optimal separator configurations. These findings motivate us to configure separators in a more
fine-grained manner, adjusting them dynamically in each separation round at multiple nodes.

5 Method

Cutting-plane separator configuration is challenging due to the vast combinatorial configuration space
and the dynamic cutting preference at different stages of cut generation. Therefore, we model the
dynamic separator configuration as a sequential decision-making problem. We employ RL to explore
the large action space and leverage performance feedback from the MILP solving process to guide the
search for optimal configurations. In Section[5.1] we present the detailed RL formulation for separator
configuration. Sections[5.2)& [5.3]offer an in-depth description of our proposed DynSep, detailing how
to model time-evolving MILP instances via dynamic triplet graphs and how to process the tokenized
features using a decoder-only Transformer. Section [5.4]outlines the training process for DynSep. The
overall workflow of DynSep is illustrated in Figure 3]

5.1 Reinforcement Learning Formulation

In the following, we define the MDP components for dynamic separator configuration.

The state space S. Given that the entire MILP problem determines the geometric structure of
the feasible solution domain—which in turn provides the core information for cut generation—we
include the MILP problem M, to be tackled in the 7-th separation round in our state. We also embed
per-separator solving feedback (e.g., cost, contribution in finding proper cuts and reducing variable
domains, etc.), which guides the agent to learn the overhead and efficacy of each separator. Therefore,
following the work [6], we model the above inputs as a triplet graph G = (V, C, S; &) with three
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Figure 3: The RL framework for dynamic separator configuration. The environment (left)
provides an incremental triplet graph As, of the MILP instance at each time step. A GCN encoder
processes As;, extracting a token block z; consisting of a graph-level embedding and K separator
node embeddings. A decoder-only Transformer then processes the sequence of such token blocks
autoregressively. Finally, the actor 7y outputs the corresponding categorical distributions of round-
wise decisions: the maximum round and all separators’ activation statuses. These decisions are
optimized via RL loss, with rewards computed from round-level improvements in three aspects.

types of nodes: variable nodes V, constraint nodes C, and separator nodes S. & denotes the edge set.
Detailed node and edge feature definitions appear in Appendix [B.2]

Formally, we define the state as the entire triplet graph, i.e., s, = G;. However, encoding the full graph
in each decision step leads to expensive gradient updates during training and a growing inference
time as the graph scales. To mitigate this, we instead use the incremental state As; as the input
at the 7-th time step. Specifically, As; = AG, captures only the updates after each cut generation
round, including the newly added cuts, tightened variable bounds, and updated separator statistics. In
practice, As, is a triplet subgraph reflecting those changes (see the left panel of Figure[3), and we set
Aso = Gy using original constraints as constraint nodes.

The action space A. Inspired by the motivational results in Sectiond] we define the action a, as the
concatenation of two decision components. First, we decide which round to stop generating cuts by

at(l) =m; € {1,2,---,T}, where m; denotes the maximum number of separation rounds permitted
at the current node and 7 denotes the predefined upper limit for separation rounds in the overall
B&C process (i.e., the maximum episode length in our RL formulation). Second, we decide which
separators to activate in early and late phases by aiz) =1 = M1y oMig) € {=1,0,1}X, where
7, denotes the activation-status vector for the K built-in separators. Each entry of 7, ; specifies the
activation status of the i-th separator that would be setup at the round ¢, taking values of +1 (activated
early), O (deactivated), or —1 (activated late). Formally, we represent the overall action at time ¢ as:

ar = Concat(az(l), at(z)) =[me,me, ... k] € N+ 2

These configuration decisions are made at every separation round for nodes at predefined depths.

The reward function R. To leverage the rich feedback dropped in the solving process, we define
the reward r; as a summation of three incremental metrics: runtime penalty, relative dual bound
improvement, and separator effectiveness. After the #-th round, the agent observes

1 AB
re=- [AT, =5 Touse| + T_tl + Aky, ©)
where AT; =T; —T;_1, AB; = B; — B;_1, Ak; = k; — k;—1. In the first term, 7; denotes the cumulative
solving time up to the ¢-th round, Ty,g is the problem-specific time budget estimated under the default
configuration, and N is the total number of separation rounds in an entire B&C process. In the
second term, B; denotes the current dual bound obtained from the optimal solution of the current LP
relaxation. Note that we normalize the incremental solving time by its estimated average per round
and express the dual-bound improvement as the ratio of the increase to the previous bound, since both
metrics can vary greatly across MILP instances and may become excessively large, which would risk
training instability. In the third term, «, signifies the aggregate gain caused by all active separators at




round #, which is computed as the sum of: (i) the application rate of the generated cuts, (ii) numbers of
domain reduction operations, (iii) numbers of node pruning operations. These three statistics provide
meaningful insights into the separators’ contribution to domain tightening and search-space pruning
(see Appendix [B.3|for more details).

The environment transition #. The transition function maps the current state and action to the next
state. That is, by performing the configuration decision a,, a round of cuts is generated from the
current triplet graph s;. After incorporating all selected cuts, the solver forms an incremental triplet
graph s,,;. We denote the incremental updates as As;.|, which represents a subgraph consisting of
newly added cut nodes, updated variable and separator nodes, and newly connected edges.

The terminal state. At the first separation round of each node, the agent provides a decision of
maximum round mg. Then the solver environment terminates cut generation after mq rounds or other
built-in stopping conditions are met (see Appendix [B.4] for more details).

5.2 Tokenize Incremental subgraphs

We extract latent embeddings for both the entire graph and its separator nodes using the encoder
network @ introduced by [6]. The encoder ® involves a Graph Convolutional Network (GCN) [26]], an
attention block on the hidden embeddings of the separator nodes [27]], and a global pooling layer that
produces a single representation for the input graph. Full details of the message-passing operations are
provided in Appendix [C} here, we focus on the tokenization procedure that is unique to our approach.

At each time step ¢, feeding the incremetal subgraph As; = AG, into the encoder @ yields a graph
feature h,, € RY and K separator node features g, (;1), . . ., hs, (k) € RY. We treat each feature
vector as a token, and then we map the incremental subgraph AG; into a stacked token block:

Z = [hg,, hs.i1y *+ hs,(t,K)]T c REK+Dxd @)

5.3 Decision-Maker: Decoder-only Transformer

The token block z; is an embedding of the incremental state As,, containing incremental contexts
and separator statistics updated in the last separation round. To recover the entire information of
state s, for informed decision-making, we aggregate the information of all history incremental states
As; (0 <i < t) via a decoder-only Transformer 7.

Decision-making in an autoregressive fashion. At each round 7, we assemble the history of token
blocks as an ordered sequence w; = (29, 21, - - - » 2t ). We input w; into the Transformer 7~ and train
7 to predict the corresponding configuration actions {ag, a1, . .., d;) in an autoregressive fashion,
where a; = [m;,n;1,...,n:.k] fori = 0 : ¢. To optimize decision quality in an online RL manner, we
replace the common prediction error loss in Transformer models with the RL objective that maximizes
the cumulative return over the generated actions. During inference, we feed the historical sequence
w; to 7 and generate the next action a,, like the next-token generation in language modeling.

Blocked positional encoding. We introduce a blocked positional encoding (PE), enabling the
Transformer model to recognize and capture the temporal ordering among token blocks, while
omitting any ordering among tokens within each block. Formally, we define the blocked PE of one
episode as

pP= [PJ PlT P;]T c R(T+1)(K+])><d, 5)

where P; = [pos(i) pos(i) --- pos(i)]T € REK+D*d pos(i) € R4. That is, the blocked PE assigns
the same positional encoding pos(7) to all K + 1 tokens in z;. Then the input to 7~ becomes
w; = (zo + Py, ...,z + P;). This design mirrors relative-position schemes that bias attention at the
block level while leaving intra-block tokens interchangeable. Similarly, we use a blocked causal mask
that forbids attention from block i to any future block j > i. At inference time, we take the last K + 1
hidden embeddings as an embedding block to predict the next action.

Permutation equivariance inside each block. Note that the token block z, in Eq. (@) and the action
in Eq. (2) are consistent in both structure and contextual meaning. Thus, we utilize the embeddings
of K + 1 tokens in z, after passing the Transformer 7 to obtain the K + 1 probability distributions of
K + 1 configuration components in action a,, respectively. We formalize the one-to-one decision



mapping as follows:
block-level: {aq, ...,a;) =T ({20 + Po, ..., 2 + P;)) (©6)
token-level: a; = [mi,mi1s .- k] = T ([hgishs i1ys -+ > hs k) ]) = Tz + Py). (1)

In Eq. (7), the first token A, ; of each block z; informs the global mode of subgraph As; to decide
which round m; to stop. The subsequent K tokens A (; 1), ..., hs, (i,k) guide separator configs
Mtis- - .- Ni.k- We visualize the data flow of block-level and token-level decision mapping in the right
panel of Fig.[3] Such a one-to-one mapping encourages the agent to make context-aware decisions
and is guaranteed by the permutation equivariance of the self-attention mechanism when the input
tokens share the same position embedding. We formulate such permutation equivariance as follows
and provide the corresponding proof in Appendix [A]

Proposition 1. The decoder-only Transformer T, equipped with the blocked positional encoding P,
is permutation equivariant inside each token block. Formally, for any input X and any block-wise
permutation matrix 1, it holds that 7 (11X + P) =17 (X + P).

5.4 Training

We utilize the Proximal Policy Optimization (PPO) algorithm [28] to train our decision network, as
PPO strikes a balance between ease of implementation and computational efficiency. PPO inherits
from the famous actor-critic framework in which a critic V, (s) estimates the state value function,
while an actor 7y determines the policy. We instantiate two separate decoder-only Transformers for
the actor and critic network, respectively, each sharing the architecture defined in Section[5.3] As
shown in the right panel of Figure E], Vy only takes the first token (the graph feature) of each block z;
from the Transformer’s final hidden embedding and then feeds it into a linear head to predict the state
value. The actor 7y concatenates the Transformer’s final token embeddings and feeds them into a
joint linear head to produce the probability distributions of all configuration decisions. We provide
the algorithm pseudocode in Appendix and the architecture hyperparameters in Appendix [D.2]

6 Experiments

6.1 Experimental Setup

Setup. We use SCIP 8.0.0 [29] as the backend solver, which is a state-of-the-art open source solver
widely adopted in the research of ML for combinatorial optimization (ML4CO) [30, 31, [18l, [32]].
To maintain fair comparison and reproducibility, we retain all the other SCIP parameters as default
in all baselines and our method. All of the SCIP solver’s advanced features, such as presolve and
heuristics, are open, which ensures that our setup is consistent with the practice setting. Evaluation
on each instance is limited to a 300-second solving time. To balance performance and computational
cost, our approach configures separators at every tenth depth level in the B&B tree by setting the
separator frequency in SCIP as 10. We set the maximum separation round at each node as 7' = 5.
Configuration is applied to 22 separators built into SCIP; more descriptions of separators are provided
in Appendix [B.5] More details about the ML setup and hardware specifications are provided in

Appendix D]

Benchmarks. We evaluate our approach on nine publicly available NP-hard MILP problem
benchmarks from the prior work [33]], covering three classical synthetic MILP problems and six
challenging MILP problems from diverse application areas. The nine problem benchmarks are
divided into three categories (easy, medium, and hard) according to the difficulty of solving them
using the SCIP 8.0.0 solver. (1) Easy datasets: three widely used synthetic MILP problem
benchmarks: Set Covering [34], Maximum Independent Set (MIS) [35]], and Multiple Knapsack [36].
(2) Medium datasets: CORLAT [37] and MIK [38]], which are widely used benchmarks for evaluating
MILP solvers [39, 140]]. (3) Hard datasets include two datasets from the ML4CO NeurIPS 2021
Competition [41]: the Load Balancing problem inspired by real-life applications of large-scale
systems, and the Anonymous problem inspired by a large-scale industrial application. Moreover, hard
datasets contain MIPLIB mixed neos and MIPLIB mixed supportcase, two subsets of the benchmark
MIPLIB 2017 [14].

Baselines. Our baselines include four human-designed separator configuration rules and three
learning-based methods. Human-designed rules include (1) Nocuts: pure B&B without adding any



Table 1: Comparative evaluation on easy, medium, and hard datasets. Best performance is in bold,
with the greatest improvement (Improv.) both bolded and underlined. Sizes of nine benchmarks are in
parentheses, with n and m representing the average numbers of variables and constraints, respectively.
The values report the mean (standard deviation) of time and PD integral metrics.

Easy: Set Covering (n = 1000, m = 500)

Easy: Max Independent Set (n = 500, m = 1953)  Easy: Multiple Knapsack (n = 720, m = 72)

S Improv. T N PN Improv. T — PN Improv. T . )
Method Time(s) | (time, %) PD integral | Time(s) | (time, %) PD integral | Time(s) | (time, %) PD integral |
NoCuts 7.45 (5.87) NA 101.86 (55.59)  15.32(5.82) NA 146.4 (56.99) 13.84 (28.79) NA 25.21 (26.6)
Default 5.24 (1.79) 29.66 95.56 (36.86)  30.4 (8.02) -98.43 289.51 (103.81) 2.01 (1.82) 85.48 18.6 (10.49)
Search(50) 1.7 (0.44) 77.18 36.77 (8.48) 4.42 (3.89) 71.15 23.28 (19.02) 4.12(5.52) 70.23 13.38 (7.36)
Prune 7.45(5.14) 0.00 66.83 (45.97)  5.03 (3.18) 67.17 30.93 (22.39) 0.64 (0.48) 95.38 9.89 (3.82)
L2Sep(R1) 6.56 (4.35) 11.95 62.12(39.08)  5.42(3.86) 64.62 3421 (25.97) 7.45 (12.07) 46.17 12.99 (8.66)
L2Sep(R2) 7.35 (4.88) 1.34 70.00 (43.57)  5.36(3.76) 65.01 33.94 (25.33) 9.14 (12.89) 33.96 14.40 (8.72)
LLM4Sepasel ~ 11.73 (12.09) -57.45 110.73 91.14)  5.13 (4.19) 66.51 27.18 (20.17) 4.8(5.51) 65.32 17.79 (8.9)
DynSep (Ours)  1.51(0.27) 79.73 33.88 (9.34) 0.53 (0.20) 96.54 9.66 (2.40) 0.52 (0.24) 96.24 9.71 (5.39)
Medium: Corlat (n = 466, m = 486) Medium: MIK (n = 413, m = 346) Hard: Anonymous (n = 37881, m = 49603)
. I 8 . . I A . . . I A
Method Time(s) | (:?Izrquj PD integral | Time(s) | (]:rar:v%l PD integral | Time(s) | PD integral | (PEF;IH(‘;\: JC)
NoCuts 74.66 (122.23) NA 2687.68 (6209.48) 190.28 (113.97) NA 887.85(859.76)  259.77 (75.71)  21117.12(9234.01) NA
Default 111.55(132.19) -49.41 10573.14 (13070.46) 16.65 (18.06) 91.25 82.80 (56.24) 298.92 (4.09) 27069.58 (4892.8) -28.19
Search(50) 55.74 (97.19) 25.34 2910.77 (6585.5) 24.99 (20.56) 86.87 89.27 (55.85) 270.68 (65.52)  24028.68 (9007.57) -13.79
Prune 89.09 (125.52) -19.33 2615.71 (5814.74) 300.01 (0.0) -57.67 2237.28 (1023.8)  241.75 (100.61) 17304.91 (9563.3) 18.05
L2Sep(R1) 91.14 (124.12) -22.07 3124.07 (6914.50) 15.50 (17.60) 91.85 61.09 (44.50) 239.52 (94.82)  16970.35 (10108.40) 19.64
L2Sep(R2) 89.84 (124.30) -20.33 3113.29 (6927.16) 11.13 (9.09) 94.15 44.69 (25.06) 240.54 (93.80)  16850.57 (10052.83) 20.20
LLM4Sepasel ~ 64.03 (110.63) 14.24 2921.73 (6860.21) 17.94 (17.76) 90.57 85.66 (65.34) 284.57 (34.79)  25384.48 (8100.56) -20.21
DynSep (Ours)  22.96 (38.93) 69.25 2233.42 (3868.43) 10.99 (9.44) 94.22 134.15 (44.21)  241.89(100.75)  15656.7 (8996.14) 25.86
Hard: Load Balancing (n = 61000, m = 64304) Hard: MIPLIB mixed neos (n = 6958, m = 5660) Hard: MIPLIB mixed supportcase (n = 19766, m = 19910)
Method Time(s) | PD integral | (ll‘r‘;pl::‘ (,TH Time(s) | PD integral | (]LYBPI:::" ‘,Tr) Time(s) | PD integral | (IL'I')‘I’I;‘?’ ‘%
NoCuts 300.11 (0.02)  15093.26 (940.68) NA 275.04 (43.23)  14618.53 (12214.63) NA 181.26 (120.25)  12959.99 (10506.47) NA
Default 300.14 (0.02)  15187.19 (936.38) -0.62 282.98 (29.49) 18500.5 (9386.15) -26.56 244.75(105.8)  21561.09 (10434.42) -66.37
Search(50) 300.04 (0.05) 3783.52 (448.59) 74.93 27423 (44.64)  15619.98 (11969.47) -6.85 133.36 (131.32)  10241.17 (10794.69) 20.98
Prune 300.07 (0.12)  10597.31 (671.55) 29.79 249.37 (87.7) 14464.45 (12569.32) 1.05 158.63 (141.48)  9827.52 (11433.13) 24.17
L2Sep(R1) 300.02 (0.03)  10548.89 (4474.08) 30.11 242.83(99.02)  10383.49 (11808.13) 28.97 162.18 (138.25)  11318.55 (11796.53) 12.67
L2Sep(R2) 300.03 (0.10)  10860.13 (4348.96) 28.05 242.90 (98.90)  13989.09 (12116.88) 4.31 166.23 (134.71)  11489.15 (11849.13) 11.35
LLM4Sepasel ~ 300.04 (0.06)  4769.47 (709.05) 68.40 276.34 (47.32)  14109.36 (13706.18) 3.48 256.48 (100.88)  22618.21 (10234.21) -74.52
DynSep (Ours)  300.04 (0.08)  3720.26 (499.37) 75.35 235.19 (112.26)  8511.58 (12413.9) 41.78 132.50 (130.32)  9212.24 (9840.56) 28.92

cuts; (2) Default: default separator configs used in SCIP 8.0.0; (3) Search(p): randomly samples p
configurations then applies one with the best performance on the validation set; (4) Prune: deactivates
separators with no contribution during the evaluation on the validation set. For learning-based
methods, we compare: (1)L2Sep(R1): L2Sep [6] that learns the configuration only at the first
round; (2) L2Sep(R2): L2Sep that learns the configuration only at the first&second rounds; (3)
LLM4Sep [7]: configure separators via LLM. Please see Appendix [D.4]for details of these baselines.

Evaluation Metric. We use two widely used evaluation metrics: the average solving time (Time,
lower is better), and the average primal-dual gap integral (PD integral, lower is better). We assess

different configuration methods by measuring the relative improvement compared to the NoCuts
Metric(NoCuts)—Metric(-)
Metric(NoCuts)

the performance of a method under the given metric. For easy and medium datasets, we use solving
time as the evaluation metric, as the solver augmented by DynSep can solve all these instances to
optimality (i.e., the average of primal-dual gap is zero, see detailed results in Appendix [E.2) within
the given time limit. For hard datasets where optimality is not always achieved within the time limit,
we adopt the PD integral [33} 142} 41} 43] to quantify the cumulative distance between the primal and
dual bounds over the solving time, where the primal-dual distance (gap) reflects the solution quality,
and the integral over time exhibits the solver’s efficiency of converging to the optimal solution.

baseline: 6(-) = Exex [ , where X is a given dataset, and Metric(-) reflects

6.2 Experimental Evaluation

Experiment 1: Comparative Experiments. Table|l|shows that DynSep significantly outperforms
the baselines in both solving time and PD integral. On easy and medium datasets, DynSep accelerates
average solving times by 64% compared to the SOTA learning-based baseline. DynSep achieves
lower PD integrals than baselines on four out of five easy and medium benchmarks, demonstrating
faster convergence enabled by our dynamic configuration method. For MIK, the relatively large PD
integral indicates slower convergence in the early stage, but accelerated convergence in the later stages.
For CORLAT, We emphasize that DynSep is the only configuration method that solves all instances to
optimality with zero primal-dual gaps (see results in Appendix [E.Z), highlighting the effectiveness of
DynSep for fine-grained separator configurations. On hard datasets, DynSep reduces the average PD



Table 2: Ablation study comparing five variants of DynSep on three datasets.

Easy: Multiple Knapsack (n = 720, m = 72) Medium: Corlat (n = 466, m = 486) Hard: MIPLIB mixed neos (n = 6958, m = 5660)
. Improv. . . Improv. . . . Improv.

Method Time(s) | (tirﬂE,V‘VJ PD integral | Time(s) | (i?rlil;‘qg PD integral | Time(s) | PD integral | (PDF}rr:t\,/, (,'7& )

NoCuts 13.84 (28.79) NA 2521(26.6)  74.66 (122.23) NA 2687.68 (6209.48)  275.04 (43.23)  14618.53 (12214.63) NA

Default 2.01(1.82) 85.48 18.6 (10.49) 111.55 (132.19) -49.41 10573.14 282.98 (29.49) 18500.5 (9386.15) -26.56
w/o MaxR 0.67 (0.46) 95.16 10.07 (5.35) 28.28 (53.99) 62.12 2688.01 (5424.21) 263.63 (63.0) 9029.4 (12114.3) 38.23
w/o TF 0.64 (0.53) 95.38 9.82(5.24) 25.82(61.58) 65.42 2552.91 (6146.98) 245.04 (95.2) 9448.22 (11932.01) 35.37
w/o DynG 0.70 (1.23) 94.94 10.03 (5.86) 28.05 (50.97) 62.43 2635.47 (5086.84)  270.66 (50.83)  9233.22 (12003.39) 36.84
w/o DynG&TF  0.58 (0.41) 95.81 9.65 (5.28) 11031 (131.6)  -47.75  10396.1 (12887.24)  300.0 (0.0) 17330.56 (9660.1) -18.55
w/o BlockPE 0.93 (1.81) 93.28 11.12 (9.16) 34.4 (65.33) 53.92 2870.01 (5533.02) 242.39 (99.79) 8291.49 (12533.67) 43.28
DynSep (Ours)  0.52 (0.24) 96.24 9.71(5.39) 22.96 (38.93) 69.25 2233.42 (3868.43)  235.19 (112.26)  8511.58 (12413.9) 41.78

integral by 16% within the 300-second time limit. DynSep significantly accelerates solving time on
challenging MIPLIB datasets and shows comparable time on the other two hard datasets. In contrast,
other ML-based baselines improve efficiency on some datasets but struggle to maintain performance
across all datasets from various scenarios. Search(50) performs well on some instances, but requires
evaluating a large number of configurations in advance and suffers from instability across different
problem types. We also evaluate the inference latency and memory overhead of our configuration
policy in Appendix [E.5]and observe that while inference time increases with instance size, it does
not compromise the overall efficiency gains achieved by our method. For completeness, we also
report two complementary studies in the appendix: evaluation on additional MIPLIB 2017 datasets
(Appendix [E.3) and an extension of DynSep to broader solver hyperparameters (Appendix [E.4), both
showing trends consistent with our main results.

Experiment 2: Ablation Study. We present ablation studies on Multiple Knapsack, CORLAT, and
MIPLIB mixed neos, representing easy, medium, and hard datasets. We provide completed results on
nine benchmarks in Appendix [E.6.1] To understand the contribution of each component in DynSep,
we evaluate the following five variants: (1) w/o MaxR: DynSep without the decision-making on
the maximum separation round m;, at each node. (2) w/o TF:DynSep using a Long Short-Term
Memory(LSTM) architecture as the decison model of DynSep, instead of the encoder-only Transformer
designed in Section[5.3] (3) w/o DynG: DynSep without the design of dynamic graph, instead inputting
the entire triplet graph at each separation round. (4)w/o DynG&TF: DynSep without the design of
dynamic graph, while replacing the Transformer with an LSTM model. (5) w/o BlockPE: DynSep
without the design of blocked positional encoding, instead using a standard token-level positional
encoding that assigns a unique position to each token irrespective of block boundaries. Table [2] shows
DynSep overall outperforms the five variants, with comparable results in the few remaining settings,
indicating that all components are essential to cope with evolving structures in challenging MILPs.
We further report ablations on the encoder architecture and on hyperparameter sensitivity—e.g.,
separator frequency and maximum separation round—in Appendices[E.6.2]and [E.6.3]

Experiment 3: Generaization  Table 3: Evaluate the generalization ability of DynSep on MIS.

Tests. We evaluate the ablhty Set Covering (1 = 1000, m = 1000, 2x) Set Covering (n = 1000, m = 2000, 4x)
Of Dynsep to generallze across Method Time(s) | i?rzrcm"/j PD integral | Time(s) | ::512:0\/‘707; PD integral |
different sizes of MILPs. Fol- NoCuts 78.91 (76.53) NA 579.09 (507.14)  282.27(52.86)  NA 3109.87 (1013.74)
i i Default 11.54 (3.55) 8538 255.69(9295)  19.74(8.06)  93.01 606.90 (310.79)
lowing prior WOI‘l.(S [‘_O’O’ 3 3]3 We Search(30)  116.95(9225)  -48.821  912.87(647.22) 292.54(35.54)  -3.64  3827.701 (1057.08)
test the generahzatlon ablhty Prune 107.86 (90.55)  -36.69  826.38(660.27) 295.01(29.73) 451  4805.02 (1302.02)
: L2Sep(Rl) 10548 (92.68)  -33.67  80332(656.89) 294.85(3L4l)  -4.46  4728.1(132535)
of DynSep on Maximum Inde- L2Sep(R2) 116.43(95.6)  -47.55  905.98 (694.71) 293.77(33.96)  -4.07  4481.42(1377.69)
LLM4Sepasel ~ 149.28 (105.45)  -80.18 111522 (767.04) 295.4(2934)  -4.65  3881.22(1001.51)
peqdept Set (MIS), a? WE Can ) ogep Ours) 403 (0.64) 9489  104.62(20.19)  19.05(2692) 9325  629.28 (1106.36)
artificially generate instances
with arbitrary sizes for these Max Independent Set (n = 1000, m = 3946, 4x) Max Independent Set (n = 1500, m = 5940, 9x)
synthetic MILP problems. we Method Time | (@POGT PDimegrtl  Tmew ! (@PGT PDintgral |
test 4x and 9x larger instances NoCuts 19553 (95.78)  NA 1056.83 (544.51)  300.01 (0.01) NA 2226.72 (370.66)
. Default 88.17(66.05) 5491 81336 (512.14) 177.19(9128) 4094  1782.96 (887.23)
of MIS. Table E] (I' lght) shows Search(30) 151.51(98.42) 2251 462.18 (339.23)  299.08 (9.17) 0.31 1251.49 (332.08)
- Prune 105.83 (86.46)  45.88 3968 (318.97)  292.94(2642) 236 1312.04 (343.31)
that DynSep Slgm.ﬁcar,lﬂy out L2Sep(Rl)  144.67(94.46) 2601  546.58(370.45) 29934 (6.19) 022 1504.9 (354.98)
performs the baselines in terms L2Sep(R2)  138.82(92.89) 2900  530.00(367.16)  29949(52) 0.7 14947 (346.61)

. . LLM4Scpasel ~ 60.68 (42.03) 6897  222.88(14329) 26444 (58.96)  11.86 94249 (337.13)
of the time and the PD integral, pynsep©urs) 54701909  97.20 3675 (7149)  26.66(7749)  9L11 151.39 (364.6)

demonstrating the superiority of
DynSep in generalization capa-
bility. We further evaluate cross-domain and general-to-specific generalization; see Appendix [E.7]

Experiment 4: Interpretability Analysis. We visualize our learned separator configurations in Fig.
plotting the averaged value of 22 separators’ activation status at 7 = 5 separation rounds. Our findings
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Figure 4: Separator configs at each separation round for MIK benchmark. The x-axis lists the
22 separators, while the y-axis shows their average activation status over every node and instance in
MIK. Green hue indicates a tendency to apply the separator before the constraint handler, red hue
means after the handler, and pale color means the separator is generally disabled.

include: (1) Fig. [ shows that DynSep consistently activates the CMIR separator (2nd-rightmost col.)
in MIK problems, which aligns with the known facts that mixed-integer rounding (MIR) cuts are
particularly effective for knapsack-type structures [38]. (2) For easier benchmarks such as MIS and
Set Covering, the policy uniformly reduces the maximum number of separation rounds to ryax at
every node (See Figs. [7]and [8]in Appendix[E.8), demonstrating that our learned decision on maximum
round effectively prunes unnecessary cutting rounds on simple problems. (3) The heatmap reveals
that the separator configuration is not static but varies dynamically across separation rounds (shown
along the y-axis), suggesting that the model is timing the application of various separators to coincide
with the stage of cut generation. Appendix [E-8|provides more results and analyses on other datasets.

7 Conclusion

This work proposes a novel dynamic separator configuration (DynSep) method that formulates
round-wise separator activation and stopping as an RL task. At each decision step, DynSep processes
a tokenized incremental subgraph and uses a decoder-only Transformer to autoregressively predict
separator activations and termination. DynSep significantly improves MILP solving efficiency on
both synthetic and large-scale real-world benchmarks and generalizes to larger unseen instances. The
current implementation of DynSep lacks a lightweight decision model to retain historical information
across the global B&B tree. Future research should focus on developing such models to enable
incremental decision-making based on the updated graphs.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect our
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our work in the last section, i.e., Conclusion,
claiming that the current implementation of DynSep lacks a lightweight decision model to
retain historical information across the global B&B tree, and future research should focus on
developing such models to enable incremental decision-making based on the updated graphs.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the full set of assumptions and a complete and correct proof for
our theoretical results in Appendix [A]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all detailed information in Appendixes [B] [C| and D] to
reproduce our main results.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We use the open-source datasets, and we provide our code as a link of an
anonymous repository in Appendix ??

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided all the training and test details necessary in Appendix [D|to
understand the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We follow relevant works in the field to report experimental statistical
information.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We have provided the information about the hardware environment for model
training in Appendix and time of execution in Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact of our work in the last section, i.e., Conclusion,
claiming that DynSep significantly improves MILP solving efficiency for large-scale real-
world problems.

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited.
We cite all the original papers, models, and datasets. The license and terms of use are
properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

19



13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We have provided a detailed description of the use of LLM as one of our
baselines in Appendix [D.4]

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Permutation Equivalence

A.1 Formulation for Transformer

The standard Transformer architecture comprises two main components: the multi-head self-attention
layers (MHA) and the position-wise feed-forward network (FFN). In the following part, we will
briefly introduce these blocks. We represent an input sequence as X = (X1, ...,Xy) € RN*? where
x; is the hidden embedding for the token i,and d is the dimension of the embeddings. The MHA
module projects X to a triplet (Q, K, V), as follows.

Qx = XWy, Kx = XWg, Vx = XWy,
KT
Attention(X) = softmax (QX X) Vx,

Vdk
where Wy € RI¥dk Wy € Rk Wy e R4 are learnable weights, with dx = dy =

Overall, H such projections are performed, resulting in (ngh),K;h),Vg(h )) for1 < h < HT
self-attention operation is then applied to each triplet:

4
-
he

(M) T @
head;, = softmax [ =X |v!®, (8)

h ( ,—dK X
MHA(H) = concat(head,...,heady)Wop, )

where Wo € R4 is a learnable weight matrix. The output of the MHA module is then passed
through a feed-forward network layer, followed by a residual connection and layer normalization (LN).
Finally, the output of the /-th layer H' is computed as follows:

H' = LN(H"! + MHA(H'™)), (10)
H' = LN(H' + FEN(H)). (11)

To remain consistent with the notation of the common Transformer study, a small subset of definitions
in this appendix overlaps with those in the main text. We claim that these symbol definitions are valid
only within this chapter.

A.2  Proof of Proposition 1]

We now present the full proof of Proposition[I} Recalling that the blocked positional encoding is
defined by

P=[P] P] --- P}|" e RI+D(K+Dxd (12)

where P; = [pos(i) pos(i) --- pos(i)]T € RETD*d nog(i) € RY, so that each of the K + 1 tokens
in block i shares the same vector pos(i) € R<.

Proposition. The decoder-only Transformer T, equipped with the blocked positional encoding P,
is permutation equivariant inside each token block. Formally, for any input X and any block-wise
permutation matrix I, it holds that T (I1X + P) = 17 (X + P).

Proof. Because feed-forward, layer-normalization, and residual addition each of them either applies
elementwise or row-wise operations, or multiplies on the right by a learnable weight matrix, they
automatically commute with any row-permutation of their input. Hence, to prove that the full model
is equivariant under block-wise token permutations, it suffices to show that each self-attention module
satisfies Attention(I1X + P) = II - Attention(X + P).

We define the block-wise permutation matrix IT as a permutation matrix that operates independent
permutations within each block, which is formulated as follows:

Iy
IT,

IT; 4
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where I1; € {0, 1}(K+Dx(K+1) jg ap arbitary permutation matrix, with the condition that each row
and each column contains exactly one entry of 1 and the rest are 0. Denote the input by:

X =z 2 -z 1T eRED where z; = [hig hiy -+ hix]" € REFDXA,

Apply I yields X = I1X = [Mozy TMhyz{ --- M-z ,]7. Because each block P; in our positional
encoding consists of identical rows, permitting these rows does no change, i.e., [1; P; = P; for any i.
Hence, we have that

X + P =TIX + P = TI(X + P). (13)

Next, after performing the blocked positional encoding, we have the attention of X as follows:
(X + PYWoW, (IIX + P)"
Vdk

Since softmax is applied row-wise, it can be viewed as left-multiplying the input by a matrix. Thus,
by the associativity of matrix multiplication, we can freely regroup the products of the matrices in the
above formula (T4)). First, we deduce that

Attention(f +P) = softmax( (IIX + P)Wy, (14)

t
(X + P)T(IX + P) = > (Tiz; + Pr) " (Tiz; + Py)
i=0

t
= > 2 I Tz + X/ TI] Py + PITLX; + P P;
i=0

t
=12l 5 + X] P+ PIX; + P P; (15)
i=0

t
= Z(Zi +Pi) " (zi + Py)
i=0
=(X+P)"(X+P), (16)
where the deduction of equation (T3)) utilizes the property that IIIT = Tand I1] P; = P;I1] = P;.
Therefore, substituting equations (16 and (13 into (T4), we have

o (X +P)WoW, (X +P)T
Attention(X + P) =II - softmax (X+P)Wy 17
Vdk
QXK;I—()
=II- softmax ( Vx (18)
Vdk
=1II-Attention(X + P). (19)

Finally, each subsequent layer (feed-forward, layer norm, residual connections) also commutes with
block-wise permutation, so the entire model satisfies the block-wise permutation equivariance:

TIX +P)=1T (X + P),

as required. O

B Implementation Details of Separator Configuration in SCIP

B.1 Frequency and Priority Setup in SCIP

In the SCIP solver, we adjust the activation status configuration by two hyperparameters: the frequency
fi and the priority g;. We provide the detailed description of these two configuration parameters as
follows.

SEPA_FREQ f;: The frequency parameter determines at which nodes in the branch-and-bound tree a
separator is invoked. Specifically, setting the f; = —1 disables the separator entirely while f; = 0
activates the separator in any separation round of any tree node. Any positive f; > 0 activates the
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separator at every node whose depth is a multiple of f;. We set f; = 10 for all active separators in our
paper.

SEPA_PRIORITY p;: The priority parameter dictates the order in which separators are executed
during a separation round at a node. In every separation round, all separators with p; > 0 are executed
first in descending order of p;, then constraint handlers are applied, and finally separators with p; < 0
run in descending order of p;. By convention, separators implementing fast, high-impact cuts have
large non-negative priorities so that their cuts are added early, thus strengthening the LP relaxation
sooner. In contrast, more expensive or specialized separators are given negative priorities. Hence,
they run later or only if no earlier cuts were found, thereby avoiding unnecessary overhead at the start
of each node’s separation phase. This division into early (p; > 0) versus late (p; < 0) activation
phases directly influences the quality of intermediate bounds: running aggressive separators early
can dramatically tighten the relaxation and reduce the number of branch-and-bound nodes, while
deferring or disabling them can save CPU time when their benefit is marginal at that stage.

Activation Status To encapsulate the activation configuration, we define an activation status variable
n; for each separator. In detail, ; = 0 means that we set the frequency of separator f; = 0 and thus
let it never run in all B&B tree nodes. 7; = +1 means that we set f; > 0, but the priority of the
separator p; >= 0, executing it before the constraint handler [44]]. n; = —1 means that we set f; > 0
and p; < 0, which means the separator is activated but executed after the constraint handler. As
shown by the orange bar in Fig. 2(b)] of the main text, perturbation in priority configs exhibits a
minor effect on performance improvement compared to activation status (yellow bars) changes This
phenomenon arises because activation status dictates the order of separators across rounds, whereas
priority affects only their relative order within a round; since the LP is not re-solved until the end of a
round, reordering separators within the same round has little effect on overall performance.

B.2 Input Features of the Triplet Graph

Node Features Each node type—variables, constraints, and separators—is characterized by a set of
features that encapsulate their properties and roles within the optimization process. The input features
for variable nodes V, constraint nodes C, and separator nodes are list in Table Furthermore, we
incorporate two graph-level input features—the dual degeneracy rate and the variable-to-constraint
ratio. Concretely, the dual degeneracy rate is the fraction of nonbasic variables having zero reduced
cost, and the variable-to-constraint ratio is the number of unfixed variables relative to the LP basis size.
In practice, we first apply an additive (sum) pooling over the GCN encoder’s node representations to
obtain a single aggregated node feature vector. We then append (concatenate) the two scalar metrics
to this pooled embedding. The combined vector is passed through a multilayer perceptron, yielding a
unified graph embedding that fuses the local structural information.

Edge Features Like the bipartite graph modeling for common MILP problem, we construct edges
between variable and constraint nodes such that a variable node V; is connected to a constraint node
C; if the variable appears in the constraint with the weight corresponds to the coefficient A;; # 0, and
we set the value of the edge as A;;.

B.3 Separator Statistics

In SCIP’s solver-statistics display, each separator reports several key metrics that provide insights into
its performance and impact during the solving process. We use these metrics as input features of
separator nodes and immediate reward signals at each time step. These metrics include:

Cut Application Rate. This rate measures the effectiveness of a separator’s generated cuts by
calculating the ratio of cuts applied to the LP relaxation to the total number of cuts found. The
application rate is computed as:

Number of Cuts Applied
Number of Cuts Found

A higher application rate suggests that the separator frequently generates cuts deemed valuable and
effective by SCIP’s internal filtering mechanisms, leading to their inclusion in the LP relaxation.
Conversely, a lower rate may indicate that many of the separator’s cuts are redundant or less impactful.

Cut Application Rate = (20)

Domain Reductions (DomReds) Separators can also perform domain reductions by tightening
variable bounds through their logic (for example, by deducing x; < u or x; > I from cut coefficients).
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Table 4: Description of input features for variable, constraint, separator nodes, and the entire graph.

Type | Feature | Setting
type Variable’s type: binary, integer, implicit integer, continuous (one-hot).
has_Ib If the variable has an infinite lower bound.
b The variable’s lower bound, set O if it is infinite.
has_ub If the variable has an infinite upper bound.
ub The variable’s upper bound, set O if it is infinite.
basestat Simplex basis status: lower, basic, upper, zero (one-hot)
coef_norm Objective coeflicient, normalized by objective norm
redcost_norm | Variable’s reduced cost divided by the objective norm, indicating how
Vars much the objective woulld worsen per uni.t incr'ease at zero slack
age The number of consecutive LP iterations in which the variable stayed at
zero in the basis.
solval The primal LP solution value of the variable.
solfrac The fractional part of ’solval’.
sol_is_at_lb | If ’solval’ equals the lower bound within numerical tolerance
sol_is_at_ub | If solval equals the upper bound within numerical tolerance
round_num Index of the current separation round
origin_type Which mechanism generated this row: unspecified, constraint handler,
constraint, separator, reoptimization (one-hot).
origin_sepa | The separator name that produced this row.
basestat The row’s basis status in the LP solution: basic, lower, upper (one-hot).
bias Unshifted side normalized by row norm.
dualsol Dual LP solution of a row, normalized by row and objective norm.
is_at_lhs If the row value equals the left-hand side.
is_at_rhs If the row value equals the right-hand side.
Cons | norm_nnzr Number of nonzero coefficients in the row, normalized by the total
number of LP variables.
age The count of successive LP iterations for which the row has stayed
nonbasic at zero.
int_support Integral support score of a row.
is_integral Activity of the row is always integral in a feasible solution.
is_removable | Row is removable from the LP.
is_in_lp Row is member of current LP.
round_num Index of the current separation round
type Type of the separator (one-hot).
time Execution time consumed by the separator.
calls Number of times that the separator has been invoked.
Sepas | cuts Number of cuts generated by this separator.
cutoffs Number of infeasibility detections (cutoffs) found by the separator.
domreds Number of domain reductions found by the separator.
applied Number of cuts from the separator that were applied to the LP relaxation.
Graph dual_deg_rqte The prqportion of nonbglsic variables yvith reduced cost zero.
var_con_ratio | The ratio of unfixed variables to the size of the LP basis.

Each time a separator callback successfully reduces a variable’s domain, the DomReds counter is
incremented. This statistic captures the total number of such bound-tightening operations executed
by that separator during the solve. A higher DomReds count signifies that the separator contributes
significantly to shrinking feasible regions, which can indirectly improve future LP relaxations and cut
generation efficiency.

Cutoffs. Within each separation round, when a separator generates one or more cuts that render the
LP infeasible or whose bound surpasses the current best primal solution, SCIP immediately prunes
that node (i.e., cuts it off) without further processing. The Cutoffs statistic for a separator is simply
the total count of these pruned nodes attributable to its cuts. In practice, a high Cutoffs value indicates
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that the separator is highly effective at early fathoming of unpromising subproblems, potentially
reducing the size of the branch-and-bound tree.

B.4 Stopping Conditions for a Separation Loop

In SCIP, the separation process at a node is conducted in iterative rounds, where each round involves
generating cutting planes to refine the LP relaxation. The separation loop at a node terminates when
any of the following conditions are met:

Maximum Number of Rounds Reached: A user-defined limit on the number of separation rounds
per node is enforced to prevent excessive computation. For experimental stability, we use only the
maxround m, decision from the first separation round at each node to set the maximum number of
subsequent separation rounds at the current node.

Stalling Criterion Triggered: If consecutive separation rounds fail to yield improvements in the
objective bound or integrality, the process is considered to have stalled, prompting termination.

Relative Bound Distance Exceeded: Separation is halted if the relative distance between the
current node’s dual bound and the global primal bound surpasses a predefined threshold, indicating
diminishing returns from further separation.

No Further Separation Requested: If all separators and constraint handlers indicate that no
additional separation is necessary (i.e., none return a status requesting another round), the loop
concludes.

These stopping criteria ensure a balance between the thoroughness of the separation process and
computational efficiency, preventing unnecessary iterations that offer minimal benefit to the overall
solution process.

B.5 Separators Built In SCIP

We consider 22 separators in our configuration task. We provide the detailed description of these
separators as follow.

closecuts. Close cuts are a type of cutting plane that focuses on generating cuts that are "close" to
the current fractional solution. These cuts are designed to tighten the feasible region by targeting
solutions that are near the boundary of the current relaxation. The idea is to improve the quality of
the LP relaxation by adding cuts that are particularly relevant to the current solution.

disjunctive. Disjunctive cuts are a class of cutting planes used in mixed-integer programming,
particularly based on the concept of disjunctions. These cuts are derived from a disjunctive argument
that partitions the solution space into different disjunctive sets. By analyzing the infeasible or
fractional solutions that arise from linear relaxations, disjunctive cuts can tighten the formulation by
excluding these solutions and enforcing integrality conditions more strongly.

minor. Derived from graph minor theory, these cuts identify isomorphic substructures in the constraint
matrix corresponding to known hard combinatorial subproblems. By recognizing these patterns, the
separator generates cuts that exploit the inherent complexity of the substructures.

mixing. Generates cuts by combining multiple weak constraints through coefficient mixing, creating
stronger aggregated inequalities. The method systematically blends constraints sharing common
variable structures while preserving problem feasibility.

rlt. Reformulation-Linearization Technique (RLT) converts polynomial constraints into linear
inequalities through variable substitution and constraint multiplication. RLT preserves problem
structure while creating convex envelopes for nonlinear terms, enabling strong linear relaxations.

interminor. This separator extends minor cuts by focusing on medium-scale substructures that appear
as intermediate components in larger mixed-integer programming (MIP) models. Balances local
pattern matching with global problem structure analysis.

convexproj. Convex projection cuts are generated by projecting an infeasible point onto a convex
relaxation of the problem and then creating gradient-based cuts at the projection point. These cuts are
designed to improve the separation of fractional solutions in convex nonlinear programs. The method
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aims to enhance the solver’s ability to make progress by refining the feasible region through gradient
information at the projected point.

gauge. Geometric cuts based on analyzing the gauge function of the feasible region’s convex hull.
This separator generates deep cuts orthogonal to the objective gradient by exploiting polyhedral
geometry.

impliedbounds. Implied bound cuts are cutting planes that leverage implications between binary
and continuous variables to restrict the feasible region of an MILP problem. They enforce tighter
constraints by exploiting logical relationships, such as when a binary variable limits a continuous
variable’s upper or lower bound.

intobj. Integer objective cuts are cutting planes used in MIP when the objective function is integer-
valued. These cuts aim to eliminate fractional solutions from the LP relaxation that are not feasible in
the integer solution space. They help tighten the LP relaxation by leveraging the fact that certain
fractional values of the objective function cannot lead to valid integer solutions.

gomory. Gomory cutting planes are derived from the fractional solutions of the LP relaxation
of an MIP problem. Once the LP relaxation is solved, any variable with fractional values can be
targeted, and a Gomory cut is generated to eliminate these fractional solutions, moving the solution
closer to integrality. These cuts can be generated iteratively during the branch-and-bound process to
progressively tighten the LP relaxation.

cgmip. Chvatal-Gomory cuts are generated by forming non-negative integer combinations of the
original linear constraints and then rounding the resulting coefficients to produce a valid inequality.
These cuts are designed to tighten the LP relaxation by eliminating fractional solutions. The process
involves solving a sub-MIP to identify the best combination of constraints, which ensures that the
generated cuts are as effective as possible.

strongcg. Strong Chvétal-Gomory (CG) cutting planes are an extension of the classical CG cuts,
which are derived from valid inequalities of the linear relaxation of an integer programming problem.
These cuts are used to iteratively tighten the LP relaxation by adding inequalities that exclude fractional
solutions. The strong variant refers to CG cuts that are particularly effective in reducing the feasible
region, leading to a faster convergence to the integer solution.

aggregation. This separator generates cuts by aggregating multiple constraints into single strengthened
inequalities. It specializes in flow cover inequalities for network problems, combining arc selection
variables with flow conservation constraints.

clique. Clique cutting planes are a type of valid inequality derived from the set-packing formulation in
integer programming, particularly useful in problems involving binary variables. The inequalities are
based on identifying cliques in a conflict graph representation of the problem. A clique is a subset of
mutually adjacent vertices in a graph, representing a set of constraints that cannot be simultaneously
satisfied. The corresponding clique cutting planes exclude infeasible solutions by enforcing that only
one element from each clique can be selected.

zerohalf. Zero-half cuts are a specific type of Chvatal-Gomory (CG) cuts in integer programming.
These cuts are derived using coefficients in {0, %} instead of integer coefficients. They are used
to tighten the relaxation of integer programming problems, bringing it closer to the convex hull of
feasible integer solutions.

mcf. Flow path cuts are valid inequalities used to strengthen the linear relaxation of MIP problems,
specifically for problems involving fixed charge networks. They help in modeling flow through a
sequence of nodes where fixed charges are incurred if any flow occurs along a path. Flow path
inequalities operate on constraints related to fixed charge paths, where binary and continuous variables
govern the flow through a network. These cuts are particularly useful in fixed charge network design
and lot-sizing problems. However, the computational consideration is that the structure exploited by
these cuts is very specific, meaning they are only applicable to certain problem types.

eccuts. This separator specializes in cuts for edge-concave functions in Mixed-Integer Nonlinear
Programming(MINLP), generated by constructing supporting hyperplanes at concave function edges.
It exploits piecewise-linear approximations of nonlinear constraints.

oddcycle. Odd cycle cuts are designed to eliminate infeasible fractional assignments in problems
where binary variables represent nodes or edges in a graph. They are particularly effective when
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dealing with cycles in a graph that contain an odd number of nodes. For example, in a graph-based
problem, assigning fractional values to all variables in an odd cycle is infeasible when the solution
must be binary (0 or 1). Odd cycle cuts ensure that such fractional solutions are excluded from the
feasible region.

flowcover. Flow cover cuts are a type of cutting plane derived from valid inequalities used to tighten
the linear relaxations of MIP problems, particularly for binary single-node flow sets. They are useful
in network design and fixed charge problems, where variables can represent flows subject to upper
bounds and binary decisions.

cmir. MIR cuts are a class of cutting planes derived from mixed-integer sets, particularly when
dealing with constraints that include both continuous and integer variables. The main idea behind
MIR cuts is to generate valid inequalities by rounding coefficients of mixed-integer constraints to
tighten the LP relaxation. They are generated using a disjunctive argument, which creates inequalities
that separate fractional solutions from the feasible region of the MIP.

rapidlearning. Rapid learning is a heuristic technique that temporarily relaxes certain constraints or
simplifies the problem to solve a more manageable version. By solving this easier problem, the solver
gains insights into the structure of the original problem. The rapid learning separator then uses this
information to generate useful cuts or constraints that can immediately improve the quality of the LP
relaxation in the original problem.

C Network Details

C.1 The Encoder Network

We provide a detailed description of the neural architecture employed in our encoder network. Our
design builds upon the framework introduced in L2Sep [6]], incorporating several modifications to
enhance performance. The encoder first embeds maps the input features of constraint (C), variable
(V), and separator (S) nodes into hidden representations. Subsequently, it performs message passing
following the directionsof V - C -V, § -V — S,and S — C — S, effectively capturing the
interactions among different node types. Then, the S nodes pass through an attention module to
emphasize the task of the separator configuration. In contrary to the approach in [45]], which outputs a
score for each cut node, our encoder applies a global additive pooling on each of the C, V, and S hidden
embeddings, yielding three aggregated embedding vectors. These vectors are concatenated with two
graph-level features, as detailed in Section forming a comprehensive representation. Finally,
this combined vector is passed through a multilayer perceptron (MLP) to produce a unified graph
embedding that encapsulates both local and global information pertinent to the problem structure.

D Implementation Details of our algorithm

D.1 Algorithm Pseudocode of DynSep

We employ the Proximal Policy Optimization (PPO) algorithm to train our model. PPO alternates
between collecting data through interactions with the environment and optimizing a surrogate objective
function to update the policy. To ensure stable training, PPO utilizes a clipped surrogate objective that
constrains the policy updates, preventing drastic changes that could destabilize learning. Specifically,
the policy network is updated to maximize the expected advantage while maintaining the probability
ratio between the new and old policies within a predefined threshold. Concurrently, the value network
is trained to minimize the mean squared error between the predicted value estimates and the actual
returns. The training procedure of our method DynSep, including the formulation of PPO objective
functions, is detailed in the pseudocode of Algorithm T}

D.2 Hyperparameters

We train DynSep using the ADAM optimizer [46] within the PyTorch framework [47]]. Consistent
with prior studies [33] 42], we split each dataset into the train and test sets with 80% and 20%
instances. We train our model on the train set for 100 epochs, and select the best model on the train set
to evaluate on the test set. A complete list of hyperparameters for the SCIP solver, the PPO algorithm,
and the decoder-only Transformer appears in Table [3]
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Algorithm 1 Dynamic Separator Configuration via PPO (DynSep)

1: Denote parameters of the actor’s transformer 7, and policy r as 6.
Denote parameters of the critic’s transformer 7y and value function V as .
Denote parameters of the encoder @ as S.

2: Initialize MILP instances set X, replay buffer O, sampling size N, training epochs N,, clipping
factors ¢, learning rates a,, @y and model parameters (6, ¥, ).

3: for N, epochs do
4:  Clear the replay buffer D.
5./l Data collection
6: for Ng sampling steps do
7: Randomly sample an instance x form X.
8: Run the MILP solver to optimize instance x with configuration policy m, collecting Ny
) o T(Ny)) Nx
episodes of data {{(s,(l), a,“), r,(‘))} . } from T (N,) separation rounds at N nodes.
1= i=1
9: Append collected episodes to D.
10:  end for
11:  // Model Optimization via PPO
12:  Compute returns Rl, R I?T and advantage estimates Ay, ..., At for each episode in D.
13:  for each minibatch D, c D do
14: Compute ratio r,(0) « Egp, {%}
15: Compute actor 10ss Lycior(8) — Eg, {min(r,(6) - A, clip (r,(8),1 — &, 1 + &) - A, }.
16: Update 6 < 6 + @ Vg Lyctor (0).
17: Compute critic 1088 Leritic (¥, 8) < Eop, {(V((I)(s,)) - Ié,)z}.
18: Update (¢, B) «— (¥, B) + @V (y.p) Leritic (¥, B).
19:  end for
20: end for

Table 5: Hyperparameters used in DynSep.

Type | Parameter | Value
Number of separators K 22
Frequency of each activated separators f; 10
SCIP Solver Upper limit of separation rounds 7' 5
time limit per instance 300
Training epoch N, 100
Sampling size Ny per epoch 16
Minibatch size | Dy |
MIPLIB mixed neos 8
MIPLIB mixed supportcase 6
PPO in Alg. Other benchmarks 16
Clipping factor & 0.2
Optimizer Adam
learning rates @, ay 0.0001
learning rate decay for every ki, step 5
learning rate decay rate aj, 0.96
Embedding dimension of attention d 64
Number of attention heads 4
Number of attention layers 4
Transformer | Attention dropout 0.0
Activation of FFN GeLU
Embedding dimension of FFN dppN 256
Number of FEN layers 2
Layer number of the linear actor head 1
Layer number of the linear critic head 1
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D.3 Hardware Specification

Training and evaluation on the easy and medium datasets were performed on a single machine
equipped with eight GPUs (NVIDIA GeForce RTX 2080 Ti) and two Intel E5-2667 v4 CPUs (32
logical cores), while experiments on the hard datasets used a single machine equipped with eight
GPUs (NVIDIA GeForce GTX 3090 Ti) and two Intel Gold 6246R CPUs (64 logical cores) for hard
datasets.

D.4 Baselines

We provide additional implementation details for our baseline methods:

Search(p): This method randomly samples p configurations then applies one with the best performance
on the validation set. The validation set is a subset of the training data, with a size equal to that of the
corresponding test set for each MILP benchmark.

Prune: This method deactivates separators with no contribution during the evaluation on the validation
set. Specifically, if a separator’s statistics—namely, Cut Application Rate, DomReds, and Cutoffs (as
defined in Section @—are all zero, the separator is deactivated. The validation set used here is
partitioned identically to that in the Search(p) method.

L2Sep [6]: We configure the SCIP solver parameters in alignment with our default settings, except
for the learned separator activation statuses. Specifically, we impose a 300-second time limit, set the
frequency f; = 10 for all activated separators, and enable both presolve and heuristic mechanisms.
The validation set for L2Sep is partitioned identically to that used in the Search(p) method. We define
the size of the restricted configuration space as 15 for easy datasets, 20 for medium datasets, and 25
for hard datasets.

LLM4Sep [7]: The LLM4Sep baseline utilizes the DeepSeek Chat API to generate separator
configurations. The context provided to the language model includes detailed descriptions of each
separator, as outlined in Section[B.3] along with information regarding the problem structures the
separators operate on and their computational characteristics. Additionally, the model receives a
comprehensive description of the MILP problem, encompassing the general formulation and the
summary text of MILP objectives and constraints.

E Additional Results

E.1 Motivation Results on effects of different configurations

Fig. @]in our main text shows motivation results for five benchmarks, with alternative names of
D1-Set Covering, D2-Max Independent Set (MIS), D3—-MIK, D4-Load Balancing, D5-MIPLIB
mixed neos. Here we provide more results for all nine benchmarks.

The left panel of Fig. [5] shows the best-performing configuration per instance identified by four
randomization strategies applied to separator configurations. It extends the analysis from Fig.
in the main text by presenting results across nine benchmark datasets: D1-Set Covering, D2—Max
Independent Set (MIS), D3-Multiple Knapsack, D4-CORLAT, D5-MIK, D6—Anonymous, D7-Load
Balancing, D8—MIPLIB Mixed Neos, and D9-MIPLIB Mixed Supportcase. For each instance within
these datasets, we evaluated 50 random configurations.

The right panel depicts the average performance across instances for each dataset. Our observations
reveal substantial performance variance across all four strategies, underscoring the significant impact
of the specific separator parameters and dynamic configurations on solver efficiency. Notably, the
Priority strategy exhibits comparatively lower variance in performance. This is attributed to the fact
that priority adjustments influence only the relative ordering of separators within a separation round;
since the LP relaxation is not re-solved until the round concludes, such reordering has minimal effect
on overall solver performance.

Furthermore, Fig. [@]illustrates the impact of varying the maximum number of separation rounds per
node, denoted as rmax, on solver performance across nine benchmark datasets. Each plot shows the
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Figure 5: Left: Performance improvement of the best configurations found by different random
strategies on nine benchmarks. The y-axis represents the relative improvement compared to the
default setting. Right: Average performance of configurations sampled by different random strategies
on nine benchmarks. The y-axis represents the real performance under two metrics. Specifically,
Datasets D1-D5 use solving time (left) as the metric, while D6-D9 use PD integral (right). Each bar
represents a specific strategy to get random configurations.

average solving time (red line, left y-axis) and PD integral (blue line, right y-axis) across all instances
in the dataset. The two metrics exhibit highly consistent trends in each benchmark, indicating a
strong correlation between solving time and PD integral. The results also show that changes in rpax
lead to significant performance variability; however, increasing ry,x does not universally enhance
performance, and the optimal value of rp.x varies among datasets. Prior work [48] also observes
that solver performance is sensitive to the maximum number of cut rounds and learns a data-driven
stopping policy; however, it does not model per-round separator configuration, whereas we jointly
decide when to halt and which separators to activate each round.
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Figure 6: Effect of varying maximum round ry, on solver performance for nine benchmarks. Each
plot shows the average solving time (red line, left y-axis) and PD integral (blue line, right y-axis)
across all instances in the dataset.

E.2 Evaluation Results on Other Metrics
We provide evaluation results of nine benchmarks for two other metrics of the primal-dual gap (PD

gap) and total number of nodes (Nnodes) in Table[f] The PD gap reflects the solution quality achieved
by the solver, while Nnodes indicates the size of the B&B search tree—an indirect measure of solving
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Table 6: Evaluation results on nine benchmarks about two other metrics of primal-dual gap (PD
gap) and total number of nodes (Nnodes). Best performance is in bold. The values report the mean
(standard deviation) of time and PD integral metrics.

Easy: Set Covering Easy: Max Independent Set Easy: Multiple Knapsack
Method PD gap | Nnodes | PD gap | Nnodes | PD gap | Nnodes |
NoCuts 0.0 (0.0) 114.84(413.86) 0.0(0.0) 529.31(1703.82) 0.0(0.0) 17847.64 (42453.94)
Default 0.0 (0.0) 1.11 (1.06) 0.0 (0.0) 1.0 (0.0) 0.0 (0.0) 36.91 (85.56)
Search(50) 0.0 (0.0) 1.16 (1.59) 0.0 (0.0) 123.41(347.52) 0.0 (0.0) 3164.31 (4942.28)
Prune 0.0 (0.0) 207.61 (439.61) 0.0(0.0) 403.72 (810.19) 0.0 (0.0) 12.19 (34.42)

L2Sep(R1)  0.0(0.0) 21127 (402.0) 0.0(0.0)  386.28 (790.7) 0.0 (0.0) 10495.97 (19385.29)
L2Sep(R2)  0.0(0.0) 211.81(401.94) 0.0(0.0) 384.32(787.77) 0.0(0.0)  12144.57 (19489.3)
LLM4Sepasel 0.0 (0.0) 179.04 (412.59) 0.0 (0.0)  39.12 (64.62) 0.0 (0.0)  1883.54 (2884.54)

DynSep (Ours) 0.0 (0.0) 1.0 (0.0) 0.0 (0.0) 1.0 (0.0) 0.0 (0.0) 5.2 (13.59)
Medium: CORLAT Medium: MIK Hard: Anonymous
Method PDgap | Nnodes | PD gap | Nnodes | PD gap | Nnodes |
NoCuts 2.67e+18 (1.26e+19)  57516.67 (96475.09)  0.02 (0.03)  176742.17 (126999.33)  1.83e+19 (3.86e+19)  13034.68 (11248.92)
Default 2.73e+19 (4.46e+19) 304.77 (456.1) 0.0 (0.0) 5504.77 (6375.84) 5.5e+19 (4.96e+19) 1894.13 (4139.96)
Search(50) 4e+18 (1.96e+19) 35564.78 (68651.06) 0.0 (0.0) 13134.6 (11543.03) 4e+19 (4.90e+19) 4602.75 (6696.04)
Prune 2e+18 (1.4e+19) 99579.13 (141189.24)  0.09 (0.02) 532615.47 (169443.58)  6.67e+18 (2.45e+19) 22442.38 (14908.91)
L2Sep(R1) 4e+18 (1.98e+19) 84423.58 (117122.52) 0.0 (0.0) 5157.9 (6471.25) 1.88 (2.19) 15856.25 (14404.64)
L2Sep(R2) 2e+18 (1.41e+19) 81853.7 (116670.12) 0.0 (0.0) 3616.2 (3105.22) Se+18 (2.24e+19) 16151.85 (14903.3)
LLM4Sepasel 2e+18 (1.41e+19) 38808.98 (71956.13) 0.0 (0.0) 5653.0 (6682.38) 6e+19 (5.03e+19) 3835.15 (7788.15)
DynSep (Ours) 0.0 (0.0) 4084.16 (11015.44) 0.0 (0.0) 3076.0 (2666.61) 1.99 (2.96) 15011.2 (8355.63)
Hard: Load Balancing Hard: MIPLIB mixed neos Hard: MIPLIB mixed supportcase
Method PD gap | Nnodes | PD gap | Nnodes | PD gap | Nnodes |
NoCuts 0.97 (0.12) 1.0 (0.0) 2.5e+19 (4.33e+19)  148834.67 (93798.58) 10.94 (25.26) 2204.17 (3130.9)
Default 0.97 (0.12) 1.0 (0.0) 2.5e+19 (4.33e+19) 12927.5 (16777.1) 2.5e+19 (4.33e+19) 22.25 (54.64)
Search(50) 0.09 (0.01)  10.24 (12.67)  2.5e+19 (4.33e+19) 35011.0 (44832.71) 0.1 (0.26) 482.12 (729.38)
Prune 0.49 (0.05) 150.51 (65.02) 2.5e+19 (4.33e+19) 202703.25 (149382.93) 12.51 (26.94) 6162.54 (13362.48)
L2Sep(R1) 0.59 (0.37)  86.36 (55.62) 2.5e+19 (5e+19) 66880.0 (103828.32) 12.45 (23.27) 1622.38 (3290.69)
L2Sep(R2) 0.59 (0.37)  85.36 (55.23) 2.5e+19 (5e+19) 120425.0 (119640.78) 9.29 (17.1) 3414.75 (6492.98)
LLM4Sepasel  0.12 (0.03)  20.73 (16.85) 2.5e+19 (5e+19) 102753.75 (75635.08)  2.5e+19 (4.63e+19) 37.38 (102.48)
DynSep (Ours)  0.09 (0.02)  9.99 (11.41)  2.5e+19 (4.33e+19) 119616.25 (105217.02) 7.86 (20.31) 69.38 (131.34)

effort, though a smaller tree does not necessarily imply faster solving. The results show that DynSep
consistently solves all easy and medium instances to optimality, achieving an average PD gap of zero.
Notably, DynSep is the only configuration method that solves all instances to optimality with zero
primal-dual gaps, highlighting the effectiveness of DynSep for fine-grained separator configurations.

E.3 Evaluation on Additional MIPLIB Datasets

We have extended our evaluation beyond MIPLIB mixed neos and mixed supportcase, including two
real-world datasets from the Distributional MIPLIB benchmark [49]:

* Maritime Inventory Routing Problem (MIRP). MIRP arises in bulk shipping logistics,
integrating vessel routing and port inventory decisions under capacity and inventory
constraints. Typical instances of MIRP feature on an average of 15080 binary variables,
19576 continuous variables, and 44430 constraints.

» Seismic-Resilient Pipe Network Planning (SRPN). SRPN involves optimizing municipal
water pipe network design to ensure resilience under seismic disturbances, targeting service
continuity to critical facilities (e.g. hospitals) while minimizing upgrade or restoration costs
within budget. Typical instances of SRPN feature on an average of 3016 binary variables,
3016 continuous variables, and 5917 constraints.

The results are summarized in Table[/| For each dataset, we report solving time (Time), primal—dual
gap integral (PD integral), and primal-dual gap (PD gap). All three metrics are lower-is-better,
where Time and PD integral reflect solver efficiency and convergence speed, and PD gap quantifies
how close the solver comes to the optimal.We set the time limit as 600 seconds for each instance.
These results show that DynSep delivers marked performance gains on additional real-world datasets
(MIRP and SRPN). Compared to the other configuration methods, DynSep significantly improves
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Table 7: Evaluation results on MIPLIB MIRP & SRPN Benchmarks, with 600-second time limit.

Hard: MIPLIB MIRP (n = 34656, m = 44430) Hard: MIPLIB SRPN (n = 6032, m = 5917)
Method Time(s) | PD integral | PD gap | Time(s) | PD integral | PD gap |

NoCuts 486.68 (198.71)  34735.55 (19014.81)  6.67e+18 (1.92e+19)  280.7 (277.17)  11020.69 (13133.86) 0.28 (0.42)

Default 580.98 (61.65)  52362.46 (13476.17) 5.38e+19 (4.97e+19)  332.04 (271.0)  11687.01 (11993.95) 0.21 (0.31)
Search(20)  492.85(190.1)  33028.81 (16299.41) 6.30e+18 (2.11e+19) 384.02 (273.02) 14571.56 (12206.64) 0.26 (0.28)
Prune 501.49 (174.33)  35542.82 (18572.11) 8.33e+18 (2.19e+19) 296.08 (277.77)  9211.76 (10664.7)  0.19 (0.26)
LLM4Sepasel  511.97 (161.03) 34573.52 (18681.26)  Se+18 (2.24e+19)  300.66 (284.75)  8421.65(10209.65)  0.14 (0.22)
DynSep (Ours)  482.13 (205.78)  30838.39 (17377.29) 1.38 (1.41) 29477 (274.22)  7581.16 (8814.39) 0.1 (0.17)

Table 8: Comparison between default setting and our method (DynSep) on all 235 MIPLIB 2017
instances.

Hard: MIPLIB 2017
Method Time(s) | PD integral |

Default 258.77(93.22)  17153.69 (12674.03)
DynSep (Ours) 238.88 (107.33) 15092.16 (12719.67)

both convergence speed (as demonstrated by reduced PD integral) and solution quality (evidenced by
lower PD gap).

Furthermore, we have tested our method on the full set of 240 MIPLIB 2017 benchmark instances.
The results in Table [8|show that DynSep delivers notable improvements in solving efficiency in the
challenging MIPLIB 2017 dataset.

Specifically, we set the time limit as 300 seconds and excluded five instances whose presolving time
exceeded 300 seconds: neos-3402454-bohle, neos-4722843-widden, mzzv42z, neos-5052403-cygnet,
proteindesignl21hz512p9, and proteindesigni22trx11p8, which is a common removing criterion for
MIPLIB2017 benchmark [18}42]]. The remaining 235 instances were split into a 70% training set
and a 30% test set. Table [§|reports the overall average performance of our method across all 235
instances. These experiments confirm that our approach delivers notable improvements in solving
efficiency, even when evaluated on the more challenging benchmark set.

E.4 Extended DynSep to Broader Solver Hyperparameters

Our proposed DynSep framework is inherently extensible to a broader set of solver hyperparameters
beyond separator activation and timing. This is achieved by adapting the policy network: we model the
outputs of additional parameters as a logistic-normal distribution, followed by optional discretization
to support both integer and continuous parameters. This enables flexible, differentiable control of
arbitrary solver parameters.

To substantiate the above claim, we conducted additional experiments on three critical hyperparameter
groups as follows, while retaining the original tuning mechanism for separator activation status
(+1,0, —1) and round termination (m;).

 para group 1: Cut Depth / Aggressiveness (sepastore/age in SCIP). Controlled by solver
parameters separating/cutagelimit and separating/poolfreq.

 para group 2: Cut selection thresholds (e.g., efficacy vs. orthogonality). Controlled by
solver parameters separating/minefficacy and cutselection/hybrid/minortho.

* para group 3: Separation frequency per node. Controlled by solver parameters
separating/cutagelimit and separating/poolfreq.

We provide the experimental results in Table [0] We evaluated our method on three benchmark
datasets: Multiple Knapsack, Corlat, and MIPLIB mixed supportcase, measuring solving time
(Time), primal—dual gap integral (PD integral), and primal-dual gap (PD gap). All three metrics
are lower-is-better, where Time and PD integral reflect solver efficiency and convergence speed, and
PD gap quantifies how close the solver comes to the optimal. We compared our original DynSep
method with its extended versions incorporating three additional parameter groups. Results show
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Table 9: Experiments on three extended hyperparameter groups configured by DynSep.

Easy: Multiple Knapsack (n = 720, m = 72) Medium: Corlat (n = 466, m = 486) Hard: MIPLIB mixed supportcase (n = 19766, m = 19910)
Method Time(s) |  PD integral | PDgap | Time(s) | PD integral | PD gap | Time(s) | PD integral | PD gap |
DynSep (Ours)  0.52(0.24)  9.71(5.39) 0.0 (0.0) 22.96 (38.93) 2233.42 (3868.43) 0.0 (0.0) 132.50 (130.32)  9212.24 (9840.56) 7.86 (20.31)
Para Group 1~ 0.65(0.59)  9.01 (4.59) 0.0 (0.0) 47.36 (70.18)  4580.9 (7028.59)  4e+18 (1.96e+19)  141.54 (124.79)  8610.24 (8190.9) 0.17 (0.28)
Para Group 2 0.36 (0.23)  7.91 (4.51) 0.0 (0.0) 42.17 (79.8) 1971.18 (3704.0) 0.01 (0.03) 167.64 (134.41)  8661.57 (7499.68) 0.16 (0.29)
Para Group 3 0.65(0.23)  10.03 (5.31) 0.0 (0.0) 24.71 (54.74)  1922.77 (3826.2) 0.0 (0.02) 141.09 (125.39)  8362.53 (6834.04) 0.17 (0.28)

Table 10: Execution Time for each decision step of DynSep to configure separators

Set Covering MIS Knapsack CORLAT MIK Anonymous Load Balancing Neos Supportcase

Avg. Latency (s) 0.33 0.22 0.09 0.05 0.31 0.41 3.04 0.11 0.39
Max. Latency (s) 1.09 1.01 0.71 0.70 1.07 1.94 451 2.02 6.85

that across all datasets, DynSep and its extended variants consistently outperform the default solver
configuration reported in the main paper. Furthermore, the differences among the parameter groups
are relatively small, yet certain combinations (e.g., Para Group 2 on Knapsack and Para Group 3 on
mixed supportcase) yield further performance improvements in both Time and PD integral. These
results validate that DynSep can flexibly extend to control a broader set of solver hyperparameters.
Furthermore, carefully chosen parameter combinations can yield additional gains in solving speed
and convergence.

E.5 Overhead Evaluation

E.5.1 Latency of Policy Inference

We have provided per-decision latency (the latency of policy inference per decision step) and the total
inference time through the solving process as follows.

Per-decision latency. Table[I0|reports the average ("Avg. latency") and worst-case ("Max. latency")
time taken for a single policy call across the entire branch-and-cut process. These values reflect the
inference latency introduced by DynSep policy for each configuration decision.

Our results reveal that per-decision latency increases as instance size grows. On small to medium-sized
datasets, the worst-case latency remains around 1 second per policy call. For the larger and more
complex problem instances (with tens of thousands of variables and constraints), the worst-case
latency ranges from 1 to 7 seconds per decision. In contrast, the average inference latency stays
below 0.5 seconds across all datasets, with the exception of the largest load balancing instance
(approximately 61K variables, 64K constraints), where the average latency rises to 3 seconds.

TableE]provides the total inference time ("Infer. Time") over different datasets and solver time limits,
along with the inference overhead rate ("Overhead Rate"), which represents the percentage of policy
inference for the total solving time ("Sol. Time"). Table |l1|shows that DynSep incurs a modest
configuration overhead, contributing a negligible fraction of the total solving time even on large-scale
instances. While the configuration time tends to increase with problem size—e.g., from under one
second on small benchmarks to several tens of seconds on the largest ones—it remains practically
affordable relative to the performance gains achieved. Nonetheless, there is potential to further
optimize this step, and future work may explore more lightweight models to reduce configuration
latency without compromising effectiveness.

Notably, our configuration policy is encapsulated within a custom SCIP separator. Thus, we report the
total inference time via SCIP’s built-in SCIPsepaGetTime () function. In contrast, the per-decision
latency values are logged using wall-clock timing at each policy call, including overhead from time
recording and logging. Consequently, the sum of the per-decision latencies naturally exceeds the
total inference time, since the latter excludes the additional overhead introduced by frequent timing
operations.

E.5.2 Memory Overhead

We analyze the memory inference overhead as follows.

Per-decision memory overhead: Table[I2]below show the peak GPU memory usage per policy call.
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Table 11: Inference Time for DynSep to configure separators during solving process. Three blocks:
nine datasets in our manuscript (300-second time limit), four hard datasets (3600-second time limit),
and MIPLIB MIRP & SRPN (600-second time limit).

Set Covering MIS Knapsack CORLAT MIK Anonymous Load Balancing Neos Supportcase
Infer. Time (s) 1.05(0.34)  0.41(0.23) 0.42(0.51) 16.56(21.07)  1.57 (0.55) 14.73 (20.58) 10.54 (0.73) 23.9(27.99) 14.16 (19.65)
Sol. Time (s) 1.51(0.27)  0.53(0.20) 0.52(0.24) 22.96(38.93) 10.99 (9.44) 241.89(100.75)  300.04 (0.08)  235.19 (112.26) 132.50 (130.32)
Overhead Rate (%) 69.54 77.36 80.77 7213 14.29 6.09 3.51 10.16 10.69

Anonymous Load Balancing  MIPLIB mixed neos MIPLIB mixed supportcase

Infer. Time (s) 21.32 (16.64) 16.01 (1.57) 86.96 (114.55) 12.31 (9.9)
Sol. Time (s) 2397.95 (1551.2)  3600.04 (0.07) 2724.85 (1515.82) 567.82 (1154.86)
Overhead Rate (%) 0.89 0.44 3.19 2.17

MIPLIB MIRP  MIPLIB SRPN

Infer. Time (s) 32.77 (29.27) 5.06 (2.28)
Sol. Time (s) 482.13 (205.78)  294.77 (274.22)
Overhead Rate (%) 6.80 1.72

Table 12: Per-decision memory overhead.

Set Covering MIS Knapsack CORLAT MIK Anonymous Load Balancing Neos Supportcase

Avg. CPU mem.(MB) 2902.22 2804.20  2807.59 2786.58  2775.91 3153.15 3811.82 2824.13 2870.90
Max. CPU mem. (MB) 3081.70 2877.39  2889.04 2892.15  2877.77 3930.07 4852.27 3100.90 3688.11
Avg. GPU mem. (MB) 2.09 2.09 2.10 2.09 2.10 2.09 2.10 2.09 2.09
Max. GPU mem. (MB) 2.10 2.10 2.11 2.11 2.11 2.11 2.11 2.11 2.11

peak memory overhead for overall inference: The memory footprint required to store the encoder
and policy model weights is 2.08 MB for each dataset. We track the peak GPU memories during the
reference via the tool torch. cuda.max_memory_allocated(), which are list in Table[T3}

E.6 Ablation Study
E.6.1 Module Ablation Analysis on Other Six Benchmarks

We evaluate DynSep and its ablated variants on other six benchmark datasets using solve time and the
primal-dual (PD) gap integral as performance metrics. Table [I4]summarizes the results. Specifically,
the ablation study shows that while certain DynSep variants (e.g., w/o DynG&TF in Set Covering,
w/o TF in MIS, w/o MaxR in Anonymous and Load Balancing) can slightly beat the full model
on individual metrics for particular datasets, the full DynSep method consistently delivers robust,
near-best performance overall. Overall, each component’s removal yields trade-offs, but the full
DynSep model demonstrates consistently balanced performance across tasks.

E.6.2 Encoder Architecture Ablation

Table [I5]shows that replacing the encoder’s GCN with a custom bipartite graph transformer (GT):
a multi-head TransformerConv for edge-aware message passing, followed by residual-connected
LayerNorm and a two-layer feed-forward block. GT-encoder shows no consistent improvement over
DynSep, which may be due to increased inference overhead or the need for finer stability/tuning to
realize gains from the transformer-style aggregation.

E.6.3 Hyperparameter Sensitivity Analysis

As shown in Table@ we conducted robustness ablations over separator frequency (1, 5, 10, 20)
and maximum separation rounds (3, 5, 10, 20) on three benchmarks (MIK, Corlat, and MIPLIB
mixed Neos). Overall, across almost all tested settings, DynSep outperforms the default configuration,
showing that the approach is reasonably stable to these hyperparameters. Below is our key observations.

Frequency. Moderate frequency (e.g., 5&10) gives the better trade-off. That is, small frequency
causes separators to fire excessively, incurring high cut-generation overhead, whereas large frequency
reduces opportunities for timely dual-bound tightening.
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Table 13: Peak memory overhead for overall inference.

Set Covering MIS  Knapsack CORLAT MIK Anonymous Load Balancing Neos Supportcase
Peak GPU mem. (MB) 35.56 57.85 23.11 15.68 37.41 157.17 257.60 28.85 122.28

Table 14: Ablation results on other six benchmarks

Easy: Set Covering (n = 1000, m = 500) Easy: Max Independent Set (n = 500, m = 1953) Medium: MIK (n = 413, m = 346)
. . Improv. T . . . : Improv. T . . . . Improv. T . ;
Method Time(s) | (time, %) PD integral | Time(s) | (time. %) PD integral | Time(s) | (time. %) PD integral |
NoCuts 7.45 (5.87) NA 101.86 (55.59) 15.32(5.82) NA 146.4 (56.99) 190.28 (113.97) NA 887.85 (859.76)
Default 524 (1.79) 29.66 95.56 (36.86)  30.4(8.02) -98.43 289.51 (103.81) 16.65 (18.06) 91.25 82.80 (56.24)
w/o MaxR 1.32(0.72) 82.28 31.35(11.32)  0.57(0.24) 96.28 10.46 (2.83) 12.46 (8.81) 93.45 128.91 (67.89)
w/o TF 1.48 (0.35) 80.13 32.86 (6.25) 0.44 (0.09) 97.13 9.16 (1.77) 14.04 (12.99) 92.62 106.14 (65.99)
w/o DynG 1.25 (0.68) 83.22 29.63(10.34)  0.56 (0.22) 96.34 10.19 (2.68) 11.88 (9.44) 93.76 116.16 (40.64)
w/o DynG&TF  1.23 (0.69) 83.49 29.33(10.42)  0.55(0.18) 96.41 9.97 (2.28) 12.43 (10.37) 93.47 127.63 (46.03)
DynSep (Ours)  1.51(0.27) 79.73 33.88(9.34) 0.53 (0.20) 96.54 9.66 (2.40) 10.99 (9.44) 94.22 134.15 (44.21)
Hard: Anonymous (n = 37881, m = 49603) Hard: Load Balancing (n = 61000, m = 64304)  Hard: MIPLIB mixed supportcase (n = 19766, m = 19910)
Method Time(s) | PD integral | (]igplfl\: Jc) Time(s) | PD integral | (}?]g%:)(v, C‘L) Time(s) | PD integral | (#Spll;ﬁv Jﬂ)
NoCuts 259.77(75.71)  21117.12(9234.01) NA 300.11 (0.02)  15093.26 (940.68) NA 181.26 (120.25)  12959.99 (10506.47) NA
Default 298.92 (4.09) 27069.58 (4892.8) -28.19 300.14 (0.02)  15187.19 (936.38) -0.62 244.75(105.8)  21561.09 (10434.42) -66.37
w/o MaxR 243.92(97.55)  14452.24 (9840.56) 31.56 300.13 (0.37)  3252.99 (454.96) 78.45 167.52(112.43)  10158.06 (9568.77) 21.62
w/o TF 251.16 (90.02)  16238.64 (9292.53) 23.10 300.02 (0.03)  3740.29 (473.88) 75.22 143.54 (123.86)  10253.13 (9952.05) 20.89
w/o DynG 256.66 (77.74)  16903.77 (8941.95) 19.95 300.1(0.02)  15020.22 (941.63) 0.48 145.76 (121.48)  11882.87 (11695.35) 831
w/o DynG&TF  246.48 (93.01)  18914.82 (9388.91) 10.43 300.04 (0.04)  3923.57 (539.21) 74.00 131.72 (130.92)  11369.53 (12085.07) 12.27
DynSep (Ours)  241.89 (100.75)  15656.7 (8996.14) 25.86 300.04 (0.08)  3720.26 (499.37) 75.35 132,50 (130.32)  9212.24 (9840.56) 28.92

Maximum Separation Round. Setting this value too low produces weak cuts and degrades performance,
while setting it excessively high increases the computational cost of cut generation. Although this
parameter shows some dataset sensitivity, MaxRound=5 is empirically near-optimal in our tests.

E.7 Generalization Study

We investigate complementary generalization performance of our method under two more settings:
(1) Cross-Domain Generalization Test: training on one benchmark and testing on a dataset from
a different domain; (2) General-to-Specific Generalization Test: training a general model on a
mixed-category dataset (e.g. MIPLIB) and then evaluating on a specific class dataset.

E.7.1 Cross-Domain Generalization Test

To evaluate the across-domain generalization, we train our policy on one problem family and apply
the learned policy to unseen problem families. Specifically, we train four separate DynSep policies
(on Setcover, Knapsack, MIK, and Supportcase) and evaluate each of them across all nine benchmark
families used in our manuscript. The table below lists the results, where we report solving time
for easy and medium datasets, while additionally report primal—dual integral (PD integral) for hard
datasets.

As shown in Table[I7] policies trained on one problem type yield improvements over SCIP’s default
in most unseen benchmarks, indicating effective transfer of our learned configuration strategy across
NP-hard families.

E.7.2 General-to-Specific Generalization Test

We select 168 diverse instances from the MIPLIB 2017 benchmark [[14] as our training set and learn a
separator configuration policy on these instances. Notably, because the MIPLIB 2017 instances cover
a wide variety of problem types and mixed-scenario structures, this learned policy could serve as a
general configuration model. We then evaluate it—without any additional tuning—on four unseen,
domain-specific datasets: Corlat, Load Balancing (LB), Maritime Inventory Routing Problem (MIRP),
and Seismic-Resilient Pipe Network Planning (SRPN). We have extended our evaluation beyond
MIPLIB mixed neos and mixed supportcase, including two real-world datasets from the Distributional
MIPLIB benchmark [49]]:
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Table 15: Comparative results of different encoder architectues for DynSep on four datasets.

Easy: Multiple Knapsack (n = 720, m = 72) Medium: Corlat (n = 466, m = 486)
. Improv. T . . Improv. T .
Method Time(s) | (time, %) PD integral | Time(s) | (time, %) PD integral |
GT-encoder 0.71 (0.39) 94.87 11.02 (5.41) 46.26 (71.41) 38.04 4563.26 (7125.57)
DynSep (Ours)  0.52 (0.24) 96.24 9.71 (5.39) 22.96 (38.93) 69.25 2233.42 (3868.43)

Hard: MIPLIB mixed neos (n = 6958, m = 5660) Hard: MIPLIB mixed supportcase (n = 19766, m = 19910)

Method Time(s) | PD integral | (;‘Sl’ﬁ:’lf' 0}0 ;o Time) ] PD integral | (;gplrn‘i‘_" JC |
GTencoder  243.52(97.82)  12134.57 (12142.03) 1699  150.38 (123.13) 9157.61 (9623.27) 2934
DynSep (Ours) 235.19 (112.26)  8511.58 (12413.9) 4178 13250 (130.32) 9212.24 (9840.56) 2892

Table 16: Sensitivity Analysis of hyperparameters Frequency and Maximum Separation Round on
three datasets.

Medium: MIK (n = 413, m = 346) Medium: Corlat (n = 466, m = 486) Hard: MIPLIB mixed neos (n = 6958, m = 5660)
. Improv. T . . Improv. T - . S Improv. T
Method Time(s) | (time, %) PD integral | Time(s) | (time, %) PD integral | Time(s) | PD integral | (PD Int., %)
NoCuts 190.28 (113.97) NA 887.85 (859.76)  74.66 (122.23) NA 2687.68 (6209.48)  275.04 (43.23)  14618.53 (12214.63) NA
Default 16.65 (18.06) 91.25 82.80 (56.24) 111.55(132.19) -49.41 10573.14 282.98 (29.49) 18500.5 (9386.15) -26.56
Freq=1 12.74 (9.89) 93.30 124.22 (43.24) 53.77 (84.77) 27.98 4582.15 (7398.26)  252.12(83.27) 8756.3 (12305.23) 40.10
Freq=5 13.04 (11.04) 93.15 86.55 (38.54) 38.44 (49.72) 48.51 3513.13 (4533.24) 24391 (97.16)  9248.52 (12053.99) 36.73
Freq=10 (Ours) 10.99 (9.44) 94.22 134.15 (44.21) 22.96 (38.93) 69.25 2233.42 (3868.43)  235.19 (112.26)  8511.58 (12413.9) 41.78
Freq=20 12.83 (9.6) 93.26 213.15(124.09)  49.14 (72.87) 34.18 4658.09 (7252.41)  261.86 (66.13)  8789.54 (12249.16) 39.87
Medium: MIK (n = 413, m = 346) Medium: Corlat (n = 466, m = 486) Hard: MIPLIB mixed neos (n = 6958, m = 5660)
. I . . . I A . . . I A
Method Time(s) | (:?gz\:,]nz PD integral | Time(s) | (i?[l:;\z/j PD integral | Time(s) | PD integral | (PISPILT: ‘l;)
NoCuts 190.28 (113.97) NA 887.85(859.76)  74.66 (122.23) NA 2687.68 (6209.48)  275.04 (43.23)  14618.53 (12214.63) NA
Default 16.65 (18.06) 91.25 82.80 (56.24) 111.55(132.19) -49.41 10573.14 282.98 (29.49) 18500.5 (9386.15) -26.56
MaxRound=3 13.63 (12.04) 92.84 150.19 (46.77)  107.26 (124.27) -43.66 8965.26 (12401.06)  239.22 (105.28)  8581.5 (12378.07) 41.30
MaxRound=5 (Ours) 10.99 (9.44) 94.22 134.15 (44.21) 22.96 (38.93) 69.25 2233.42 (3868.43)  235.19 (112.26)  8511.58 (12413.9) 41.78
MaxRound=10 17.6 (12.68) 90.75 18271 (121.39)  40.45 (68.93) 45.82 3717.64 (6764.77)  249.41 (87.63) 8846.91 (12224.34) 39.48
MaxRound=20 16.2 (11.25) 91.49 169.8 (71.61)  36.71(55.75) 50.83 3600.11 (5562.51)  252.59(82.11)  10945.82 (11486.55) 25.12

As shown in Table[T8] the general configuration model consistently outperforms the solver’s default
settings in both solve time and convergence behavior, demonstrating good generalizability of our
method.

E.8 Visualization of Separator Configurations on Nine Benchmarks

We provide visualization of separator configurations on nine benchmarks in Figs. [7}[I5] Figs.[7]and[§]
show that our learned policy uniformly uniformly reduces the maximum number of separation rounds
to rmax = 3 for easy benchmarks, Set Covering and MIS, demonstrating that our learned decision on
maximum rounds effectively prunes unnecessary cutting rounds on simple problems. The heatmap
reveals that the separator configuration is not static but varies dynamically across separation rounds
(shown along the y-axis), suggesting that the model is timing the application of various separators to
coincide with the stage of cut generation. Furthermore, the fact that learned activation values are not
restricted to {—1,0, 1} but take intermediate real values indicates the policy differentiates between
individual instances (and even between nodes) when selecting separators. In other words, it has
learned a nuanced, instance-wise (and node-wise) cutting strategy rather than a one-size-fits-all rule.
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Table 17: Cross-domain generalization on nine benchmarks. Policies are trained on one problem
family and evaluated on unseen families.

Easy: Set Covering (n = 1000, m = 500)

Easy: Max Independent Set (n = 500, m = 1953)

Easy: Multiple Knapsack (n = 720, m = 72)

Method Time(s) | PD integral | Time(s) | PD integral | Time(s) | PD integral |

Default 5.24(1.79) 95.56 (36.86) 30.4 (8.02) 289.51 (103.81) 2.01(1.82) 18.6 (10.49)

Train on Setcover NA NA 1.0 (1.38) 13.57 (9.99) 0.68 (0.42) 10.73 (6.12)
Train on Knapsack ~ 2.02 (0.62) 40.96 (9.93) 0.76 (0.29) 12.37 (3.53) NA NA

Train on MIK 7.74 (4.33) 80.78 (40.05) 5.21(3.38) 29.81 (19.2) 1.2 (1.09) 11.91 (5.52)

Train on supportcase  2.21 (0.59) 43.95 (9.35) 0.67 (0.3) 11.72 (3.63) 0.78 (1.06) 10.65 (5.97)

Medium: Corlat (n = 466, m = 486)

Medium: MIK (n = 413, m = 346)

Hard: Anonymous (n = 37881, m = 49603)

Method Time(s) | PD integral | Time(s) | PD integral | Time(s) | PD integral |
Default 111.55(132.19)  10573.14 (13070.46)  16.65 (18.06) 82.80 (56.24) 298.92 (4.09) 27069.58 (4892.8)
Train on Setcover 43.79 (76.54) 4042.34 (7652.31) 24.8 (21.41) 139.1 (45.45) 250.46 (87.15) 19701.65 (9639.56)
Train on Knapsack 27.56 (58.48) 2485.67 (5777.55)  12.48 (10.29) 139.08 (44.39) 253.74 (80.42) 19183.3 (8941.1)
Train on MIK 34.54 (69.18) 2163.38 (4884.15) NA NA 268.43 (56.97) 20715.25 (8615.27)
Train on supportcase  20.94 (50.99) 2016.37 (5095.97)  163.6(98.18)  785.46 (577.89)  256.33 (79.04) 17922.89 (8384.44)

Hard: Load Balancing (n = 61000, m = 64304)

Hard: MIPLIB mixed neos (n = 6958, m = 5660)

Hard: MIPLIB mixed supportcase (n = 19766, m = 19910)

Method Time(s) | PD integral | Time(s) | PD integral | Time(s) | PD integral |
Default 300.14 (0.02) 15187.19 (936.38) 282.98 (29.49) 18500.5 (9386.15) 244.75 (105.8) 21561.09 (10434.42)
Train on Setcover  300.05 (0.05) 4411.86 (514.13) 258.22 (72.37) 13512.27 (12604.76) 141.31 (125.51) 12171.62 (11385.67)
Train on Knapsack  300.04 (0.05) 4583.45 (554.52) 256.34 (75.63) 13343.38 (12514.04) 166.9 (116.16) 13216.93 (11281.29)
Train on MIK 300.04 (0.05) 5559.96 (1336.87) 249.83 (86.89) 13366.13 (12606.74) 187.09 (127.76) 11583.1 (9504.89)
Train on supportcase  300.09 (0.31) 9421.93 (665.37) 246.91 (91.95) 13639.73 (12439.81) NA NA

Table 18: Generalization performance of our DynSep model trained on MIPLIB 2017, evaluated on
four unseen MILP scenarios. (300-second time limit for Corlat & LB; 600-second for MIRP & SRPN)

Medium: Corlat (n = 466, m = 486) Hard: Load Balancing (n = 61000, m = 64304)

Method Time(s) | PD integral | Time(s) | PD integral |
Default 5.24 (1.79) 95.56 (36.86) 30.4 (8.02) 289.51 (103.81)
2.01 (1.82) 18.6 (10.49)
DynSep (ours) trained on MIPLIB 2017 46.05 4289.33 300.08 4792.71

Hard: MIPLIB MIRP (n = 34656, m = 44430) Hard: MIPLIB SRPN (n = 6032, m = 5917)

Method Time(s) | PD integral | Time(s) | PD integral |
Default 580.98 (61.65) 52362.46 (13476.17) 332.04 (271.0) 11687.01 (11993.95)
DynSep (ours) trained on MIPLIB 2017 487.59 33193.25 288.48 7582.60
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Figure 7: Separator configs at each separation round of Set Covering benchmark.
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Figure 10: Separator configs at each separation round for CORLAT benchmark.
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Figure 11: Separator configs at each separation round for MIK benchmark.
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Figure 12: Separator configs at each separation round for Anonymous benchmark.
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Figure 13: Separator configs at each separation round for Load Balancing benchmark.
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Figure 14: Separator configs at each separation round for MIPLIB mixed neos benchmark.
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Figure 15: Separator configs at each separation round for MIPLIB mixed supportcase bench-
mark.
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