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Abstract

Data augmentation (DA), an effective regularization technique, generates training samples
to enhance the diversity of data and the richness of label information for training modern
deep learning models. mixup, a popular recent DA method, augments training datasets
with convex combinations of original samples pairs, but can generate undesirable sam-
ples, with data being sampled off the manifold and with incorrect labels. In this work,
we propose ζ-mixup, a generalization of mixup with provably and demonstrably desirable
properties that allows for convex combinations of N ≥ 2 samples, thus leading to more
realistic and diverse outputs that incorporate information from N original samples using a
p-series interpolant. We show that, compared tomixup, ζ-mixup better preserves the intrin-
sic dimensionality of the original datasets, a desirable property for training generalizable
models, and is at least as fast as mixup. Evaluation on several natural and medical image
datasets shows that ζ-mixup outperforms mixup, CutMix, and traditional DA methods.
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1. Introduction

Given the large parameter space of deep learning models, training on small datasets tends
to cause the models to overfit to the training samples, which is especially a problem when
training with data from high dimensional input spaces such as images, and consequently,
benefits from data augmentation (DA) techniques for improved generalization performance.
mixup (Zhang et al., 2018), a popular DA method, generates convex combinations of pairs
of original training samples and linear interpolations of corresponding labels with a hyper-
parameter λ ∼ [0, 1]. The primary hypothesis of mixup and many derivatives is that a
model should behave linearly between any two training samples, even if the distance be-
tween samples is large. This implies that we may train the model with synthetic samples
that have very low confidence of realism; in effect, over-regularizing. We instead argue
that we should only synthesize examples with high confidence of realism, and that a model
should only behave linearly nearby training samples, supported by research in cognitive
sciences showing that human perception between object category boundaries is warped and
not as linear as mixup seems to suggest (Beale and Keil, 1995; Newell and Bülthoff, 2002).

Consider the K-class classification task, where we are provided with a dataset ofm points
{xi}mi=1 in a D-dimensional ambient space RD with the corresponding labels {yi}mi=1 in a
label space L = {l1, · · · , lK} ∈ RK. Keeping in line with the manifold hypothesis (Cayton,
2005; Fefferman et al., 2016), which states that complex data manifolds in high dimensional
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Figure 1: (a) An overview of ζ-mixup with original (◦) and synthetic (△) samples. Note how
mixup ((b), (d)) does not respect individual class boundaries and can generate
incorrect samples, that lie off the data manifold, with incorrect labels. ζ-mixup
((a), (c), (e)) can mix any number of samples (e.g., 3 in (a), 4 or 8 in (c), and 25
in (e)) and the generated samples remain close to the original distribution while
incorporating rich information from several samples. (f) The hyperparameter γ
in ζ-mixup formulation can control the diversity of the synthetic samples.

ambient spaces are actually made up of samples from manifolds with low intrinsic dimen-
sionalities (Dint), we assume that the m points are samples from K manifolds {Mi}Ki=1 with
Dint as {di}Ki=1, where di << D ∀i ∈ [1,K] (Fig. 1 (a)). We seek an augmentation method
that facilitates a denser sampling of each intrinsic manifold Mi, thus generating more real
and more diverse samples with richer labels. Following Wood et al. (2021); Wood (2021), we
consider three criteria for evaluating the quality of synthetic data: (i) realism: allowing the
generation of correctly labeled synthetic samples close to the original samples, ensuring the
realism of the synthetic samples, (ii) diversity: facilitating the synthesis of more diverse
samples by allowing exploration of the input space, and (iii) label richness when generat-
ing synthetic samples while still staying on the manifold of realistic samples. Additionally,
we aim for: (iv) valid probabilistic labels along with (v) computationally efficient
augmentation of training batches (e.g., avoiding inter-sample distance calculations).

To this end, we propose to synthesize a new sample (x̂k, ŷk) as x̂k =
∑N

i=1wixi; ŷk =∑N
i=1wiyi, where wis are the weights assigned to the N samples being mixed. One such

suitable weighting scheme is to sample weights from the terms of a p-series, i.e., wi = i−p,
which is a convergent series for p ≥ 1. Extending the idea of local synthetic instances for
connectome augmentation (Brown et al., 2015), we adopt the following formulation: given
N samples (where 2 ≤ N ≤ m and thus, theoretically, the entire dataset), a N ×N random
permutation matrix π, and the resulting randomized ordering of samples s = π[1, 2, . . . , N ]T ,

the weights are defined as wi =
s−γ
i
C , i ∈ [1, N ], where the hyperparameter γ allows us to

control how far the synthetic samples can stray away from the original samples. C is the
normalization constant to ensure that wi must satisfy wi ≥ 0 ∀i and

∑N
i=1wi = 1, such

that ŷk is a valid probabilistic label, where C =
∑N

j=1 j
−γ is the N -truncated Riemann
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Table 1: Classification error on CIFAR datasets averaged over 3 runs (γ ∈ U[γmin, 4.0]).

Method
CIFAR-10 CIFAR-100

Method
CIFAR-10 CIFAR-100

ResNet-18 ResNet-18 ResNet-18 ResNet-50 ResNet-18 ResNet-50

ERM 5.48 23.33 CutMix 4.13 4.08 19.97 18.99
mixup 4.68 21.85 + ζ-mixup 3.84 3.61 19.54 18.86
ζ-mixup 4.42 21.35

Table 2: Micro-averaged F1 score on skin lesion image datasets (γ = 2.8).

Method
ISIC 2016 ISIC 2017 ISIC 2018 DermoFit

ResNet-18 ResNet-50 ResNet-18 ResNet-50 ResNet-18 ResNet-50 ResNet-18 ResNet-50

ERM 0.7836 0.8127 0.7383 0.6867 0.8756 0.8653 0.8269 0.8500
mixup 0.7968 0.8179 0.7333 0.7433 0.8394 0.8601 0.8577 0.8500
ζ-mixup 0.8654 0.8602 0.7633 0.7733 0.8756 0.9016 0.8731 0.8962

zeta function (Riemann, 1859) ζ(z) evaluated at z = γ, and thus we call our method ζ-
mixup. Since there exist N ! possible N×N random permutation matrices, given N original
samples, ζ-mixup can synthesize N ! new samples for a single γ, unlike mixup which can
only synthesize 1 new sample per sample pair for a single λ. Moreover, as a result of its
formulation, ζ-mixup presents two desirable properties: (1) for all values of γ ≥ γmin =
1.72865, the weight assigned to one sample is greater than the sum of weights assigned to
all other samples, implicitly introducing the desired notion of linearity in only the locality

of original samples; and (2) for N = 2 and γ = log2

(
λ

1−λ

)
, ζ-mixup simplifies to mixup.

2. Results and Discussion

Using a PCA-based local Dint estimator calculated using a k-nearest neighborhood around
each sample, with k = 128 (Fukunaga and Olsen, 1971), we find that Dint for CIFAR-10 and
CIFAR-100 using ζ-mixup are lower than using mixup: 26.83±6.53 (versus 35.43±9.47) and
24.76± 6.22 (versus 32.41± 8.65), respectively, thus showing that ζ-mixup indeed preserves
the low Dint that natural image datasets lie in (Ruderman, 1994; Pope et al., 2021), while
mixup’s off-manifold sampling leads to an inflated estimate of local Dint. Tables 1 and 2
show the classification performance using traditional DA techniques, e.g., rotation, flipping,
and cropping (“ERM”), against those trained with mixup and ζ-mixup outputs as well as
compare the benefit of applying ζ-mixup to an orthogonal DA method, CutMix (Yun et al.,
2019), as evaluated on natural: CIFAR-10 and CIFAR-100 and medical (skin lesion): ISIC
2016 (Gutman et al., 2016), 2017 (Codella et al., 2018), and 2018 (Codella et al., 2019), and
DermoFit (Ballerini et al., 2013) image datasets. We report the error rate and the micro-
averaged F1-score for natural and medical image datasets, respectively, since the latter are
class-imbalanced. We observe that ζ-mixup improves performance across the board. Our
optimized ζ-mixup implementation is 2.1× faster than the original mixup implementation,
while similar training time is recorded for both of them for CIFAR-10/100 (∼ 1h 20m).

Conclusion: We proposed ζ-mixup, a parameter-free multi-sample generalization of the
popular mixup technique for data augmentation that combines N ≥ 2 samples without
significant computational overhead. The ζ-mixup formulation allows for the weight assigned
to one sample to dominate all the others, thus ensuring the synthesized samples are on or
close to the original data manifold. This leads to generating samples that are more realistic
and, along with allowing N > 2, generates more diverse samples with richer labels compared
to mixup. Future work will include exploring ζ-mixup in the learned feature space.
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