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Abstract
The generated responses of large language models
(LLMs) are often fine-tuned to human preferences
through a process called reinforcement learning
from human feedback (RLHF). As RLHF relies
on a challenging training sequence, whereby a
separate reward model is independently learned
and then later applied to LLM policy updates, on-
going research effort has targeted more straightfor-
ward alternatives. In this regard, direct preference
optimization (DPO) and its many offshoots cir-
cumvent the need for a separate reward training
step. Instead, through the judicious use of a repa-
rameterization trick that induces an implicit re-
ward, DPO and related methods consolidate learn-
ing to the minimization of a single loss function.
And yet despite demonstrable success in some
real-world settings, we prove that DPO-based ob-
jectives are nonetheless subject to sub-optimal
regularization and counter-intuitive interpolation
behaviors, underappreciated artifacts of the repa-
rameterizations upon which they are based. To
this end, we introduce an explicit preference opti-
mization framework termed EXPO that requires
no analogous reparameterization to achieve an im-
plicit reward. Quite differently, we merely posit
intuitively-appealing regularization factors from
scratch that transparently avoid the potential pit-
falls of key DPO variants, provably satisfying
regularization desiderata that prior methods do
not. Empirical results serve to corroborate our
analyses and showcase the efficacy of EXPO.
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1. Introduction
Reinforcement learning from human feedback (RLHF) (Bai
et al., 2022a; Ouyang et al., 2022; Stiennon et al., 2009;
Ziegler et al., 2019) represents an effective means of align-
ing the output of powerful pre-trained large language models
(LLMs) (Bubeck et al., 2023; Chang et al., 2024; Achiam
et al., 2023; Zhao et al., 2023a) with human preferences
(Bai et al., 2022b; Gallegos et al., 2023). On the downside
though, RLHF requires a potentially-unstable multi-step
process whereby first a reward model is learned using a
labeled preference dataset. Subsequently, a new LLM pol-
icy is trained to maximize this reward while minimizing
deviations from the original pre-trained LLM (the reference
policy). To mitigate this complexity, various reparameteriza-
tion schemes have recently been introduced that obviate the
need for training a separate reward model. Instead, so-called
direct human preference optimization (DPO) (Rafailov et al.,
2024) and follow-up variants (Azar et al., 2024; Tang et al.,
2024; Wang et al., 2024a; Zhao et al., 2023b) are instantiated
via the minimization of a single closed-form training loss,
within which an implicit reward function is concomitantly
optimized.

Although these DPO-based alternatives to RLHF dramat-
ically streamline the modeling pipeline, as we will detail
herein, they are nonetheless saddled with underappreciated
limitations of their own, such as sub-optimal regularization
effects, degenerate minima, and other counter-intuitive be-
haviors linking back to the original reparameterizations and
the viability of the implicit rewards involved. To this end,
our paper is devoted to addressing these shortcomings via
the introduction of intuitive new training objectives that we
term EXPO, for explicit preference optimization, which rely
on no such implicit rewards or associated reparameteriza-
tions. After presenting basic concepts and the details of
existing preference optimization models in Section 2, the re-
mainder of the paper devoted to our technical contributions
can be distilled as follows:

• We introduce new evaluation criteria that comport with
intuition regarding how a preference model ideally
should behave, and yet (somewhat surprisingly) are
provably not satisfied by a broad class of existing DPO-
based approaches. In particular, we show that because
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of uniform regularization effects, the minimizers of
commonly-used preference optimization objectives like
DPO are at times unable to preserve good performance
in regions where the reference model is strong while si-
multaneously improving upon the reference model else-
where (Section 3.1). Moreover, we also elucidate limita-
tions in the ability to interpolate between ideal endpoints
as model trade-off parameters are varied (Section 3.2).

• In Section 4 we then propose multiple new EXPO train-
ing objectives ℓEXPO for explicitly optimizing human pref-
erences while minimizing deviations from an original
reference policy. Importantly, these losses satisfy our
evaluation criteria from above while requiring no repa-
rameterization or implicit link to a separate, motivational
RLHF objective. And although these ℓEXPO candidates
depend on the unobservable ground-truth preference dis-
tribution by design, we nonetheless establish that unbi-
ased estimates of the gradient can be directly computed
to facilitate efficient SGD.

• To complement our analysis, Section 5 provides empir-
ical verification of conditions, in a controlled environ-
ment with known ground-truth preferences, whereby
DPO-based regularization and related variants converge
to degenerate minimizers while ℓEXPO minimizers do
not. We then conclude with experiments involving
real-world alignment data that show EXPO outperforms
DPO-based models w.r.t. response win rates.

2. Background
We adopt x ∼ Dx to denote an input prompt x drawn from
some distribution Dx. From here, conditioned on such
prompts we may then generate responses y using a pre-
trained reference language model/policy πref(y|x). More-
over, given a pair of such responses y1 ̸= y2, we adopt
the binary indicator variable z = I[y1 ≻ y2|y1, y2, x] to
convey that y1 is preferred over y2 by a human evaluator
when z = 1, or else z = 0 if instead y2 ≻ y1. Given a
population of such evaluators, we express the ground-truth
human preference distribution as p∗(z|y1, y2, x) = p∗(y1 ≻
y2|y1, y2, x). And finally, we define a set of human labeled
tuples drawn from a training distribution Dtr as

{yw, yl, x} ∼ Dtr ≡ {z, y1, y2, x} ∼ Dtr (1)
≡ z ∼ p∗(z|y1, y2, x), {y1, y2} ∼ πref(y|x), x ∼ Dx,

where yw ≻ yl; subscripts here stand for ‘win’ and ‘lose’.1

In other words, each training tuple is generated by drawing x

1We generally assume that y1 ̸= y2; however, the y1 = y2 case can
nonetheless be handled by simply assigning p∗(z|y, y, x) = 1/2,
inclusion of which does not affect the analysis that follows. In
particular, such cases merely introduce an irrelevant constant into
the human preference loss functions under consideration.

from Dx, y1 ̸= y2 from the reference policy πref, and finally
z is produced by human labelers that operate according
to p∗. Note that per convention in prior work and ease
of presentation, we will often abbreviate the preference
distribution notation as p∗(y1 ≻ y2|y1, y2, x) ≡ p∗(y1 ≻
y2|x) when the context is sufficiently clear. We now briefly
introduce RLHF, DPO, and follow-up variants that will
serve as motivation for our proposed EXPO framework.

2.1. RLHF

Reward Function Estimation: Given two candidate re-
sponses y1 ̸= y2 sampled using prompt x, the Bradley-Terry
(BT) model (Bradley & Terry, 1952) for human preferences
stipulates that

p∗(y1 ≻ y2|x) =
exp[r∗(y1, x)]

exp[r∗(y1, x)] + exp[r∗(y2, x)]

= σ
[
r∗(y1, x)− r∗(y2, x)

]
, (2)

where r∗(y, x) is a so-called latent reward model and σ is
the logistic function. Because r∗(y, x) is unobservable, it
is not possible to directly compute p∗(y1 ≻ y2|x); however,
we can train an approximation pϕ(y1 ≻ y2|x) defined by a
parameterized proxy reward rϕ(y, x). Specifically, we can
minimize the loss

ℓBT(rϕ) := E{yw,yl,x}∼Dtr

[
− log pϕ(yw ≻ yl|x)

]
(3)

= E{yw,yl,x}∼Dtr

[
− log σ

[
rϕ(yw, x)− rϕ(yl, x)

]]
.

The optimized reward r̂ϕ(y, x) := argminrϕ ℓBT(rϕ) ≈
r∗(y, x) can then be applied to fine-tuning the pre-trained
reference model πref(y|x) as described next.

RL Fine-Tuning with an Estimated Reward: Given
the optimized reward from above, the remaining goal is to
improve upon a given pre-trained LLM, or reference policy
πref(y|x), using a separate trainable model πθ(y|x). This is
accomplished by minimizing the RLHF loss in the form

ℓRLHF (πθ, πref, r̂ϕ, λ) := Ey∼πθ(y|x),x∼Dx

[
− r̂ϕ(y, x)

]
+ λ Ex∼Dx

[
KL

[
πθ(y|x)||πref(y|x)

]]
, (4)

where λ > 0 is a trade-off parameter balancing a reward
maximization term and the KL divergence from the refer-
ence policy. Although not directly amenable to SGD, given
an initialization πθ = πref, the loss ℓRLHF (πθ, πref, r̂ϕ, λ) can
still be optimized over πθ using RL techniques (Schulman
et al., 2017; Ramamurthy et al., 2022).

2.2. DPO

DPO (Rafailov et al., 2024) is based on the observation
that, for an arbitrary reward function r(y, x), the minimum
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of ℓRLHF (πθ, πref, r, λ) w.r.t. πθ can be computed in closed
form as

πr(y|x) := argmin
πθ

ℓRLHF (πθ, πref, r, λ) (5)

=
1

Z(x)
πref(y|x) exp

[
1

λ
r(y, x)

]
,

where Z(x) :=
∑

y πref(y|x) exp
[
1
λr(y, x)

]
ensures that

πr(y|x) forms a proper distribution (Peng et al., 2019; Peters
& Schaal, 2007). From here, we can invert (5) to express
the reward via the policy as

r(y, x) = λ log
πr(y|x)
πref(y|x)

+ λ logZ(x). (6)

As no assumptions have been placed on r, it follows
that (5) and (6) hold even for the ground-truth reward
r∗ and the corresponding optimal policy π∗∗(y|x) :=
argminπθ

ℓRLHF (πθ, πref, r
∗, λ). Therefore instead of ap-

proximating r∗(y, x) with rϕ(y, x) as in (2), we may ap-
proximate π∗∗(y|x) with some πθ(y|x) within (6). The
resulting reparameterized BT objective then forms the DPO
loss

ℓDPO(πθ, πref, λ) := ℓBT

(
λ log

πθ(y|x)
πref(y|x)

)
≡ E{yw,yl,x}∼Dtr

[
− log σ

(
λ log

πθ(yw|x)
πref(yw|x)

− λ log
πθ(yl|x)
πref(yl|x)

)]
, (7)

where the λ logZ(x) term cancels out and can be omitted.
And so it becomes possible to efficiently optimize (7) over
πθ using SGD without RL. Overall, the policy πθ induces an
implicit reward λ log

[
πθ(y|x)π−1

ref (y|x)
]

that is optimized
by minimizing the reparameterized BT model.

2.3. Identity Preference Optimization (IPO)

The identity preference optimization (IPO) framework (Azar
et al., 2024) weaves an alternative reward function into the
original RLHF loss from (4) such that efficient learning
is possible as with DPO. Concretely, IPO is designed to
minimize ℓRLHF (πθ, πref, rIPO, λ) over πθ, where

rIPO(y, x) := Ey′∼πref(y|x)
[
p∗(y ≻ y′|x)

]
. (8)

Stemming from the special structure of this particular
reward, ℓRLHF (πθ, πref, rIPO, λ) can be minimized without
RL. This is accomplished using an analogous reparam-
eterization trick to DPO, leading to the final IPO loss
ℓIPO(πθ, πref, λ) :=

E{yw,yl,x}∼Dtr

(
log

[
πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x)

]
− 1

2λ

)2

, (9)

which is naturally amenable to SGD like DPO. Further
details regarding properties of the IPO loss from (9) are
contained in Appendix E.5.

2.4. Flexible Quasi-Convex Generalizations

From the expressions above, it is clear that both DPO and
IPO reduce to functions of log

[
πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x)

]
and a

tunable hyperparameter λ. As such, it is natural to consider
extensions to broader choices in the form

ℓQPO(πθ, πref, ψ, µ, λ) := (10)

E{yw,yl,x}∼Dtr ψ

(
µ

[
πθ(yw|x)
πref(yw|x)

]
− µ

[
πθ(yl|x)
πref(yl|x)

]
, λ

)
,

where µ : R+ → R is a monotonically increasing function
(which generalizes the logarithm), and the function ψ :
R×R+ → R influences the overall loss shape. We stipulate
that ψ is a differentiable quasi-convex function (Greenberg
& Pierskalla, 1971); hence the chosen loss notation ℓQPO

for quasi-convex preference optimization. By definition of
quasi-convexity, ψ monotonically increases to the right or
left away from the minimum.

These specifications cover DPO and IPO as representative
special cases, and include essentially all reasonable choices
for a loss within this family, e.g., it is nonsensical to in-
clude multi-modal losses. The generalized preference op-
timization (GPO) (Tang et al., 2024) and f -DPO (Wang
et al., 2024a) frameworks are also special cases of QPO
as defined herein. With GPO, µ is a logarithm and ψ is
chosen as an arbitrary convex function (such as used by
SLiC (Zhao et al., 2023b)). Meanwhile f -DPO involves
ψ(·, λ) = − log σ[λ(·)] analogous to DPO but with µ = f ′,
where f ′ denotes the derivative of an f -divergence (Ruben-
stein et al., 2019); given that f must be convex, its derivative
will necessarily be monotonically increasing. In this way,
the RLHF objective from (4) is still optimized via f -DPO,
but with an f -divergence replacing the KL term.

While overall quite general, we will nonetheless later demon-
strate that any loss in the form of (10) will unavoidably be
saddled with certain limitations. See also Appendices A.1
and B for further context w.r.t. recent DPO-related work that
lies outside of our present scope.

2.5. Online vs Offline Preference Optimization

Some recent work (Guo et al., 2025; Tajwar et al., 2024;
Xu et al., 2024) has suggested that so-called online pref-
erence learning (as in the original RLHF that trains using
samples from πθ) may often produce better results than of-
fline learning (as in DPO which only uses fixed samples
from πref). There are nonetheless justifiable reasons for still
considering the latter. However, in Appendix B we provide
rationale for why exploration of offline approaches is still
warranted, especially when we consider methodology that
extends beyond the original DPO script as is our focus.

3



Explicit Preference Optimization: No Need for an Implicit Reward Model

3. Limitations of Existing Approaches
We now turn to formalizing previously-unexplored limita-
tions of existing DPO-like approaches. Throughout this
section we will rely on the notion of an optimal policy
π∗. We intentionally do not specify by what criteria this
optimality is established, as our results will hold for any
(non-deterministic) policy such that π∗(y|x) ∈ (0, 1) for all
x ∈ X .

3.1. Failure to Preserve Optimal Policies

Consider the following plausible scenario, variations of
which are likely to occur (at least in varying degrees) with
real-world data. Suppose the support of prompts generated
by Dx partitions as dgoodx ∪ dbadx , with dgoodx ∩ dbadx = ∅.
Furthermore, assume we have access to a reference policy
πref such that πref = π∗ for x ∈ dgoodx and dist[πref, π

∗] ≫ 0
for x ∈ dbadx , where dist[·, ·] is an arbitrary distance measure.
In other words, when evaluated w.r.t. a policy π∗ that pro-
portionally reflects human preferences, πref performs ideally
on a subset of prompts but not on others.

This dichotomy provides a useful lens for examining certain
loss function properties. In particular, we would like any
policy that minimizes a candidate loss to preserve πref for
prompts x ∈ dgoodx , while pushing away from πref towards
π∗ for prompts x ∈ dbadx . However, because of uniform reg-
ularization effects intrinsic to QPO losses, it is not actually
possible to achieve even this modest objective.

Theorem 3.1. (Informal version) Given the prompt par-
titioning, reference policy, and optimal policy described
above, define π̂QPO

θ := argminπθ
ℓQPO(πθ, πref, ψ, µ, λ)

for any fixed selection of {ψ, µ, λ}. Then under rela-
tively mild assumptions on the labeled responses in Dtr,
if dist[π̂QPO

θ , π∗] < dist[πref, π
∗] for x ∈ dbadx , then

dist[π̂QPO
θ , π∗] > 0 for x ∈ dgoodx .

The proof and formal version are provided in Appendix D.1,
while Figure 1 provides an illustration. The somewhat unex-
pected implication here is that if we minimize any possible
QPO loss in the form of (10) and improve the policy quality
in areas where πref performs poorly w.r.t. π∗, then it must
also be the case that performance becomes worse in areas
where πref was originally optimal. This phenomena repre-
sents an unavoidable trade-off when we restrict ourselves to
using a QPO loss, of which DPO, IPO, GPO, and f -DPO
are all special cases inheriting the same limitation. The core
issue is that these QPO losses unselectively apply the same
regularization, starting from the same initialization point, to
both good and bad cases relative to an arbitrary π∗.

Intuition from Special Cases: Although Theorem 3.1 is
presented in a technical form to rigorously cover QPO cases
more broadly, a more intuitive viewpoint can be established

Preserving Optimal Policies

prompt-conditioned 
policy space

good

xx d

bad

xx d

*QPOˆ
ref

EXPOˆ


QPOˆ


gap

EXPO*

ref
ˆ
   

Similar EXPO/QPO 
performance

Disparate 
EXPO/QPO 

performance

Figure 1: Preservation of optimal policies; proposed EXPO
approach (Sec. 4) included for added context. The dashed
blue line divides prompt space into regions where πref per-
forms poorly (right side, dbadx ) from regions where it is
already near optimal (left side, dgoodx ). Within dbadx we ob-
serve consistent movement towards π∗ as desired; however,
within dbadx we see that π̂QPO

θ introduces an unwanted gap
from π∗ (unlike EXPO).

when we zoom in to examine DPO and IPO specifically.
Both losses (i.e., (7) and (9)) depend on πθ exclusively as
a function of log

[
πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x)

]
, which equates to zero

whenever πθ = πref, regardless of preference data. And yet
by straightforward inspection, we observe that both DPO
and IPO losses can always be reduced further as this log
factor moves away from zero for virtually any empirical
preference distribution. This forces πθ away from πref, even
when πref = π∗, however the latter is defined.

3.2. Suboptimal Interpolation

As the underlying goal shared by all approaches is to bal-
ance proximity to a reference policy πref with respect for
the human preference model p∗, a non-negative trade-off
parameter λ ∈ [a, b] that allows for interpolating between
these competing objectives is inevitable, where a ∈ R and
b ∈ R are lower and upper bounds respectively.2 In this
section we examine more closely the nature of loss function
minimizers as λ is varied, zooming in on their behavior
in the limit as λ → a and λ → b. To this end, we first
introduce the following definitions :

Definition 3.2. We say that an arbitrary preference opti-
mization loss ℓ(πθ, πref, λ) satisfies the strong interpolation
criteria (SIC) if the following hold:

1. limλ→a argminπθ
ℓ(πθ, πref, λ) = π∗;

2Depending on the method, if a = 0 or b = ∞ we may replace
the λ range with an open set.

4



Explicit Preference Optimization: No Need for an Implicit Reward Model

Interpolation Behavior

*



ref0 ← λ → ꚙ

policy space

( )

( )

DPO

IPO

ˆ

ˆ





 

 

Interpolation paths

*
BT optimal policy  =

*
mode of   =

( )EXPOˆ
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Figure 2: Interpolation illustration; a proposed EXPO vari-
ant (Sec. 4.1) is included for added context.

2. limλ→b argminπθ
ℓ(πθ, πref, λ) = πref;

3. For all other λ ∈ (a, b), the optimal policy interpolates
between the above two extremes.

Definition 3.3. For any prompt x and response y define3

πδ(y|x) := argmax
πθ

Ey∼πθ(y|x)
[
r∗(y, x)

]
(11)

=

{
1 if y = argmaxy′ π∗(y|x)
0 otherwise.

In this way, πδ(y|x) assigns probability one to the mode of
π∗(y|x), i.e., akin to a delta function with no generation di-
versity whatsoever. We then say that a loss ℓ(πθ, πref, λ) sat-
isfies the weak interpolation criteria (WIC) analogously
to the SIC, only for the lower bound we instead require
limλ→a argminπθ

ℓ(πθ, πref, λ) = πδ .

In summary, the only difference between these interpolation
criteria is their limiting behavior w.r.t. the lower bounding
λ; for the SIC we approach the optimal policy (however it
is defined), while for the WIC we approach a degenerate
policy with all probability mass restricted to the mode of
the optimal policy. We remark that both the SIC and WIC
cannot be simultaneously satisfied unless π∗ itself is a de-
generate delta function. See also Appendix E.2 where we
provide an illustrative example of why the intrinsic diversity
of π∗ may be preferred over πδ .

We now explore how these distinctions are reflected in the
behavior of DPO and IPO loss minimizers, with Figure 2
illustrating the basic concepts.
Proposition 3.4. Assume preference data distributed ac-
cording to Dtr from (1), and that p∗(y1 ≻ y2|x) ∈ (0, 1)
for all responses with πref(y|x) > 0. Then the DPO loss
from (7) satisfies the WIC (but not the SIC).

3See Appendix E.1 for the derivation of the right-hand equality in
(11).

In terms of practical applicability of this result, there ex-
ists one important caveat: the empirical distribution of a
finite set of labeled preference data need not actually satisfy
the conditions of Proposition 3.4. For example, suppose for
each prompt x ∈ Dx we collect only two responses {y1, y2}
along with a single preference label z, which together pro-
duce the tuple {yw, yl, x}. In this scenario, which reflects
certain publicly-available human preference datasets (Bai
et al., 2022a; Ganguli et al., 2022), the empirical distribution
of preferences will be p∗(yw ≻ yl|x) = 1 /∈ (0, 1) for all
x ∈ Dx. Notably, Proposition 3.4 will not hold, and in par-
ticular, it can be easily shown that minimizers of any valid
f -DPO loss will be completely independent of πref for all
λ ∈ (0,∞); in other words, no interpolation occurs at all;
see Appendix E.3 for the derivation. A similar observation
specific to DPO (but not f -DPO) can be found in (Ahmadian
et al., 2024). The fact that DPO-based solutions may still
reflect πref in practice, and more-so as λ increases, relates
to implicit constraints and subtle regularization effects as
detailed in (Kong et al., 2025).

Proposition 3.5. Assume preference data distributed ac-
cording to Dtr from (1). Then the IPO loss from (9) satisfies
the WIC (but not the SIC).

Comparing Proposition 3.5 with Proposition 3.4, we observe
that IPO maintains its ability to interpolate under broader
conditions than DPO, particularly in the empirical sampling
regime involving binary probability values. That being said,
neither DPO nor IPO satisfy the SIC, which motivates con-
sideration of alternative losses that do, at least if our priority
is to actually achieve the SIC (which of course may depend
on the application scenario). For this purpose, it turns out
that selections beyond the family of QPO objectives (which
includes DPO, IPO, GPO, and f -DPO) are necessary per
the following:

Theorem 3.6. Assume preference data distributed accord-
ing to Dtr from (1). Then no possible QPO loss from (10)
will satisfy the SIC.

4. Explicit Preference Optimization
Motivated by the analysis in Section 3, we now examine
alternative objective functions outside of the QPO family
adhering to the following desiderata:

1. Perservation: Capable of selectively preserving an op-
timal policy in ideal regimes, while simultaneously im-
proving the policy in regions of poor performance (from
Section 3.1);

2. Interpolation: Smoothly interpolates between an opti-
mal policy and the reference policy, i.e., it achieves the
SIC (from Section 3.2).
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We consider two candidates targeting these desiderata, a so-
called compositional loss denoted ℓcEXPO, and a regression-
like loss (loosely motivated by IPO), referred to as ℓrEXPO.

Before proceeding however, we must establish a concrete,
meaningful conception of optimality that is actually worth
achieving by our proposed approach. For this purpose we
will henceforth refer to π∗ as a BT-optimal policy whenever

p∗(y1 ≻ y2|x) =
π∗(y1|x)

π∗(y1|x) + π∗(y2|x)
. (12)

In general, any preference distribution expressible via (2)
can be uniquely formed w.l.o.g. using (12); see Appendix
E.1 for further details. Note also that from an intuitive
standpoint, a BT-optimal policy so-defined is such that
p∗(y1 ≻ y2|x) > 1/2 implies that π∗(y1|x) > π∗(y2|x).
Overall then, our notion of optimality is not arbitrary as it
reflects the unique policy consistent with the assumed BT
preference model and associated ground-truth p∗.

4.1. Compositional EXPO Objective

Consider a loss, composed of separable supervised and
unsupervised factors, in the general form

ℓcEXPO(πθ, πref, λ) := ℓsup(πθ) + λℓunsup(πθ, πref) =

E{yw,yl,x}∼Dtr

[
dsup

[
πθ(yw|x), πθ(yl|x)

]]
(13)

+ λEy∼πref(y|x),x∼Dx

[
dunsup

[
πθ(y|x), πref(y|x),

]]
,

where dsup serves as a supervised penalty over labeled train-
ing tuples {x, yw, yl} while dunsup represents an additional
regularization term independent of labeled preferences. We
remark that objectives in the form of (13) are natural candi-
dates for SGD given that all sampling is independent of θ,
unlike the regularized loss adopted by RLHF, which requires
samples from πθ(y|x).

Supervised Term: After first defining

pθ(z|y1, y2, x) :=

{
πθ(y1|x)

πθ(y1|x)+πθ(y2|x) if z = 1
πθ(y2|x)

πθ(y1|x)+πθ(y2|x) if z = 0
(14)

we then consider the supervised term ℓsup(πθ) =

E{y1,y2}∼πref(y|x),x∼Dx
KL

[
p∗(z|y1, y2, x)||pθ(z|y1, y2, x)

]
≡ E{yw,yl,x}∼Dtr

[
log

(
1 +

πθ(yl|x)
πθ(yw|x)

)]
. (15)

Please see Appendix E.4 for the derivation of this key equiva-
lence. Importantly, because the KL-divergence is minimized
iff p∗(z|y1, y2, x) = pθ(z|y1, y2, x), the optimal solution to
ℓsup(πθ) will necessarily recover the BT-optimal distribution
unlike minimization of an arbitrary reward; Section 4.3 will
formalize this notion.

Unsupervised Term: For the unsupervised term in (13)
we simply adopt

ℓunsup(πθ, πref) = Ex∼Dx

[
KL

[
πref(y|x)||πθ(y|x)

]]
≡ −Ey∼πref(y|x),x∼Dx

[
log πθ(y|x)

]
, (16)

ignoring terms independent of πθ. Like (15), this expression
also does not require sampling from πθ. That being said,
(16) can exploit out-of-preference data (meaning unlabeled
responses), and prior work (Li et al., 2024) has argued for
the merits of using such data in broader RLHF contexts. (It
may also be reasonable to consider switching ℓunsup(πθ, πref)
to a reverse-KL term and optimize with REINFORCE per
general observations from (Ahmadian et al., 2024); however,
we do not pursue this direction further here.)

4.2. Regression-based EXPO Objective

We next turn to our second proposed EXPO loss ℓrEXPO, with
structure more closely related to IPO, but a completely inde-
pendent (and simpler) derivation and notably different final
attributes to be discussed below and in Appendix E.5.

Establishing a Shared Probability Space: Given that hu-
man preference optimization seeks to find a policy reflecting
both the human preference distribution p∗ and a pre-trained
reference policy πref, it is natural to form a loss that simply
penalizes deviations from the average of two factors, one
representing the true preference distribution, the other rep-
resenting the reference policy. The only unresolved issue is
how to frame this averaging in a tractable apples-to-apples
manner, noting that pairwise preference distributions and
reference policies operate in different probability spaces.

Fortunately, in deriving ℓcEXPO we already motivated the use
of πθ to induce the parameterized preference distribution
pθ(z|y1, y2, x) ≡ pθ(y1 ≻ y2|x). Analogous to (14) we
may then also define pref(y1 ≻ y2|x) to facilitate averaging
in a shared probability space with p∗(y1 ≻ y2|x). From
here, our revised goal is simply to produce a policy such
that the induced preference distribution pθ(y1 ≻ y2|x) is
close to a weighted average of p∗(y1 ≻ y2, x) and pref(y1 ≻
y2|x), all of which are directly comparable as preference
distributions in the same probability space.

Regression to Weighted Average: Per the developments
from above, we explicitly penalize deviations of pθ from a
weighted average of p∗ and pref via the EXPO loss

ℓrEXPO(πθ, πref, λ) := E{yw,yl,x}∼Dtr

[(
pθ(yw ≻ yl|x)

−
[
λpref(yw ≻ yl|x) + (1− λ)p∗(yw ≻ yl|x)

])2
]

(17)
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with λ ∈ [0, 1]. Therefore, by design this loss favors solu-
tions such that pθ(y1 ≻ y2|x) ≈

λpref(y1 ≻ y2|x) + (1− λ)p∗(y1 ≻ y2|x), (18)

where the relative importance of pref versus p∗ is modulated
by λ. From here, although we do not have access to π∗, and
therefore cannot directly compute (17) in its current form
using (12), the following result provides a workaround:

Proposition 4.1. The loss from (17) satisfies
ℓrEXPO(πθ, πref, λ) ≡

E(yw,yl,x)∼Dtr

[(
pθ(yw ≻ yl|x) − (19)[

λpref(yw ≻ yl|x) + (1− λ)
])2

]
.

As all quantities within the revised expectation from (19) are
known in closed form, we can now easily obtain unbiased
estimates of the gradient via sampling as needed for SGD
optimization. While ℓrEXPO bears some resemblance to the
quadratic IPO loss from (9), the EXPO derivation is more
transparent, requiring no reparameterization tricks nor de-
pendencies on unstable limiting hyperparameter behaviors;
see Appendix E.5 for further details. And importantly, both
ℓrEXPO and ℓcEXPO possess key attributes that IPO (and other
related DPO-like methods) fail to achieve as discussed next.

4.3. Shared Properties of EXPO Objectives
In this section we denote ℓEXPO(πθ, πref, λ) as either EXPO
loss, namely, ℓcEXPO instantiated using (15) or (16) or ℓrEXPO

as defined via (19); the two main results we now present
apply equally to either.

Proposition 4.2. Assume a π∗ satisfying (12), and un-
der the same setup as Theorem 3.1, let π̂EXPO

θ :=
argminπθ

ℓEXPO(πθ, πref, λ). Then π̂EXPO
θ = π∗ for all

x ∈ dgoodx including in cases where dist[π̂EXPO
θ , π∗] <

dist[πref, π
∗] for x ∈ dbadx .

Per this result, minimizers of ℓEXPO(πθ, πref, λ) are capable
of preserving πref in regions dgoodx where performance is
strong relative to a BT-optimal π∗, while concurrently im-
proving performance in other areas where it is not. Figure 1
visualizes this unique EXPO capability.

Proposition 4.3. ℓEXPO(πθ, πref, λ) satisfies the SIC with π∗
satisfying (12).

Figure 2 contrasts the EXPO-obtainable SIC property with
the WIC achieved by prior methods. Note that the figure
illustrates EXPO instantiated via ℓcEXPO, but reflects ℓrEXPO

equally well for the revised interpolation range λ ∈ [0, 1].

4.4. Final Contextualization w.r.t. Prior Models
In Section 3 we established that a broad class of DPO-related
models are incapable of either preserving optimal policies

or explicitly interpolating between an optimal policy and
a reference policy. Moreover, these limitations persist re-
gardless of how optimality is defined. In contrast, we have
herein derived new EXPO preference objectives (outside the
broad, existing QPO family) that not only navigate around
the aforementioned shortcomings, but do so w.r.t. a prin-
cipled specification of the optimal policy π∗. Namely, by
design our EXPO objectives preserve the unique policy
aligned with the ground-truth preference distribution p∗,
and likewise interpolate between this policy and πref.

We conclude with a remark regarding the underappreci-
ated role of learning constraints when interpreting many of
the most popular QPO family members. Specifically, the
core reparameterization from (6) that establishes DPO as
an idealized instantiation of RLHF is based on the uncon-
strained optimization problem from (5); likewise for the
analogous reparameterizations adopted by IPO and f -DPO.
However, as rigorously investigated in (Kong et al., 2025),
once widely-adopted learning constraints are introduced dur-
ing preference optimization (e.g., early stopping, weight de-
cay, etc.), the once-transparent motivational association with
RLHF can be obscured. In this regard, we emphasize that
none of the derivations used to motivate ℓEXPO(πθ, πref, λ)
variants rely on unconstrained optimization to form a repa-
rameterized objective. As such, the inevitable introduction
of such constraints in practice does not compromise the
EXPO origin story. In other words, since EXPO is not
based on any implicit association with RLHF in the first
place, adding constraints that might otherwise compromise
such an association poses no issue.

5. Empirical Validation
We first present a series of synthetic experiments adapted
from (Azar et al., 2024) (which in deriving IPO served
as initial motivation for our work) to highlight aspects of
EXPO behavior vis-à-vis our proposed interpolation and
preservation desiderata. As the most relevant published
points of reference, we contrast with DPO, IPO, and f -DPO;
for the latter we choose the Jensen–Shannon divergence,
which next to the reverse-KL implicitly assumed by DPO,
performed well in prior experiments (Wang et al., 2024a).
We then push beyond (Azar et al., 2024), which presents no
real-world validation of IPO or other methods, and compare
our EXPO framework using the Anthropic Helpfulness and
Harmlessness (HH) real-world preference dataset (Bai et al.,
2022a; Ganguli et al., 2022). For space considerations, some
experiment details, including hyperparameters and training
setups, are deferred to Appendix C. We note here though
that in producing EXPO results on synthetic data we adopt
ℓcEXPO; results with ℓrEXPO converge similarly.

Interpolation Tests: As in (Azar et al., 2024) we con-
sider the bandit setting with a discrete space of three re-
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EXPO

Figure 3: Support for Sections 3.2 and 4.3 interpolation analysis. Dashed lines represent BT-optimal preference probabilities
π∗, while solid lines are model learning curves for λ = 10−5 (small). Only EXPO converges to π∗, others converge to πδ , a
degenerate solution with no generative diversity; instead all mass concentrated on just a single response at odds with the
ground-truth, BT-optimal policy underlying the data.

Figure 4: Further support for interpolation analysis. Each plot displays the final converged probability distributions πθ(y)
across varying λ (small to large) under the same conditions as in Figure 3. As λ becomes small, only EXPO converges to the
BT-optimal policy π∗; see left-hand side of each plot. The others converge to the mode of the optimal policy consistent with
expectations and Figure 3. Meanwhile, as λ grows large all methods converge to πref; right-hand side of each plot. See also
Appendix A.4 for the corresponding convergence curves with a large fixed λ. For intermediate λ values EXPO naturally
interpolates between π∗ and πref unlike the other approaches.

sponses/actions Y = {ya, yb, yc} and create a dataset of la-
beled response pairs as

{
{ya, yb}, {yb, yc}, {ya, yc}

}
, i.e.,

a total ordering consistent with the BT model. Preferences
are assigned via a ground-truth p∗(y1 ≻ y2) computed using
(12) with π∗(ya) = 0.6, π∗(yb) = 0.3, and π∗(yc) = 0.1.
Furthermore, again following (Azar et al., 2024) we form
our trainable policy as πθ(yi) = softmax[θi] with θ ∈ R3

optimized using Adam over each different preference loss.
Results using a small λ = 10−5 are shown in Figure 3,
where we observe that EXPO (we use closely converges to
the BT-optimal ground-truth solution, while DPO and IPO
converge to πδ (the mode of π∗) consistent with Proposi-
tions 3.4 (DPO), 3.5 (IPO), and 4.3 (EXPO), as well as The-
orem 3.6 which applies to f -DPO. Additional interpolation
results at convergence traversing different λ are depicted
in Figure 4; here we observe that only EXPO smoothly
interpolates between π∗ and πref.

Preservation Tests: We next modify the setting from
above to include two input prompts {xg, xb} chosen such
that xg ∈ dgoodx and xb ∈ dbadx sampled with equal proba-
bility. We then specify the corresponding response space
Y(xg) = {yga, ygb, ygc}; Y(xb) = {yba, ybb, ybc} and
prompt-dependent probabilities (see Appendix C.1). For
the reference policy we set πref(y|xg) = π∗(y|xg) and
πref(y|xb) ̸= π∗(y|xb). We generate pair-wise preference
data as before, only now with prompt-dependent responses.
Results shown in Figure 5 are in direct accordance with
Theorem 3.1 and Proposition 4.2, whereby EXPO is the
only approach that preserves a strong policy with prompt
xg ∈ dgoodx while at the same time improving performance
relative to πref for xb ∈ dbadx over all λ.

Testing on Real-World Preference Data: Finally, to ex-
plore EXPO in a real-world scenario, we train a Pythia 2.8B

8



Explicit Preference Optimization: No Need for an Implicit Reward Model

EXPO

Figure 5: Support for Sections 3.1 and 4.3 preservation
analysis while varying λ. In the top plot prompts are drawn
from dgoodx where πref = π∗, and yet as λ is reduced existing
methods produce a policy that increasingly deviates from
π∗. In contrast, in the bottom plot prompts are drawn from
dbadx ; here improved performance over πref occurs only at
values below the dashed blue line. Unlike prior approaches,
a broad λ range allows EXPO to both improve upon πref on
these bad cases, while also simultaneously preserving π∗ on
the good cases.

model (Biderman et al., 2023) on the Anthropic Helpful-
ness and Harmlessness (HH) preference dataset (Bai et al.,
2022a; Ganguli et al., 2022) and the IMDb dataset (Maas
et al., 2011; Wang et al., 2024a). Notably, the Anthropic
HH dataset is the largest benchmark used in (Rafailov et al.,
2024). Following their settings, we first execute supervised
fine-tuning (SFT) using yw values as the target response.
We then use this SFT model as πref for training DPO, IPO
and EXPO. Given that alignment results (our focus) from
(Wang et al., 2024a) already show that reverse KL (i.e.,
DPO) works best among f -divergences, we do not com-
pare with more f -DPO selections here and other recent
unpublished baselines (see Appendix B). We use GPT-4 to
evaluate the win rate of the generated responses from each
model against the chosen yw on the test set for single turn
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Figure 6: Win rate comparisons on real-world datasets An-
thropic HH and IMDb; see Appendix A for other examples
and additional baselines.

dialogues. Results in Figure 6 show a significant improve-
ment using both EXPO variants. We emphasize that our
comparisons cover both helpfulness and harmlessness (see
Appendix C.2), whereas the original DPO paper (Rafailov
et al., 2024) only tests the former.

Additional Real-World Results: In Appendix A we
present additional experimental testing covering other base-
line models outside of the QPO class, real-world data, and
larger LLM architectures. We also evaluate the sample diver-
sity of model outputs after preference optimization, where
we might expect EXPO to have some advantage.

6. Conclusions
In this work we have introduced EXPO as a convenient sub-
stitute for DPO and related preference optimization schemes.
Rather than relying on RLHF-based reparameterizations
and implicit rewards, EXPO is predicated on explicit ob-
jective functions satisfying intuitive desiderata that prior
approaches do not achieve.
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Impact Statement
Aligning the output of LLMs with human preferences has
obvious, well-documented benefits. However, there nonethe-
less remains the risk that tools designed to improve LLM
responses could be repurposed for nefarious aims. For ex-
ample, preference data labels could potentially be modified
to train models, using preference losses such as ours, that
intentionally produce toxic content.
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A. Additional Experiments
In this section we present experimental results covering additional baseline models, real-world datasets, and larger LLM
architectures. We also include testing of the sample diversity of model outputs after preference optimization.

A.1. Comparison with More Baselines on Anthropic HH Dataset

The SimPO approach (Meng et al., 2024) proposes what amounts to setting πref to a constant in the DPO loss (i.e., the
reference policy is not actually used at all), while also introducing two additional modifications: (i) inclusion of a margin
offset analogous to the procedure from (Amini et al., 2024), and (ii) use of length normalization as is commonly been applied
to DPO-like models even if not explicitly stated (Kashif, 2024). Such orthogonal modifications can be equally applied to
our proposed EXPO framework as well in future work to boost performance, a downside being additional hyperparameter
tuning to handle the margin offset. Moreover, by excluding the reference policy completely, special care must be taken to
avoid overfitting, i.e., training until convergence is never feasible with SimPO.

Meanwhile, the KTO model (Ethayarajh et al., 2024) was originally designed to target scenarios where labeled data pairs
are not necessarily available at all, but instead, only individual examples labeled as either good or bad. Using ideas from
prospect theory, KTO can be effective in practice, although like SimPO it requires an additional tunable hyperparameter.
Moreover, the proposed KTO training loss is not explicitly optimized, as pass-through gradients are used for certain factors,
which could in principle compromise convergence.

Collectively, SimPO and KTO fall outside of the QPO family we investigate, and are largely outside of our scope. However,
we nonetheless perform additional experiments using these baselines for context given their growing influence. We adopt
the same setup in the main paper for the Anthropic HH dataset. Results are shown in Figure 7, where our EXPO approach
remains the top performer, even without the benefit of additional hyperparameters/penalty factors as with SimPO and KTO.
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Figure 7: Comparison with additional baselines (outside the QPO family). Both KTO and SimPO benefit from the inclusion
of additional hyperparameters (i.e., tunable degrees-of-freedom) that define the corresponding training objectives. And yet
EXPO still remains competitive, even with just a single hyperparameter associated with its loss.

A.2. Diversity Results with Anthropic HH Dataset

To evaluate response diversity, we followed the protocol from Section 5.3 of (Tang et al., 2024). For each prompt in the
Anthropic HH test set, we generated 25 responses using nucleus sampling (p = 0.95, temperature=1.0). Since certain
experimental details—such as the maximum number of tokens—were not reported in the original paper, we adopted our own
settings for these parameters. Diversity was measured using three complementary metrics: predictive entropy (normalized
by token length to avoid bias toward longer responses), self-BLEU, and distinct-n scores. As shown in Table 1, EXPO

13



Explicit Preference Optimization: No Need for an Implicit Reward Model

variants consistently demonstrate higher diversity compared to DPO across all metrics.

Table 1: Diversity results on Anthropic HH dataset.

Method Normalized Entropy ↑ Self-BlEU ↓ Distinct-1 ↑ Distinct-2 ↑
DPO 0.033 0.93 0.018 0.29
EXPO (comp) 0.036 0.90 0.025 0.35
EXPO (reg) 0.035 0.88 0.023 0.33

A.3. Testing Larger Models with AlpacaEval 2

We evaluate our models using the Llama-3-Base-8B (AI@Meta, 2024) on the widely-used open-ended instruction-following
benchmark AlpacaEval 2 (Li et al., 2023). AlpacaEval 2 consists of 805 questions from five datasets and employs GPT-4
Turbo as both the baseline model and the judge model. Following AlpacaEval 2’s evaluation protocol, we report results for
both the raw win rate (WR) and the length-controlled win rate (LC) (Dubois et al., 2024), the latter designed to reduce the
influence of model verbosity. Detailed experiment settings are provided in Appendix C.4. Results in Table 2 demonstrate
that EXPO (reg) achieves a notable improvement in length-controlled win rate compared to other methods.

Table 2: Win rate and length-controlled (LC) win rate results on AlpacaEval 2. Note that results here may not be directly
comparable with prior work for two reasons: (i) differences in batch size due to computational constraints, and (ii) updates
to AlpacaEval upon which all evaluations depend.

Method Win Rate Win Rate (LC)

SFT 6.33 4.04
DPO 14.62 16.71
IPO 11.16 13.31
EXPO (reg) 14.64 20.32

A.4. Additional Results with Synthetic Data

Figure 8: Converged probability distributions of πθ(y) for DPO, IPO, f -DPO and EXPO with large λ (here λ = 100). All
methods immediately stabilize around πref, the initialization point, as expected. This figure can be viewed as the complement
of Figure 4 in the main text; the only difference is the size of λ (small vs large).
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B. Extended Related Work
In this section we call attention to additional recent work proposing modifications of the original DPO paradigm, providing
relevant analysis of DPO and other preference model properties, and/or comparing online versus offline preference
optimization. We believe these efforts to be complementary to our contribution, as well as the many existing DPO-like
extensions by others discussed in the main body of our paper (i.e., within the broad QPO family we define) and in Appendix
A.1 above (i.e., SimPO and KTO).

Algorithmic Enhancements to DPO: There exist multiple DPO extensions that involving supplementing the original loss
from (7) with additional penalty factors targeting potential failure modes. For example, based on the observation that DPO
may exhibit a decrease in accuracy when applied to preference data with small edit distances between responses, the Smaug
framework (Pal et al., 2024) augments the DPO loss with an additional factor designed to maintain high log-likelihoods in
such cases. Meanwhile, sensitivity to response lengths are investigated in (Park et al., 2024), where as a counter-measure,
the DPO loss is supplemented with a penalty on length differences between winning and losing responses. It has also been
observed that not all preference pairs in a training data set are equal, with some preference gaps larger than others. As a
mitigation strategy for this discrepancy, the ODPO approach (Amini et al., 2024) introduces a preference offset term during
model training. While all of these methods have their merit, they each require an additional key hyperparameter that must be
tuned.

Somewhat differently, the ORPO algorithm (Hong et al., 2024) proposes an alternative to DPO that combines an odds
ratio-based penalty with a conventional negative log-likelihood SFT (i.e., supervised fine-tuning) loss. The appeal here is
that separate SFT and preference alignment phases are no longer required. Another deviation from DPO is proposed in
(Gorbatovski et al., 2024), whereby the reference policy itself is no longer fixed, but iteratively updated during training. And
finally, DPO has recently been extended to handle multimodal data (Wang et al., 2024b).

Analysis of DPO: Topics addressed by recent work include analysis of DPO learning dynamics (Im & Li, 2024), the
impact of out-of-preference data on estimation errors (Li et al., 2024), and the disproportionate rates with which the DPO loss
gradients favor reducing the probability of dispreferred responses relative to increasing the probability of desired responses
(Feng et al., 2024). Broader consideration of preference optimization spanning various DPO-based and RLHF-based
approaches is presented in (Tajwar et al., 2024).

Online vs Offline Methods: While some recent work indicates that online preference learning (as in the original RLHF
that trains using samples from πθ) may at times produce better results than offline learning (as in DPO or EXPO which only
use samples from πref), we consider three reasons to justify ongoing exploration of the latter:

• The inference that online preference learning is generally superior is to date often derived based on testing with QPO
approaches, and sometimes only DPO or even earlier techniques alone; see for example (Guo et al., 2025; Shao et al.,
2024; Song et al., 2024; Swamy et al., 2025; Tajwar et al., 2024; Xu et al., 2024). Hence the open possibility remains
that offline methods that mitigate DPO deficiencies (like our EXPO) might reset the scales in certain settings relative to
online alternatives. And crucially, some of the specific arguments provided for why DPO is outperformed by online
approaches like PPO do not apply to our EXPO. For example, in (Xu et al., 2024) it is argued that a key DPO limitation
is that it does not exploit unlabeled prompt-only data, which can then lead to undesirable biases. However, as we point in
Section 4.1, EXPO (the compositional variant ℓcEXPO) can naturally incorporate such unlabeled prompt-only data.

• Many references that argue in favor of online preference learning nonetheless suggest that DPO is still valuable when
reformulated as an online or related on-policy iterative approach; see for example (Chen et al., 2024; Lin et al., 2024;
Song et al., 2024; Swamy et al., 2025; Tajwar et al., 2024). Some even explicitly advocate for generalizing beyond
DPO to online/iterative versions of IPO and the like (Chen et al., 2024; Tajwar et al., 2024). Hence our analysis of
QPO models in general, and EXPO in particular, remains quite relevant in a wide variety of revised online or otherwise
iterative settings.

• Even if we concede that offline preference learning is at times sub-optimal, in many scenarios it is still considerably
simpler, possibly even with convergence guarantees. As such, for prototyping or resource-constrained environments
offline learning may enjoy some durable advantages.
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C. Experiment Settings
This section describes relevant experimental details not covered in the main text. Code is available at https://github.
com/lmkong020/explicit-preference-optimization.

C.1. Synthetic Data Testing Details

For the preservation and interpolation tests, we train models with the Adam optimizer (Kingma & Ba, 2014) and clip the
gradients via a max norm of 10. Experiments are run on a single A10 GPU. As models are trained until convergence in a
synthetic environment, there is negligible trial-to-trial variability. We also adopt the ℓcEXPO loss from Secion 4.1 for obtaining
EXPO performance; results with ℓrEXPO converge similarly.

For the interpolation tests, we use batch size of 20 and choose πref(ya) = 0.4, πref(yb) = 0.4, and πref(yc) = 0.2. We use
learning rate of 0.001 for DPO, IPO and f -DPO and 0.0005 for EXPO; we train DPO, IPO and EXPO for 1000 epochs and
f -DPO for 3000 epochs as we observed that it converges more slowly.

For the preservation test, we choose

Y(xg) = {yga, ygb, ygc}; Y(xb) = {yba, ybb, ybc}
π∗(yga|xg) = 0.6; π∗(ygb|xg) = 0.3; π∗(ygc|xg) = 0.1; (20)
π∗(yba|xb) = 0.4; π∗(ybb|xb) = 0.2; π∗(ybc|xb) = 0.4.

And for the reference model we select πref(yba|xb) = 0.6, πref(ybb|xb) = 0.2 and πref(ybc|xb) = 0.2. We randomly sample
examples for good and bad prompts respectively. The model parameters are θ ∈ R2×3 and we set the values of xg and xb to
the vectors [1, 0] and [0, 1] respectively.

C.2. Anthropic HH Testing Details

For the results in Figure 7, we train the base SFT model for 2 epochs and all the other models for 1 epoch, using a learning
rate of 1× 10−6 and a batch size of 40. We emphasize that the precise role of the hyperparameter λ differs for DPO, IPO,
and EXPO (with two variants based on ℓcEXPO and ℓrEXPO); see Sections 2.2, 2.3, and 4 respectively. We set λ = 0.1 for
DPO and IPO. For EXPO (reg), we set λ = 0.2; we also found that increasing λ to 0.5 did not substantially alter EXPO
performance. For EXPO (comp) we used λ = 0.05 since again, its influence is different between the two variants. Regarding
the expanded results in Figure 7, for SimPO we use λ = 2 (denoted β in the SimPO paper) and an offset of γ = 1. For
KTO, we set their β = 0.1 and use λD = λU = 1 for the desirable coefficient and undesirable coefficient.

All training was conducted using an 8×A100 40G GPU instance and the Adam optimizer (Kingma & Ba, 2014). Our code
for these experiments is based on a simple adaption of the official DPO repo from GitHub.4 Additionally, we note that the
Anthropic HH benchmark upon which these experiments are based has been released under a MIT License agreement.5

To evaluate the performance, we calculate the win rate on single-turn dialogues in the test set using GPT-4 (gpt-4o).
For this purpose we adopt a version of the prompt used in Rafailov et al. (2024) modified to consider both helpfulness
and harmlessness as shown in Figure 9. Additionally, to avoid inadvertently introducing potential bias of GPT-4 towards
selecting “Response A” or “Response B”, we uniformly at random set the former as the generated response associated
with yw. Additionally, for assessing win rate, we apply vLLM (Kwon et al., 2023) to randomly sample responses from the
Anthropic HH dataset by setting top_k = 60, top_p = 0.8, max_tokens = 256, and repetition_penalty = 1.1.

C.3. IMDb Testing Details

We train all models for one epoch, using a learning rate of 1 × 10−6 and a batch size of 64. For DPO, IPO, and EXPO
(comp), we set λ = 0.1, while for EXPO (reg), λ = 0.01. All training was conducted using an 8×A100 40G GPU instance
and the Adam optimizer (Kingma & Ba, 2014).

To evaluate the performance, we calculate the win rate on single-turn dialogues in the test set using GPT-4 (gpt-4o). For
this purpose, we adopt a version of the prompt used in (Muldrew et al., 2024). All other evaluation details follow those used
for the Anthropic HH dataset.

4https://github.com/eric-mitchell/direct-preference-optimization
5https://github.com/anthropics/hh-rlhf/blob/master/LICENSE
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I have a question and two responses from different AI models. Please analyze the 
responses and provide your assessment of which response is more helpful and harmless 
overall. Consider factors such as:

- How well each response answers the original question
- The accuracy and truthfulness of the information provided
- Potential biases, stereotyping, or controversial views expressed
- Any potential for harm or dangerous suggestions
- Clarity, coherence and usefulness of the response

Evaluate the responses on their own merits, ignoring superficial features like length 
or writing style. After analyzing both, please explain which response you believe is 
better and why.

The original question was:
{query}

Response A:
{a}

Response B:
{b}

FIRST provide a one-sentence comparison of the two responses and explain which you 
feel is more helpful and harmless. SECOND, on a new line, state only "A" or "B" to 
indicate which response is more helpful and harmless. Your response should use the 
format:
Comparison: <one-sentence comparison and explanation>
More helpful and harmless: <"A" or "B">

Figure 9: The prompt used for evaluating the win rates of the generated responses against the chosen responses for single
turn dialogues on the test set of Anthropic HH dataset. This prompt is modified from Rafailov et al. (2024) to consider both
helpfulness and harmlessness.

C.4. AlpacaEval 2 Testing Details

For the results in Table 2, we use the SFT model from (Meng et al., 2024), fine-tuned from the Llama-3-Base model on
the UltraChat-200k dataset (Ding et al., 2023), as the reference model. Preference optimization is then conducted on the
UltraFeedback dataset (Cui et al., 2024), initializing from the SFT model. For DPO and IPO, we adopt the best-performing
hyperparameters reported in (Meng et al., 2024). Specifically, for DPO, we set λ = 0.05 and use a learning rate of 5× 10−7.
For IPO, we set λ = 0.5 with the same learning rate. For EXPO (reg), we use λ = 0.2 and a learning rate of 5× 10−7. To
generate responses, we use vLLM with top_p = 1.0, temperature = 0.9, and max_new_tokens = 4096.

D. Technical Proofs
D.1. Proof of Theorem 3.1

Definition D.1. We define labeled human preference data D̄tr as some Dtr, as introduced via (1), satisfying the following
additional properties:

1. The prompts drawn from D̄tr are split between two disjoint support partitions dgoodx and dbadx , i.e., x ∈ dgoodx ∪ dbadx

with probability one, with dgoodx ∩ dbadx = ∅.

2. For each prompt x ∈ dgoodx ∪ dbadx within D̄tr, the preference distribution filling out D̄tr maintains support over a single
(prompt-dependent) response pair {y1, y2}.

3. Pair-wise preferences are dictated by a ground-truth BT model satisfying p∗(y1 ≻ y2|x) ∈ (0, 1) for all x ∈ dgoodx ∪dbadx .

4. We have p∗(y1 ≻ y2|xgood) = p∗(y1 ≻ y2|xbad) for at least one xgood ∈ dgoodx and xbad ∈ dbadx .

Although the second specification above can naturally be relaxed to address more general scenarios, doing so unnecessarily
complicates the presentation without providing sufficiently compelling additional insight. Additionally, for convenience
below we adopt dist[·, ·] to indicate an arbitrary distance measure.
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Theorem 1 (Restated formal version) Assume preference data D̄tr that satisfies Definition D.1. Furthermore, assume a
reference policy πref such that πref = π∗ for x ∈ dgoodx and dist[πref, π

∗] > 0 for x ∈ dbadx , where π∗ is a BT-optimal policy.
It follows that for any selection of (ψ, µ, λ), if

dist[π̂QPO
θ , π∗] < dist[πref, π

∗] for x ∈ dbadx , (21)

then
dist[π̂QPO

θ , π∗] > 0 for x ∈ dgoodx , (22)

where π̂QPO
θ := argminπθ

ℓQPO(πθ, πref, ψ, µ, λ).

The proof proceeds as follows. With some abuse/imprecision of notation, we first define

u(y1, y2, x) := µ

[
πθ(y1|x)
πref(y1|x)

]
− µ

[
πθ(y2|x)
πref(y2|x)

]
. (23)

Next, per the assumptions of the theorem statement and Definition D.1, we have that the QPO loss decouples as

ℓQPO(πθ, πref, ψ, µ, λ)

= E{yw,yl,x}∼D̄tr
ψ

(
µ

[
πθ(yw|x)
πref(yw|x)

]
− µ

[
πθ(yl|x)
πref(yl|x)

]
, λ

)
(24)

= Ex∼Dx

(
p∗(y1 ≻ y2|x)ψ

[
u(y1, y2, x), λ

]
+ p∗(y2 ≻ y1|x)ψ

[
u(y2, y1, x), λ

])
= Ex∼dgood

x

[
p∗(y1 ≻ y2|x)ψ[u(y1, y2, x), λ] + p∗(y2 ≻ y1|x)ψ[−u(y1, y2, x), λ]

]
+ Ex∼dbad

x

[
p∗(y1 ≻ y2|x)ψ[u(y1, y2, x), λ] + p∗(y2 ≻ y1|x)ψ[−u(y1, y2, x), λ]

]
.

Now consider a single prompt xbad drawn from dbadx and other xgood drawn from dgoodx , where p∗(y1 ≻ y2|xgood) =
p∗(y1 ≻ y2|xbad). In order to find a πθ such that dist[πθ, π∗] < dist[πref, π

∗], it must be the case that πθ(y|xbad) ̸=
πref(y|xbad), which then implies that u(y1, y2, xbad) ̸= 0. To achieve this, (ψ, µ, λ) must be chosen such that

arg min
u(y1,y2,xbad)

[
p∗(y1 ≻ y2|xbad)ψ[u(y1, y2, xbad), λ] + p∗(y2 ≻ y1|xbad)ψ[−u(y1, y2, xbad), λ]

]
̸= 0. (25)

However, to simultaneously maintain πθ(y|xgood) = πref(y|xgood) = π∗(y|xgood), it must also be true, for the same fixed
(ψ, µ, λ) tuple, that

arg min
u(y1,y2,xgood)

[
p∗(y1 ≻ y2|xgood)ψ[u(y1, y2, xgood), λ] + p∗(y2 ≻ y1|xgood)ψ[−u(y1, y2, xgood), λ]

]
= 0. (26)

But this is a contradiction, as the respective arguments that minimize (25) and (26) will be identical. Hence if (25) is true
then dist[π̂QPO

θ , π∗] > 0 when computed over x ∈ dgoodx . ■

D.2. Proof of Proposition 3.4

DPO lower limit: Given our assumption that 0 < p∗(y1 ≻ y2|x) < 1, it follows that an optimal finite reward r∗(y, x) ∈
(−∞,∞) exists. Moreover, given that x and y are drawn from finite sample spaces, there will exist finite maximum and
minimum optimal rewards, i.e., r∗(y, x) ∈ (−B,B) for some B <∞. Furthermore,

lim
λ→0

argmin
πθ

ℓRLHF (πθ, πref, r
∗, λ) = argmax

πθ

Ey∼πθ(y|x)
[
r∗(y, x)

]
= πδ(y|x). (27)

Additionally, given that the data are generated by (1), we also know that the same optimal reward satisfies

r∗ = argmin
rϕ

ℓBT (rϕ) , (28)

which is independent of πref. However, without constraints on πθ, there also exists a bijection between policy and reward
such that

λ log

[
argmin

πθ

ℓBT

(
λ log

πθ(y|x)
πref(y|x)

)]
− λ log πref(y|x) = r∗. (29)
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Hence the DPO reparameterization produces the policy given by (5) with r = r∗. From this point we then observe that

lim
λ→0

1

Z(x)
πref(y|x) exp

[
1

λ
r∗(y, x)

]
= πδ(y|x), (30)

noting that for any α > β > 0 we have exp
[
α
λ

]
/ exp

[
β
λ

]
= exp

[
(α−β)

λ

]
→ ∞ as λ → 0. Hence we have fulfilled the

requirements of the lower limit.

DPO upper limit: The upper limit follows trivially from the fact that for any bounded reward

lim
λ→∞

1

Z(x)
πref(y|x) exp

[
1

λ
r(y, x)

]
=

1

Z(x)
πref(y|x) exp[0] = πref. (31)

■

D.3. Proof of Proposition 3.5

Establishing the upper and lower limiting values for IPO follows a similar pattern to the proof of Proposition 3.5. However,
because the IPO reward is bounded between zero and one by definition, we ultimately do not require any constraint on
p∗(y1 ≻ y2|x) as we did for DPO. ■

D.4. Proof of Theorem 3.6

We first define
ρ̂ := argmin

ρ
E{yw,yl,x}∼D̄tr

ψ
[
ρ(yw, yl, x, πθ, πref), λ

]
. (32)

Now suppose that for a given tuple {yw, yl, x} we observe

ρ̂(yw, yl, x, πθ, πref) = log

[
π̂θ(yw|x)πref(yl|x)
π̂θ(yl|x)πref(yw|x)

]
= B(λ) (33)

for some optimal π̂θ and fixed λ ∈ (0,∞), where B(λ) ∈ (0,∞) is a finite value dependent on λ through the definition of
ψ. Therefore, we have that

π̂θ(yw|x)
π̂θ(yl|x)

= exp

(
B(λ) + log

[
πref(yw|x)
πref(yl|x)

])
. (34)

Obviously this ratio will depend on πref for any fixed B(λ). To satisfy the SIC though, in the limit λ → 0 the optimized
policy π̂θ must be independent of πref and converge to π∗. However, the only way for π̂θ to be independent of πref is if
limλ→0B(λ) = ±∞. But if so, only the WIC is achievable, not the SIC. ■

D.5. Proof of Propositions 4.2 and 4.3

These results both follow directly from the original design of EXPO losses. First consider the case where ℓEXPO(πθ, πref, λ) =
ℓcEXPO(πθ, πref, λ). Regarding Proposition 4.2, given that πref = π∗ for all x ∈ dgoodx , then for the unsupervised term we have

argmin
πθ

Ey∼πref(y|x),x∈dgood
x

[
KL

[
πref(y|x)||πθ(y|x)

]]
= π∗. (35)

And for the supervised term we have

argmin
πθ

E{y1,y2}∼πref(y|x),x∼Dx

[
KL

[
p∗(z|y1, y2, x)||pθ(z|y1, y2, x)

]]
= π∗. (36)

Hence overall, for any x ∈ dgoodx , πθ = π∗ will be optimal for any λ, as this selection independently optimizes the constituent
terms. Moreover, this optimality is independent of optimization over x ∈ dbadx , which retains the flexibility to achieve
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solutions with dist[π̂EXPO
θ , π∗] < dist[πref, π

∗]. From this Proposition 4.2 immediately follows. Additionally, Proposition
4.3 stems from the same basic line of reasoning. For completeness, we note that when λ→ 0, only the supervised term will
be minimized (which recovers the BT-optimal policy as above), while when λ→ ∞, the unsupervised term will dominate
the optimization (which transparently produces πref).

And finally, both Propositions 4.2 and 4.3 ℓEXPO(πθ, πref, λ) = ℓcEXPO(πθ, πref, λ) transparently follow from the construction
of (17) and an analogous line of reasoning as detailed above, only now with lambda ∈ [0, 1]. ■

D.6. Proof of Proposition 4.1

Recall from Section 2 that the expectation over tuples {yw, yl, x} ∼ Dtr is equivalent to an expectation over the revised
generative process

{z, y1, y2, x} ∼ Dtr := z ∼ p∗(z|y1, y2, x), {y1, y2} ∼ πtr(y|x), x ∼ Dx. (37)

From this expression, first x is drawn from some prompt distribution Dx, then conditioned on this prompt, two responses
{y1, y2} are drawn from a training policy πtr (which could be equal to πref, but the specific choice does not impact the
derivations or conclusions below). And finally, the indicator variable z = I[y1 ≻ y2|y1, y2, x] is adopted to reflect the
conditional preference distribution provided by human annotators; namely, z = 1 indicates y1 ≻ y2, while z = 0 if y2 ≻ y1.
In this way, p∗(z|y1, y2, x) ≡ p∗(y1 ≻ y2|x) per the original specification in Section 2.

Given (37), our task reduces to showing that, for any fixed {y1, y2, x}, the remaining expectation over z is such that an
equivalence between (17) and (19) is maintained. To demonstrate this, we introduce the simplifying notation

uθ := pθ(y1 ≻ y2|x), uref := pref(y1 ≻ y2|x), u∗ := p∗(y1 ≻ y2|x), and (38)

u′θ := pθ(y2 ≻ y1|x) = 1− uθ, u′ref := pref(y2 ≻ y1|x) = 1− uref, u′∗ := p∗(y2 ≻ y1|x) = 1− u∗. (39)

Note that for a non-trivial generative process, we are implicitly assuming that y1 ̸= y2; we will return to this assumption
below.

Now for any fixed {y1, y2, x} within (17), the remaining expectation over z is given by

u∗ (uθ − [λuref + (1− λ)u∗])
2
+ u′∗ (u′θ − [λu′ref + (1− λ)u′∗])

2

= (uθ − [λuref + (1− λ)u∗])
2 (40)

= u2θ − 2 [λuref + (1− λ)u∗]uθ + [λuref + (1− λ)u∗]
2
.

Meanwhile, analogously for (19), we have the expectation

u∗ (uθ − [λuref + (1− λ)])
2
+ u′∗ (u′θ − [λu′ref + (1− λ)])

2

= u∗ (uθ − λuref + λ− 1)
2
+ (1− u∗) (1− uθ − λ+ λuref − 1 + λ)

2

= u∗ (uθ − λuref + λ− 1)
2
+ (1− u∗) (uθ − λuref)

2

= u2θ + [2u∗ (−λuref + λ− 1) + (1− u∗) (−2λuref)]uθ + C

= u2θ − 2 [(1− λ)u∗ + λuref]uθ + C, (41)

where C is a constant. As this expression is equivalent to (40) irrelevant constants notwithstanding, we have completed
the proof, with the exception of addressing the possibility that y1 = y2. However, if y1 = y2 then it follows by definition
that uθ = u′θ = uref = u′ref = u∗ = u′∗ = 1/2. This scenario does not impact (40) and results in only an inconsequential
constant being added to (41) which can be absorbed into C. ■
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E. Additional Supporting Derivations and Analysis
E.1. BT-Optimal Policies and the Derivation of (11)

Note that

p∗(y1 ≻ y2|x) =
exp[r∗(y1, x)]

exp[r∗(y1, x)] + exp[r∗(y2, x)]
=

exp[r∗(y1,x)]
Z(x)

exp[r∗(y1,x)]
Z(x) + exp[r∗(y2,x)]

Z(x)

=
π∗(y1|x)

π∗(y1|x) + π∗(y2|x)
, (42)

where π∗(y|x) := exp[r∗(y1,x)]
Z(x) and Z(x) :=

∑
y exp[r

∗(y, x)]. The policy π∗ so-defined is necessarily BT-optimal by
construction. We also remark that an optimal reward r∗ is generally unique when conditioned on some form of normalization
(Bong & Rinaldo, 2022), hence π∗ will also be unique by virtue of dividing by Z(x).

From here then we have

argmax
πθ

Ey∼πθ(y|x)
[
r∗(y, x)

]
= argmax

πθ

Ey∼πθ(y|x)
[
r∗(y, x)

]
= argmax

πθ

Ey∼πθ(y|x)

[
exp[r∗(y1, x)]

Z(x)

]
= argmax

πθ

Ey∼πθ(y|x)
[
π∗(y|x)

]
=

{
1 if y = argmaxy′ π∗(y′|x)
0 otherwise , (43)

which is the definition of πδ . ■

E.2. Illustration of Key π∗/πδ Distinction

Per the discussion in Appendix E.1, we know that optimizing a policy solely to maximize rewards will trivially produce πδ ,
namely, a degenerate policy assigning all mass to the single response with maximal reward. While there may exist cases
where this is desirable, if the goal is an actual generative model capable of diverse output responses reflecting gradations of
human preferences, it is generally not.

As a simple hypothetical example, suppose we have three candidate responses {ya, yb, yc} in the bandit setting, where ya
and yb are similarly preferred by humans, but ya very slightly more so, while y3 is heavily dispreferred. To align with this
preference distribution, an optimal policy π∗ may ideally generate y1 and y2 roughly equally, while y3 will be avoided.
Meanwhile, reward maximization will generate y1 with probability one and both y2 and y3 will be excluded, i.e., πδ

produces no diversity at all. ■

E.3. Further f -DPO Analysis

f -PDO represents a novel generalization of DPO, but there remain certain aspects worth considering.

Minima that ignore the reference policy: Consider general f -DPO losses as described in Section 2.4, which as special
cases of QPO are expressible in the form

ℓQPO(πθ, πref,− log σ[λ(·)], f ′, λ) = (44)

E{yw,yl,x}∼Dtr − log σ

(
λf ′

[
πθ(yw|x)
πref(yw|x)

]
− λf ′

[
πθ(yl|x)
πref(yl|x)

]
, λ

)
.

In addition to the requirements on f to form an f -divergence, to produce a valid f -DPO loss per Theorem 1 from (Wang
et al., 2024a) it must be that f ′ is invertible with 0 /∈ domain of f ′. Therefore the domain of f will be (0,∞) and
f ′(u) → −∞ as u → 0 because of convexity. But if this is the case, upon inspection of (44) we observe that when

21



Explicit Preference Optimization: No Need for an Implicit Reward Model

πθ(yl|x) → 0, then for any fixed πθ(yw|x) > 0 the input argument to the logistic function σ(·) = 1
1+exp[−(·)] will converge

to infinity, pushing the output to one and subsequently minimizing the corresponding negative-log factor. And so the global
optimum can be achieved independent of the value of πref. ■

E.4. Derivation of (15)

dsup(πθ, πref) = E{y1,y2}∼πref(y|x),x∼Dx

[
KL

[
p∗(z|y1, y2, x)||pθ(z|y1, y2, x)

]]
= −E{y1,y2}∼πref(y|x),x∼Dx

[
Ez∼p∗(z|y1,y2,x) log pθ(z|y1, y2, x)

]
+ C

≡ −E{y1,y2}∼πref(y|x),x∼Dx

[
p∗(z = 1|y1, y2, x) log pθ(z = 1|y1, y2, x)

]
+ − E{y1,y2}∼πref(y|x),x∼Dx

[
p∗(z = 0|y1, y2, x) log pθ(z = 0|y1, y2, x)

]
,

= −E{y1,y2}∼πref(y|x),x∼Dx

[
p∗(z = 1|y1, y2, x) log pθ(z = 1|y1, y2, x)

+ p∗(z = 1|y2, y1, x) log pθ(z = 1|y2, y1, x)
]

= −E{yw,yl,x}∼Dtr

[
log pθ(z = 1|yw, yl, x)

]
= −E{yw,yl,x}∼Dtr

[
log

(
πθ(yw|x)

πθ(yw|x) + πθ(yl|x)

)]
,

= E{yw,yl,x}∼Dtr

[
log

(
1 +

πθ(yl|x)
πθ(yw|x)

)]
, (45)

where C is a constant independent of θ. Additionally, the third-to-last equality stems from the definition of how tuples
{yw, yl, x} are sampled. In particular, for a given pair {y1, y2}, by definition a proportion p∗(z = 1|y1, y2, x) of the time
yw = y1, while a proportion p∗(z = 0|y1, y2, x) = p∗(z = 1|y2, y1, x) of the time yw = y2. Hence

p∗(z = 1|y1, y2, x) log pθ(z = 1|y1, y2, x) + p∗(z = 1|y2, y1, x) log pθ(z = 1|y2, y1, x)
≡ log pθ(z = 1|yw, yl, x) (46)

when the latter is averaged over the preference distribution. ■

E.5. Further Comparisons between IPO and EXPO

Although originally designed to address certain DPO shortcomings, IPO introduces other potential sources of instability.
In particular, the inherent dependency on factors log

[
πref(yl|x)π−1

ref (yw|x)
]

and (2λ)−1, both of which may have arbitrary
magnitudes, entails that the Lipschitz constant of (9) may be arbitrarily large, destabilizing SGD. Moreover, if hypothetically
πref already closely approximates an ideal policy, minimizing (9) can actually lead to a degradation in quality (see Section
3.1).

In this regard, may be tempting to consider reparameterizing the IPO loss analogous to ℓrEXPO so as to accommodate λ ∈ [0, 1]
and reduce potential pathways for instability. But this is not a viable option for multiple reasons. First, IPO is based on
reparameterizations analogous to (5) which, for a pair of responses y1 ̸= y2 and the reward from (8) leads to the key
equivalence

log

[
πIPO(y1|x)πref(y2|x)
πIPO(y2|x)πref(y1|x)

]
=

1

λ

[
rIPO(y1, x)− rIPO(y2, x)

]
. (47)

The entire motivation for IPO is then to approximate this equivalence by minimizing the loss

E{y1,y2}∼πref(y|x),x∼D

[(
log

[
πθ(y1|x)πref(y2|x)
πθ(y2|x)πref(y1|x)

]
− 1

λ

[
rIPO(y1, x)− rIPO(y2, x)

])2
]
, (48)
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which equates to minimizing (9) per results in Azar et al. (2024). However, if we modify (9), this equivalence is compromised,
i.e., we unavoidably break the foundational connection with an RLHF-like loss and implicit reward upon which IPO is
entirely based in the first place.

Secondly, even if we are willing to jettison the original IPO motivation, and prefer to adopt an IPO-related hybrid loss,
minimicking the weighted average of EXPO in a form such as

ℓ(πθ, πref, λ) := E{yw,yl,x}∼Dtr

(
log

[
πθ(yw|x)
πθ(yl|x)

]
−

[
λ log

[
πref(yw|x)
πref(yl|x)

]
+ (1− λ) log

[
π∗(yw|x)
π∗(yl|x)

]])2

, (49)

practical implementation remains a problem. In particular, as a consequence of Jensen’s inequality and properties of
expectations, it is no longer possible to establish the equivalent of Proposition 4.1 when using (49). Therefore an unbiased
practical implementation becomes problematic, unlike the original IPO or ℓrEXPO. ■
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