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ABSTRACT

Solving partial differential equations (PDEs) serves as a cornerstone for modeling
complex dynamical systems. Recent progresses have demonstrated grand benefits
of data-driven neural-based models for predicting spatiotemporal dynamics (e.g.,
tremendous speedup gain compared with classical numerical methods). However,
most existing neural models rely on rich training data, have limited extrapola-
tion and generalization abilities, and suffer to produce precise or reliable physical
prediction under intricate conditions (e.g., irregular mesh or geometry, complex
boundary conditions, diverse PDE parameters, etc.). To this end, we propose a
new graph learning approach, namely, Physics-encoded Message Passing Graph
Network (PhyMPGN), to model spatiotemporal PDE systems on irregular meshes
given small training datasets. Specifically, we incorporate a GNN into a numerical
integrator to approximate the temporal marching of spatiotemporal dynamics for
a given PDE system. Considering that many physical phenomena are governed by
diffusion processes, we further design a learnable Laplace block, which encodes
the discrete Laplace-Beltrami operator, to aid and guide the GNN learning in a
physically feasible solution space. A boundary condition padding strategy is also
designed to improve the model convergence and accuracy. Extensive experiments
demonstrate that PhyMPGN is capable of accurately predicting various types of
spatiotemporal dynamics on coarse unstructured meshes, consistently achieves the
state-of-the-art results, and outperforms other baselines with considerable gains.

1 INTRODUCTION

Complex dynamical systems governed by partial differential equations (PDEs) exist in a wide va-
riety of disciplines, such as computational fluid dynamics, weather prediction, chemical reaction
simulation, quantum mechanisms, etc. Solving PDEs is of great significance for understanding and
further discovering the underlying physical laws.

Many traditional numerical methods have been developed to solve PDEs (Ames, 2014; Anderson,
1995), such as finite difference methods, finite element methods, finite volume methods, spectral
methods, etc. However, to achieve the targeted accuracy, the computational cost of these methods
for large simulations is prohibitively high, since fine meshes and small time stepping are required
(typically relaxed for implicit methods). In recent years, deep learning methods have achieved great
success in various domains such as image recognition (He et al., 2016), natural language process-
ing (Vaswani et al., 2017) and information retrieval (Devlin et al., 2019). A increasing number of
neural-based methods have been proposed to learn the solution of PDEs.

Physical-informed neural networks (PINNs) (Raissi et al., 2019) and its variants have shown promise
performance in modeling various physical systems, such as fluid dynamics (Gu et al., 2024; Raissi
et al., 2020), rarefied-gas dynamics (De Florio et al., 2021), and engineer problems (Rezaei et al.,
2022; Haghighat et al., 2021; Rao et al., 2021; Eshkofti & Hosseini, 2023). However, the family of
PINN methods easily encounter scalability and generalizability issues when dealing with complex
systems, because of their fully connected neural network architecture and the incorporation of soft
physical constraints via loss regularizer. Neural operators (Lu et al., 2021; Li et al., 2021; 2023b;
Wu et al., 2023), the variants of Transformer (Geneva & Zabaras, 2022; HAN et al., 2022; Li et al.,
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2023a), and graph neural networks (GNN) (Battaglia et al., 2018; Seo* et al., 2020; Iakovlev et al.,
2021; Pfaff et al., 2021; Brandstetter et al., 2022; Ye et al., 2024) overcome the above issues to
some extent; however, they require a substantial amount of training datasets to learn the mapping
between infinite function spaces and temporal evolution, due to their “black-box” data-driven learn-
ing manner. The physics-encoded learning, e.g., PeRCNN (Rao et al., 2023), has the ability to learn
spatiotemporal dynamics based on limited low-resolution and noisy measurement data. However,
this method is inapplicable to prediction in irregular domains. Therefore, achieving accurate pre-
dictions of spatiotemporal dynamics based on limited low-resolution training data within irregular
computational domains remains a challenge.

To this end, we propose a graph learning approach, namely, Physics-encoded Message Passing
Graph Network (PhyMPGN), to model spatiotemporal PDE systems on irregular meshes given small
training datasets. Specifically, our contributions can be summarized as follows:

• We develop a physics-encoded graph learning model with the message-passing mecha-
nism (Gilmer et al., 2017) to model spatiotemporal dynamics on coarse (low-resolution)
unstructured meshes, where the temporal marching is realized via a second-order numeri-
cal integrator (e.g. Runge-Kutta scheme).

• Considering the universality of diffusion processes in physical phenomena, we design a
learnable Laplace block, which encodes the discrete Laplace-Beltrami operator, to aid and
guide the GNN learning in a physically feasible solution space.

• The boundary conditions (BCs) are taken as the a priori physics knowledge. We propose a
novel padding strategy to encode different types of BCs into the learning model to improve
the solution accuracy.

• Extensive experiments show that PhyMPGN is capable of accurately predicting various
types of spatiotemporal dynamics on coarse unstructured meshes with complex BCs and
outperforms other baselines with considerable margin, e.g., exceeding 50% gains.

2 RELATED WORK

Traditional numerical methods solve PDEs via spatiotemporal discretization and approximation.
However, these methods require fine meshes, small time stepping, and fully known PDEs with
predefined initial conditions (ICs) and BCs. Recently, given the advance of deep learning, numerous
data-driven neural-based models have been introduced to learn PDE systems with speedup inference.

Physics-informed learning: PINNs (Raissi et al., 2019) pioneer the foundation for the paradigm
of physics-informed learning, where automatic differentiation are used to determine the PDE resid-
ual as soft regularizer in the loss function. Further, several variants (Yu et al., 2022; Eshkofti &
Hosseini, 2023; Miao & Li, 2023) have been proposed to improve their accuracy and enhance the
capability to handle complex geometries. In addition to automatic differentiation, other methods
can be employed to compute the PDE residual, such as finite difference (Ren et al., 2022; Rao et al.,
2023), finite element (Rezaei et al., 2024; Sahli Costabal et al., 2024), and finite volume methods (Li
et al., 2024a;b). The family of PINN methods (Raissi, 2018; Seo & Liu, 2019; Yang & Foster, 2022;
Yuan et al., 2022) perform well in solving various forward and inverse problems given limited train-
ing data or even no labeled data. However, the explicit formulation of PDEs needs to be supplied.

Neural Operators learning: Neural operators learn a mapping between two function spaces from
finite input-output data pairs, such as the ICs, BCs, and PDE parameters. Finite-dimensional opera-
tor methods (Bhatnagar et al., 2019; KHOO et al., 2020; Zhu & Zabaras, 2018; Iakovlev et al., 2021)
are mesh-dependent and cannot obtain solutions at unseen nodes in the geometry. DeepONet (Lu
et al., 2021), as a general neural operator, has demonstrated with generalizability to low-dimensional
systems. FNO (Li et al., 2021) and its variants (George et al., 2024; Tran et al., 2023; Guibas et al.,
2022; Li et al., 2023b) learn an integral kernel directly in the Fourier domain. Moreover, U-NO (Rah-
man et al., 2023) and U-FNO (Wen et al., 2022) incorporate UNet (Ronneberger et al., 2015) and
FNO for deeper architecture and data efficiency. LSM (Wu et al., 2023) designs a neural spectral
block to learn multiple basis operators in the latent space. Generally, neural operator methods do
not require any knowledge about the underlying PDEs, but demand a large amount of training data.
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Autoregressive learning: Autoregressive learning methods model spatiotemporal dynamics iter-
atively. Generally, such methods employ a neural network to extract spatial patterns and a recurrent
block to model temporal evolution, such as RNN (Hochreiter & Schmidhuber, 1997; Cho et al.,
2014), Transformers (Vaswani et al., 2017), or a numerical integrator. PA-DGN (Seo* et al., 2020)
combines the spatial difference layer with a recurrent GNN to learn the underlying dynamics. Phy-
CRNet (Ren et al., 2022) employs ConvsLSTM (Shi et al., 2015) to extract spatial features and
evolve over time. LED (Vlachas et al., 2022) deploys RNNs with gating mechanisms to approxi-
mate the evolution of the coarse-scale dynamics and utilizes auto-encoders to transfer the informa-
tion across fine and coarse scales. The Transformer architecture combined with different embedding
techniques (Geneva & Zabaras, 2022; HAN et al., 2022) for physical systems has also been explored.
Besides, there are also lots of neural models (Rao et al., 2023; Brandstetter et al., 2022; Pfaff et al.,
2021; Choi et al., 2023) employing numerical integrators for temporal marching.

Graph diffusion processes: Diffusion processes on graphs (Freidlin & Wentzell, 1993; Freidlin
& Sheu, 2000) have a various applications, such as image processing (Lozes et al., 2014; Gilboa &
Osher, 2009) and data analysis (Coifman et al., 2005; Belkin & Niyogi, 2003). Recently, studies
exploring the connection between these processes and GNNs have been increasing.Implementing
diffusion operations on graphs enhances the representational capacity of graph learning (Atwood &
Towsley, 2016; Liao et al., 2019; Gasteiger et al., 2019). The notion of the diffusion PDE on graphs
also inspire the understanding and design GNNs (Chamberlain et al., 2021; Thorpe et al., 2022).

3 METHODS

3.1 PROBLEM SETUP

Let us consider complex physical systems, governed by spatiotemporal PDEs in the general form:

u̇(x, t) = F (t,x,u,∇u,∆u, . . . ) (1)

where u(x, t) ∈ Rm is the vector of state variable with m components we are interested in, such
as velocity, temperature or pressure, defined over the spatiotemporal domain {x, t} ∈ Ω × [0, T ].
Here, u̇ denotes the derivative with respect to time and F is a nonlinear operator that depends on
the current state u and its spatial derivatives.

We focus on a spatial domain Ω with sparsely observed nodes {x0, . . . ,xN−1}, non-uniformly
placed in space (e.g., on an unstructured mesh), presenting a more challenging scenario com-
pared with structured grids. Observations {U(t0), . . . ,U(tT−1)} are collected at time points
t0, . . . , tT−1, where U(ti) = {u(x0, ti), . . . ,u(xN−1, ti)} denotes the physical quantities. Con-
sidering that many physical phenomena involve diffusion processes, we assume the diffusion term
in the PDE is known as a priori knowledge. Our goal is to develop a graph learning model with
small training datasets capable of accurately predicting various spatiotemporal dynamics on coarse
unstructured meshes, handling different types of BCs, and producing the trajectory of dynamics for
an arbitrarily given IC.

Before further discussion, we provide some notations. Let a graph G = (V,E), with node i ∈ V
denoting the observed node in the domain and undirected edge (i, j) ∈ E denoting the connection
between two nodes. We apply Delaunay triangulation to the discrete nodes to construct the non-
uniform mesh, which forms the edges of the graph.

3.2 MODEL ARCHITECTURE

According to the method of lines (MOL) to discretize the spatial derivatives in F at these discrete
nodes, Eq. 1 can be rewritten as a system of ordinary differential equations (ODEs) by numerical
discretization (Schiesser, 2012; Iakovlev et al., 2021). The ODE at each node can be described by
u(t) = u(0)+

∫ t

0
u̇(τ)dτ . Numerous ODE solvers can be applied to solve it, e.g., the second-order

Runge-Kutta (RK2) scheme:

uk+1 = uk +
1

2
(g1 + g2) · δt; g1 = F (tk,x,uk, . . . ); g2 = F (tk+1,x,uk + δtg1, . . . ) (2)

where uk is the state variable at time tk, and δt denotes the time interval between tk and tk+1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

MPNNs

+
Mesh Laplace

Laplace Block

MPNNs

GNN Block
+

MPNN Layer + MPNN Layer...
pad

a b

c

N
N

 B
lo

ck N
N

 B
lo

ck

+

+

+

Figure 1: (a) Model with the second-order Runge-Kutta scheme. (b) NN block consists of two parts:
a GNN block followed the Encode-Process-Decode framework and a Laplace block with the cor-
rection architecture. Mesh Laplace in Laplace block denotes the discrete Laplace-Beltrami operator
in geometric mathematics. The other three modules, MLPα,MLPβ , and MPNNs, constitutes the
lightweight learnable network for correction. (c) The MPNNs module in GNN block consists of
L identical MPNN layers. Residual connection and padding in latent space are applied in the first
L− 1 layers, excluding the last layer.

According to the recursive scheme in Eq. 2, we develop a GNN to learn the nonlinear operator
F . Once the ICs are given, all subsequent states can be quickly obtained. In addition to the RK2
scheme, other numerical methods such as the Euler forward scheme and the fourth-order Runge-
Kutta scheme (RK4) can also be applied, offering a trade-off between computing resource and ac-
curacy (more details found in Appendix A). Notably, all experimental results presented in this paper
are obtained using the RK2 scheme.

Figure 1a shows the architecture of our model with the RK2 scheme. The NN block aims to learn
the nonlinear function F and consists of two parts (Figure 1b): a GNN block followed the Encode-
Process-Decode module (Battaglia et al., 2018) and a learnable Laplace block. Due to the univer-
sality of diffusion processes in physical phenomena, we design the learnable Laplace block, which
encodes the discrete Laplace-Beltrami operator, to learn the increment caused by the diffusion term
∆u in the PDE, while the GNN block is responsible to learn the increment induced by other un-
known mechanisms or sources.

3.2.1 GNN BLOCK

We utilize a message-passing GNN (Gilmer et al., 2017) with the Encode-Process-Decode frame-
work (Battaglia et al., 2018) as a pivotal component of our model, referred to as the GNN block. It
comprises three modules (Figure 1b–c): encoder, processor, and decoder.

Encoder: Within the GNN block, there are two encoders (MLPs), one for computing node embed-
dings and the other for edge embeddings. For each node i, the node encoder maps the state variable
uk
i , spatial coordinate xi and one-hot node type Ci (normal, ghost, . . . ; details shown in Section 3.3)

to a node embedding h0
i = NodeEnc([uk

i ,xi,Ci]). For each edge (i, j), the edge encoder maps the
relative offset uk

ij = uk
j − uk

i , displacement xij = xj − xi, and distance dij = ||xij ||2 to an
edge embedding eij = EdgeEnc([uk

ij ,xij , dij ]), aiming to capture local features. The concatenated
features at each node and edge are encoded to high-dimensional vectors, respectively.

Processor: The processor consists of L message passing neural network (MPNN) layers, each
with its own set of learnable parameters. Consistent with the intuition of the overall model, we
expect each MPNN layer to update node embeddings in an incremental manner. Therefore, we
introduce residual connections (He et al., 2016) in the first L − 1 layers, excluding the last layer

4
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which produces the aggregated increment we desire. The updating procedure is given as follows

edge (i, j) message: ml
ij = ϕ

(
hl
i, h

l
j − hl

i, eij
)
, 0 ≤ l < L

node i update: hl+1
i = γ

(
hl
i,

⊕
j∈Ni

ml
ij

)
+ hl

i, 0 ≤ l < L− 1

hL
i = γ

(
hL−1
i ,

⊕
j∈Ni

mL−1
ij

) (3)

where hl+1
i denotes the embedding of node i output by the l ∈ [0, L) layer, and ϕ and γ are

implemented using MLPs.

Decoder: After L MPNN layers, the decoder, which is also an MLP like the encoder, transforms
the node embedding hL in the high-dimensional latent space to the quantity in physical dimensions.

3.2.2 LAPLACE BLOCK

Motivated by PeRCNN (Rao et al., 2023), which uses a physics-based finite difference convolutional
layer to encode prior physics knowledge of PDEs, we design a Laplace block to encode the discrete
Laplace-Beltrami operators for the diffusion term ∆u commonly seen in PDEs. This aids and guides
the GNN learning in a physically feasible solution space.

a b

Figure 2: (a) Four discrete nodes (i, j,
p, and q) and five edges connecting them.
The two angles opposite to the edge (i, j)
are αij and βij . (b) The blue region de-
notes the area of the polygon formed by
connecting the circumcenters (e.g., c1, c2,
etc.) of the triangles around node i.

Using the finite difference method to compute the
Laplacian works well on regular grids, but it becomes
ineffective on unstructured meshes. Therefore, we em-
ploy the discrete Laplace-Beltrami operators (Reuter
et al., 2009) to compute the discrete geometric Lapla-
cian on a non-uniform mesh domain (Pinkall & Polth-
ier, 1996; Meyer et al., 2003), which are usually defined
as

∆fi =
1

di

∑
j∈Ni

wij(fi − fj) (4)

where Ni denotes the neighbors of node i and fi de-
notes the value of a continuous function f at node i.
The weights read wij = [cot(αij)+cot(βij)]/2 (Pinkall
& Polthier, 1996), where αij and βij are the two angles
opposite to the edge (i, j). The mass is defined as di = aV (i) (Meyer et al., 2003), where aV (i)
denotes the area of the polygon formed by connecting the circumcenters of the triangles around node
i (see Figure 2; more details found in Appendix B).

Note that Eq. 4, referred to as the Mesh Laplace module in Figure 1b, exhibits good accuracy
on dense meshes but yields unsatisfactory results on coarse meshes. Therefore, we employ a
lightweight neural network to rectify the Laplacian estimation on coarse meshes, which also lever-
ages the Encode-Process-Decode framework. Consequently, Eq. 4 is updated as follows:

∆fi =
1

di

(
zi +

∑
j∈Ni

wij(fi − fj)
)

(5)

where zi is the output of the lightweight network, as shown in Figure 1b, where MLPα and MLPβ

are employed as the encoder and the decoder, respectively, and MPNNs serve as the processor
consisting of L′ message passing layers. The MPNNs in the Laplace block differ slightly from those
in the GNN block (in particular, residual connections are applied to every layer, not just the first
L′ − 1 layers). This correction architecture of the Laplace block greatly improves the accuracy of
Laplacian predictions on coarse unstructured meshes.

In summary, we approximate the nonlinear operator F by

F (tk,x,uk,∇uk,∆uk, . . . ) ≈ NN block(x,uk)

= GNN block(x,uk) + Laplace block(x,uk)
(6)

5
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3.3 ENCODING BOUNDARY CONDITIONS

Given the governing PDE, the solution depends on both ICs and BCs. Inspired by the padding
methods for BCs on regular grids in PeRCNN (Rao et al., 2023), we propose a novel padding
strategy to encode four types of BCs on irregular domains. Specifically, we perform BC padding in
both the physical and latent space. PENN (Horie & MITSUME, 2022) also constructs their model to
satisfy Dirichlet and Neumman BCs by designing special neural layers and modules while we apply
the padding strategy directly to the features. More details of the comparison between these methods
are presented in Appendix C.

Dirichlet BC Neumann / Robin BC Periodic BC

Internal nodes

Ghost nodes

Edge nodes

Node Type

Figure 3: Diagram of boundary condition (BC) padding.

Before constructing the unstructured
mesh by Delaunay triangulation, we
first apply the padding strategy to the
discrete nodes in the physical space
(e.g., uk), as shown in Figure 3. We
consider four type of BCs: Dirich-
let, Neumann, Robin, and Periodic.
Nodes on the Dirichlet boundary will
be directly assigned specific values. For Neumann/Robin BCs, ghost nodes are created symmetri-
cally with respect to the nodes near the boundary (along the normal direction) in the physical space,
and their padded values depend on derivatives in the normal direction. The goal is to ensure the
true nodes, the boundary, and the ghost nodes satisfy the BCs in a manner similar to the central
difference method. For periodic BCs, the nodes near the boundary are flipped and placed near the
other corresponding boundary, achieving a cyclic effect in message passing. Once the padding is
completed, Delaunay triangulation is applied to construct the mesh, which serves as the graph input
for the model. Apart from this, we also apply padding to the prediction (e.g., uk+1) of the model at
each time step to ensure that it satisfies BCs before being fed into the model for next-step prediction.
As for the latent space (e.g., hk in the GNN block), padding is also applied after each MPNN layer
except the last layer. Details of encoding different types of BCs are provided in Appendix C.

Encoding BCs into the model indeed leads to a well-posed optimization problem. By incorporating
these BCs into the learning process, the model is guided to produce solutions that adhere to the
physical constraints, resulting in more accurate and physically meaningful predictions.

3.4 NETWORK TRAINING

The pushforward trick and the use of training noise as demonstrated in previous approaches (Brand-
stetter et al., 2022; Pfaff et al., 2021; Stachenfeld et al., 2022; Sanchez-Gonzalez et al., 2020) have
effectively improved the stability and robustness of the model. We leverage these insights by syner-
gistically integrating them to train our network for long-term predictions.

Due to GPU memory limitations, directly feeding the entire long time series (T steps, u0, . . . ,uT−1)
into the model and performing backpropagation across all steps is impractical. To address this, we
segment the time series into multiple shorter time sequences of M steps (us0 , . . . ,usM−1 , T ≫ M ).
With the input us0 , the model rolls out for M − 1 times to generate predictions (ûs1 , . . . , ûsM−1 ),
but backpropagation is only applied to the first and last predictions. Furthermore, we introduce a
small noise to the first frame us0 of each segment during training. Both techniques aim to alleviate
overfitting and error accumulation. Therefore, the loss function of each time segment is defined as

L = MSE(us1 , ûs1) + MSE (usM−1 , ûsM−1) (7)
where u denotes the ground truth of state variable, û denotes the prediction from our model, and

the superscript of u, û denotes their time steps in the segment.

Evaluation metrics: We choose the mean square error (MSE), relative L2 norm error (RNE), and
Pearson correlation coefficient between the prediction û and ground truth u as the evaluation met-
rics, where RNE is defined as ||û− u||2/||u||2 and correlation is defined as cov(u, û)/σuσû.

4 EXPERIMENTS

Here, we present comprehensive evaluation of our methods. Firstly, we validate the feasibility and
efficacy of the Laplace block to compute the Laplacian on coarse non-uniform meshes. Subse-
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Table 1: The MSE and RNE of four methods to
approximate Laplacian on coarse domain.

Model Parameters MSE RNE

Laplace block 5.6k 151 0.033
Mesh Laplace 0 2574 0.138

SDL 21.5k 1210 0.095
SDL-padding 21.5k 408 0.055

Table 2: Datasets description.

Burgers FN GS

train/test sets 10/10 3/10 6/10
time steps 1600 2000 2000

δt 0.001 0.004 0.5
nodes 503 983 4225
BC periodic periodic periodic

quently, the entire model is trained and evaluated on various PDE datasets and compared with sev-
eral baseline models. Finally, we perform ablation studies to demonstrate the positive contribution
of each individual component within our model and the impact of numerical integrator. Our source
code and data will be posted after peer review.

4.1 LAPLACE BLOCK VALIDATION

We create a synthetic dataset to validate the effectiveness of the Laplace block. First, we generate
10,000 samples of random continuous functions on a high-resolution (129 × 129) regular grid by
cumulatively adding sine and cosine functions, satisfying periodic BCs. By employing the 5-point
Laplacian operator of the finite difference method, the Laplacian of the functions at each node is
computed as the ground truth. Then the dataset is down-sampled in space from the high-resolution
regular grids to a set of coarse non-uniform mesh points yielding only 983 nodes. Note that 70% of
the dataset is used as the training set, 20% as the validation set, and 10% as the test set. More details
of the synthetic dataset are shown in Appendix D.1.

We compare the performances of four methods: (1) Laplace block with BC padding; (2) the discrete
Laplace-Beltrami operator with BC padding, referred to as Mesh Laplace; (3) the spatial difference
layer for Laplacian, referred to as SDL (Seo* et al., 2020); (4) SDL with BC padding, referred to as
SDL-padding. The MSE and RNE of all experiments are shown in Table 1. Mesh Laplace performs
poorly compared to other learnable methods, while our Laplace block with the fewest parameters
greatly outperforms other methods. SDL-padding exhibits an obvious performance improvement,
indicating the effectiveness and importance of our padding strategy. A snapshot of a random func-
tion, ground truth of its Laplacian, and prediction are shown in Appendix Figure A.4.

4.2 MODELING PDE SYSTEMS

Solving PDEs serves as a cornerstone for modeling complex dynamical systems. However, in fields
such as climate forecasting, reactions of new chemical matters, and social networks, the underlying
governing PDEs are either completely unknown or only partially known. Hence, there is a great
need for data-driven modeling and simulation. Based on the assumption, we train and evaluate our
model on various physical systems, including Burgers’ equation, FitzHugh-Nagumo (FN) equation,
Gray-Scott (GS) equation, and flows past a cylinder, particularly in small training data regimes. We
also compare our model against several representative baseline models, including DeepONet (Lu
et al., 2021), PA-DGN (Seo* et al., 2020), MGN (Pfaff et al., 2021), and MP-PDE (Brandstetter
et al., 2022). The numbers of learnable parameters and training iterations for all models are kept as
consistent as possible to ensure a fair comparison. All the data are generated using COMSOL with
fine meshes and small time stepping, which are further spatiotemporally down-sampled to establish
the training and testing datasets. More details of the datasets are discussed in the Appendix D.2.

Generalization test over ICs: We firstly test the generalizability of the model over different ran-
dom ICs. For the Burgers’ equation, we generate 20 trajectories of simulation data given different
ICs (10/10 for training/testing). For the FN and GS equations, the number of trajectories used for
training are 3 and 6, respectively. More descriptions about the datasets of these three equations are
provided in Table 2). We consider periodic BCs in these PDEs. Figure 4 depicts the prediction re-
sult of each training model for the testing ICs, including the error distribution across all time steps,
correlation curves and predicted snapshots at the last time step. The generalization prediction by
our model agrees well with the ground truth for all the three datasets. In the contrast, the baseline
models yield predictions with obvious deviations from the ground truth, although MGN performs
slightly better and produces reasonable prediction. To explore the dataset size scaling behavior of
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Figure 4: The error distribution (left) over time steps, correlation curves (medium), and predicted
snapshots (right) at the last time step. (a) Burgers’ equation. (b) FN equation. (c) GS equation. All
systems of these PDEs have periodic BCs.

our model, using Burgers’ equation as an example, we train our model with different numbers of
trajectories: 5, 10, 20, and 50. The numerical results are presented in Table A.5, showing that as the
dataset size increases, the test error decreases.

Scenario C

Scenario B

Scenario D

Periodic Dirichlet Neumann

Scenario A

Figure 5: Four scenarios
with different domains
and hybrid BCs.

Handling different BCs: To validate our model’s ability to encode
different types of BCs, we use Burgers’ equation as an example and con-
sider three additional scenarios with irregular domain and hybrid BCs,
resulting in total four scenarios, as illustrated in Figure 5: (1) Scenario
A, a square domain with periodic BCs, as mentioned in the previous
paragraph; (2) Scenario B, a square domain with a circular cutout, where
periodic and Dirichlet BCs are applied; (3) Scenario C, a square domain
with a dolphin-shaped cutout, where periodic and Dirichlet BCs are ap-
plied; and (4) Scenario D, a square domain with semicircular cutouts on
both the left and right sides, where periodic and Neumann BCs are ap-
plied. Similarly, 10/10 training and testing trajectories are generated and
down-sampled with nearly N = 600 observed nodes in each domain.
Figure 6 depicts the error distribution over all time steps, correlation
curves, and predicted snapshots at the last time step, for the last three
scenarios (results of Scenario A are shown in Figure 4a). It is seen that our model significantly
outperforms baseline models and shows the efficacy of handling PDE systems with different BCs.

Generalization test over the Reynolds number: We also evaluate the ability of our model to
generalize over the inlet velocities for the cylinder flow, governed by the Naiver-Stokes (NS) equa-
tions. Here, the Reynolds number is defined as Re = ρUmD/µ, where ρ is the fluid density, D the
cylinder diameter, and µ the fluid viscosity. With these parameters fixed, generalizing over the inlet
velocities Um also means to generalize across different Re values. By changing the inlet velocity
Um, we generate 4 trajectories with Re = [160, 240, 320, 400] for training and 9 trajectories for
testing, with only about N = 1, 600 observed nodes in the domain. The testing sets are divided
into three groups based on Re: 3 trajectories with small Re = [200, 280, 360], 3 trajectories with
medium Re = [440, 480, 520], and 3 trajectories with large Re = [600, 800, 1000]. During the eval-
uation, it is observed that the baselines struggle to generalize over Re values unseen during training
(e.g., the larger the Re, the greater the prediction error). For example, the predicted snapshots at
t = 100 s along with the error distributions and correlation curves for Re = 480 are shown in Fig-
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Figure 6: The error distribution (left) over time steps, correlation curves (medium), and predicted
snapshots (right) at the last time step, for the Burgers’ equation. (a) Periodic and Dirichlet BCs. (b)
Periodic and Dirichlet BCs. (c) Periodic and Neumann BCs.
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Figure 7: (a)–(b) Predicted snapshots at the last time step, error distribution over all time steps, and
correlation curves for the cylinder flow problem (Re = 480). (c) Correlation curves of our model
on generalization over Re. The number of vortex sheds within t seconds is defined as t/TRe, where
TRe is the vortex shedding period.

ure 7a–b. Our model consistently maintains a high correlation between the prediction and ground
truth over time, while the performance of the baselines rapidly declines. It is interesting that MGN’s
and MP-PDE’s correlation initially declines but then recovers, suggesting that they capture the cyclic
dynamics but fail to generalize to bigger Re values, leading to mis-prediction of the vortex shedding
period. Besides, we evaluate our model’s generalizability over all other Re values. Considering that
the larger the Re, the shorter vortex shedding period TRe and the more vortex sheds t/TRe in the
same time span t, we track the prediction performance against the number of vortex sheds. Fig-
ure 7c shows the generalization result of our model across different Re values, where the correlation
decays faster only for Re = 1000. A denser set of observed nodes could help mitigate this issue.
To evaluate the extrapolation capability, our model trained over the time range 0− 100s is tested on
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the 200-second trajectory with Re = 480. We observe a slow decline of our model’s correlation in
Appendix Figure A.5. The correlation is 0.95 at t = 100s and decreases to 0.85 at t = 200s.

Computational efficiency: The computational cost of the Laplace block and the padding strategy
is minimal. The computation of Mesh Laplace in the Laplace block includes only matrix multiplica-
tion, while the cost of the padding strategy involves merely copying the corresponding nodes in the
domain, which is negligible. A detailed analysis and comparison with MGN and MP-PDE as well
as the classical numerical method (COMSOL) are presented in Appendix E.

In all experiments, our model outperforms the baselines with considerable margins, e.g., exceeding
50% gains (see the specific numerical results reported in Appendix Tables A.4, A.6 and A.7). The
predicted trajectory snapshots of our model and ground truth are provided in Appendix Figure A.6.

4.3 ABLATION STUDY

C
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Ours
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a b
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SE

models

Figure 8: Results of Models A, B, C, and Ours.

We study the effectiveness and contribu-
tion of two key components in our model,
namely, the learnable Laplace block and
the BC padding strategy. Specifically, we
conducted ablation studies on the cylinder
flow problem, comparing the performance
of four models: (1) the full model, referred to as Ours; (2) the model only without the Laplace
block, referred to as Model A; (3) the model only without the padding strategy, referred to as Model
B; (4) the model without both the Laplace block and the padding strategy, referred to as Model C.
Notably, the trainable parameters of the Laplace block comprise only about 1% of the entire model,
and the padding strategy itself introduces no additional trainable parameters. In other words, the
number of trainable parameters in these four models is almost the same. We train these models on
the same cylinder flow dataset described previously and evaluate them on the testing datasets with
Re = [440, 480, 520]. Figure 8 shows the error distribution and correlation curves, averaged over
the testing datasets. The corresponding numerical MSEs of these four models are listed in Table A.8.
It is seen that the ablated models exhibit a deteriorated performance (Model C performs the worst).
Despite their minimal contribution to the overall trainable parameter count, the two key components
greatly enhance the model’s capacity for long-term predictions.

Additionally, we investigate the impact of three types of numerical integrators employed in our
model on performance: Euler forward, RK2, and RK4 scheme. The MSEs of these models are
presented in Table A.10, showing that the higher the order of the integrator, the better the model’s
prediction accuracy. However, higher-order integrators also come with greater memory and com-
putational costs. Moreover, empirical evidence suggests that RK4 may increase the difficulty of
training, including issues such as training instability. Therefore, we choose RK2 to strike a balance
between computational resources and accuracy. Notably, even with Euler scheme, PhyMPGN’s ac-
curacy remains superior to baseline models with a big margin. We also explore the impact of the time
segment size M on results and computational requirements. Details are presented in Appendix E.

5 CONCLUSION

We present a graph learning approach, namely, PhyMPGN, for predicting spatiotemporal PDE
systems on coarse unstructured meshes given small training datasets. Specifically, we develop
a physics-encoded message-passing GNN model, where the temporal marching is realized via a
second-order numerical integrator (e.g. Runge-Kutta scheme). The a priori physics knowledge is
embedded to aid and guide the GNN learning in a physically feasible solution space with improved
solution accuracy, via introducing (1) a learnable Laplace block that encodes the discrete Laplace-
Beltrami operator, and (2) a novel padding strategy to encode different types of BCs. Extensive
experiments demonstrate that PhyMPGN outperforms other baseline models with considerable mar-
gins, e.g., exceeding 50% gains across diverse spatiotemporal dynamics, given small and sparse
training datasets. However, several challenges remain to be addressed: (1) how to effectively en-
code Neumann/Robin BCs in latent space; (2) the approach cannot be applied to other nonlinear or
high-order diffusion terms (e.g., ∇4); (3) extending the model to 3-dimensional scenarios. These
challenges highlight key directions for our future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

W.F. Ames. Numerical Methods for Partial Differential Equations. Computer Science and Scientific
Computing. Elsevier Science, 2014. ISBN 9780080571300. URL https://books.google.
co.jp/books?id=KmjiBQAAQBAJ.

J.D. Anderson. Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill Inter-
national Editions: Mechanical Engineering. McGraw-Hill, 1995. ISBN 9780071132107. URL
https://books.google.co.jp/books?id=phG_QgAACAAJ.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. Advances in neural
information processing systems, 29, 2016.

Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro Sanchez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Caglar Gulcehre, Francis Song, Andy Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani,
Kelsey Allen, Charles Nash, Victoria Jayne Langston, Chris Dyer, Nicolas Heess, Daan Wier-
stra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Re-
lational inductive biases, deep learning, and graph networks. arXiv, 2018. URL https:
//arxiv.org/pdf/1806.01261.pdf.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data rep-
resentation. Neural Computation, 15(6):1373–1396, 2003. doi: 10.1162/089976603321780317.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64, 08 2019. doi: 10.1007/s00466-019-01740-0.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=vSix3HPYKSU.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In International conference on machine learn-
ing, pp. 1407–1418. PMLR, 2021.

Kyunghyun Cho, Bart Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and Y. Ben-
gio. Learning phrase representations using RNN encoder-decoder for statistical machine transla-
tion. 06 2014. doi: 10.3115/v1/D14-1179.

Hoyun Choi, Sungyeop Lee, B. Kahng, and Junghyo Jo. GNRK: Graph neural Runge-Kutta method
for solving partial differential equations, 2023.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker.
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffu-
sion maps. Proceedings of the National Academy of Sciences, 102(21):7426–7431, 2005. doi:
10.1073/pnas.0500334102. URL https://www.pnas.org/doi/abs/10.1073/pnas.
0500334102.

Mario De Florio, Enrico Schiassi, Barry D. Ganapol, and Roberto Furfaro. Physics-informed neural
networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar-Gross-Krook approxi-
mation. Physics of Fluids, 33(4):047110, April 2021. doi: 10.1063/5.0046181.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

11

https://books.google.co.jp/books?id=KmjiBQAAQBAJ
https://books.google.co.jp/books?id=KmjiBQAAQBAJ
https://books.google.co.jp/books?id=phG_QgAACAAJ
https://arxiv.org/pdf/1806.01261.pdf
https://arxiv.org/pdf/1806.01261.pdf
https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU
https://www.pnas.org/doi/abs/10.1073/pnas.0500334102
https://www.pnas.org/doi/abs/10.1073/pnas.0500334102
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Katayoun Eshkofti and Seyed Mahmoud Hosseini. A gradient-enhanced physics-informed neural
network (gPINN) scheme for the coupled non-fickian/non-fourierian diffusion-thermoelasticity
analysis: A novel gPINN structure. Engineering Applications of Artificial Intelli-
gence, 126:106908, 2023. ISSN 0952-1976. doi: https://doi.org/10.1016/j.engappai.
2023.106908. URL https://www.sciencedirect.com/science/article/pii/
S0952197623010928.

M. I. Freidlin and Shuenn-Jyi Sheu. Diffusion processes on graphs: stochastic differential equations,
large deviation principle. Probability Theory and Related Fields, 116:181–220, 2000. URL
https://api.semanticscholar.org/CorpusID:119873767.

Mark I. Freidlin and Alexander D. Wentzell. Diffusion Processes on Graphs and the Averaging
Principle. The Annals of Probability, 21(4):2215 – 2245, 1993. doi: 10.1214/aop/1176989018.
URL https://doi.org/10.1214/aop/1176989018.

Johannes Gasteiger, Stefan Weiß enberger, and Stephan Günnemann. Diffusion improves graph
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APPENDIX

A NUMERICAL INTEGRATOR

Let us consider complex physical systems, governed by spatiotemporal PDEs of the general form:

u̇(x, t) = F (t,x,u,∇u,∆u, . . . ) (A.1)

where u(x, t) ∈ Rm is the vector of state variable with m components we are interested in, such
as velocity, temperature or pressure, defined over the spatiotemporal domain {x, t} ∈ Ω × [0, T ].
Here, u̇ denotes the derivative with respect to time and F is a nonlinear operator that depends on
the current state u and its spatial derivatives.

According to the method of lines (MOL), Eq. A.1 can be rewritten as a system of ordinary differ-
ential equations (ODEs) by numerical discretization. And the ODE at each node can be described
by

u(t) = u(0) +

∫ t

0

u̇(τ)dτ (A.2)

Numerous ODE solvers can be applied to solve it, such as Euler forward scheme

uk+1 = uk + g1 · δt
g1 = F (t,x,uk, . . . )

(A.3)

where uk is the state variable at time tk, and δt denotes the time interval between tk and tk+1.
While Euler forward scheme is a first-order precision method, other numerical methods with higher
precision such as Runge-Kutta schemes can also be applied, offering a trade-off between computing
resource and accuracy. And the second-order Runge-Kutta (RK2) scheme can be described by

uk+1 = uk +
1

2
δt(g1 + g2), (A.4)

where

g1 = F (tk,x,uk, . . . ),

g2 = F (tk+1,x,uk + δtg1, . . . )
(A.5)

and the fourth-order Runge-Kutta (RK4) scheme is as followed

uk+1 = uk +
1

6
δt(g1 + 2g2 + 2g3 + g4) (A.6)

where

g1 = F (tk,x,uk, . . . ),

g2 = F (tk +
1

2
δt,x,uk + δt

g1
2
, . . . ),

g3 = F (tk +
1

2
δt,x,uk + δt

g2
2
, . . . ),

g4 = F (tk + δt,x,uk + δtg3, . . . )

(A.7)

B DISCRETE LAPLACE-BELTRAMI OPERATORS

Using the finite difference method to compute the Laplacian works well on regular grids, but it
becomes ineffective on unstructured meshes. Therefore, we employ the discrete Laplace-Beltrami
operators to compute the discrete geometric Laplacian on non-uniform mesh domain, which are
usually defined as

∆fi =
1

di

∑
j∈Ni

wij(fi − fj) (A.8)
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a b c d

Figure A.1: (a) Illustration of four discrete nodes (i, j, p, and q) and five edges connecting them.
The two angles opposite to the edge (i, j) are αij and βij . (b) The blue region denotes the area of
the polygon formed by connecting the circumcenters (e.g., c1, c2, and etc.) of the triangles around
node i. (c) The scenario involves an obtuse-angled triangle (i, p, j) adjacent to node i with the
blue region extending beyond the boundaries of these triangles. (d) The circumcenter of the obtuse-
angled triangle (i, p, j) is replaced by the midpoint of edge (p, j), resulting in a new polygon known
as the mixed Voronoi region.

where Ni denotes the neighbors of node i and fi denotes the value of a continuous function f at
node i. The weights can be described as

wij =
cot(αij) + cot(βij)

2
(A.9)

where αij and βij are the two angles opposite to the edge (i, j). The mass can be defined as
di = aV (i), where aV (i) denotes the area of the polygon formed by connecting the circumcenters
of the triangles around node i (i.e., the Voronoi region, shown in Figure A.1). It is noteworthy that
if there is an obtuse-angled triangle (i, p, j) adjacent to node i, its circumcenter will extend beyond
itself. In this scenario, the circumcenter of the obtuse-angled triangle (i, p, j) is replaced by the
midpoint of edge (p, j), resulting in a new polygon known as the mixed Voronoi region.

C ENCODING BOUNDARY CONDITIONS

Given the governing PDE, the solution depends on both ICs and BCs. Inspired by the padding
methods for BCs on regular grids in PeRCNN, we propose a novel padding strategy to encode
different types of BCs on irregular domains. Specifically, we perform BC padding in both the
physical space and the latent space.

Before constructing the unstructured mesh by Delaunay triangulation, we first apply the padding
strategy to the discrete nodes in the physical space (i.e., uk), as shown in Figure A.2. We consider
four types of BCs: Dirichlet, Neumann, Robin, and periodic. All nodes on the Dirichlet boundary
will be directly assigned with specified values. For Neumann/Robin BCs, ghost nodes are created
symmetrically with respect to the nodes near the boundary (along the normal direction of the bound-
ary) in the physical space, and their padded values depends on derivatives in the normal direction.
The goal is to ensure the true nodes, the boundary, and the ghost nodes satisfy the BCs in a man-
ner similar to the central difference method. For periodic BCs, the nodes near the boundary Γp1

are flipped and placed near the corresponding boundary Γp2
, achieving a cyclic effect in message

passing (detailed formulations of various BCs are provided in Table A.1). Once the padding is com-
pleted, Delaunay triangulation is applied to construct the mesh, which serves as the graph input for
the model. Apart from this, we also apply padding to the prediction (i.e., uk+1) of the model at each
time step to ensure that it satisfies the BCs before being fed into the model for next-step prediction,
as shown in Figure A.3.

As for the latent space (i.e., hk in GNN block), padding is also applied after each MPNN layer
except the last layer. For Dirichlet BCs, the embedding features of nodes on the boundary from the
node encoder will be stored as the specified features for padding. For Neumann BCs with zero flux,
ghost nodes are created to be symmetric with the nodes near the boundary in both physical and latent
spaces. For other Neumann cases and Robin BCs, padding in the latent space remains an unsolved
challenge, which is expected to be addressed in the future. And for periodic BCs, nodes near the
boundary are flipped to the other side, along with their embedding features.
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Dirichlet BC Periodic BC
Node Type

Neumann / Robin BC

Internal nodes

Edge nodes

Ghost nodes

Figure A.2: Diagram of boundary condition (BC) padding

Model

Figure A.3: Padding during the model rollout

PENN and our method both encode BCs to satisfy them. However, there are several key differences
between the two approaches.

• Methods: PENN designs the special neural layers and modules for model to satisfy BCs
while we apply the padding strategy directly to the features.

• Types of BCs: PENN proposes DirichletLayer and pseudoinverse decoder for Dirichlet
BCs, and NeumannIsoGCN for Neumann BCs. In contrast, our padding strategy can be
applied for four types of BCs: Dirichlet, Neumman, Robin, periodic.

• Accuracy: PENN has no error for Dirichlet BCs, while our padding strategy has no error
for Dirichlet BCs as well. However, neither method can enforce other BCs with zero error.

• Efficiency: During training, the additional cost for PENN to satisfy BCs involves con-
structing the pseudo-inverse decoder after the parameters are updated. The efficiency of
this process depends on the number of parameters in the encoder. For our approaches, the
cost of the padding strategy involves mere copying the corresponding nodes in the domain,
which is negligible.

D DATASET DETAILS

D.1 SYNTHETIC DATASET FOR LAPLACE BLOCK

We create a synthetic dataset to validate the effectiveness of the Laplace block. First, we generator
10,000 samples of random continuous functions on a high-resolution (129 × 129) regular grid by
cumulatively adding sine and cosine functions, satisfying periodic BCs. The formula of the random
continuous functions is as followed

f̃(x, y) =

N∑
i,j=0

Aijsin
(
2π

((
i−

⌊
N

2

⌋)
x+

(
j −

⌊
N

2

⌋)
y

))
+

Bijcos
(
2π

((
i−

⌊
N

2

⌋)
x+

(
j −

⌊
N

2

⌋)
y

))
f(x, y) =

f̃(x, y)

max f̃(x, y)

(A.10)

where N = 12, Aij , Bij ∼ N (0, 1), and ⌊·⌋ denotes the floor function in mathematics. The function
f(x, y) exhibits a period of 1, satisfying periodic BCs on the computational domain [0, 1]× [0, 1].
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Ref. Pred.

Figure A.4: Snapshot of a random function f , ground truth of its Laplacian and prediction by our
Laplace block.

By setting various random seeds, we generated a set of 10,000 samples of the random continuous
function. Then, we compute the Laplacian at each node for all samples as the ground truth by
employing the 5-point Laplacian operator of the finite difference method:

L∆ =
1

12(δx)2


0 0 −1 0 0
0 0 16 0 0
−1 16 −60 16 −1
0 0 16 0 0
0 0 −1 0 0

 (A.11)

Note that 70% of the dataset is used as the training set, 20% as the validation set, and 10% as the test
set. To achieve spatial downsampling, we generate a much coarser mesh by COMSOL and obtain
the low-resolution simulation by choosing the closest nodes between the high-resolution and coarser
mesh points. This approach is consistently applied throughout the paper for all downsampling tasks.
Figure A.4 shows the snapshot of a random function, ground truth of its Laplacican and prediction
by our Laplace block with N = 983 observed nodes.

D.2 SIMULATION DATASET OF PDE SYSTEMS

We train and evaluate PhyMPGN’s performance on various physical systems, including Burgers’
equation, FitzHugn-Nagumo (FN) equation, Gray-Scott (GS) equation and cylinder flow. All the
simulation data for PDE systems are generated with fine meshes and small time stepping using
COMSOL, a multiphysics simulation software based on the advanced numerical methods. Subse-
quently, the simulation data is downsampled on both time and space before being fed into the model
for training and evaluation. All the simulation data details for PDE systems are summarized in
Table A.2 and Table A.3.

Burgers’ equation Burgers’ equation is a fundamental nonlinear PDE to model diffusive wave
phenomena, whose formulation is described by

u̇ = ν∆u− u · ∇u (A.12)

where the diffusion coefficient ν is set to 5× 10−3.

There are four different scenarios of Burgers’ equation: (1) Scenario A, a square domain with
periodic BCs; (2) Scenario B, a square domain with a circular cutout, where periodic and Dirichlet
BCs are applied; (3) Scenario C, a square domain with a dolphin-shaped cutout, where periodic and
Dirichlet BCs are applied; and (4) Scenario D, a square domain with semicircular cutouts on both
the left and right sides, where periodic and Neumann BCs are applied. The diagram of irregular
domain and hybrid BCs for the four scenarios are illustrated in Figure 5. ICs for Burgers’ equation
are generated similarly to the synthetic dataset for the Laplace block (Appendix D.1). We generated
20 trajectories with different ICs for each scenario, using 10 for training and 10 for testing. To
explore the dataset size scaling behavior of our model, we generated 50 trajectories with different
ICs in total for training. Each trajectory consists of 1600 time steps with a time interval of δt = 0.001
for the model.

FN equation FitzHugh-Nagumo (FN) equation is an important reaction-diffusion equation, de-
scribed by

u̇ = µu∆u+ u− u3 − v + α

v̇ = µv∆v + (u− v)β
(A.13)
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Table A.2: Details of simulation data of four PDE systems.

Burgers FN GS Cylinder Flow

Domain [0, 1]2 [0, 128]2 [0, 1]2 [0, 16]× [0, 8]
Original nodes 12659 15772 37249 36178
Down-sampled nodes 503 983 4225 1598
Original δt 0.0005 0.002 0.25 0.025
Down-sampled δt 0.001 0.004 0.5 0.05
Time steps 1600 2000 2000 2000
Train / Test sets 10 / 10 3 / 10 6 / 10 4 / 9

where the diffusion coefficients µu and µv are respectively 1 and 10, and the reaction coefficients α
and β are respectively 0.01 and 0.25.

The system, governed by FN equation and defined on a square computational domain with periodic
BCs, begins with random Gaussian noise for warmup. After a period of evolution, time trajectories
are extracted to form the dataset. We generated 13 trajectories with different ICs, using 3 for training
and 10 for testing. Each trajectory consists of 2000 time steps with a time interval of δt = 0.004 for
the model.

GS equation Gray-Scott (GS) equation is a mathematical model used to describe changes in sub-
stance concentration in reaction-diffusion systems, which is governed by

u̇ = µu∆u− uv2 + F(1− u)

v̇ = µv∆v + uv2 − (F + κ)v
(A.14)

where the diffusion coefficients µu and µv are respectively 2.0 × 10−5 and 5.0 × 10−6, while the
reaction coefficients F and κ are respectively 0.04 and 0.06.

The system, governed by GS equation and defined on a square computational domain with periodic
BCs, starts the reaction from random positions. The time trajectories of the reaction’ process are
extracted to form the dataset. We generated 16 trajectories with different ICs, using 6 for training
and 10 for testing, Each trajectories consists of 2000 time steps with a time interval of δt = 0.5 for
the model.

Cylinder flow The dynamical system of two-dimensional cylinder flow is governed by Navier-
Stokes equation

u̇ = −u · ∇u− 1

ρ
∇p+

µ

ρ
∆u+ f (A.15)

where the fluid density ρ is 1, the fluid viscosity µ is 5.0 × 10−3 and the external force f is 0.
We are focusing on to generalize over the inflow velocities Um of fluids while keeping the fluid
density ρ, the cylinder diameter D = 2, and the fluid viscosity µ constant. According to formula
Re = ρUmD/µ, generalizing over the inlet velocities Um also means to generalize across different
Reynolds numbers.

The upper and lower boundaries of the cylinder flow system are symmetric, while the cylinder
surface has a no-slip boundary condition. The left boundary serves as the inlet, and the right bound-
ary as the outlet. We generated 13 trajectories with different Re values, using 4 trajectories with
Re = [160, 240, 320, 400] for training and 9 trajectories for testing. The testing sets are divided
into three groups based on Re: 3 trajectories with small Re = [200, 280, 360], 3 trajectories with
medium Re = [440, 480, 520], and 3 trajectories with large Re = [600, 800, 1000]. Each trajectory
consists of 2000 time steps with a time interval of δt = 0.05 for the model, except for the trajectories
with larger Reynolds numbers (Re = [600, 800, 1000]), which have a time interval of δt = 0.005.

E MODELING PDE SYSTEMS

We train and evaluate PhyMPGN’s performance on various physical systems, including Burgers’
equation, FN equation, GS equation and cylinder flow. Leveraging four NVIDIA A100 GPUs, the
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Table A.3: Details of simulation data of four Burgers’ scenarios.

Scenario A Scenario B Scenario C Scenario D

Domain [0, 1]2 [0, 1]2 [0, 1]2 [0, 1]2

Original nodes 12659 14030 14207 15529
Down-sampled nodes 503 609 603 634
Original δt 0.0005 0.0005 0.0005 0.0005
Down-sampled δt 0.001 0.001 0.001 0.001
Time steps 1600 1600 1600 1600
Train / Test sets 10 / 10 10 / 10 10 / 10 10 / 10

Table A.4: The MSEs of the three PDE systems.

Burgers FN GS

DeepONet 1.68e-2 9.47e-2 4.04e-2
PA-DGN 8.66e-1 7.19e+2 2.93e+0

MGN 9.19e-4 5.54e-2 4.44e-3
MP-PDE 5.88e-3 2.88e-2 2.82e+0

PhyMPGN (Ours) 2.99e-4 2.82e-3 4.05e-4
Lead ↑ 67.5% 90.2% 90.9%

Table A.5: The MSEs of our model on different dataset size effect (Burgers).

No. of trajectories 5 10 20 50

PhyMPGN (ours) 6.35e-4 2.99e-4 1.60e-4 4.43e-5

Table A.6: The MSEs of Burgers’ equation with various boundary conditions.

Scenario A Scenario B Scenario C Scenario D

DeepONet 1.68e-2 1.37e-2 1.16e-2 2.22e-2
PA-DGN 8.66e-1 1.10e+0 1.03e+0 Nan

MGN 9.19e-4 1.68e-3 1.89e-3 2.70e-3
MP-PDE 5.88e-3 6.59e-3 5.11e-2 1.63e-2

PhyMPGN (Ours) 2.99e-4 2.89e-4 3.06e-4 9.30e-4
Lead ↑ 67.5% 82.8% 83.8% 65.6%

training process is completed within a range of 4 to 15 hours. And the inference time is under
one minute on a single GPU. We also compare the performance of PhyMPGN against existing
approaches, such as DeepONet, PA-DGN, MGN, MP-PDE.

Generalization test over ICs: To test the models’ generalizability over different random ICs, we
train PhyMPGN and baseline models on the three physical systems: Burgers’ equation, FN equation
and GS equation. All these PDE systems have a square domain with periodic BCs. The MSEs
of PhyMPGN and baseline models are listed in Table A.4. The value of “Lead” in the tables is
defined as (MSEs − MSEb)/MSEs, where MSEb denotes the best results among all models and
MSEs denotes the second-best result. To explore the dataset size scaling behavior of our model,
using Burgers’ equation as an example, we train our model with different numbers of trajectories:
5, 10, 20, and 50. The numerical results are presented in Table A.5.
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Table A.7: The MSEs of cylinder flow for three groups of Re values.

Re [200, 280, 360] [440, 480, 520] [600, 800, 1000]

DeepONet 9.07e-2 3.10e-1 1.53e+0
PA-DGN 7.58e+3 Nan Nan

MGN 1.73e-1 2.17e-1 8.88e-1
MP-PDE 7.23e-3 2.77e-1 5.96e-1

PhyMPGN (Ours) 2.14e-4 3.56e-2 1.25e-1
Lead ↑ 97.0% 83.4% 79.0%

C
or
re
la
tio
n

Ours
MGN
MP-PDE
PA-DGN
DeepONet

Figure A.5: The correlation of our model trained on the 100-second trajectories but tested on the
200-second trajectory with Re = 480.

Handling different BCs: To validate our model’s ability to encode different types of BCs, we
use Burgers’ equation as an example and consider three additional scenarios with irregular domain
and hybrid BCs, resulting in a total of four scenarios, as illustrated in Figure 5: (1) Scenario A, a
square domain with periodic BCs, as mentioned in the previous paragraph; (2) Scenario B, a square
domain with a circular cutout, where periodic and Dirichlet BCs are applied; (3) Scenario C, a
square domain with a dolphin-shaped cutout, where periodic and Dirichlet BCs are applied; and
(4) Scenario D, a square domain with semicircular cutouts on both the left and right sides, where
periodic and Neumann BCs are applied. The MSEs of PhyMPGN and baseline models are listed in
Table A.6.

Generalization test over the Reynolds number: We also evaluate the ability of our model to
generalize over the Reynolds number for the cylinder flow, governed by the Naiver-Stokes (NS)
equations. We generate 4 trajectories with Re = [160, 240, 320, 400] for training, and 9 trajectories
for testing. The testing sets are divided into three groups based on Re: 3 trajectories with small
Re = [200, 280, 360], 3 trajectories with medium Re = [440, 480, 520], and 3 trajectories with
large Re = [600, 800, 1000]. The MSEs for the three groups of PhyMPGN and baseline models are
listed in Table A.7. To evaluate the extrapolation capability, our model trained over the time range
0 − 100s is tested on the 200-second trajectory with Re = 480. We observe a slow decline of our
model’s correlation in Appendix Figure A.5. The correlation is 0.95 at t = 100s and decreases to
0.85 at t = 200s.

Computational efficiency: The computational cost of the Laplace block and the padding strategy
is minimal. The computation of Mesh Laplace in Laplace block includes only matrix multiplication
Lwf , where f are the node features and Lw is a weight matrix related to mesh geometric that can
be calculated offline. The cost of the padding strategy involves merely copying the corresponding
nodes in the domain, which is negligible.

For a comparative analysis of computational efficiency, we select MGN and MP-PDE as baselines
from neural-based methods, and COMSOL as a baseline from classical numerical methods. Taking
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Table A.8: The MSEs averaged on the testing sets with Re = [440, 480, 520] of the four models in
ablation study: Ours, Model A, B, and C.

Model MSE

PhyMPGN (Ours) 3.56e-2
Model A 1.57e-1
Model B 1.06e-1
Model C 2.50e-1

Table A.9: The inference time (seconds) and MSE of four methods for Burgers’ equation.

Time per trajectory Total time
(10 trajectories) MSE

MGN 4.01 5.19 9.19e-4
MP-PDE 0.33 1.00 5.88e-3

COMSOL 19.5 195 4.91e-5
PhyMPGN 10.71 13.64 2.99e-4

Table A.10: The MSEs of our models employing different numerical integrators.

Model Re = [200, 280, 360] Re = [440, 480, 520] Re = [600, 800, 1000]

PhyMPGN (Euler) 1.95e-3 1.07e-1 1.41e-1
PhyMPGN (RK2) 2.14e-4 3.56e-2 1.25e-1
PhyMPGN (RK4) 1.21e-4 1.97e-2 9.26e-2

Burgers’ trajectories with 1600 time steps and 503 nodes in the domain as an example, we compare
the inference times between these three baselines and our model (PhyMPGN). The inference time
and MSE of these four methods are shown in Table A.9. All evalutions are conducted on a single
NVIDIA A100 GPU and an i9-13900 CPU. Additionally, the ground truth is generated with high
resolution in both time and space using COMSOL with the implicit scheme.

MGN predicts one step given one step as input, similar to PhyMPGN. However, due to the addi-
tional Laplace operator, padding strategy, and RK2 scheme, PhyMPGN has more inference time
than MGN. On the other hand, MP-PDE predicts Tw steps (with Tw = 20) in a single forward pass
using Tw steps as input, resulting in the least inference time among neural-based models. Thanks
to the GPU’s parallel capabilities, these neural-based models can greatly improve efficiency by si-
multaneously inferring multiple trajectories. The results from COMSOL, a multiphysics simulation
software based on advanced numerical methods, presented in the comparison, are obtained using an
implicit scheme.

In summary, PhyMPGN achieves the lowest error among neural-based models with a reasonable
time overhead as a trade-off, while COMSOL delivers the least error among these four methods but
at the cost of significantly higher time overhead. Notably, to simulate the PDE system, COMSOL
requires the complete governing PDE formulas, whereas the three neural-based methods do not, as
they learn the dynamics from data.

Ablation study: We study the effectiveness and contribution of two key components in our model,
namely, the learnable Laplace block and the BC padding strategy. Specifically, we conducted ab-
lation studies on the cylinder flow problem, comparing the performance of four models: (1) the
full model, referred to as Ours; (2) the model only without the Laplace block, referred to as Model
A; (3) the model only without the padding strategy, referred to as Model B; (4) the model without
both the Laplace block and the padding strategy, referred to as Model C. We train these models
on the same cylinder flow dataset described previously and evaluate them on the same testing sets.
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Table A.11: The training and inference time of our models employing different types of numerical
integrators for cylinder flow problems.

Training time Inference time
per trajectory

Inference time
(5 trajectories)

PhyMPGN (Euler) 5.2 h 8.98 s 13.47 s
PhyMPGN (RK2) 14.4 h 17.57 s 27.08 s
PhyMPGN (RK4) 39.3 h 34.99 s 53.49 s

Table A.12: The MSE and the training time with different segment sizes M .

M Re = [200, 280, 360] Re = [440, 480, 520] Re = [600, 800, 1000] Training time

10 2.43e-3 1.48e-1 2.42e-1 8.3 h
15 9.34e-4 3.05e-2 1.34e-1 15.0 h
20 2.14e-4 3.56e-2 1.25e-1 14.4 h

The error distribution and correlation curves of these four models averaged on the testing sets with
Re = [440, 480, 520] are shown in Figure 8. The corresponding MSEs are listed in Table A.8.

Investigation on numerical integrators: Additionally, using the same datasets as before, we in-
vestigate the impact of three types of numerical integrators employed in our model on performance:
the Euler forward scheme, the RK2 scheme, and the RK4 scheme. The MSEs of our models employ-
ing these three numerical integrators are presented in Table A.10. We trained our model for 1600
epochs using four NVIDIA A100 GPUs and performed inference for 2000 time steps per trajectory
on a single GPU. Their training and inference time are listed in Table A.11. All inference times are
under one minute. Thanks to the parallel capabilities of GPUs, the inference speed can be further
accelerated by processing batches simultaneously.

The impact of the time segment size M : Many previous methods (Seo* et al., 2020; HAN et al.,
2022; Geneva & Zabaras, 2022; Ren et al., 2022; Rao et al., 2023) unroll models to predict multiple
steps within a short time segment then backpropagate to learn the dynamics of physics systems. The
time segment size M is a hyperparameter in our approach, and we have not devoted much time to
fine-tuning it. Intuitively, longer time segments can be advantageous for capturing long-term de-
pendencies, thereby improving the model’s long-term prediction capabilities. However, excessively
long segments may introduce challenges during training, such as increased memory consumption
and difficulties in achieving convergence. To investigate the impact of the segment size M on the
results and computational requirements, we conduct experiments using the cylinder flow datasets
from the ablation study. We train our model with segment sizes M = 10, 15, 20, and the MSEs on
the testing sets and the training time are presented in Table A.12, which shows that the bigger the
segment size M , the better the model’s prediction accuracy. Additionally, since we need to adjust
the batch size to fit the GPU memory as the segment size M varies, the training time does not scale
linearly with M . Specifically, the batch sizes for M = 15 and M = 20 are the same, while the
batch size for M = 10 is double that of the other two configurations. Therefore, the training time
differences are also reasonable.

In all experiments, the numbers of trainable parameters and training iterations for all models are
kept as consistent as possible to ensure a fair comparison, as listed in the Table A.13. Snapshots
of ground truths and predictions of u component from our model in all experiments are shown in
Figure A.6.
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Table A.13: The number of trainable parameters of all models.

Burgers FN GS Cylinder Flow

DeepONet 219k 295k 422k 948k
PA-DGN 194k 194k 260k 1025k

MGN 175k 175k 267k 1059k
MP-PDE 193k 193k 253k 1069k

PhyMPGN (Ours) 157k 161k 252k 950k

a
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t = 0
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t = 0 t = 500 t = 1000 t = 1500

d
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Figure A.6: Snapshots of u component of ground truths in several simulations and predictions from
our model. (a, b, c, d) Burgers’ equation in various domains. (e) FN equation. (f) GS equation. (g)
Cylinder flow with Re = 440.
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