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ABSTRACT

Mixed precision quantization has become an important technique for enabling the
execution of deep neural networks (DNNs) on limited resource computing plat-
forms. Traditional quantization methods have primarily concentrated on main-
taining neural network accuracy, either ignoring the impact of quantization on the
robustness of the network, or using only empirical techniques for improving ro-
bustness. In contrast, techniques for robustness certification, which can provide
strong guarantees about the robustness of DNNs have not been used during quan-
tization due to their high computation cost.
This paper introduces ARQ, an innovative mixed-precision quantization method
that not only preserves the clean accuracy of the smoothed classifiers but also
maintains their certified robustness. ARQ uses reinforcement learning to find
accurate and robust DNN quantization, while efficiently leveraging randomized
smoothing, a popular class of statistical DNN verification algorithms, to guide
the search process. We compare ARQ with multiple state-of-the-art quantization
techniques on several DNN architectures commonly used in quantization studies:
ResNet-20 on CIFAR-10, ResNet-50 on ImageNet, and MobileNetV2 on Ima-
geNet. We demonstrate that ARQ consistently performs better than these base-
lines across all the benchmarks and the input perturbation levels. In many cases,
the performance of ARQ quantized networks can reach that of the original DNN
with floating-point weights, but with only 1.5% instructions.

1 INTRODUCTION

Mixed precision quantization has become an important technique for enabling the execution of deep
neural networks (DNNs) on limited resource computing platforms. Quantization of an original DNN
model with floating-point weights/activations significantly reduces the model size and the complex-
ity of operations, while retaining the model’s accuracy (Wang et al., 2019). However, quantizing the
model also reduces its robustness, i.e., the ability of the network to produce a correct classification
in the presence of (even small) adversarial input perturbations.

To alleviate this problem, certified DNN robustness techniques provide formal guarantees that the
DNN will classify all small perturbations with the same label as the original input. These techniques
are designed to protect against a broad scope of possible adversarial inputs, unlike commonly used
empirical robustness techniques, which defend against only a specific kind of adversarial inputs,
typically in a best-effort fashion (Raghunathan et al., 2018; Li et al., 2023).

Despite their desirability, certified robustness techniques, have a high computational cost. Many
deterministic techniques that have been developed have been used only on small networks and
datasets (Singh et al., 2019; Lechner et al., 2022; Zhang et al., 2022). Statistical methods for ro-
bustness certification based on randomized smoothing (RS) (Cohen et al., 2019) currently offer the
greatest scalability. Yet, due to their cost, RS and other similar techniques have not been used during
quantization but only at the end of the optimization to characterize the level of robustness of the final
quantized network. Using these techniques during model quantization is an open question.

Our Work: ARQ. We present ARQ, a novel robustness-aware mixed-precision quantization frame-
work for neural networks. ARQ demonstrates for the first time that robustness certification can be
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included as a part of the search for optimal quantization of an original DNN. ARQ’s algorithm takes a
pre-trained DNN and encodes a reinforcement learning (RL) problem that searches for quantization
policies – the bit-widths of the weights/activations of all layers in the DNN – that (1) preserve DNN’s
accuracy, (2) improve its robustness, and (3) reduce the model’s computation cost. This design al-
lows ARQ to support mixed-precision quantization (MPQ), in which the weights in each layer can
be quantized with different bit-widths, thus giving fine-grained control over the possible policies.

The key insight behind ARQ’s approach is that the optimization for both accuracy and robustness
aims to maximize the DNN’s certified radius, which characterizes all the slightly perturbed inputs
that the DNN classifies with the same label as the non-perturbed input. This optimization objective
fits well within the RL framework. ARQ’s algorithm also makes it possible to leverage recent ap-
proaches for incremental analysis of certified robustness to speed up the quantization policy search.

We compare ARQ with existing searching and learning-based mixed precision quantization meth-
ods that only optimize for accuracy. The baselines include HAQ (Wang et al., 2019) (which uses
reinforcement learning) and LIMPQ (Tang et al., 2023) (which uses integer programming) and fixed-
precision quantization method PACT (Choi et al., 2018). We considered three DNN architectures
commonly used in quantization studies: ResNet-20 on CIFAR-10, ResNet-50 on ImageNet, and
MobileNetV2 on ImageNet.

We demonstrate that ARQ consistently performs better than these baselines across all the bench-
marks and the input noise levels. In many cases, ARQ can even reach, and sometimes even improve
on the accuracy and robustness of the original floating-point network, but with only 1.5% operations.

Contributions. The paper makes the following contributions:

• Approach: We present ARQ, the first approach for mixed-precision quantization that opti-
mizes for certified robustness of DNNs. It poses an optimization problem that maximizes the
certified radius for a bounded resource usage cost (e.g., compute instructions, model size).

• Framework: ARQ’s algorithm incorporates randomized smoothing within the reinforcement
learning loop, which enables it to find certifiably robust quantized networks.

• Results: Our experiments on three commonly used networks/datasets show that ARQ consis-
tently performs better than the state-of-the-art quantization techniques.

2 BACKGROUND

2.1 MIXED PRECISION QUANTIZATION

Neural network quantization is a model compression technique that can reduce a network’s size
and compute cost. Quantization applies to float-valued weights and activations in the network and
converts them to integer values of certain bit-widths. Using the same bit-width for the entire network
is sub-optimal because some layers are more amenable to quantization than others.

Mixed Precision Quantization assigns different bit-widths per weight or activation in a network and
searches for the best combination of bit-widths. A quantization policy P is a sequence of bit-width
assignments to each layer in the network. For a network of L layers, where each layer has N bit-
width options {b1, b2, . . . , bN} for both weights and activations, there are N2L combinations of
quantization policies. We can then formulate the process of optimizing the quantization policy for a
network N as the following mathematical optimization problem:

Poptimal = argmax
P∈P

Acc(fP (x), y) s.t. Cost(fP ) < C0 (1)

Acc(f(x), y) =
1

|X|
∑

(x,y)∈X

1(f(x) = y) (2)

Here P denotes the space of all quantization policies and Poptimal ∈ P is the optimal policy that
maximizes Acc(fP (x)) on dataset X , the accuracy of the quantized network fP (x). Cost(fP ) is
the resource usage of the network, such as the model size, the number of compute bit operations or
energy consumption, and C0 is a user-specified bound on the resource.

Reinforcement Learning Based Quantization. Wang et al. (2019); Lou et al. (2020) have intro-
duced Reinforcement Learning (RL) based approaches to search for quantization policies. One
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of the RL algorithms introduced is the Deep Deterministic Policy Gradient (DDPG) algorithm
(Lillicrap et al., 2019) (see Appendix A.1 for details). The DDPG agent iteratively interacts with
the environment (the neural network) by observing the state Sk (the configuration of the kth layer),
taking an action ak (the quantization bit-width), and receiving a Reward (the resulting accuracy).

2.2 CERTIFIED NEURAL NETWORK ROBUSTNESS

A classifier is considered certifiably robust when its predictions are guaranteed to remain consistent
within a neighborhood of input x. Consider a classification problem from Rm to classes Y . Let
f : Rm → Y be a neural network classifier. We seek a smoothed classifier g : Rm → Y , whose
prediction matches that from f for any input x and is constant within some neighborhood of x.
Randomized smoothing (Cohen et al., 2019; Yang et al., 2020; Zhang et al., 2020) provides a way
to construct such a smoothed classifier g from the base classifier f . When queried at x, g returns the
class that f is most likely to return when x is perturbed by Gaussian noise:

g(x) := argmax
c∈Y

P(f(x+ ε) = c) where ε ∼ N (0, σ2I) (3)

Cohen et al. (2019) show that g’s prediction is constant within an l2 ball around any input x. The
radius of that ball, R(x), is known as the certified radius. ε is the Gaussian noise added on the
input, sampled from Gaussian distribution of mean 0 and variance σ2I (I is the identity matrix). σ
is the noise level, a hyperparameter of the smoothed classifier g independent of the input x. The
certified accuracy of a classifier is defined as the probability that the classifier correctly predicts
the true labels of samples x for which the certified radius R(x) exceeds a certain threshold r. The
clean accuracy is the certified accuracy when r = 0.

Theorem 1 (From Cohen et al. (2019)) Suppose cA ∈ Y , pA, pB ∈ [0, 1]. if

P(f(x+ ϵ) = cA) ≥ pA ≥ pB ≥ max
c̸=cA

P(f(x+ ϵ) = c), (4)

then g(x + δ) = cA for all δ satisfying ∥δ∥2 ≤ σ
2 (Φ

−1(pA) − Φ−1(pB)), where Φ−1 denotes the
inverse of the standard Gaussian CDF.

Computing the exact probabilities pA, pB from Eqn. 4 is intractable in general. For practical ap-
plications, RS certification utilizes sampling to estimate pA and pB using the Clopper-Pearson
method (Clopper & Pearson, 1934). If using this procedure yields pA > 0.5, then RS algorithm
sets pB = 1− pA and computes the certified radius as

R(x) = σ · Φ−1(pA) (5)

via Theorem 1, else it returns ABSTAIN, i.e., it cannot prove the certified robustness.

3 ARQ APPROACH

3.1 PROBLEM STATEMENT

ARQ provides a mixed precision quantization method that optimizes both the robustness and accu-
racy of the quantized smoothed classifier gP from a base classifier f .

Quantization Challenges. To improve the robustness of the quantized smoothed classifier gP , one
could naively replace the accuracy metric in the formulation of an existing MPQ method (Eqn. 1)
with an accuracy metric for the base classifier fP that uses Gaussian noise-perturbed inputs. This
approach does not significantly improve the robustness of the quantized smoothed classifier gP ,
based on the following three observations:

• By taking one perturbed sample per data point, this accuracy metric is highly affected by
randomness and does not capture the robustness of gP well.

• The accuracy of base classifier fP correlates directly with the average lower bound probability
(pA) as stated in Eqn. 4. However, improving the quantized base classifier fP ’s accuracy on
samples with pA < 0.5 does not improve the quantized smoothed classifier gP ’s accuracy.
Because for samples where pA < 0.5, the certified radius is less than zero, indicating that the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

quantized smoothed classifier gP cannot provide any robustness guarantee for these samples.
Consequently, these samples cannot be correctly classified by the quantized smoothed classifier
gP , regardless of the improvements made to the base classifiers on such inputs.

• Using accuracy as the optimization goal does not accurately reflect the robustness of the neural
networks. As R = σ · Φ−1(pA), the radius R of gP has a complicated relation to pA. There-
fore, optimizing only for the accuracy of the quantized base classifier fP may not accurately
translate to improvements in the accuracy of the quantized smoothed classifier gP . This results
in a disproportionate focus on samples with smaller certified radii, while neglecting those with
larger ones, due to the non-linear relationship between R and pA.

ARQ Optimization Objective. Instead, we propose using the certified radius of smoothed classi-
fiers to directly guide the quantization method. It is more straightforward as it uses feedback directly
from the smoothed classifiers instead of the base classifiers, and it can combine the goal of optimz-
ing both the clean accuracy and the robustness of the smoothed classifiers. We define the following
optimization problem (compare Eqn. 1) to find the optimal quantization policy Poptimal:

Poptimal = argmax
P∈P

(Average Certified Radius) s.t. Cost(fP ) < C0 (6)

where Average Certified Radius (ACR) is estimated as:

ACR =
σ

|X|
∑

(x,y)∈X

Φ−1(P(f(x+ ε) = y)) ∀ε ∼ N (0, σ2I) (7)

The P(fP (x+ ε) = y) here represents the lower bound of probability that base classifier f can
correctly classify input x under noise ε. This follows from the definition of the certified radius
R(x) = σ · Φ−1(pA) for a given input x and P(f(x+ ϵ) = cA) ≥ pA in Section 2.2. By averaging
over inputs in the dataset X , we obtain the ACR, which provides a measure of the overall robustness
of the classifier. Since the clean accuracy of smoothed classifiers is the percentage of samples with
a certified radius greater than zero. By focusing on optimizing the Acerage Certified Radius, we can
improve both the accuracy and robustness of the quantized smoothed classifiers.

Therefore, our final robustness-aware quantization problem formulation is:

Poptimal = argmax
P∈P

∑
(x,y)∈X

Φ−1(P(fP (x+ ε) = y)) s.t. Cost(fP ) < C0 (8)

However, it is challenging to use this formulation to search exhaustively across quantization policies
because calculating the certified radius, specifically obtaining P(fP (x+ ε) = y), is expensive –
this probability is estimated using the Clopper-Pearson method (Clopper & Pearson, 1934), and the
confidence level is related to the number of samples, and may require thousands of samples even
for a single image (Cohen et al., 2019). Instead, we employ a reinforcement learning (RL) agent to
search for the optimal quantization policy Poptimal, which we describe next.

3.2 ARQ SEARCH ALGORITHM

Algorithm 1 presents the pseudocode for the ARQ algorithm, which aims to determine the optimal
quantization policy for a given DNN f .

We first fully certify the robustness of g, the smoothed version of f using a large number of samples
n0 with function FullRobustCertify, and store the average certified radius of g as ACRorig (line
2, 2). During each iteration, our RL agent observes the kth layer’s configuration as state Sk and
uses the policy network µ(·) learned from the previous iterations to determine an action ak (line 5).
For each layer, the agent selects two actions for the weights and the activations of that layer. The
transition (Sk, ak, Reward, Sk+1, d) is stored in the replay buffer D for training the agent’s policy
network (line 7). Here, Reward is initially left blank, Sk+1 is the configuration of the next layer,
and d is the done signal indicating if it is the last layer.

After the RL agent proposes the actions for all layers, we first transform the continuous actions in list
A into discrete bit-widths and combine them into a quantization policy list Pt. Then we evaluate the
resource usage of the base classifier fP , which is quantized through Pt. If the proposed quantization
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Algorithm 1 ARQ Search Algorithm
Inputs: f : original DNN, σ: standard deviation, X: inputs to the DNN, n0: number of Gaussian samples used
for original certification, n: number of Gaussian samples used for quantized model certification, n1: number
of Gaussian samples used for fine-tuning quantized model, C0: constraint bound on the quantized models, N :
the number of iterations for search, D: empty replay buffer, µ(·): the policy network of the agent.
1: function QUANTIZATION POLICY SEARCH(f, σ,X, n0, n, n1, C0, N, θ, ϕ,D)
2: g ← SmoothedClassifier(f, n0); ACRorig ← FullRobustCertify(g,X, σ)
3: Poptimal ← ∅; Rewardbest ← 0; gPoptimal ← ∅
4: for t = 1 to N do
5: Observe the kth layer’s state Sk and select action ak = clip (µ(Sk) + ϵ, amin, amax), where ϵ ∼ Nt

6: Observe next layer’s state Sk+1, and done signal d to indicate whether Sk+1 is the final layer state
7: Store transition (Sk, ak, Reward, Sk+1, d) in replay buffer D and ak to list A
8: if d is true then
9: Pt ← CombineActionsToPolicy(A,C0)

10: fP ← Quantize(f, Pt); fP ← FineTune(fP , X, σ, n1)
11: gP ← SmoothedClassifier(fP , n); ACRP ← IncrementalRobustCertify(gP , X, σ)
12: Rewardt ← ACRP −ACRorig

13: if Rewardt > Rewardbest then
14: Rewardbest ← Rewardt
15: Poptimal ← Pt; gPoptimal ← gP
16: end if
17: The Reward for all transitions in this iteration is set to the final Rewardt.
18: Update Q-function, policy and target network. Reset the state.
19: end if
20: end for
21: return (Poptimal, gPoptimal)
22: end function

policy Pt exceeds the specified resource constraint C0, we will sequentially decrease the bit-width
of each layer until the constraint is finally satisfied (line 9).

The function Quantize(f, Pt) represents the quantization on f to fP with quantization policy Pt,
where the floating-point weights and activations were mapped to integers. We finetune fP for one
epoch using n1 inputs in dataset X with Gaussian noise of size σ to help it recover performance (line
10). Line 11 smooth fP into a quantized smoothed classifier gP with n (which is ≪ n0) samples.
Function IncrementalRobustCertify certifies the robustness of gP incrementally by reusing the in-
formation from the initial certification of g with Incremental Randomized Smoothing (IRS) (Ugare
et al., 2024) to obtain the ACR of gP as ACRP . The RL agent’s reward for all actions, Rewardt,
is set as ACRP − ACRorig, using the average certified radius of gP and g to guide the learning
of agent (line 12, 17). After N iterations, we obtain the optimal quantization policy Poptimal, with
maximim average certified radius of the quantized smoothed classifier.

3.2.1 QUANTIZATION POLICY SEARCH

Following previous work (He et al., 2018; Wang et al., 2019), we use DDPG as our RL agent to
search the bit-widths. At the kth layer of the base classifier f , the state Sk of agent is:

Sk = (k, cin, cout, skernel, sstride, sfeat, nparams, id, iwa, ak−1) (9)

where cin and cout are input/output channels, skernel, sstride and sfeat are kernel, stride and feature map
sizes, nparams is the parameter count, id and iwa indicate depthwise layers and weights/activations,
and ak−1 is the previous layer’s action. The first and last layers are fixed at 8-bit quantization.

We use a continuous action space with amin = 0 and amax = 1 to keep the relative order information
among different actions in line 5 of Algorithm 1. Observing the state Sk and using the policy
network µ(·), the action ak is selected for the kth layer, where ϵ ∼ Nt is a noise term added for
exploration in truncated normal distribution. We then round ak into discrete bit-width bk:

bk = round((bmin − 0.5 + ak × (bmax − bmin + 1)), (10)

with bmin and bmax here denoting the min and max bit-width.

As described in line 7 and line 9 in Algorithm 1, the actions will first be combined into list A.

A = (a1, a2, . . . , ak, ak+1, . . . , ad) (11)
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where ad is the final action the agent made for the last layer. When all layers has been traversed by
the agent, the list A is transformed into discrete bit-width form policy Pt fot the tth iteration.

Pt = (b1, b2, . . . , bk, bk+1, . . . , bd) (12)

Pt is also limited by the resource constraint C0. When the given Pt’s resource usage exceeds C0,
the bit-width will be decreased sequentially from back to front.

3.2.2 ROBUSTNESS-AWARE POLICY SEARCH

Due to the high cost of certifying the robustness of the quantized smoothed classifier gP , we perform
the certification only when d is true, which indicates all actions have been taken and the entire
quantization policy Pt come out. This avoids the frequent and expensive robust certification for
each individual quantized layer. We define our reward function Rewardt to be related to only the
average certified radius of the smoothed classifiers (line 12):

Rewardt = ACRP −ACRorig (13)

where ACRP denotes the average certified radius gained by the quantized smoothed classifier gP
through the current quantization policy Pt, and ACRorig denotes the average certified radius of the
original smoothed classifier g, which is a function of x as formulated in Eqn. 7.

The experiences in the form of transitions (Sk, ak, Rewardt, Sk+1, d) are stored in the replay
buffer D to update the Q-function, policy, and target network of the DDPG agent (line 17).

We use Rewardbest to compare with Rewardt and find the optimal quantization policy Poptimal,
for which the corresponding gPoptimal

achieves the highest ACR.

Since our optimization goal is to maximize the average certified radius of gP across the entire policy
Pt, we set the reward for all actions across different layers in one iteration to be the same value: the
final reward Rewardt. This ensures the reward reflects the overall effectiveness of the quantization
policy rather than individual layer actions, promoting a more comprehensive optimization.

3.2.3 IMPLEMENTATION DETAILS

Quantization. We use a linear quantization method, which maps the floating-point value to discrete
integer values in the range [−c, c] for weights and [0, c] for activations. The quantization function
Quantize(·) that quantizes floating-point weight value v to b-bit integer value q can be expressed as:

q = round(clip(v/s,−c, c))× s (14)

where v is the floating-point value, and q is the quantized value. s = c
2b−1−1

is the scaling factor.
c is optimized through the KL-divergence between q and v. In the network, each layer utilizes two
distinct c values for quantizing weights and activations.

IRS for Speedup in Certification. Due to the significant time consumption caused by both the
number of iterations required for quantization policy search and the time-consuming process of
certifying each iteration of the quantized neural networks, we employ Incremental Randomized
Smoothing (IRS) (Ugare et al., 2024) to certify quantized smoothed classifiers more efficiently. It
is known that IRS can have similar precision to re-running RS when verifying networks that have
sufficient structural similarity. Our design of ARQ algorithm aims to promote this property.

4 EXPERIMENTAL METHODOLOGY

Networks and Datasets. We evaluate ARQ on CIFAR-10 (Krizhevsky et al., 2009) and ImageNet
(Deng et al., 2009) datasets. We conduct all experiments on CIFAR-10 and ImageNet with 4-bit
equivalent quantization, We also perform ablation studies on CIFAR-10 dataset with various quan-
tization levels. The initial floating-point DNNs are trained with Gaussian noises of variance σ2 on
inputs. We use ResNet-20 as the base classifier for CIFAR-10, and ResNet-50 and MobileNetV2
for ImageNet. These models are chosen because they are the most commonly used classifiers in
previous studies within the areas of quantization and robustness.

Experimental Setup. For the ResNets experiments, we use a 48-core Intel Xeon Silver 4214R CPU
with two Nvidia RTX A5000 GPUs. For the MobileNetV2 experiments, we use an AMD EPYC
7763 CPU with four Nvidia A100 GPUs. ARQ is implemented in Python and uses PyTorch.
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Hyperparameters. We use SGD with a momentum of 0.9 and a weight decay of 10−4 for model
training and fine-tuning following Cohen et al. (2019). During the policy search, we fine-tune the
CIFAR-10 models for one epoch with a learning rate of 0.01, and the ImageNet models on a 60,000-
sample subset with a learning rate of 0.001. For fine-tuning in evaluation, for CIFAR-10, we set an
initial learning rate of 0.01 and scaled it by 0.1 at epoch 5. For ImageNet, we set an initial learning
rate of 10−3 and used the ReduceLROnPlateau learning rate scheduler. Fine-tuning is limited to 10
epochs, and the batch sizes are 256 for CIFAR-10 and 128 for ImageNet. A detailed description of
our fine-tuning epoch choice is described in Appendix A.3. For the optimization of the DDPG agent,
following Wang et al. (2019), we use ADAM (Kingma & Ba, 2017) with β1 = 0.9 and β2 = 0.999.
The learning rate is set to be 10−4 for the actor network and 10−3 for the critic network. During
exploration, truncated normal noise with an initial standard deviation of 0.5, decaying at 0.99 per
episode, is applied to the actions.

Metrics. We use the number of bit operations (BOPs) constraint for all methods following Yao et al.
(2021). BitOPs for filter k can be represented as: BOPs(k) = bw · ba · |k| · wk · hk/s

2
k where bw

and ba are the bitwidths for weights and activations, | · | denotes the number of parameters of the
filter, wk, hk, sk are the spatial width, height, and stride of the filter.

Robustness Certification. For the evaluation, we use confidence parameters α = 0.001 for the
certification of the original smoothed classifier g. Following the setting used by RS (Cohen et al.,
2019) and IRS (Ugare et al., 2024). For policy search, we use 500 validation images, n0 = 10000,
and n = 500 samples per image. For ζx estimation, we use α = 0.001 and αζ = 0.001 on CIFAR-
10, and α = 0.01 and αζ = 0.01 on ImageNet.

Evaluation. We compare ARQ with state-of-the-art searching and learning-based mixed-precision
quantization methods HAQ (Wang et al., 2019), LIMPQ (Tang et al., 2023), NIPQ (Shin et al.,
2023) and HAWQ-V3 (Yao et al., 2021) and fixed-precision quantization method PACT (Choi et al.,
2018). To make the baseline methods work well, we added Gaussian noise for the inputs and used
the accuracy metric on the perturbed inputs as described in Section 3.1 during the policy search
process for these baselines. For certifying the original smooth classifier g and quantized smooth
classifier gP , we used RS on 500 images each with 106 samples.

ARQ code is available at: https://anonymous.4open.science/r/ARQ-FE4B.

5 EXPERIMENTAL RESULTS

We present our main evaluation results: (1) the robustness and clean accuracy on the CIFAR-10 and
ImageNet datasets; (2) the runtime of ARQ’s search algorithm; and (3) selected ablation studies.

5.1 ROBUSTNESS AND ACCURACY EVALUATION ON CIFAR-10

On CIFAR-10, we conducted our experiments using ResNet-20 as the base classifier, with σ =
{0.25, 0.5, 1.0} and various BitOPs constraint settings. Figure 1 compares ARQ and baselines.
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Figure 1: Experiments on CIFAR-10. The x-axis shows the percentage of BitOPs of fP relative
to the original floating-point f . The y-axis shows the ACR for the first three subfigures, and the
average difference in clean accuracy between the methods and the original floating-point network
across different σ settings for Figure 1d.

ARQ achieved the best ACR for all experiments except on σ = 0.25 and stricter BitOPs constraint
setting, where the ACR drop compared to the best baseline is less than 0.001. Figure 1b presents
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results on σ = 0.50. Notably, ARQ’s 4-bit and 5-bit equivalent models outperformed the floating-
point original model which was not achieved by any other methods. Figure 1c presents results on
σ = 1.00. On 3-bit equivalent BitOPs constraint, ARQ had a 0.54% ACR drop while the best
baseline had a 3.43% ACR drop. ARQ also outperformed the floating-point model with more than
1.5% operations.

Finally, Figure 1d shows the average clean accuracy drop achieved by the methods. ARQ’s drop is
smaller (hence, clean accuracy is higher) than the other baselines. Except for the 4-bit equivalent
BitOPs, ARQ outperformed all baselines.

5.2 ROBUSTNESS AND ACCURACY EVALUATION ON IMAGENET

Table 1: Experiments on ImageNet. The ACR denotes the average certified radius, Acc denotes the
clean accuracy of the smoothed classifiers, BOPs denotes the number of bit operations of the models
(in G), and Size denotes the model size (in MB).

Method
σ = 0.25 σ = 0.50 σ = 1.00

ACR Acc BOPs Size ACR Acc BOPs Size ACR Acc BOPs Size

R
es

N
et

-5
0

FP 32 0.488 69.4 4244.3 97.29 0.743 62.4 4244.3 97.29 0.914 45.4 4244.3 97.29
ARQ 0.472 70.8 63.32 13.99 0.724 61.2 63.50 13.06 0.916 46.0 63.50 12.70
LIMPQ 0.458 68.6 63.55 13.08 0.700 58.2 63.55 13.46 0.871 44.4 63.55 13.25
HAQ 0.460 69.0 63.56 13.14 0.715 60.8 64.15 13.35 0.880 44.8 63.55 11.93
PACT 0.460 69.0 63.56 13.14 0.715 61.0 63.56 13.14 0.884 45.4 63.56 13.14

M
ob

ile
N

et
-V

2 FP 32 0.457 67.0 308.24 13.24 0.668 57.0 308.24 13.24 0.846 44.4 308.24 13.24
ARQ 0.385 62.0 4.60 2.23 0.576 54.0 4.60 2.13 0.774 41.6 4.60 2.27
LIMPQ 0.347 58.4 4.62 2.16 0.540 50.6 4.62 2.24 0.703 40.2 4.62 2.16
HAQ 0.341 56.0 4.60 2.27 0.573 53.4 4.60 2.24 0.683 39.8 4.61 2.17
PACT 0.376 60.2 4.62 2.27 0.564 52.4 4.62 2.27 0.757 40.2 4.62 2.27
NIPQ 0.335 56.2 4.62 2.09 0.542 50.2 4.62 2.29 0.694 39.2 4.62 2.11

Table 1 shows the results of the experiments on ImageNet. We selected a 1.5% BitOPs constraint
as in CIFAR-10 experiments, it demonstrated that ARQ can achieve the accuracy and robustness of
floating-point models. ARQ outperformed all other quantization methods in all settings we consider.
These results show that our approach with ACR objective is able to improve both the clean accuracy
and robustness. For ResNet-50, ACR of the ARQ-generated network is comparable to the ACR of
the original floating-point model. The clean accuracy for σ = 0.25 and σ = 1 is even slightly higher
than the accuracy of the original network. As a result of the limited fine-tuning, for MobileNetV2,
the clean accuracy and ACR are reduced compared to the floating-point model, but both are signif-
icantly higher than the alternative quantization methods. Since low σ certifies small radii with high
accuracy but not large radii, while high σ certifies larger radii but with lower accuracy for smaller
radii, the clean accuracy drops as σ increases. This observation is consistent with that in RS (Cohen
et al., 2019).

Note, the other mixed-precision quantization methods could hardly outperform the fixed-precision
quantization method PACT (Choi et al., 2018) on ImageNet, while ARQ significantly outperformed
PACT on both networks and even the original floating-point model at σ = 1.00 on ResNet-50.

5.3 EXECUTION TIME OF ARQ SEARCH AND OTHER METHODS

Table 2 presents the time consumption for different methods. We selected σ = 0.5 as it represents
the median value among the tested values in the experiments. The total time includes the policy
search, fine-tuning, and evaluation. The Eval time includes the time for fine-tuning and evaluation
of the quantized smooth classifiers. Although ARQ consumes more time than other methods, it is a
one-time cost, and the previous section showed that it produces the most robust models.
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Table 2: The total time for ARQ and other quantization search approaches (in hours).

Benchmark
Total time Policy Search

Eval
ARQ HAQ LIMPQ ARQ HAQ LIMPQ

ResNet-50 104.75 75.51 56.60 71.89 42.65 23.74 32.86
MobileNetV2 85.44 46.98 31.96 67.83 29.37 14.35 17.61

ResNet-20 3.30 2.78 0.56 2.83 2.31 0.09 0.47

Table 3: Impact of the reward function on ResNet-20 for CIFAR-10 with σ = 0.5. The method here
refers to the different approaches for the reward function.

Method BOPs ACR
Radius r

0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75

FP 32 42.04 0.539 68.2 56.0 44.6 33.8 21.8 14.4 7.2 3.8
ARQ 0.354 0.530 67.2 54.6 43.2 32.6 22.2 14.2 7.4 4.4
Val 0.363 0.518 66.4 53.4 43.0 32.8 21.6 13.0 7.4 4.0
Certified Acc 0.362 0.525 65.8 55.6 43.8 31.8 21.6 13.0 7.4 4.0

Table 4: The effect of incremental RS (IRS) vs rerunning RS on CIFAR-10.

Method
σ = 0.25 σ = 0.50 σ = 1.00

ACR Acc BOPs ACR Acc BOPs ACR Acc BOPs

FP 32 0.435 76.4 42.04 0.539 68.2 42.04 0.553 50.8 42.04
ARQ(-IRS) 0.418 76.0 0.362 0.530 67.2 0.354 0.550 49.6 0.354
ARQ-RS 0.414 75.8 0.362 0.526 67.2 0.359 0.537 49.2 0.359

5.4 ABLATION STUDIES

Reward Function Choice. We investigate the sensitivity of the policy search to the quality of the
reward function. In ARQ, ACR is used as a reward to the RL agent. But here is an intuitive question,
what if we use the certified accuracy of the quantized smooth classifier gP as the reward? As noted
in Section 2.2, certified accuracy is the probability that gP correctly predicts samples x with certified
radius R(x) exceeds the given threshold r. Table 3 shows the result of the ablation study conducted
on 3-bit equivalent quantized ResNet-20 models. Method "Val" and "Certified Acc" refer to using
the validation accuracy of fP and the certified accuracy of gP on r = 0.5. We observe that "Certified
Acc" gains better-certified accuracy on r = 0.25 and 0.5 but loses for the rest of the radii and ACR.

The Effect of IRS. Table 4 shows the results of using RS instead of IRS to obtain ACRp and
Rewardt. In our experiments, IRS is 1.32x faster than RS, consistent with the results from
IRS (Ugare et al., 2024). The method "RS" refers to using the same time for certification in the
policy search process as the IRS. We observe that using IRS does not reduce the quality of the
quantization policy (and in many cases improves it), justifying its use in ARQ’s search loop as the
candidate quantized networks are similar enough to benefit from incremental robustness proving.

Other Ablation Studies. Appendix A.2 presents quantization policies across different σs. Ap-
pendix A.3 presents the effect of the number of epochs in fine-tuning.

6 RELATED WORK

Mixed-Precision Quantization. To optimize the balance between the accuracy and efficiency
of DNNs, many mixed-precision quantization methods have been presented. Dong et al. (2019);
Louizos et al. (2017); Chen et al. (2021); Tang et al. (2023) employed appropriate proxy metrics that
indicate model sensitivity to quantization to generate quantization policies. Some other researchers
formulated quantization policy optimization as a search problem and addressed it using a Markov
Decision Process through reinforcement learning (Wang et al., 2019; Lou et al., 2020; Elthakeb
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Table 5: Comparison of various robustness-aware model reduction methods. Model Reduction
Method: P – Pruning; Q – Quantization; MPQ – Mixed-Precision Quantization. Stage: T – Train-
ing; PT – Post-training (tuning). Scale: Largest supported data-set.

Approach
Properties

Empirical
robustness RS Other determ.

approach
Approx.
Method Stage Scale

ARQ (this work) ✓ MPQ PT ImageNet
ATMC Gui et al. (2019b) ✓ Q T CIFAR-100
DQ Lin et al. (2019b) ✓ Q T CIFAR-10
GRQR Alizadeh et al. (2020) ✓ Q PT ImageNet
ICR Lin et al. (2021) ✓ Q T Caltech-101
QIBP Lechner et al. (2022) ✓ Q T CIFAR-10
ARMC Ye et al. (2021) ✓ P T CIFAR-10
QUANOS Panda (2020) ✓ MPQ PT CIFAR-100
Stochastic-Shield Qendro et al. (2021) ✓ Q PT CIFAR-10
HYDRA Sehwag et al. (2020) ✓ ✓∗ ✓∗ P PT ImageNet
TCR Sehwag et al. (2019) ✓ P PT CIFAR-10
DNR Kundu et al. (2020) ✓ P T Tiny-ImageNet
HMBDT Giacobbe et al. (2020) ✓ Q PT MNIST
TCMR Weng et al. (2020) ✓ Q PT CIFAR-10

et al., 2020) and a differentiable search process employed Neural Architecture Search algorithms
(Wu et al., 2018; Guo et al., 2020). As Table 1 shows, ARQ outperformed HAQ (Wang et al., 2019)
and LIMPQ (Tang et al., 2023), which are state-of-the-art mixed-precision quantization methods.

Robustness of Quantized Models. As illustrated in Table 5, ARQ stands out by being the only
approach that combines mixed-precision quantization with post-training optimization to achieve
certified robustness on large-scale datasets like ImageNet. This distinguishes our work from other
approaches that either focus only on pruning (which removes over 90% of the weights) and often
target smaller datasets. Although ICR (Lin et al., 2021) has explored quantization methods with RS,
ARQ focuses on post-training optimization instead of quantization-aware training and we demon-
strated it can scale to ImageNet. HYDRA (Sehwag et al., 2020) analyzes pruning methods with RS
but only scales to CIFAR-10 for RS and is hard to transfer to quantization methods.

Several methods were introduced to address the complementary challenge of training DNNs on
security-critical and resource-limited applications. Gui et al. (2019a) unified various existing com-
pression techniques. Lin et al. (2019a) and Alizadeh et al. (2020) presented how controlling the
magnitude of adversarial gradients can be used to construct a defensive quantization method. Fi-
nally, empirical robustness approaches can improve best-effort robustness only to some kinds of
adversarial inputs (Raghunathan et al., 2018; Li et al., 2023). Ugare et al. (2023; 2022) focuses on
fast incremental certification with deterministic techniques but not on optimizing the DNN.

7 CONCLUSION AND LIMITATIONS

Conclusion. We introduce ARQ, the first mixed-precision quantization framework that optimizes
both DNN’s accuracy and certified robustness by limiting the computational resource budget. By
using direct feedback from the ACR of the quantized smoothed classifier, ARQ more effectively
searches for the optimal quantization policy. Our experiments demonstrate that ARQ consistently
outperforms state-of-the-art quantization methods, often reaching or improving the accuracy and
robustness of the original FP32 networks with down to 0.84% operations. ARQ significantly reduces
the computational resource requirements of randomized smoothing, making it possible to deploy it
in resource-constrained environments while providing certifiable robustness guarantees.

Limitations. We showed that ARQ can achieve well-quantized DNNs that match or even surpass
the accuracy and robustness of the original DNNs with floating-point weights. However, these prop-
erties are still dependent on the training of the original network, which should be trained with Gaus-
sian augmentation to ensure the quantized network performs well. Deploying DNNs with mixed-
precision inference can be more challenging compared to the fixed-precision methods, however,
recent works aim to address this issue (Sharma et al., 2018). The current implementation of ARQ
has been evaluated solely on image classification tasks. In the future, we plan to investigate how
ARQ performs on other complex tasks such as object detection and natural language processing.
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REPRODUCIBILITY STATEMENT

We provide the source code and configuration details necessary to reproduce our experimental re-
sults. Detailed descriptions of the hyperparameters used in our experiments are provided in Sec-
tion 4, and the pseudocode for ARQ algorithms is described comprehensively in Section 3.2. The
code is available at the anonymous GitHub link provided at the end of Section 4.
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A APPENDIX

A.1 THE DEEP DETERMINISTIC POLICY GRADIENT (DDPG) ALGORITHM

DDPG learns a Q-function and a policy concurrently. It uses off-policy data and the Bellman equa-
tion to learn the Q-function, and then uses the Q-function to learn the policy.

Algorithm 2 (Achiam, 2018) shows the DDPG algorithm. In some RL search-based mixed-precision
quantization methods, DDPG is utilized to search for the optimal quantization policy. The environ-
ment is usually set to be the DNN itself, state s is usually set to be the configuration of one layer
in the DNN, the action a is the continuous value that can be transformed into the bit-width for the
layer, and r is the reward set to be the accuracy of the DNN and computed only after all actions
have been taken. The reward for all actions in one episode is set to the final accuracy gained. The
agent updates only when all actions have been taken and the reward is obtained. The experiences
are stored in replay buffer D and randomly sampled in batch B for updating the Q-function, policy
network, and the target network of the agent.

Algorithm 2 Deep Deterministic Policy Gradient
Inputs: Initial policy parameters θ, Q-function parameters ϕ, empty replay buffer D
1: Set target parameters equal to main parameters: θtarg ← θ, ϕtarg ← ϕ
2: repeat
3: Observe state s and select action a = clip (µθ(s) + ϵ, alow, ahigh), where ϵ ∼ N (0, σ2)
4: Execute a in the environment
5: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
6: Store transition (s, a, r, s′, d) in replay buffer D
7: Set the environment state to s′. If d is true, reset the environment state
8: The reward for all layers is set to be the final reward
9: if it’s time to update then

10: for each update step do
11: Randomly sample a batch of transitions B = {(si, ai, ri, s

′
i, di)} from D

12: Compute targets for each transition:

yi = ri + (1− di) γ Qϕtarg

(
s′i, µθtarg(s

′
i)
)

13: Update Q-function by one step of gradient descent using:

ϕ← ϕ− λQ∇ϕ

(
1

|B|
∑
i∈B

(Qϕ(si, ai)− yi)
2

)
14: Update policy by one step of gradient ascent using:

θ ← θ + λµ
1

|B|
∑
i∈B

∇θµθ(si)∇aQϕ(si, a)
∣∣
a=µθ(si)

15: Update target networks with:

θtarg ← τ θ + (1− τ) θtarg

ϕtarg ← τ ϕ+ (1− τ)ϕtarg

16: end for
17: end if
18: until convergence
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A.2 ABLATION STUDY: THE QUANTIZATION POLICIES FOR DIFFERENT LAYERS
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Figure 2: Quantization policy among different σs for ResNet-50 on ImageNet. The x-axis represents
the layer index, and the y-axis represents the bit-width selection in the quantization policy for each
specific layer. The • symbol represents the bit-widths for weights, and the × symbol represents the
bit-widths for activations.

Figure 2 illustrates the significance of generating different quantization policies for different values
of σ. The quantization policy for σ = 0.25 is more aggressive in the first half of the layers and more
conservative in the later layers. This pattern is different from that of σ = 0.5 and σ = 1.0, where
the policy tends to make more adjustments in the first half and remains stable in the latter half.

A.3 ABLATION STUDY: THE EFFECT OF THE NUMBER OF EPOCHS IN FINE-TUNING

Due to the limitation of computational resources, we only conducted fine-tuning for 10 epochs in
our experiments. Table 6 shows the results of further fine-tuning for a total of 90 epochs. The trends
in ACR and clean accuracy followed the same pattern as observed during the initial 10 epochs,
demonstrating the effectiveness of our work.

Table 6: Experiments for ResNet-20 on CIFAR-10. The Epochs here indicates the number of epochs
used for fine-tuning. The rest of Formats are similar to Table 1

Method GBitOPs
Epochs = 90 Epochs = 10

ACR Acc ACR Acc

ARQ 0.354 0.545 67.6 0.530 67.2
LIMPQ 0.361 0.535 67.0 0.514 65.0
HAQ 0.365 0.534 66.8 0.518 66.4
PACT 0.362 0.524 66.6 0.508 65.8

A.4 MODEL SIZE ANALYSIS IN CIFAR-10 EXPERIMENTS

In our CIFAR-10 experiments, we used ResNet-20 as the base classifier with σ = {0.25, 0.5, 1.0}
and various BitOPs constraint settings. While our primary experiments focused on using BitOPs
as the constraint, here we present supplementary results with ACR and average difference in clean
accuracy as the y-axis and model size as the x-axis. This analysis provides additional insights
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into model size measurements, even though model size was not used as a constraint in our main
experiments. Figure 3 compares ARQ with baseline methods.
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(c) σ = 1.0
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Figure 3: Experiments on CIFAR-10. The x-axis shows the model size of fP . The y-axis shows the
ACR for the first three subfigures, and the average difference in clean accuracy between the methods
and the original FP32 network across different σ settings for Figure 1d.

A.5 ABLATION STUDY: FURTHER ANALYSIS ON THE EFFECT OF TIME CONSUMPTION IN
POLICY SEARCH

Table 7: Performance of ARQ across different policy search time, showing corresponding clean
accuracy, ACR, and BOPs.

Time Accuracy ACR BOPs

3.30 67.2 0.530 0.354
2.65 66.8 0.528 0.354
0.72 66.2 0.521 0.354

Table 7 presents the results of ARQ under different time constraints for policy search. This informa-
tion serves as a reference for users aiming to balance time consumption in policy optimization with
accuracy and robustness during inference. Notably, although performance declines with reduced
search time, ARQ still outperforms the baselines.

A.6 COMPARSION EXPERIMENTS WITH ROBUST-AWARE QUANTIZATION METHODS

Table 8: Comparision experiment with RS-based quantization method ICR on ResNet-20 for
CIFAR-10 with σ = 0.5.

Method BOPs
Radius r

0.0 0.25 0.50 0.75 1.00 1.25 1.50

ARQ 0.354 67.2 54.6 43.2 32.6 22.2 14.2 7.4
ICR 2.596 63.0 52.0 39.0 29.0 22.0 15.0 8.0

Table 8 showed the results comparing ARQ with ICR Lin et al. (2021). Our experiments show that
ARQ 3-bit equivalent model can outperform ICR’s 8-bit equivalent model in both clean accuracy
and robust accuracy for certified radii below 1.0, and on radius r=1.25 and 1.50, the performance
loss of ARQ is minimal considering the BOPs difference and the improvement gained on smaller
radii.

Table 9 showed the results comparing ARQ with ATMC Gui et al. (2019b). We performed additional
experiments on an ATMC’s 8-bit equivalent model. It’s shown that empirical robust quantization
methods can hardly gain certified robustness.
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Table 9: Comparison of certified robustness of empirical robust quantization method ATMC on
ResNet-20 for CIFAR-10, showing ACR and BOPs across different σ settings.

Method
σ = 0.25 σ = 0.50 σ = 1.00

ACR BOPs ACR BOPs ACR BOPs

ARQ 0.418 0.362 0.530 0.354 0.550 0.354
ATMC 0.031 2.596 0.072 2.596 0.159 2.596
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