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Summary
High Power Laser (HPL) systems operate in the femtosecond regime—one of the shortest

timescales achievable in experimental physics. These systems are instrumental in high-energy
physics, as ultra-short pulses yield extremely high intensities, which play out to be essential
in both practical applications and theoretical advancements in light-matter interactions. Tra-
ditionally, the parameters regulating HPL optical performance are optimized using black-box
numerical methods such as Evolution Strategies (ES), and Bayesian Optimization (BO). While
effective, black-box methods are computationally demanding and rely on stationarity assump-
tions overlooking transient and complex system dynamics in HPL systems. Moreover, their
safe implementation on real-world hardware is challenging, as erratic exploration of the param-
eter space can compromise system safety. Model-free Deep Reinforcement Learning (DRL)
offers a promising alternative by enabling sequential decision making in non-static settings.
This work investigates the safe application of DRL to HPL systems, and extends current re-
search by (1) learning a control policy directly from pixels, using images typically available in
experimental settings and (2) addressing the need for generalization across diverse dynamics,
tackling the non-stationarity of the environment. We evaluate our method in simulation across
various dynamic configurations and observe that DRL effectively enables cross-domain adapt-
ability by transferring knowledge across conditions—eliminating the need to restart ES/BO
whenever there are fluctuations in the environment dynamics. Our contributions represent a
significant step towards real-world applications of DRL to HPL systems, introducing the RL
community to the task of controlling complex non-linear physical systems used to ignite nu-
clear fusion and accelerate charged particles.

Contribution(s)
1. We demonstrate the benefits of using Deep Reinforcement Learning to optimize High Power

Laser systems over currently dominant approaches based on gradient-free optimization.
Context: Prior works on laser optimization focused on black-box optimization techniques
which assume stationarity, require costly real-world function evaluations, and can endanger
the system at test-time.

2. We learn a control policy directly from images, which are made available via widespread
diagnostics devices.
Context: Instead of relying on noisy and lengthy processes to obtain structured representa-
tions of the system’s state, we leverage unstructured observations coming from diagnostic
devices as inputs for the control policy.

3. We train control policies entirely in simulation and successfully transfer them across un-
known, varying dynamics, showing robustness to different parametrizations.
Context: Transferring policies is hindered by the discrepancies across different domains,
and Domain Randomization is a promising technique widely explored in the field of robot
learning to ensure robustness to said differences and thus overcome such limitation.
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Abstract
High Power Laser (HPL) systems operate in the femtosecond regime—the shortest1
timescale achievable in experimental physics. HPL systems are instrumental in high-2
energy physics, leveraging ultra-short impulse durations to yield extremely high inten-3
sities, which are essential for both practical applications and theoretical advancements4
in light-matter interactions. Traditionally, the parameters regulating HPL optical perfor-5
mance are tuned manually by human experts, or optimized by using black-box methods6
that can be computationally demanding. Critically, black box methods rely on stationar-7
ity assumptions overlooking complex dynamics in high-energy physics and day-to-day8
changes in real-world experimental settings, and thus need to be often restarted. Deep9
Reinforcement Learning (DRL) offers a promising alternative by enabling sequential10
decision making in non-static settings. This work investigates the safe application of11
DRL to HPL systems, and extends the current research by (1) learning a control policy12
directly from images and (2) addressing the need for generalization across diverse dy-13
namics. We evaluate our method across various configurations and observe that DRL14
effectively enables cross-domain adaptability, coping with dynamics’ fluctuations while15
achieving 90% of the target intensity in test environments.16

1 Introduction17

Ultra-fast light-matter interactions find applications in both theoretical and experimental physics.18
The extremely high intensities—in the order of petawatts—that can be attained with modern-day19
High Power Laser (HPL) systems enable a variety of use cases in light-matter interactions and20
charged-particles acceleration. Extreme intensities are typically achieved by focusing high-energy21
laser pulses onto spatial targets for ultra-short durations—down to attoseconds. As a result, ultra-22
short laser pulses represent the shortest events ever created by humanity (Gaumnitz et al., 2017).23

Over the course of 2022 and 2023, four separate experiments at the Lawrence Livermore National24
Laboratory (LLNL)-National Ignition Facility (USA) employed HPL systems to achieve nuclear fu-25
sion ignition (Abu-Shawareb et al., 2024). In their experiments, the scientists at the LLNL used 19226
HPL beams to achieve nuclear fusion ignition in a laboratory setting, and went on demonstrating27
larger-than-unity energy gains, achieving energy-positive results in nuclear fusion. HPL systems28
also have applications in radiation-based cancer therapy, as they can be used to produce beams of29
high-energy charged particles, which interact with malignant cells and thus yield radio-therapeutic30
outcomes (Grittani et al., 2020). Lastly, HPL systems enable the controlled study of the interac-31
tion between extremely intense beams of light and various materials, providing valuable insights to32
numerous scientific communities, including plasma, laser and theoretical physicists.33

HPL systems’ performance heavily depend on environmental conditions, and on numerous param-34
eters. For instance, HPL systems are typically operated in remote areas or meters underground to35
mitigate road-induced vibrations that might cause misalignment in the optics. Further, HPL sys-36
tems are run in environmentally controlled facilities (cleanrooms), to prevent airborne particles to37
sediment on the optical gear. Parameters-wise, dispersion coefficients play a central role, as they38
physically determine the phase shifts imposed on the different frequencies of the light beam. In39
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Figure 1: (A) Schematic representation of the RL pipeline for pulse shaping in HPL systems. The
model processes images to produce phase corrections, leading to shorter pulse durations and in-
tensity maximization. To improve on robustness, during training the agent faces a distribution of
dynamics rather than a single one. (B) Illustration of the process of linear and non-linear phase
accumulation taking place along the pump-chain of HPL systems. By opportunely controlling the
phase imposed at the stretcher, one can benefit from both energy and duration gains, for maximal
peak intensity.

turn, this leads to shorter laser pulses and intensity gains when the applied phase induces construc-40
tive interferences between frequencies, whereas destructive interference results in longer pulses and41
intensity losses (Paschotta, 2008).42

Traditionally, laser parameters have been optimized using 1D searches over the range of possible val-43
ues. More recently, black-box numerical methods such as Evolution Strategies (ES) and Bayesian44
Optimization (BO) have been studied (Loughran et al., 2023; Shalloo et al., 2020; Arteaga-Sierra45
et al., 2014). While effective, these black-box methods can be computationally demanding, as they46
are typically implemented on real-world laser systems, and thus require costly laser-bursts to per-47
form one single function evaluation. Further, they rely on stationarity assumptions overlooking48
transient and complex non-linear system dynamics. Lastly, their safe implementation on real-world49
hardware can be challenging, as erratic exploration of the parameter space can compromise system50
safety (Capuano et al., 2023).51

This work investigates the safe application of DRL to HPL systems for temporal profile shaping52
via autonomous, bounded control of the dispersion coefficients. In particular, we present an ap-53
plication of DRL to intensity maximization through pulse duration minimization. We leverage an54
openly-available simulator (Capuano et al., 2023) of a component of the world’s most powerful laser55
system, and learn an adaptive control policy capable of safely tuning the dispersion coefficients for56
intensity maximization. In our work, we simulate different experimental conditions by arbitrarily57
randomizing parameters of our simulator, and use said randomization over the laser system dynam-58
ics to induce the learned policy to be robust to changes in the experimental setting (Tiboni et al.,59
2023c). As parameters of HPL systems can typically only be estimated and vary over time, robust-60
ness is paramount for a wide applicability of our approach. To further improve on this and pave61
the way towards real-world applications of RL to HPL systems, we also leverage Deep Learning62
to process unstructured observations in the form of readily available images (FROG traces). Our63
contributions can be summarized as follows:64

• We present an application of DRL to the rich and complex domain of experimental laser65
physics, demonstrating its suitability for handling the non-stationarity and transient non-linear66
dynamics of HPL systems—challenges often overlooked by predominant black-box approaches.67

• We train control policies entirely in simulation and successfully transfer them across different68
environments, ensuring adaptivity to (1) inaccuracies in parameter estimation and (2) evolution of69
experimental setting. Randomizing also helps mitigate the impact due to under-modeled dynamics70
in simulation.71
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• We learn a control policy from single-channel images readily available in most experimen-72
tal settings, using them as a proxy for pulse duration. This eliminates the need for quantum-73
destructive measurements on charged particles’ energy, or noisy temporal pulse reconstruction,74
and enables a real-time feedback loop using existing experimental hardware—making our method75
more applicable in real-world settings.76

2 Background & Related Work77

2.1 Optimizing Laser Systems78

Traditionally, HPL systems’ parameters have been optimized using independent 1D grid-searches79
over all the considered dimensions. While straightforward, this approach naively overlooks the joint80
effect varying multiple parameters simultaneously can have on the system. More recently, Evolution81
Strategies (ES) (Baumert et al., 1997; Arteaga-Sierra et al., 2014; Woodward & Kelleher, 2016), and82
Bayesian Optimization (BO) (Loughran et al., 2023; Shalloo et al., 2020; Capuano et al., 2022; An-83
jum et al., 2024) have been proposed to optimize HPL performance. Differently from grid-search,84
ES and BO do take into account the joint effect of different parameters on the system, and proved85
effective real-world experiments (Shalloo et al., 2020). However, while performant, black-box meth-86
ods tend to be computationally demanding in the number of functions evaluations—real-world laser87
bursts—and typically do not provide guarantees regarding the stability of the control configuration88
found to changes in the environment. That is, for any changes in the experimental condition one89
could need to re-optimize the system from scratch, just as humans do. Further, these algorithms90
rely on stationarity assumptions within experimental conditions, overlooking the transient and com-91
plex dynamics characteristic of high-intensity phase accumulation processes in non-linear crystals.92
Lastly—differently from grid search—the safe implementation of black-box methods on real-world93
hardware can be challenging, as gains in sample efficiency might trade-offs with erratic exploration94
of the parameter space (Capuano et al., 2023), endangering system’s safety.95

To allow for a more adaptive control of laser systems, recent works have investigated the application96
of Reinforcement Learning (RL) to HPL systems (Kuprikov et al., 2022; Rakhmatulin et al., 2024;97
Mareev et al., 2023; Capuano et al., 2023). Mareev et al. (2023) investigated the application of98
DRL to maintain a laser beam focused on a solid target, shifting away as a consequence of high-99
energy light-matter interactions and thus requiring constant target-position adjustment. Rakhmatulin100
et al. (2024) investigated the application of RL to the problem of optics alignment in laser systems,101
controlling the position of mirrors via real-time camera feedback. While both target location and102
mirror alignment have a significant impact on the final intensity conveyed by the beam, neither103
directly shapes the temporal profile of laser pulse and thus the final peak intensity. Kuprikov et al.104
(2022) learned a controller to adaptively adjust the power supplied to the laser, and the filters used to105
temporally shape the output, thus directly impacting peak intensity. However, the authors considered106
the problem of ensuring highly-similar pulses between multiple laser bursts, by learning to mode-107
lock the system, rather than shaping the individual pulse to be obtained. Capuano et al. (2023)108
studies the problem of learning a controller for pulse shaping, by directly tuning the dispersion109
coefficients and thus ensuring a closer loop between control parameters and peak intensity. However,110
in their work Capuano et al. (2023) overlook several practical aspects associated with deploying111
control policies to real world laser systems, such as the necessity of coping with possibly imprecise112
estimates of the experimental setting, and the need to adapt to the non-stationary of the experimental113
environment. Unlike previous attempts at temporal pulse shaping, we work backwards from real-114
world deployment requirements, extending the current research by learning a robust control policy115
for the dispersion coefficients that is (1) machine-safe to deploy, (2) inherently adaptive and (3) uses116
readily available information in most HPL diagnostic systems.117
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2.2 Shaping Laser Pulses118

The optimization of laser pulse shape and duration is a critical challenge in HPL systems, par-119
ticularly for applications in laser-plasma acceleration, high-intensity laser-matter interactions, and120
inertial confinement fusion. Furthermore, the precise control of pulse shape directly influences121
the peak intensity, energy deposition efficiency, and nonlinear optical effects encountered during122
the laser propagation itself. In applications of HPL systems to charged particle acceleration (Grit-123
tani et al., 2020), directly measuring the particles’ beam energy is a quantum-destructive process—124
charged particles lose their energy when an experimental energy probe interacts with them. How-125
ever, proxying particles’ beam energy with pulse’s peak intensity, HPL systems can be optimized126
using the peak intensity I∗ produced. At iso-energy, intensity maximization takes place by min-127
imizing the pulse duration, measured by its full-width half-maximum (FWHM) value—the value128
|tl − tr| : I(tl) = I(tr) =

1
2I

∗. Ultra-short pulses’ duration is typically inferred from frequency-129
resolved optical gating (FROG) traces (Trebino & Kane, 1993), for the scope of this work considered130
as single-channel images showing the spectral phase accumulated by a pulse. Thus, black-box meth-131
ods and 1D-grid search are fundamentally ill-posed to use these non-destructive measurements of132
particle beam’s energy as their input, while DRL can instead fully leverage the advancements made133
in Deep Learning to handle unstructured data formats as control inputs (Mnih et al., 2013).134

In practice, HPL systems rely on the transferring of energy from a high-power primary pump laser135
beam to a secondary seed laser beam. The spectral and temporal characteristics of the pump laser136
determine much of the achievable pulse intensity. Critically, for the sake of intensity gains in the137
seed laser, the pump laser is usually run through an amplification chain introducing both linear138
and nonlinear phase distortions. As phase regulates how the spectral intensity overlays in the time139
domain (Paschotta, 2008), it must be carefully controlled to achieve efficient amplification at the140
pump and seed level. Typically, pump chains follow a Chirped Pulse Amplification (CPA) scheme.141
Figure 1 illustrates the CPA process, where the initial pump pulse is (1) stretched in time to avoid142
nonlinear effects and damage to the earlier stages of the pump chain due to high intensities (2)143
amplified via regenerative and multipass amplifiers, and (3) re-compressed in time to achieve high144
peak intensity.145

Unlike the amplification and compression stages, the process of pulse stretching can typically be146
controlled externally from laser specialists, varying the dispersion coefficients of the phase of the147
pump laser applied. The spectral phase of a laser beam φ(ω) is typically modeled using a Taylor148

expansion around the central angular frequency of the pulse ω0, yielding φ(ω) =
∑∞

k=0
1
k!

∂kφ
∂ωk (ω−149

ω0)
k. The first two terms in this polynomial expansion—φ(ω) and φ′(ω)(ω − ω0)—do not directly150

influence the shape of the pulse in the temporal domain. Conversely, second-order (group-delay151
dispersion, GDD), third-order (third-order dispersion, TOD) and fourth-order (fourth-order disper-152
sion, FOD) derivatives—jointly referred to with ψ = (GDD,TOD,FOD) ∈ Ψ—do influence the153
resulting temporal profile. By opportunely tuning ψ, laser specialists are able to control the tempo-154
ral profile of ultra-short laser pulses. Physically, control over ψ is achieved using a Chirped Fiber155
Bragg Grating (CFBG), consisting of an optical fiber whose grating is adjusted inducing a tempera-156
ture gradient at its extremes. Consequently, it is crucial to carefully regulate the relative temperature157
variations to avoid demanding abrupt control adjustments over short time intervals, which could158
damage the fiber.159

In the context of laser optimization, one might want to maximize the intensity conveyed by a laser160
pulse by minimizing its duration, i.e. performing temporal shaping by controlling ψ. Typically,161
highly trained human experts spend hours carefully varying ψ in the real world, leveraging a mix of162
past experience and personal expertise at the task. The shortest time duration attainable by a laser163
pulse is typically referred to as Transform Limited (TL), and corresponds to perfect overlay of all164
the different spectral components of intensity in time—as such, it has an accumulated phase equal165
to φ∗(ω) = 0. Critically, the amplification step in CPA introduces nonlinear phase components. If166
this was not the case, then one could retrieve TL pulses by simply applying a phase at the stretcher167
level that is opposite to the one defined at the compressor’s, φs(ω) = −φc(ω). However, the non-168
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linearity induced by the amplification step calls for a more sophisticated control over φc(ω). This169
difficulty arises from the need to balance non-linear effects in the phase accumulation process and170
non-stationary experimental conditions, while adhering to a sequential control approach that ensures171
machine safety by limiting abrupt changes in control parameters.172

2.3 Sim-to-real173

Even the most sample efficient of the numerical algorithms typically considered for pulse shaping174
varying dispersion coefficients can require 102 samples (Capuano et al., 2022), corresponding to175
just as many real-world laser bursts (Shalloo et al., 2020). Such computational demands are hard to176
meet in real-world systems, and are especially more troubling if one considers the instability of the177
solution found with respect to changes in the experimental setting. Further, BO can endanger the178
system by applying abrupt controls at initialization.179

We can mitigate the need for expensive real-world data samples by leveraging simulated versions of180
the phase accumulation process, where we can easily accommodate for large number of samples, as181
well as safe exploration of the dispersion coefficients space, Ψ. While typically not accurate enough182
to directly transfer point-solutions ψ∗ from simulations to the real world, simulators can be used183
to train control policies for different environments. The problem of transferring control policies184
across domains is a well-studied problem in applications of RL for robotics, and the community has185
extensively investigated approaches to crossing the reality gap (Tobin et al., 2017; Valassakis et al.,186
2020). Considering this last point, we argue the HPL setting closely resembles the challenges the187
community faces when transferring robotic policies across environments.188

Transferring a control policy across diverse environments can be achieved (1) reducing the discrep-189
ancy between them (Zhu et al., 2017) or (2) applying parameter randomization to improve on the190
robustness of the policy (Peng et al., 2018). One widely adopted sim-to-real method is Domain191
Randomization (DR), which involves varying simulator parameters within a predefined distribution192
during training (Valassakis et al., 2020) to incentivize generalization over said parameters. DR in-193
troduces additional sources of stochasticity into the environment dynamics, making policies more194
robust at an increased risk of sub-optimality and over-regularization (Margolis et al., 2024).195

Although having proved effective on robotics tasks (Antonova et al., 2017), DR suffers from the key196
limitation of needing to extensively tune the distributions used in training. Automated approaches197
to DR propose adaptive distribution refinement over training, e.g. by leveraging a limited set of198
real-world data Tiboni et al. (2023a;b), or based on the policy’s performance under a given set of dy-199
namics parameters (Akkaya et al., 2019). While effective for dexterous manipulation, Akkaya et al.200
(2019) has been observed to be sample inefficient, as it biases the policy towards learning dynamics201
sampled from the boundaries of the current distribution (Tiboni et al., 2023c). A more principled202
approach to automated DR has been recently introduced in Tiboni et al. (2023c), where the authors203
follow the principle of maximum entropy (Jaynes, 1957) to resolve the ambiguity in defining DR204
distributions. Particularly, the authors train adaptive control policies for progressively more diverse205
dynamics that satisfy an arbitrary performance lower bound. Notably, the domain randomization206
approaches in Akkaya et al. (2019); Tiboni et al. (2023c) employ history-based policies to promote207
implicit meta-learning strategies at test time—i.e., on-line system identification.208

3 Method209

3.1 MDPs for Intensity Maximization210

In Capuano et al. (2023), the authors formulate pulse shaping as a control problem in a Markov211
Decision Process (MDP), M. In this work, we extend their formulation to the case where the212
environment dynamics are influenced by an unobserved latent variable, leading to a Latent MDP213
(LMDP) (Chen et al., 2021), denoted as Mξ = {S,A,Pξ, r, ρ, γ}. Here, ξ is a realization of a214
latent random vector Ξ, such that ξ ∼ Ξ : supp(Ξ) ⊆ R|ξ|, parametrizing the transition dynamics215
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Pξ. Crucially, the agent does not directly observe ξ at test time (i.e. the real world). Conversely,216
we assume that parameters ξ may be accessed when training in simulation. We argue the LMDP217
framework is particularly well-suited for pulse shaping in a non-stationary setting due to the pres-218
ence of hidden variations in the system’s dynamics. In practical scenarios, an agent must adapt to219
an unknown experimental condition which can be modeled as ξ, while iteratively refining its control220
ψ. As ψ is physically translated into temperature gradients applied to an optical fiber, the choice221
of ψt must account for past applied controls, particularly ψt−1, to prevent excessive one-step tem-222
perature variations. Moreover, the day-to-day fluctuations in HPL systems can be captured through223
Ξ, modeling the inherent non-stationarity of experimental conditions. Further, by incorporating a224
distribution over the starting condition of the system, ψ0 ∼ ρ, the pulse shaping problem’s sequen-225
tial nature becomes evident—starting from a randomly sampled experimental condition, the agent226
must iteratively apply controls ψ while dealing with incomplete knowledge of the system dynamics.227
Inspired by the domain randomization and meta-learning literatures, we therefore aim at learning228
control policies that are robust and adaptive to unknown, hidden contexts.229

State space (S) Ideally, one could access the temporal profile of the pulse to describe the status of230
the laser system. Indeed, the temporal profile χ(ψ) contains all the information needed to maximize231
peak intensity, including pulse energy and duration. However, obtaining high-fidelity temporal pro-232
files of ultra-short laser pulses in practice is a challenging task (Trebino & Kane, 1993; Trebino et al.,233
1997). Here, we instead leverage FROG traces as proxy for state information. As FROG traces con-234
tain enough information to reconstruct temporal profiles (Zahavy et al., 2018), we argue they could235
also be used as direct inputs to a control policy aiming at maximizing peak intensity. Further, using236
FROG traces would be practically convenient given the availability of FROG detection devices in237
most HPL systems, and prevent the need for an intermediate step in the pulse shaping feedback loop238
to reconstruct χ from its associated FROG trace, Φ. Hence, we directly include FROG traces Φt239
in our state space. We complement states st with the vector of dispersion coefficients ψt and the240
action taken in the previous timestep, at−1, giving st = {Φt, ψt, at−1}, as they all are information241
available at test time.242

Action space (A) As we are concerned with real world applicability of our method, we design243
an action space that is inherently machine-safe, and that can prevent erratically changing the con-244
trol applied at test time. In this, we consider varying dispersion coefficients within predetermined245
boundaries defined at the level of the grated optical fiber, i.e. ψt ∈ [ψmin, ψmax] : c = |ψmin − ψmax|.246
Actions are then defined as at ∈ [−αc,+αc], with α being an arbitrary fraction of the total nominal247
range c. In our method, we set α = 0.1, thus never changing ψ in one step by more than 10% of the248
total possible variation.249

Environment dynamics (Pξ : S × A × S 7→ R+) Inspired by the successes of in-simulation250
learning in robotics (Antonova et al., 2017; Akkaya et al., 2019; Tiboni et al., 2023c), we employ251
simulations of the pump chain process while training a policy to control it. This allows us to scale252
the number of samples available at training time to amounts that are simply unfeasible on real-world253
laser hardware. We provide a detailed description of the phase accumulation process in ??, describ-254
ing the model for state-action-next transitions, Pξ(st+1|st, at). Here, we wish to pose particular255
emphasis on the role of ξ on Pξ. Figure 2 shows how different ξi can lead to significantly different256
pulses when applying the same ψ. In particular, 2 simulates the impact of randomizing the parameter257
regulating non-linear phase accumulation during amplification. This parameter is typically referred258
to as B-integral, and indicated with B. In HPL systems, one cannot typically assume to have con-259
trol over B but indirectly: non-linear effects become more evident when higher-intensity pulses are260
propagated through non-linear crystal, which induces non-stationarity in B. Further, precisely es-261
timating B at a given time is a challenging tasks, prone to imprecision and which can have drastic262
impacts on the peak intensity achieved (Figure 3).263

Reward function r, Starting condition ρ and discount factor γ We exploit our knowledge264
of HPL systems to design a reward function defined as the ratio between the current-pulse peak265
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Figure 2: Impact of the B-integral parameter on the tem-
poral profile (top) and FROG trace (bottom).

Figure 3: Impact of longer pulses on the
peak intensity conveyed, measured as a
fraction of ITL.

intensity I∗t and the highest intensity possibly obtainable, ITL achieved by so-called Transform-266
Limited pulses, yielding rt(st, at, st+1) =

It
ITL

∈ [0, 1] ∀t. In the absence of non-linear effects due267
to amplification, one would impose a phase on the stretcher that is opposite to the compressor’s,268
φs(ω) = −φc(ω) so as to maximize intensity. As non-linearity is induced, it is reasonable to look269
for solutions in a neighborhood of the compressor’s dispersion coefficients. Thus, one can use a mul-270
tivariate normal distribution N (−ψc, ϵI) with mean −ψc and diagonal variance-covariance matrix.271
Lastly, we employed an episodic framework for this problem, fixing the number of total interactions272
to T = 20, and used a discount factor of γ = 0.9.273

3.2 Soft Actor Critic (SAC)274

Because we run training in simulation, we are able to drastically scale the experience available to275
the agent. With that being said, our simulation routine requires non-trivial computation, such as276
obtaining Φt from ψt. Thus, we limit ourselves to the generally more sample-efficient end of DRL,277
and refrain from using purely on-policy methods, such as Schulman et al. (2015; 2017).278

SAC is an off-policy DRL algorithm that leverages the power of deep function approximators to279
learn Q-functions (policy evaluation) that generalize across high-dimensional state-action spaces.280
Then, a stochastic policy is iteratively learned by explicitly maximizing the current Q-function es-281
timate (policy improvement). Interestingly, the Q-function itself is learned in a maximum entropy282
framework, leading to improved exploration and overall more effective learning over competing283
methods such as DDPG (Haarnoja et al., 2018). In this work, we implement both vanilla-SAC and284
asymmetric-SAC. The latter makes use of additional privileged information about the dynamics ξ285
while training. Notably, this information is yet not accessible by the policy, which is only con-286
ditioned on the current state. The adoption of this asymmetric paradigm has proven empirically287
effective in easing the training process, by providing full information to the critic networks which288
are nevertheless not queried at test time (Akkaya et al., 2019).289

3.3 Domain Randomization (DR)290

To improve on the generalization of the control policy over unknown test conditions ξ ∼ Ξreal, we291
train a control policy in simulation by sampling dynamics parameters from an arbitrary auxiliary292
distribution Ξ. Particularly, we compare two popular methods for choosing said distribution over ξ,293
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Figure 4: SAC, learning to shape temporal pulses directly from
FROG traces. The temporal profile associated with the FROG
trace is superimposed on the top right of the trace for visualiza-
tion purposes, and is never made available to the agent. In under
20 interactions, the agent produces near-TL temporal profiles.

Figure 5: Evolution of the
controls applied by BO vs
RL. As it samples from
an iteratively-refined surro-
gate model of the unknown
function f(ψ) = I∗, BO ex-
plores much more erratically
than RL.

namely Uniform Domain Randomization (UDR) (Tobin et al., 2017; Sadeghi & Levine, 2016) and294
Domain Randomization via Entropy Maximization (DORAEMON) (Tiboni et al., 2023c).295

UDR models Ξ as a uniform distribution over manually defined bounds [ξmin, ξmax]. Crucially,296
identifying the bounds to use in training is an inherently brittle process: too-narrow bounds could297
hinder generalization, by not providing sufficient diversity over training. On the other hand, too-298
wide bounds can yield over-regularization, and thus result in reduced performance at test time. In299
the context of our application, experimentalists at ease with the specific pump-chain laser considered300
in this work estimate B ≈ Best = 2. Thus, we train a UDR policy in simulation by using ξ = B ∼301
U(1.5, 2.5), which is roughly equivalent to allowing misspecification of up to 25% error. However,302
even assuming access to ground-truth bounds, the probability mass of B is unlikely to be uniformly303
distributed on large supports—this would severely impact the performance of the system on a day304
to day basis. Conversely, it is reasonable to expect mass to be concentrated around some value305
within a possibly larger support, further away from Best. In DORAEMON Tiboni et al. (2023c), the306
authors resolve the ambiguities in defining the training distribution by employing the principle of307
maximum entropy (Jaynes, 1957). In other words, one could simply define a success indicator for308
the task, and seek for the maximum entropy training distribution Ξ that satisfies a lower bound on309
the success rate. More precisely, DORAEMON solves this problem with a curriculum of evolving310
Beta distributions Ξk ∼ Beta(ak, bk). In line with Tiboni et al. (2023c), we apply DORAEMON as311
an implicit meta-learning strategy for training adaptive policies over hidden dynamics parameters.312
We define a custom success indicator function on trajectories τξk : terminal-state pulses χ(ψT ) must313
convey at least 65% of the TL-intensity for the respective episode to be considered successful. As a314
result, our implementation yields an automatic curriculum over DR distributions Ξ at training time315
such that entropy grows so long as the success rate is above 50%—as in the original paper.316

4 Experiments317

We validate our claims on the improved machine-safety of RL over popular baselines such as318
BO (Shalloo et al., 2020) by comparing the evolution of the controls applied at test time for the319
both BO and mini-SAC. As BO cannot be used to process images, we benchmark it against a sim-320
plified version of our algorithm that uses exclusively ψ in the state vector, which we refer to as321
mini-SAC. Figure 5 displays the evolution of the controls applied over the first 20 interactions be-322
tween BO and the RL-based controller. Unlike BO’s solutions, which are stationary and can only be323
transferred assuming high-fidelity simulations, RL policies can be transferred across domains and324
adapt at test time, leveraging a sequential decision-making framework. Notably, this allows us to325
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Figure 6: Comparison of different strategies,
measured by the average max peak intensity
over 5 test episodes as a function of B-integral.
These results illustrate DORAEMON’s compa-
rable performance with hand-tuned bounds for
UDR.

Figure 7: Evolution of the distribution used
when training an agent with DR via Entropy
Maximization (DORAEMON). Later updates
20 ≥ k ≥ 4 do not further impact the evolu-
tion of the distribution over B.

allocate dangerous erratic exploration to in-simulation training, severely limiting erratic exploration326
at test time—similarly to established work in robotics (Kober et al., 2013).327

Since temporal profiles χ(ψ) are typically unavailable, we exclusively use 64x64 single-channel328
images as state representations for the agent, as discussed in 3.1. Table 1 shows the average max329
peak intensity over 10 test episodes, after training SAC for 200k timesteps in simulation on a fixed330
ξ ∼ δ(Best), while Figure 4 shows the FROG traces corresponding to the controls applied during a331
test episode at various timesteps. Effectively, the policy exhibits the capability of controlling ψ to332
compress the pulse in time, achieving an average of 86.2% of TL’s peak intensity, with peaks close333
to 90%( 2). These findings also attest the effectiveness of using single-channel images as affordable334
proxy input to maximize peak intensity.335

Later, we benchmark the robustness of our policy to changes in the dynamics. Particularly, we em-336
ploy DR during training, and use Asymmetric-SAC together with a stack of the last n = 5 states,337
yielding a history-based policy. This has shown to be effective in the context of DR to promote338
adaptive, meta-learning behavior (Chen et al., 2021; Tiboni et al., 2023c; Akkaya et al., 2019).339
We evaluate the performance of our method by measuring the average max intensity versus equally-340
spaced changes in the value of B-integral (cf. Figure 6). We then zoom in on these values, and report341
in Table 1 the average peak intensity for the test conditions within [1, 3.5] (i.e., in distribution con-342
texts). When trained with DR, Asymmetric-SAC expectedly exhibits stronger robustness to changes343
in the parametrization of the test environment. However, performance varies significantly based on344
the distribution used while training, motivating the use for automated DR methods—Table 1 shows345
the impact of choosing narrower rather than wider bounds for UDR, as we find wider UDR to cause346
over-regularization, hindering performance at test time. We therefore compare the naive UDR ap-347
proach with DORAEMON, by adapting the training distribution {Ξk}Kk=1 acrossK = 20 steps over348
200k timesteps. Compared to UDR, DORAEMON displays better test-time performance around349
our estimate Best = 2, and generally provides superior success rate (cf. Table 3). Figure 7 shows350
the evolution of the distributions {Beta(ak, bk)}Kk=1 over the course of training. Interestingly, the351
distributions eventually converge to the maximum entropy U(1, 3.5), indicating that sufficient train-352
ing performance can be maintained even in the extreme case. To investigate the effectiveness of the353
curriculum for DORAEMON, we then evaluate it against naive UDR on a slighly narrower support354
U(1, 3), and observe DORAEMON’s superior in Table 1).355
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Table 1: Average (plus-minus standard deviation) maximal peak intensity over 10 test episodes,
for a combination of algorithms, training and testing conditions. δ refers to Dirac mass, i.e. no
randomization. We test our algorithms on fixed values of B.

Algorithm Training
timesteps

Training
Distribution

Avg. Max
Peak Intensity (B = 1.68)

Avg. Max
Peak Intensity (B = 2.08)

Avg. Max
Peak Intensity (B = 2.87)

SAC 200k δ(2) 86.18 ± 1.60 83.80 ± 2.34 77.67 ± 2.53
SAC 200k U(1.5, 2.5) 82.43 ± 5.36 80.42 ± 2.80 77.14 ± 2.86
SAC 200k U(1, 3) 85.82 ± 1.48 84.85 ± 1.50 77.71 ± 2.18

Asymmetric-SAC 200k U(1.5, 2.5) 88.69 ± 0.60 86.07 ± 0.49 79.32 ± 1.12
Asymmetric-SAC 200k DORAEMON(1, 3.5) 86.04 ± 3.78 85.12 ± 1.10 79.34 ± 1.59

Table 2: Min-Max ranges for the maximal peak intensity over 10 test episodes, for a combination of
algorithms, training and testing conditions.

Algorithm Train timesteps Train Distribution Min-Max
Peak Intensity (B = 1.68)

Min-Max
Peak Intensity (B = 2.08)

Min-Max
Peak Intensity (B = 2.87)

SAC 200k δ(2) 83.95-89.13 79.87-86.38 72.65-80.69
SAC 200k U(1.5, 2.5) 69.04-89.23 74.99-84.07 71.16-80.35
SAC 200k U(1, 3) 83.35-87.65 82.07-86.19 74.87-80.03

Asymmetric-SAC 200k U(1.5, 2.5) 87.26-89.31 84.76-86.39 77.15-80.53
Asymmetric-SAC 200k DORAEMON(1, 3.5) 76.24-89.37 83.17-86.27 75.04-80.77

Table 3: Success rate over 10 test episodes: proportion of episodes with a maximal peak intensity
≥ 80% of TL in multiple experimental conditions. DORAEMON shows to be best suited to tackle
more challenging scenarios with more pronounced non-linear effects compared to UDR.

Method Train Distribution Success Rate
(B = 1.68)

Success Rate
(B = 2.08)

Success Rate
(B = 2.87)

SAC δ(2) 1.0 0.9 0.2
SAC U(1.5, 2.5) 0.9 0.6 0.1
SAC U(1, 3) 0.5 0.5 0.1

Asymmetric-SAC U(1.5, 2.5) 1.0 1.0 0.2
Asymmetric-SAC DORAEMON(1, 3.5) 0.9 1.0 0.4

5 Conclusions356

In this work, we present a novel application of RL to the rich and complex domain of experimental357
laser physics, using RL as the backbone for a fully automated pulse-shaping routine. Leveraging358
domain knowledge of the processes regulating phase accumulation in HPL systems, we design a359
coarse simulator of the pump chain of a HPL system, and we use it to develop control strategies that360
exclusively use non-destructive measurements in the form of images to maximize the peak intensity361
of ultra-short laser pulses.362

We benchmark our method against popular black-box approaches to pulse intensity maximization363
(i.e. duration minimization), and argue that our approach is inherently better suited for real-world364
applications as it can learn to apply gentle controls not endangering system safety, and produce peak365
intensities as high as 90% of TL’s. Further, we reformulate the problem of pulse shaping as a Latent366
MDP, and employ the latest advancements in the field of Domain Randomization to develop adaptive367
policies capable of producing ultra-short laser pulses for a wide range of dynamics parameters. Our368
work is a concrete step towards the application of DRL to controlling HPL systems, with the goal369
of streamlining the production of and advancing studies on ultra-short laser pulses and extreme370
light-matter interactions.371

Limitations. We identify several limitations remaining in our contribution. In particular, HPL372
systems’ performance is known to be influenced, alongside B-integral, by the dispersion coefficients373
of the compressor. These dispersion coefficients are highly sensitive to the delicate alignment of the374
compressor optics, which is typically a cumbersome and time-consuming process in ultra-fast op-375
tics. As such, we concluded randomizing over these coefficients was unnecessary in a first instance,376
as a great deal of effort and diagnostic is spent in properly assessing and monitoring the compressor.377
Still, adapting to their variation as well is a very promising approach, which we seek to investigate378
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further.379
Another limitation is the sample inefficiency of our method, requiring hundreds of thousands to sam-380
ples to discover well performing policies. We argue this is particularly problematic considering the381
knowledge available on the process of phase accumulation in linear and non-linear crystals. While382
our coarse simulator provides a useful tool for model-free learning, the absence of explicit model-383
ing of the dynamics limits data efficiency. Integrating model-based components could significantly384
improve sample efficiency.385

Despite these limitations, our work takes a significant step toward the integration of DRL in HPL386
systems, providing a framework that is both practical and adaptable to experimental constraints, and387
prove the effectiveness of the technique in ultra-short laser physics.388
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