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ABSTRACT

This paper introduces a new method for the low-rank compression of large lan-
guage models. Existing techniques typically compress the weights individually,
overlooking the internal dependencies within a transformer block. To address this
limitation, we formulate a joint optimization problem to find the optimal low-
rank weights for an entire transformer block, thereby minimizing the output re-
construction error. Our formulation allows the incorporation of key architectural
elements, including residual connections and normalizations. We then introduce
SLIM, an efficient algorithm to solve this optimization problem. Experimental
results demonstrate that our method consistently achieves task accuracy improve-
ments of over 5% compared to existing techniques across a range of compression
ratios and model families.

1 INTRODUCTION

The size of large language models (LLMs) has grown rapidly in recent years, requiring substantial
computational and memory resources for deployment. To mitigate these costs, LLM compression
has become an effective strategy to reduce model size with minimal overhead. In this paper, we focus
on low-rank compression, a technique that approximates an original weight matrix with two smaller
low-rank matrices to save both memory and computation without requiring special hardware.

The most straightforward low-rank compression method is to apply truncated SVD to each weight
matrix. While this technique has shown promise on earlier models (Shim et al., 2017; Sindhwani
et al., 2015; Yu et al., 2017), it performs poorly on modern neural architectures, where weight
matrices are often not inherently low-rank (Chen et al., 2021; Hsu et al., 2022). To address this lim-
itation, several methods have recently been proposed that incorporate different importance weights
into SVD. For instance, FWSVD (Hsu et al., 2022) uses the fisher information matrix to guide the
decomposition, while ASVD (Yuan et al., 2023) leverages the norms of the rows of the empirical co-
variance matrix. Both DRONE (Chen et al., 2021) and SVD-LLM (Wang et al., 2025) utilize the full
empirical covariance matrix to determine importance. These methods guide the model compression
to be more accurate in the denser subspace of the inputs and improves the performance.

However, despite improving over vanilla SVD, these approaches still treat each weight matrix in
isolation. In this paper, we argue that effective low-rank compression should be formulated at the
transformer block level rather than at the level of individual matrices. By casting it as a joint opti-
mization problem that minimizes the mean squared error of the entire block, we can naturally ac-
count for architectural components such as residual connections and RMS normalization. Although
this joint objective does not admit a closed-form solution, it provides a more principled treatment of
the block structure. We then propose a greedy scheme that sequentially updates each weight matrix,
where each step reduces to solving a regularized rank-constrained linear regression problem with an
efficient closed-form solution. Furthermore, we show that a gradient-descent–based refinement can
further enhance the performance of our low-rank compression method.

Our contributions can be summarized as follows:

• We propose a novel formulation for jointly optimizing the low-rank approximation of trans-
former blocks, explicitly accounting for architectural elements such as residual connections
and RMS normalization. We develop a model compression algorithm based on approxi-
mately solving this joint optimization problem.
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• Extensive experiments across multiple LLMs demonstrate the effectiveness of our method.
Under the same parameter constraint, our approach improves average classification accu-
racy by more than 5% across six benchmarks compared to existing methods. Furthermore,
we show that our method is compatible with other techniques such as adaptive rank selec-
tion and quantization.

2 BACKGROUND

2.1 STRUCTURE OF TRANSFORMER-BASED LLMS

Prevailing Large language models (LLMs) are mostly transformer models, which consists of a se-
quence of L Transformer layers, denoted as f1, . . . , fL. Each Transformer layer consists of two
sub-blocks with residual streams: the Attention block and the Feed-Forward Network (FFN) block.

Consider the input hidden states of the l-th Transformer layer, denoted as X l ∈ Rd×n, where n is the
number of samples1 and d is the model dimensionality, the forward pass can be written as follows:

f l
Attention(X

l) = Attention
(
X l;W l

Attention

)
+X l, (1)

f l
FFN(X

l) = FFN
(
f l

Attention(X
l);W l

FFN

)
+ f l

Attention(X
l). (2)

In W l
Attention, it usually contains the Wquery,Wkey,Wvalue weight matrices, which are responsible for

computing the query, key, and value embeddings respectively. The final weight matrix Woutput then
projects the attention output back to the original hidden space. In W l

FFN, there can be multiple weight
matrices, while there is a final down projection matrix Wdown that maps the FFN output back to the
original hidden space.

Residual connections, as shown in equations equation 1 and equation 2, are crucial to the perfor-
mance of transformer models. Moreover, within both the Attention and Feed-Forward Network
(FFN) blocks, normalization layers play a critical role. These layers can be applied either at the
beginning (pre-layer normalization) or at the end of the block (post-layer normalization). Among
the various normalization techniques, Root-Mean-Square normalization (RMSNorm), introduced by
Zhang & Sennrich (2019), has become the most widely adopted.

2.2 LOW-RANK LLM COMPRESSION

The goal of low-rank LLM compression is to approximate each weight matrix with a low-rank
counterpart. When considering a weight matrix W l

h of layer l in isolation, its optimal low-rank
approximation is given by truncated Singular Value Decomposition (SVD):

W̄ l
h = SVDr(W

l
h), (3)

where r is the target rank. The number of parameters and flops can then be reduced from O(mn) to
O(r(m+ n)).

However, this SVD-based compression ignores the distribution of the inputs, X l
h, to these weight

matrices. Intuitively, compression should be more accurate in the denser subspace of the inputs and
can be less precise in sparser regions. Motivated by this, several existing low-rank compression
methods utilize a calibration set to obtain the empirical distribution of X l

h. This allows them to
perform a more optimal, data-aware compression that accounts for the input distribution (Hsu et al.,
2022; Yuan et al., 2023; Chen et al., 2021; Wang et al., 2025).

3 PROPOSED METHOD

Instead of compressing each layer in isolation, we argue that an effective compression algorithm
should consider the entire Transformer sub-block jointly. For each sub-block f ℓ, we propose that
one should be solving the block MSE objective:

min
f̄ l∈Π

∥f̄ l(X̄ l)− f l(X l)∥2F , (4)

1In practice, its amounts to number of tokens, which is batch size times sequence length
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where X l and X̄ l are the inputs to the original and compressed sub-blocks, respectively. The set
Π represents all compressed sub-blocks f̄ l where each weight matrix adheres to its specified rank
constraint.

For general f l, there is no closed-form solution for equation 4. We therefore adopt a greedy strat-
egy that sequentially minimizes the output error of each weight matrix. Specifically, we define a
sequence of sublayers h, each parameterized by a single, newly uncompressed weight matrix Wh,
in conjunction with a selection of previously compressed matrices. For each sublayer, we then solve
for its compressed counterpart h̄ by optimizing:

min
Wh̄∈Πr

∥h̄(X̄ l)− h(X l)∥2F , (5)

where Πr is the low-rank constraint. For most weight matrices Wh, we can simplify the sublayer to
a linear mapping h(X l) = Whg(X

l), where g(X l) is the layer’s input. Therefore, compressing Wh

reduces to solve the following least-squares problem:

min
W̄h̄∈Πr

∥W̄h̄ḡ(X̄
l)−Whg(X

l)∥2F . (6)

However, two common structures in LLMs—residual connections and normalization—require spe-
cial consideration, which we detail below.

Residual Connection. Residual connection (He et al., 2016) has been commonly used in LLMs,
including Mistral (Jiang et al., 2024), Gemma (GemmaTeam, 2025), Qwen3 (Yang et al., 2025), and
more. Let h be a sublayer of f l satisfies the form of

h(X l) = rres(X
l) +Whg(X

l),

where rres is the residual connection. Plugging this into our objective in equation 5 gives

min
W̄h̄∈Πr

∥r̄res(X̄
l) + W̄h̄ḡ(X̄

l)− rres(X
l)−Whg(X

l)∥2F . (7)

Compared to equation 6, this objective introduces an extra term r̄res(X̄
l)− rres(X

l), which we call
the residual connection. This term becomes significant as the compression error accumulates across
the transformer blocks. This structure appears in pre-layer normalization transformers for the output
projection matrix Woutput of the Attention layer and the final projection matrix Wdown of the FFN
layer.

Normalization. Root mean square normalization (RMSNorm) has been widely used in recent
transformer architectures (GemmaTeam, 2025; Yang et al., 2025; Bi et al., 2024). Let h be a
sublayer of f l satisfies the form of

h(X l) = RMSNorm(Whg(X
l)) ≡ Whg(X

l)/∥Whg(X
l)∥.

Plugging this into our objective in equation 5 gives

min
W̄h̄∈Πr

∥(W̄h̄ḡ(X̄
l)/∥W̄h̄ḡ(X̄

l)∥)− (Whg(X
l)/∥Whg(X

l)∥)∥2F . (8)

Compared to equation 6, this formulation includes an additional normalization by the RMS norm.
This normalization is crucial in many cases; without it, the RMSNorm layer will degenerate to a
simple scaling factor. This structure appears in post-layer normalization transformers like Gemma-
3 (GemmaTeam, 2025) for the final projection matrix Woutput of the Attention layer and Wdown of
the FFN layer, or for the query projection matrix Wquery and the key projection matrix Wkey for
transformers that adopt Query-Key Normalization (QK-norm) like Gemma-3 (GemmaTeam, 2025)
and Qwen-3 (Yang et al., 2025).

Regularization Additionally, we observe that it is important to add regularization to avoid over-
fitting to the sampled set. With this, equation 6, 7, and 8 with regularization can be formulated as
the following reduced-rank linear regression problem

min
W̄h̄;rank(W̄h̄)≤r

∥W̄h̄X − Y ∥2F + η∥W̄h̄ −Wh∥2F , (9)
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where η > 0 is a hyperparameter that controls the regularization strength.

For equation 6, we have X = ḡ(X̄ l) and Y = Whg(X
l). Similarly, equation 7 can be written as

equation 9 with X = ḡ(X̄ l) and Y = Whg(X
l) + rres(X

l)− r̄res(X̄
l).

For the RMSNorm case (equation 8), under the approximation

∥W̄h̄ḡ(X̄
l)∥ ≈ ∥Whg(X

l)∥,

we have X = ḡ(X̄ l)/c and Y = Whg(X
l)/c, where c = ∥Whg(X

l)∥.

Our choice of regularization penalizes the deviation from the original weights. We observe that this
performs better than the standard ℓ2 regularization

min
W̄h̄;rank(W̄h̄)≤r

∥W̄h̄X − Y ∥2F + η∥W̄h̄∥2F , (10)

which unnecessarily suppresses parts of W̄h̄ that also appears in Wh. To match the scale of X , we
use η = η0∥X∥.

Closed Form Solution We show that the closed-form of the above formulation is given by the
following theorem.

Theorem 1 The optimal solution to equation 9 is

W̄h̄ = SVDr((Ŷ X̂†)X̂)X̂†, (11)

where X̂ = concat([X, η1/2I]), Ŷ = concat([Y, η1/2I]) respectively concatenates X and Y with
an identity matrix along the second dimension, and X̂† is the pseudo-inverse of a matrix X̂ .

The proof is in the appendix. This result is an extension of the reduced-rank linear regres-
sion solution developed in Izenman (1975), where they derived the closed form solution of
minW̄h̄;rank(W̄h̄)≤r ∥W̄h̄X − Y ∥2F without the regularization term.

Complexity For the efficient computation of equation 11, let S = (X̂X̂T )−1/2 be the inverse of
the positive semi-definite matrix square of the empirical covariance matrix X̂X̂T , we have

SVDr(Ŷ X̂†X̂)X̂† = SVDr(Ŷ X̂T (X̂†)T )X̂† = SVDr(Ŷ X̂TS)S.

The computation time of S is O(nd2 + d3). Without loss of generality, assuming the output dimen-
sion of Y to be a constant multiple of d, then the computation time of Ŷ X̂TS is also O(nd2 + d3),
while computing its SVD takes O(d3). Consequently, the total time complexity for SLIM is
O(nd2 + d3 + Oforward), where Oforward is the complexity to compute X and Y . For memory com-
plexity, it is worth noticing that one can compute X̂X̂T and Ŷ X̂T streamingly without storing the
entire X̂ and Ŷ in the main memory, thus the complexity is O(d2). These complexities are identical
to SVD-LLM (Wang et al., 2025).

Algorithm 1 summarizes our proposed method.

4 RELATED WORK

Low-rank Compression. Low-rank compression is a widely-used technique for model compres-
sion which approximates a weight matrix with two smaller low-rank matrices. To obtain these
matrices, Singular Value Decomposition (SVD) is the most common mathematical tool. Beyond
simple SVD, several existing methods utilize a calibration set to obtain an empirical distribution of
input activations, X l, and compute importance weights to guide compression. FWSVD (Hsu et al.,
2022) leverages the Fisher Information Matrix to determine the importance of individual parame-
ters. ASVD (Yuan et al., 2023) computes a diagonal matrix based on the norms of the rows of the
empirical covariance matrix of the input activations X l. DRONE (Chen et al., 2021) minimizes
the MSE error of the matrix output on the input activations while utilizing the entire empirical co-
variance matrix. Their experiments focus on the compression of BERT models. SVD-LLM (Wang
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Algorithm 1 SLIM
1: for each Wh sorted by the order of computation do
2: Obtain the input g(X l)
3: Obtain the target rank r for the compressed weight W̄h

4: if the output of Wh is normalized by RMSNorm then
5: # e.g. Wquery, Wkey with QK-norm, and Woutput, Wdown for post-layer norm LLMs
6: Set X = ḡ(X̄ l)/∥Whg(X

l)∥ and Y = Whg(X
l)/∥Whg(X

l)∥
7: else if the output of Wh is added with a residual rres(X

l) then
8: # e.g. Woutput, Wdown for pre-layer norm LLMs
9: Set X = ḡ(X̄ l) and Y = Whg(X

l) + rres(X
l)− r̄res(X̄

l)
10: else
11: Set X = ḡ(X̄ l) and Y = Whg(X

l)
12: end if
13: Compute X̂ = concat([X, η1/2I]) and Ŷ = concat([Y, η1/2I])

14: Compute S = (X̂X̂T )−1/2

15: Obtain the compressed weight W̄h̄ = SVDr(Ŷ X̂TS)S
16: end for

et al., 2025) also minimizes the MSE error of the matrix output and they extend the experiments to
modern-day LLMs.

A key limitation of these methods is their failure to account for the propagation of compression error
through the network. They operate by compressing each weight matrix using the activations from
the full, uncompressed model, ignoring the cumulative effect of cascading errors. In contrast, our
proposed block MSE objective considers the compressed input X̄ l for each transformer block and
optimizes the compression of the entire block as a unit. Additionally, these existing methods treat
each weight matrix in isolation as a simple matrix multiplication, overlooking critical architectural
features found in modern transformer blocks, such as residual connections and Root Mean Square
(RMS) normalization. Our paper demonstrates the importance of incorporating these structures into
the compression for superior performance.

Other Compression Methods. Besides low-rank compression, other compression methods fall
into two categories: pruning and quantization. LLMPruner (Ma et al., 2023) considers gradient
information to identify inter-dependent structures, which then prunes the least important parameter
groups accordingly. BlockPruner (Zhong et al., 2024) assesses the importance (via PPL) of Atten-
tion and MLP blocks in the LLMs and applies a heuristic for iterative pruning; On the other hand,
quantization methods (Dettmers et al., 2023; Lin et al., 2024) reduce the precision of weight ma-
trices or input activations. Our proposed method is complementary to quantization techniques, as
shown in Table 6.

5 EXPERIMENTS

5.1 SETUP

Comparing Methods. We compare our proposed method with state-of-the-art low rank compres-
sion methods: FWSVD (Hsu et al., 2022), ASVD (Yuan et al., 2023), SVD-LLM (Wang et al., 2025),
and AdaSVD (Li et al., 2025), along with other model pruning methods, including LLM-Pruner (Ma
et al., 2023) and BlockPruner (Zhong et al., 2024).

In this paper, we focus on achieving a better low-rank approximation with a given parameter ratio
constraint. However, among the low-rank compression baselines, ASVD, SVD-LLM, and AdaSVD
include mechanisms to adaptively assign different parameter ratios to each matrix. To demonstrate
the potential of combining an adaptive ratio approach with our method, we adopt a simple heuristic:
we increase the parameter ratios for the key and value projection matrices while reducing them for
the query and output projection matrices. This simple combination yields a consistent gain, and we
name this variant as SLIM+. We list the details on the hyperparameter in Appendix A.3.

5
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Table 1: Experimental results on Mistral-7B across different parameter ratios.

Ratio Method MSE ↓ Perplexity ↓ Classification Accuracy ↑ Generation ↑
WikiText-2 Openb. ArcE. WinoG. HellaS. PIQA MathQA Avg. TruthQA GSM8k

1.0 Original 0.00 5.32 34.60 80.26 74.90 61.48 80.63 36.08 61.33 40.76 38.29

0.8

FWSVD 0.79 25.49 24.20 64.69 65.98 38.72 70.24 22.08 47.65 25.95 0.30
ASVD 0.93 21.38 21.40 57.03 59.12 36.22 67.46 24.76 44.33 24.11 1.14
SVD-LLM 0.46 7.62 27.20 68.94 67.72 41.42 69.37 28.74 50.57 34.64 4.32
AdaSVD 0.43 7.62 27.20 68.48 67.72 41.61 69.48 28.91 50.57 33.17 3.79

SLIM 0.25 6.73 31.80 74.92 69.46 51.87 75.35 31.93 55.89 41.74 12.43
SLIM+ 0.28 6.68 32.20 75.93 70.40 53.24 75.95 32.33 56.68 45.90 13.04

0.6

FWSVD 0.99 238.09 14.40 34.01 53.91 27.83 54.68 19.50 34.06 13.95 0.23
ASVD 1.20 2900.55 13.40 27.15 49.57 26.06 51.31 21.68 31.53 13.34 0.08
SVD-LLM 0.69 16.14 19.40 42.63 55.41 30.45 58.00 22.38 38.05 3.06 1.82
AdaSVD 0.66 15.64 19.40 42.85 59.67 31.81 59.79 22.38 39.32 7.71 1.14

SLIM 0.37 9.20 25.80 64.48 64.33 41.11 67.30 26.87 48.32 30.84 2.20
SLIM+ 0.37 9.05 27.20 67.42 64.17 42.84 68.72 27.10 49.58 32.44 2.12

0.4

FWSVD 1.02 1528.48 12.80 26.98 48.70 25.76 52.45 18.63 30.89 19.46 0.00
ASVD 1.12 4581.07 14.80 25.38 48.78 25.86 51.58 19.20 30.93 29.38 0.00
SVD-LLM 0.92 87.25 12.20 28.07 49.88 26.46 52.29 20.37 31.55 1.59 0.23
AdaSVD 0.89 70.11 13.20 28.28 52.80 26.49 52.07 20.27 32.19 1.10 0.15

SLIM 0.47 18.87 19.00 42.47 56.20 31.59 57.24 22.24 38.12 12.73 1.29
SLIM+ 0.47 18.29 18.80 45.29 55.80 31.75 58.00 22.68 38.72 8.08 2.20

0.2

FWSVD 1.05 4074.49 13.60 26.73 49.64 25.44 51.63 18.19 30.87 22.03 0.00
ASVD 1.63 7671.85 14.20 26.35 51.22 25.55 51.36 17.76 31.07 23.99 0.00
SVD-LLM 1.01 1062.89 13.20 27.10 49.33 25.80 52.39 20.60 31.40 0.00 0.00
AdaSVD 0.99 708.04 13.20 26.94 47.99 25.91 51.52 21.07 31.11 0.00 0.00

SLIM 0.59 105.24 15.60 28.96 49.64 26.12 53.75 20.74 32.47 22.77 0.53
SLIM+ 0.58 90.02 15.00 29.88 51.78 26.56 53.65 20.77 32.94 25.58 0.91

Implementations. For SLIM and SLIM+, unless otherwise specified, we conduct 10 epochs of
gradient-based optimization on the block MSE objective (equation 4) with Adam (batch size=1,
lr = 1e − 7), as we observe that a smaller batch size seems to perform more consistently across
different settings, which is also seen by Marek et al. (2025). We set η0 = 1 for the regularization
parameter.

The results without such optimization are shown in Table 3. All experiments are conducted with
PyTorch and Huggingface Transformers on a single NVIDIA A100-40G GPU.

Evaluation Protocols. We evaluate the performance on 6 open-sourced LLM pre-trained mod-
els: gemma-3-1b (GemmaTeam, 2025), gemma-3-4b (GemmaTeam, 2025), Qwen3-8B (Yang et al.,
2025), OPT-6.7B (Zhang et al., 2022), DeepSeek-llm-7b (Bi et al., 2024), and Mistral-7B (Jiang
et al., 2024). We follow the evaluation setup of recent low-rank compression methods, such as
ASVD (Yuan et al., 2023), SVD-LLM (Wang et al., 2025), and AdaSVD (Li et al., 2025). Specif-
ically, for the calibration set, we randomly select 256 samples from the WikiText-2 (Merity et al.,
2016) to conduct model compression. For evaluation tasks, we use the LM-Evaluation-Harness
Framework (Gao et al., 2021) which includes six classification datasets (OpenbookQA (Mihaylov
et al., 2018), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019), ArcE (Clark
et al., 2018), PIQA (Bisk et al., 2020), MathQA (Amini et al., 2019)) and two generation datasets
(TruthfulQA (Lin et al., 2021) and GSM8k (Cobbe et al., 2021)).

For different metrics, we use ↑ to indicate the higher the better and ↓ to indicate the lower the better.

5.2 MAIN RESULTS

We evaluated our proposed methods on several language models with different parameter ratios,
with the results summarized in Table 1.

Even with a fixed parameter ratio across all weight matrices, our method (SLIM) significantly out-
performs other low-rank compression baselines. By considering the structure of the Transformer
block, rather than individual matrices, our method has a substantial reduction in the normalized
Mean Squared Error (MSE), ∥f̄ l(X̄ l)− f l(X l)∥2F /∥f l(X l)∥2F . (We only listed the MSE for the
last layer. See Figure 1 for the comparison of MSE across different layers.) This reduced MSE also

6
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Table 2: Experimental results across different large language models at parameter ratio 0.8 with
Perplexity on WikiText-2 and the average accuracy for the six classification tasks.

Method Gemma-3-1B Gemma-3-4B OPT-6.7B DeepSeek-7B Qwen3-8B

WikiText-2 Perplexity ↓ / Classification Accuracy ↑
Original 10.58 / 51.18 7.39 / 60.34 10.90 / 51.54 6.89 / 57.16 9.79 / 61.05

SVD-LLM 51.29 / 34.97 15.40 / 43.09 12.11 / 50.00 9.20 / 49.35 14.02 / 51.16
AdaSVD 22.06 / 39.39 15.40 / 44.01 11.81 / 50.40 9.20 / 49.14 13.59 / 51.60
SLIM+ 19.47 / 41.96 11.62 / 49.03 11.60 / 50.40 8.50 / 52.40 14.24 / 54.03

Table 3: Comparison of the baselines and our proposed method with no gradient-based optimization
(OPT) on the block MSE objective (equation 4).

Method Param Rate 0.8 Param Rate 0.6 Param Rate 0.4 Param Rate 0.2

WikiText-2 Perplexity ↓ / Classification Accuracy ↑
SVD-LLM 7.62 / 50.57 16.14 / 38.05 87.25 / 31.55 1062.89 / 31.40
AdaSVD 7.62 / 50.57 15.40 / 39.32 70.11 / 32.19 708.04 / 31.11
SLIM+ (no OPT) 6.98 / 54.15 9.49 / 43.89 18.87 / 35.17 74.63 / 32.65

translates to lower perplexity and improved accuracy on downstream classification and generation
benchmarks.

In particular, SLIM improves classification accuracy by more than 5% at parameter ratios between
0.4 and 0.8 and increases the precision of GSM8K by nearly 10% at a 0.8 ratio. Furthermore,
performance can be enhanced by incorporating adaptive rank selection (SLIM+). This demonstrates
the compatibility of our method with adaptive rank selection.

We further conduct the experiments on multiple LLMs. Table 2 shows that our method outperforms
the baselines in large-language models of different models of different families and sizes.

5.3 EFFECTIVENESS OF CLOSED-FORM SOLUTION OBTAINED BY SLIM

Figure 1: The normalized MSE of each layer for
Mistral-7B at parameter ratio 0.8.

We conducted two ablation studies to demon-
strate the effectiveness of the closed-form so-
lution obtained by SLIM. First, we evaluated
SLIM without any finetuning on the block MSE
objective. As shown in Table 3, this approach
already outperforms the baselines, highlighting
the strength of the solution itself. Conversely,
we tested a scenario with only finetuning on
SVD-LLM, omitting our closed-form solution.
Figure 2 shows that finetuning alone is insuf-
ficient for the model to reach the performance
achieved by our full method. Together, these
observations confirm that our proposed closed-
form solution provides a significant and deci-
sive advantage.

5.4 COMPARISON UNDER THE INSTRUCTION FINETUNING SETTING

SVD-LLM proposed to apply instruction finetuning after model compression. We follow the same
setup and compare the results with SVD-LLM and AdaSVD. Table 4 shows the result with instruc-
tion finetuning on the entire alpaca-cleaned dataset of 51k samples.

As we can see, under the instruction finetuning setting, our proposed method still outperforms the
baselines across different parameter ratios.
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Table 4: Experimental results with instruction finetuning on alpaca-cleaned dataset.

Method Param Rate 0.8 Param Rate 0.6 Param Rate 0.4 Param Rate 0.2

WikiText-2 Perplexity ↓ / Classification Accuracy ↑
SVD-LLM (IFT) 7.99 / 54.06 10.10 / 48.75 15.89 / 40.14 48.18 / 34.61
AdaSVD (IFT) 7.99 / 53.71 10.58 / 49.14 16.14 / 40.90 45.26 / 34.53
SLIM+ (IFT) 7.74 / 56.15 7.99 / 51.95 12.37 / 44.26 28.33 / 35.62

Figure 2: Comparing SLIM and SVD-LLM
combined with different number of epochs of
block MSE optimization.

Figure 3: Comparing SLIM and SVD-LLM
compressed on different numbers of calibra-
tion samples.

5.5 COMPARISON WITH PRUNING METHODS

We compare our method against two model pruning baselines: BlockPruner (Zhong et al., 2024)
and LLM-Pruner (Ma et al., 2023). Due to the high memory requirements of LLM-Pruner, we
evaluated it on a smaller calibration set (64 samples of length 128). As shown in Table 5, our
method outperforms both baselines in their respective settings. In particular, our approach using the
smaller dataset (S=64, L=128) still surpasses the performance of BlockPruner, which was calibrated
on a much larger dataset (S=256, L=2048).

Table 6: Experiments for combination with quantization.

Method Param Rate 0.8 Param Rate 0.6 Param Rate 0.4 Param Rate 0.2

WikiText-2 Perplexity ↓ / Classification Accuracy ↑
SVDLLM (align 128) 7.39 / 52.02 15.40 / 38.68 72.33 / 32.03 938.00 / 31.50
SVDLLM (align 128, awq) 7.51 / 51.93 15.64 / 38.52 72.33 / 32.16 1096.63 / 31.72
SLIM (align 128) 6.68 / 56.98 9.20 / 48.74 17.73 / 39.07 81.96 / 32.85
SLIM (align 128, awq) 6.78 / 56.52 9.34 / 48.58 18.00 / 38.85 84.56 / 32.72

5.6 COMBINATION WITH QUANTIZATION.
Table 5: Comparing SLIM with other model prun-
ing methods.

Method PPL / Accuracy

LLM-Pruner (S=64,L=128) 7.51 / 48.70
BlockPruner (S=256,L=2048) 9.13 / 50.20
SLIM (S=64,L=128) 8.64 / 52.04
SLIM (S=256,L=2048) 6.73 / 55.89

Table 6 shows the result of combining low-rank
compression methods with AWQ quantization
to 4 bits. To employ AWQ quantization, one
need to align the dimensions of the matrices to
be the multiples of a certain number. We fol-
low the setting of ASVD (Yuan et al., 2023) to
round up the ranks to multiples of 128. As we
can see, our proposed method can be combined
with quantization to further reduce the model size with little loss in accuracy.
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5.7 ABLATION STUDY

For the ablation study, we first investigate the impact of the number of calibration samples. As shown
in Figure 3, both SVD-LLM and our method benefit from increasing the sample size. However, our
approach demonstrates superior data efficiency, outperforming SVD-LLM even when using just 64
samples.

Next, we ablated the core mechanisms the SLIM method. The results in Table 7 confirm that both
the structural correction and the original weight regularization are critical, as removing either com-
ponent significantly degrades performance.

Table 7: Ablation of SLIM.

Method PPL / Accuracy

SLIM (no OPT) 6.94 / 52.80
SLIM (no OPT, w/o structural-correction) 7.39 / 50.57
SLIM (no OPT, w/ vanilla regularization) 7.00 / 51.88

5.8 QUALITATIVE RESULTS

Here, we provide some qualitative results to demonstrate the difference between our method and
SVD-LLM. Observing that our proposed method has a much higher accuracy than SVD-LLM on
GSM8K at parameter ratio 0.8, we sampled 50 GSM8K problems and examined the output for
SVD-LLM and our proposed method. We highlight the final extracted answer in yellow.

Table 8: Comparison of the output of SVD-LLM and SLIM on a GSM8K example

SVD-LLM SLIM

Answer: Eliza worked 40 hours at $10 per
hour. She worked 5 hours at 1.2 times her
regular hourly rate. She worked 40 hours at $10
per hour and 5 hours at 1.2 times her regular
hourly rate. She worked 40 hours at $10 per
hour and 5 hours at 1.2 times her regular hourly
rate. She worked 40 hours at $10 per hour and
5 hours at 1.2 times her regular hourly rate . . .

Incorrect

Answer: Eliza worked for 40 hours at $10 per
hour. She worked for 5 hours at 1.2 times her
regular hourly rate. So she worked for 40 hours
at $10 per hour and 5 hours at 1.2 times $10 per
hour. 40 x $10 = <<40 * 10 = 400 >> 400
dollars for 40 hours at $10 per hour. 5 x 1.2 x
$10 = <<5 * 1.2 * 10 = 60 >> 60 dollars for
5 hours at 1.2 times $10 per hour. Altogether,
Eliza earned 400 + 60 = <<400 + 60 = 460
>> 460 dollars for the week. ; ; ; ; ; . . .

Correct

A representative example in Table 8 highlights a common failure mode for SVD-LLM: getting
stuck in repetitive loops. In contrast, our method better preserves the original model’s mathematical
reasoning abilities (see Appendix A.4 for more examples). Interestingly, in the two cases where
SVD-LLM produced a correct final answer while ours was incorrect, we found that SVD-LLM’s
underlying reasoning was flawed.

6 CONCLUSION

In this paper, we introduces SLIM, a new method for the low-rank compression of large language
models. We formulate a joint optimization problem to find the optimal low-rank weights for an
entire transformer block, thereby minimizing the output reconstruction error. Our formulation allows
the incorporation of key architectural elements, including residual connections and normalizations.
Experimental results demonstrate that our method consistently achieves task accuracy improvements
of over 5% compared to existing techniques across a range of compression ratios and model families.
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REPRODUCIBILITY STATEMENT

We are dedicated to guaranteeing the reproducibility of our work. The proposed SLIM method is
described in Section 3, with detailed pseudocode provided in Algorithm 1. All hyperparameters,
benchmark details, evaluation metrics, and baselines are specified in the experimental setup (Sec-
tion 5.1). Upon acceptance of this paper, we will publicly release our source code.

ETHICS STATEMENT

This paper focuses on model compression techniques. No direct ethical concerns or issues arise
from the technical methodology presented.
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A APPENDIX

A.1 USE OF LLMS

We used large language models (LLMs) solely for the purpose of polishing the writing in this paper.

A.2 PROOF OF THEOREM 1

By our definition
X̂ = concat([X, η1/2I]), Ŷ = concat([Y, η1/2I]),

thus we have

∥W̄h̄X − Y ∥2F + η∥W̄h̄ −Wh∥2F = ∥W̄h̄X − Y ∥2F + ∥η1/2W̄h̄I − η1/2WhI∥2F
=∥W̄h̄ concat([X, η1/2I])− concat([Y, η1/2I])∥2F = ∥W̄h̄X̂ − Ŷ ∥2F .

(12)

Theorem 1 from Izenman (1975) states that for the reduced-rank linear regression problem

min
W̄h̄;rank(W̄h̄)≤r

∥W̄h̄X − Y ∥2F , (13)

the solution is
W̄h̄ = SVDr(Y X†X)X†. (14)

Consequently, by change of variables, for

min
W̄h̄;rank(W̄h̄)≤r

∥W̄h̄X̂ − Ŷ ∥2F , (15)

the solution should be
W̄h̄ = SVDr((Ŷ X̂†)X̂)X̂†, (16)

which completes the proof.

A.3 HYPER PARAMETER FOR SLIM+

The only extra hyper parameter of SLIM+ compared to SLIM is the parameter ratio for the key and
value projection matrix. We reduce the parameter ratio for the query and output projection matrix to
keep the same total parameter ratio. Since the query and output projection matrix is often larger than
the key and value projection matrix, their reduction is often much smaller than the increment of the
key and value projection matrix. For Mistral-7B, we set the parameter ratio to 1.0 for the key and
value projection matrix for total parameter ratio 0.8, 0.6, and 0.4. For total parameter ratio 0.2, the
parameter ratio for the key and value projection matrix is set to 0.4. For other LLM models, we only
experiment with total parameter ratio 0.8, and the parameter ratio for the key and value projection
matrix is set to 1.0.

A.4 ADDITIONAL GSM8K EXAMPLES

We sampled 50 problems of GSM8K and example the output for SVD-LLM and our proposed
method. In Table 9, we’ve included five examples for a closer look. We highlight the final extracted
answer in yellow. The first three examples show instances where SLIM answered correctly, while
SVD-LLM failed. Conversely, in the remaining two examples, SVD-LLM provided the correct final
answer. Interestingly, in this two examples, we found that SVD-LLM’s underlying reasoning was
flawed.

Table 9: Comparison of the outputs of SVD-LLM and SLIM on GSM8K

SVD-LLM SLIM
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Question: Eliza’s rate per hour for the first 40
hours she works each week is $10. She also
receives an overtime pay of 1.2 times her regular
hourly rate. If Eliza worked for 45 hours this
week, how much are her earnings for this week?

Answer: Eliza worked 40 hours at $10 per
hour. She worked 5 hours at 1.2 times her regular
hourly rate. She worked 40 hours at $10 per hour
and 5 hours at 1.2 times her regular hourly rate.
She worked 40 hours at $10 per hour and 5 hours
at 1.2 times her regular hourly rate. She worked
40 hours at $10 per hour and 5 hours at 1.2 times
her regular hourly rate . . .

Incorrect

Question: Eliza’s rate per hour for the first 40
hours she works each week is $10. She also
receives an overtime pay of 1.2 times her regular
hourly rate. If Eliza worked for 45 hours this
week, how much are her earnings for this week?

Answer: Eliza worked for 40 hours at $10
per hour. She worked for 5 hours at 1.2 times
her regular hourly rate. So she worked for 40
hours at $10 per hour and 5 hours at 1.2 times
$10 per hour. 40 x $10 = <<40 * 10 = 400 >>
400 dollars for 40 hours at $10 per hour. 5 x 1.2 x
$10 = <<5 * 1.2 * 10 = 60 >> 60 dollars for 5
hours at 1.2 times $10 per hour. Altogether, Eliza
earned 400 + 60 = <<400 + 60 = 460 >> 460
dollars for the week. ; ; ; ; ; . . .

Correct

Question: John takes care of 10 dogs. Each dog
takes .5 hours a day to walk and take care of their
business. How many hours a week does he spend
taking care of dogs?

Answer: John takes care of dogs for .5 hours a
day. John takes care of dogs for .5 hours a day *
7 days a week = << .5 * 7 = 3.5 >> 3.5 hours a
week. John takes care of dogs for .5 hours a day
* 7 days a week = << .5 * 7 = 3.5 >> 3.5 hours
a week . . .

Incorrect

Question: John takes care of 10 dogs. Each dog
takes .5 hours a day to walk and take care of their
business. How many hours a week does he spend
taking care of dogs?

Answer: John spends 10 * .5 = <<10 * .5
= 5 >> 5 hours a day taking care of dogs. John
takes care of dogs every day, so he spends 5 * 7 =
<<5 * 7 = 35 >> 35 hours a week taking care of
dogs. ; ; ; ; ; . . .

Correct

Question: Grandma Jones baked 5 apple pies for
the fireman’s luncheon. She cut each pie into 8
pieces and set the five pies out on the buffet table
for the guests to serve themselves. At the end of
the evening, after the guests had taken and eaten
their pieces of pie, there were 14 pieces of pie
remaining. How many pieces were taken by the
guests?

Answer: Grandma Jones baked 5 apple pies.
She cut each pie into 8 pieces. She set the five
pies out on the buffet table for the guests to serve
themselves. At the end of the evening, after the
guests had taken and eaten their pieces of pie,
there were 14 pieces of pie remaining. 14 pieces
were taken by the guests. ; ; ; ; ; . . .

Incorrect

Question: Grandma Jones baked 5 apple pies for
the fireman’s luncheon. She cut each pie into 8
pieces and set the five pies out on the buffet table
for the guests to serve themselves. At the end of
the evening, after the guests had taken and eaten
their pieces of pie, there were 14 pieces of pie
remaining. How many pieces were taken by the
guests?

Answer: Grandma Jones baked 5 apple pies. She
cut each pie into 8 pieces. So she cut 40 pieces
of pie. She set 5 pies out on the buffet table. So
there were 40 pieces of pie on the buffet table. At
the end of the evening, after the guests had taken
and eaten their pieces of pie, there were 14 pieces
of pie remaining. So 26 pieces of pie were taken
by the guests. ; ; ; ; ; . . .

Correct
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Question: Marissa is hiking a 12-mile trail. She
took 1 hour to walk the first 4 miles, then another
hour to walk the next two miles. If she wants her
average speed to be 4 miles per hour, what speed
(in miles per hour) does she need to walk the
remaining distance?

Answer: Marissa walked 4 miles in 1 hour.
She walked 2 miles in 1 hour. Marissa walked
4 miles + 2 miles = << 4 + 2 = 6 >> 6 miles
in 2 hours. Marissa walked 6 miles in 2 hours.
Marissa walked 6 miles in . . .

Correct, but the reasoning is flawed

Question: Marissa is hiking a 12-mile trail. She
took 1 hour to walk the first 4 miles, then another
hour to walk the next two miles. If she wants her
average speed to be 4 miles per hour, what speed
(in miles per hour) does she need to walk the
remaining distance?

Answer: Marissa walked 4 miles in 1 hour,
so her average speed was 4 miles per hour. She
walked another 2 miles in another hour, so her
average speed was still 4 miles per hour. She
needs to walk the remaining 6 miles in 2 hours
so that her average speed will be 4 miles per
hour. She needs to walk 6 miles in 2 hours so
that her average speed will be 4 miles per hour. . . .

Incorrect

Question: Charlie wants to sell beeswax candles.
For every pound of beeswax, he can make 10
tapered candles. One pound of beeswax and the
wicks cost $10.00 in supplies. If he sells each
candle for $2.00 each, what is his net profit if he
makes and sells 20 candles?

Answer: Charlie sells 20 candles. He sells
20 candles for $2.00 each. He sells 20 candles for
$2.00 each. He sells 20 cand . . .

Correct, but the reasoning is flawed

Question: Charlie wants to sell beeswax candles.
For every pound of beeswax, he can make 10
tapered candles. One pound of beeswax and the
wicks cost $10.00 in supplies. If he sells each
candle for $2.00 each, what is his net profit if he
makes and sells 20 candles?

Answer: Charlie can make 10 tapered can-
dles from one pound of beeswax. One pound of
beeswax costs $10.00 in supplies. Charlie sells
each candle for $2.00 each. Charlie makes and
sells 20 candles. Charlie’s net profit is $200.00.\n
; ; ; ; ; . . .

Incorrect
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