
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SLIM: STRUCTURE-AWARE LOW-RANK INFERENCE
MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces a new method for the low-rank compression of large lan-
guage models. Existing techniques typically compress the weights individually,
overlooking the internal dependencies within a transformer block. To address this
limitation, we formulate a joint optimization problem to find the optimal low-
rank weights for an entire transformer block, thereby minimizing the output re-
construction error. Our formulation allows the incorporation of key architectural
elements, including residual connections and normalizations. We then introduce
SLIM, an efficient algorithm to solve this optimization problem. Experimental
results demonstrate that our method consistently achieves task accuracy improve-
ments of over 5% compared to existing techniques across a range of compression
ratios and model families.

1 INTRODUCTION

The size of large language models (LLMs) has grown rapidly in recent years, requiring substantial
computational and memory resources for deployment. To mitigate these costs, LLM compression
has become an effective strategy to reduce model size with minimal overhead. In this paper, we focus
on low-rank compression, a technique that approximates an original weight matrix with two smaller
low-rank matrices to save both memory and computation without requiring special hardware.

The most straightforward low-rank compression method is to apply truncated SVD to each weight
matrix. While this technique has shown promise on earlier models (Shim et al., 2017; Sindhwani
et al., 2015; Yu et al., 2017), it performs poorly on modern neural architectures, where weight
matrices are often not inherently low-rank (Chen et al., 2021; Hsu et al., 2022). To address this lim-
itation, several methods have recently been proposed that incorporate different importance weights
into SVD. For instance, FWSVD (Hsu et al., 2022) uses the fisher information matrix to guide the
decomposition, while ASVD (Yuan et al., 2023) leverages the norms of the rows of the empirical co-
variance matrix. Both DRONE (Chen et al., 2021) and SVD-LLM (Wang et al., 2025) utilize the full
empirical covariance matrix to determine importance. These methods guide the model compression
to be more accurate in the denser subspace of the inputs and improves the performance.

However, despite improving over vanilla SVD, these approaches still treat each weight matrix in
isolation. In this paper, we argue that effective low-rank compression should be formulated at the
transformer block level rather than at the level of individual matrices. By casting it as a joint opti-
mization problem that minimizes the mean squared error of the entire block, we can naturally ac-
count for architectural components such as residual connections and RMS normalization. Although
this joint objective does not admit a closed-form solution, it provides a more principled treatment of
the block structure. We then propose a greedy scheme that sequentially updates each weight matrix,
where each step reduces to solving a regularized rank-constrained linear regression problem with an
efficient closed-form solution. Furthermore, we show that a gradient-descent–based refinement can
further enhance the performance of our low-rank compression method.

Our contributions can be summarized as follows:

• We propose a novel formulation for jointly optimizing the low-rank approximation of trans-
former blocks, explicitly accounting for architectural elements such as residual connections
and RMS normalization. We develop a model compression algorithm based on approxi-
mately solving this joint optimization problem.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Extensive experiments across multiple LLMs demonstrate the effectiveness of our method.
Under the same parameter constraint, our approach improves average classification accu-
racy by more than 5% across six benchmarks compared to existing methods. Furthermore,
we show that our method is compatible with other techniques such as adaptive rank selec-
tion and quantization.

2 BACKGROUND

2.1 STRUCTURE OF TRANSFORMER-BASED LLMS

Prevailing Large language models (LLMs) are mostly transformer models, which consists of a se-
quence of L Transformer layers, denoted as f1, . . . , fL. Each Transformer layer consists of two
sub-blocks with residual streams: the Attention block and the Feed-Forward Network (FFN) block.

Consider the input hidden states of the l-th Transformer layer, denoted as X l ∈ Rd×n, where n is the
number of samples1 and d is the model dimensionality, the forward pass can be written as follows:

f l
Attention(X

l) = Attention
(
X l;W l

Attention

)
+X l, (1)

f l
FFN(X

l) = FFN
(
f l

Attention(X
l);W l

FFN

)
+ f l

Attention(X
l). (2)

In W l
Attention, it usually contains the Wquery,Wkey,Wvalue weight matrices, which are responsible for

computing the query, key, and value embeddings respectively. The final weight matrix Woutput then
projects the attention output back to the original hidden space. In W l

FFN, there can be multiple weight
matrices, while there is a final down projection matrix Wdown that maps the FFN output back to the
original hidden space.

Residual connections, as shown in equations equation 1 and equation 2, are crucial to the perfor-
mance of transformer models. Moreover, within both the Attention and Feed-Forward Network
(FFN) blocks, normalization layers play a critical role. These layers can be applied either at the
beginning (pre-layer normalization) or at the end of the block (post-layer normalization). Among
the various normalization techniques, Root-Mean-Square normalization (RMSNorm), introduced by
Zhang & Sennrich (2019), has become the most widely adopted.

2.2 LOW-RANK LLM COMPRESSION

The goal of low-rank LLM compression is to approximate each weight matrix with a low-rank
counterpart. When considering a weight matrix W l

h of layer l in isolation, its optimal low-rank
approximation is given by truncated Singular Value Decomposition (SVD):

W̄ l
h = SVDr(W

l
h), (3)

where r is the target rank. The number of parameters and flops can then be reduced from O(mn) to
O(r(m+ n)).

However, this SVD-based compression ignores the distribution of the inputs, X l
h, to these weight

matrices. Intuitively, compression should be more accurate in the denser subspace of the inputs and
can be less precise in sparser regions. Motivated by this, several existing low-rank compression
methods utilize a calibration set to obtain the empirical distribution of X l

h. This allows them to
perform a more optimal, data-aware compression that accounts for the input distribution (Hsu et al.,
2022; Yuan et al., 2023; Chen et al., 2021; Wang et al., 2025).

3 PROPOSED METHOD

Instead of compressing each layer in isolation, we argue that an effective compression algorithm
should consider the entire Transformer sub-block jointly. For each sub-block f ℓ, we propose that
one should be solving the block MSE objective:

min
f̄ l∈Π

∥f̄ l(X̄ l)− f l(X l)∥2F , (4)

1In practice, its amounts to number of tokens, which is batch size times sequence length

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where X l and X̄ l are the inputs to the original and compressed sub-blocks, respectively. The set
Π represents all compressed sub-blocks f̄ l where each weight matrix adheres to its specified rank
constraint.

For general f l, there is no closed-form solution for equation 4. We therefore adopt a greedy strat-
egy that sequentially minimizes the output error of each weight matrix. Specifically, we define a
sequence of sublayers h, each parameterized by a single, newly uncompressed weight matrix Wh,
in conjunction with a selection of previously compressed matrices. For each sublayer, we then solve
for its compressed counterpart h̄ by optimizing:

min
Wh̄∈Πr

∥h̄(X̄ l)− h(X l)∥2F , (5)

where Πr is the low-rank constraint. For most weight matrices Wh, we can simplify the sublayer to
a linear mapping h(X l) = Whg(X

l), where g(X l) is the layer’s input. Therefore, compressing Wh

reduces to solve the following least-squares problem:

min
W̄h̄∈Πr

∥W̄h̄ḡ(X̄
l)−Whg(X

l)∥2F . (6)

However, two common structures in LLMs—residual connections and normalization—require spe-
cial consideration, which we detail below.

Residual Connection. Residual connection (He et al., 2016) has been commonly used in LLMs,
including Mistral (Jiang et al., 2024), Gemma (GemmaTeam, 2025), Qwen3 (Yang et al., 2025), and
more. Let h be a sublayer of f l satisfies the form of

h(X l) = rres(X
l) +Whg(X

l),

where rres is the residual connection. Plugging this into our objective in equation 5 gives

min
W̄h̄∈Πr

∥r̄res(X̄
l) + W̄h̄ḡ(X̄

l)− rres(X
l)−Whg(X

l)∥2F . (7)

Compared to equation 6, this objective introduces an extra term r̄res(X̄
l)− rres(X

l), which we call
the residual connection. This term becomes significant as the compression error accumulates across
the transformer blocks. This structure appears in pre-layer normalization transformers for the output
projection matrix Woutput of the Attention layer and the final projection matrix Wdown of the FFN
layer.

Normalization. Root mean square normalization (RMSNorm) has been widely used in recent
transformer architectures (GemmaTeam, 2025; Yang et al., 2025; Bi et al., 2024). Let h be a
sublayer of f l satisfies the form of

h(X l) = RMSNorm(Whg(X
l)) ≡ Whg(X

l)/∥Whg(X
l)∥.

Plugging this into our objective in equation 5 gives

min
W̄h̄∈Πr

∥(W̄h̄ḡ(X̄
l)/∥W̄h̄ḡ(X̄

l)∥)− (Whg(X
l)/∥Whg(X

l)∥)∥2F . (8)

Compared to equation 6, this formulation includes an additional normalization by the RMS norm.
This normalization is crucial in many cases; without it, the RMSNorm layer will degenerate to a
simple scaling factor. This structure appears in post-layer normalization transformers like Gemma-
3 (GemmaTeam, 2025) for the final projection matrix Woutput of the Attention layer and Wdown of
the FFN layer, or for the query projection matrix Wquery and the key projection matrix Wkey for
transformers that adopt Query-Key Normalization (QK-norm) like Gemma-3 (GemmaTeam, 2025)
and Qwen-3 (Yang et al., 2025).

Regularization Additionally, we observe that it is important to add regularization to avoid over-
fitting to the sampled set. With this, equation 6, 7, and 8 with regularization can be formulated as
the following reduced-rank linear regression problem

min
W̄h̄;rank(W̄h̄)≤r

∥W̄h̄X − Y ∥2F + η∥W̄h̄ −Wh∥2F , (9)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where η > 0 is a hyperparameter that controls the regularization strength.

For equation 6, we have X = ḡ(X̄ l) and Y = Whg(X
l). Similarly, equation 7 can be written as

equation 9 with X = ḡ(X̄ l) and Y = Whg(X
l) + rres(X

l)− r̄res(X̄
l).

For the RMSNorm case (equation 8), under the approximation

∥W̄h̄ḡ(X̄
l)∥ ≈ ∥Whg(X

l)∥,

we have X = ḡ(X̄ l)/c and Y = Whg(X
l)/c, where c = ∥Whg(X

l)∥.

Our choice of regularization penalizes the deviation from the original weights. We observe that this
performs better than the standard ℓ2 regularization

min
W̄h̄;rank(W̄h̄)≤r

∥W̄h̄X − Y ∥2F + η∥W̄h̄∥2F , (10)

which unnecessarily suppresses parts of W̄h̄ that also appears in Wh. To match the scale of X , we
use η = η0∥X∥.

Closed Form Solution We show that the closed-form of the above formulation is given by the
following theorem.

Theorem 1 The optimal solution to equation 9 is

W̄h̄ = SVDr((Ŷ X̂†)X̂)X̂†, (11)

where X̂ = concat([X, η1/2I]), Ŷ = concat([Y, η1/2I]) respectively concatenates X and Y with
an identity matrix along the second dimension, and X̂† is the pseudo-inverse of a matrix X̂ .

The proof is in the appendix. This result is an extension of the reduced-rank linear regres-
sion solution developed in Izenman (1975), where they derived the closed form solution of
minW̄h̄;rank(W̄h̄)≤r ∥W̄h̄X − Y ∥2F without the regularization term.

Complexity For the efficient computation of equation 11, let S = (X̂X̂T)−1/2 be the inverse of
the positive semi-definite matrix square of the empirical covariance matrix X̂X̂T , we have

SVDr(Ŷ X̂†X̂)X̂† = SVDr(Ŷ X̂T (X̂†)T)X̂† = SVDr(Ŷ X̂TS)S.

The computation time of S is O(nd2 + d3). Without loss of generality, assuming the output dimen-
sion of Y to be a constant multiple of d, then the computation time of Ŷ X̂TS is also O(nd2 + d3),
while computing its SVD takes O(d3). Consequently, the total time complexity for SLIM is
O(nd2 + d3 + Oforward), where Oforward is the complexity to compute X and Y . For memory com-
plexity, it is worth noticing that one can compute X̂X̂T and Ŷ X̂T streamingly without storing the
entire X̂ and Ŷ in the main memory, thus the complexity is O(d2). These complexities are identical
to SVD-LLM (Wang et al., 2025).

Algorithm 1 summarizes our proposed method.

4 RELATED WORK

Low-rank Compression. Low-rank compression is a widely-used technique for model compres-
sion which approximates a weight matrix with two smaller low-rank matrices. To obtain these
matrices, Singular Value Decomposition (SVD) is the most common mathematical tool. Beyond
simple SVD, several existing methods utilize a calibration set to obtain an empirical distribution of
input activations, X l, and compute importance weights to guide compression. FWSVD (Hsu et al.,
2022) leverages the Fisher Information Matrix to determine the importance of individual parame-
ters. ASVD (Yuan et al., 2023) computes a diagonal matrix based on the norms of the rows of the
empirical covariance matrix of the input activations X l. DRONE (Chen et al., 2021) minimizes
the MSE error of the matrix output on the input activations while utilizing the entire empirical co-
variance matrix. Their experiments focus on the compression of BERT models. SVD-LLM (Wang

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 SLIM
1: for each Wh sorted by the order of computation do
2: Obtain the input g(X l)
3: Obtain the target rank r for the compressed weight W̄h

4: if the output of Wh is normalized by RMSNorm then
5: # e.g. Wquery, Wkey with QK-norm, and Woutput, Wdown for post-layer norm LLMs
6: Set X = ḡ(X̄ l)/∥Whg(X

l)∥ and Y = Whg(X
l)/∥Whg(X

l)∥
7: else if the output of Wh is added with a residual rres(X

l) then
8: # e.g. Woutput, Wdown for pre-layer norm LLMs
9: Set X = ḡ(X̄ l) and Y = Whg(X

l) + rres(X
l)− r̄res(X̄

l)
10: else
11: Set X = ḡ(X̄ l) and Y = Whg(X

l)
12: end if
13: Compute X̂ = concat([X, η1/2I]) and Ŷ = concat([Y, η1/2I])

14: Compute S = (X̂X̂T)−1/2

15: Obtain the compressed weight W̄h̄ = SVDr(Ŷ X̂TS)S
16: end for

et al., 2025) also minimizes the MSE error of the matrix output and they extend the experiments to
modern-day LLMs.

A key limitation of these methods is their failure to account for the propagation of compression error
through the network. They operate by compressing each weight matrix using the activations from
the full, uncompressed model, ignoring the cumulative effect of cascading errors. In contrast, our
proposed block MSE objective considers the compressed input X̄ l for each transformer block and
optimizes the compression of the entire block as a unit. Additionally, these existing methods treat
each weight matrix in isolation as a simple matrix multiplication, overlooking critical architectural
features found in modern transformer blocks, such as residual connections and Root Mean Square
(RMS) normalization. Our paper demonstrates the importance of incorporating these structures into
the compression for superior performance.

Other Compression Methods. Besides low-rank compression, other compression methods fall
into two categories: pruning and quantization. LLMPruner (Ma et al., 2023) considers gradient
information to identify inter-dependent structures, which then prunes the least important parameter
groups accordingly. BlockPruner (Zhong et al., 2024) assesses the importance (via PPL) of Atten-
tion and MLP blocks in the LLMs and applies a heuristic for iterative pruning; On the other hand,
quantization methods (Dettmers et al., 2023; Lin et al., 2024) reduce the precision of weight ma-
trices or input activations. Our proposed method is complementary to quantization techniques, as
shown in Table 6.

5 EXPERIMENTS

5.1 SETUP

Comparing Methods. We compare our proposed method with state-of-the-art low rank compres-
sion methods: FWSVD (Hsu et al., 2022), ASVD (Yuan et al., 2023), SVD-LLM (Wang et al., 2025),
and AdaSVD (Li et al., 2025), along with other model pruning methods, including LLM-Pruner (Ma
et al., 2023) and BlockPruner (Zhong et al., 2024).

In this paper, we focus on achieving a better low-rank approximation with a given parameter ratio
constraint. However, among the low-rank compression baselines, ASVD, SVD-LLM, and AdaSVD
include mechanisms to adaptively assign different parameter ratios to each matrix. To demonstrate
the potential of combining an adaptive ratio approach with our method, we adopt a simple heuristic:
we increase the parameter ratios for the key and value projection matrices while reducing them for
the query and output projection matrices. This simple combination yields a consistent gain, and we
name this variant as SLIM+. We list the details on the hyperparameter in Appendix A.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Experimental results on Mistral-7B across different parameter ratios.

Ratio Method MSE ↓ Perplexity ↓ Classification Accuracy ↑ Generation ↑
WikiText-2 Openb. ArcE. WinoG. HellaS. PIQA MathQA Avg. TruthQA GSM8k

1.0 Original 0.00 5.32 34.60 80.26 74.90 61.48 80.63 36.08 61.33 40.76 38.29

0.8

FWSVD 0.79 25.49 24.20 64.69 65.98 38.72 70.24 22.08 47.65 25.95 0.30
ASVD 0.93 21.38 21.40 57.03 59.12 36.22 67.46 24.76 44.33 24.11 1.14
SVD-LLM 0.46 7.62 27.20 68.94 67.72 41.42 69.37 28.74 50.57 34.64 4.32
AdaSVD 0.43 7.62 27.20 68.48 67.72 41.61 69.48 28.91 50.57 33.17 3.79

SLIM 0.25 6.73 31.80 74.92 69.46 51.87 75.35 31.93 55.89 41.74 12.43
SLIM+ 0.28 6.68 32.20 75.93 70.40 53.24 75.95 32.33 56.68 45.90 13.04

0.6

FWSVD 0.99 238.09 14.40 34.01 53.91 27.83 54.68 19.50 34.06 13.95 0.23
ASVD 1.20 2900.55 13.40 27.15 49.57 26.06 51.31 21.68 31.53 13.34 0.08
SVD-LLM 0.69 16.14 19.40 42.63 55.41 30.45 58.00 22.38 38.05 3.06 1.82
AdaSVD 0.66 15.64 19.40 42.85 59.67 31.81 59.79 22.38 39.32 7.71 1.14

SLIM 0.37 9.20 25.80 64.48 64.33 41.11 67.30 26.87 48.32 30.84 2.20
SLIM+ 0.37 9.05 27.20 67.42 64.17 42.84 68.72 27.10 49.58 32.44 2.12

0.4

FWSVD 1.02 1528.48 12.80 26.98 48.70 25.76 52.45 18.63 30.89 19.46 0.00
ASVD 1.12 4581.07 14.80 25.38 48.78 25.86 51.58 19.20 30.93 29.38 0.00
SVD-LLM 0.92 87.25 12.20 28.07 49.88 26.46 52.29 20.37 31.55 1.59 0.23
AdaSVD 0.89 70.11 13.20 28.28 52.80 26.49 52.07 20.27 32.19 1.10 0.15

SLIM 0.47 18.87 19.00 42.47 56.20 31.59 57.24 22.24 38.12 12.73 1.29
SLIM+ 0.47 18.29 18.80 45.29 55.80 31.75 58.00 22.68 38.72 8.08 2.20

0.2

FWSVD 1.05 4074.49 13.60 26.73 49.64 25.44 51.63 18.19 30.87 22.03 0.00
ASVD 1.63 7671.85 14.20 26.35 51.22 25.55 51.36 17.76 31.07 23.99 0.00
SVD-LLM 1.01 1062.89 13.20 27.10 49.33 25.80 52.39 20.60 31.40 0.00 0.00
AdaSVD 0.99 708.04 13.20 26.94 47.99 25.91 51.52 21.07 31.11 0.00 0.00

SLIM 0.59 105.24 15.60 28.96 49.64 26.12 53.75 20.74 32.47 22.77 0.53
SLIM+ 0.58 90.02 15.00 29.88 51.78 26.56 53.65 20.77 32.94 25.58 0.91

Implementations. For SLIM and SLIM+, unless otherwise specified, we conduct 10 epochs of
gradient-based optimization on the block MSE objective (equation 4) with Adam (batch size=1,
lr = 1e − 7), as we observe that a smaller batch size seems to perform more consistently across
different settings, which is also seen by Marek et al. (2025). We set η0 = 1 for the regularization
parameter.

The results without such optimization are shown in Table 3. All experiments are conducted with
PyTorch and Huggingface Transformers on a single NVIDIA A100-40G GPU.

Evaluation Protocols. We evaluate the performance on 6 open-sourced LLM pre-trained mod-
els: gemma-3-1b (GemmaTeam, 2025), gemma-3-4b (GemmaTeam, 2025), Qwen3-8B (Yang et al.,
2025), OPT-6.7B (Zhang et al., 2022), DeepSeek-llm-7b (Bi et al., 2024), and Mistral-7B (Jiang
et al., 2024). We follow the evaluation setup of recent low-rank compression methods, such as
ASVD (Yuan et al., 2023), SVD-LLM (Wang et al., 2025), and AdaSVD (Li et al., 2025). Specif-
ically, for the calibration set, we randomly select 256 samples from the WikiText-2 (Merity et al.,
2016) to conduct model compression. For evaluation tasks, we use the LM-Evaluation-Harness
Framework (Gao et al., 2021) which includes six classification datasets (OpenbookQA (Mihaylov
et al., 2018), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019), ArcE (Clark
et al., 2018), PIQA (Bisk et al., 2020), MathQA (Amini et al., 2019)) and two generation datasets
(TruthfulQA (Lin et al., 2021) and GSM8k (Cobbe et al., 2021)).

For different metrics, we use ↑ to indicate the higher the better and ↓ to indicate the lower the better.

5.2 MAIN RESULTS

We evaluated our proposed methods on several language models with different parameter ratios,
with the results summarized in Table 1.

Even with a fixed parameter ratio across all weight matrices, our method (SLIM) significantly out-
performs other low-rank compression baselines. By considering the structure of the Transformer
block, rather than individual matrices, our method has a substantial reduction in the normalized
Mean Squared Error (MSE), ∥f̄ l(X̄ l)− f l(X l)∥2F /∥f l(X l)∥2F . (We only listed the MSE for the
last layer. See Figure 1 for the comparison of MSE across different layers.) This reduced MSE also

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Experimental results across different large language models at parameter ratio 0.8 with
Perplexity on WikiText-2 and the average accuracy for the six classification tasks.

Method Gemma-3-1B Gemma-3-4B OPT-6.7B DeepSeek-7B Qwen3-8B

WikiText-2 Perplexity ↓ / Classification Accuracy ↑
Original 10.58 / 51.18 7.39 / 60.34 10.90 / 51.54 6.89 / 57.16 9.79 / 61.05

SVD-LLM 51.29 / 34.97 15.40 / 43.09 12.11 / 50.00 9.20 / 49.35 14.02 / 51.16
AdaSVD 22.06 / 39.39 15.40 / 44.01 11.81 / 50.40 9.20 / 49.14 13.59 / 51.60
SLIM+ 19.47 / 41.96 11.62 / 49.03 11.60 / 50.40 8.50 / 52.40 14.24 / 54.03

Table 3: Comparison of the baselines and our proposed method with no gradient-based optimization
(OPT) on the block MSE objective (equation 4).

Method Param Rate 0.8 Param Rate 0.6 Param Rate 0.4 Param Rate 0.2

WikiText-2 Perplexity ↓ / Classification Accuracy ↑
SVD-LLM 7.62 / 50.57 16.14 / 38.05 87.25 / 31.55 1062.89 / 31.40
AdaSVD 7.62 / 50.57 15.40 / 39.32 70.11 / 32.19 708.04 / 31.11
SLIM+ (no OPT) 6.98 / 54.15 9.49 / 43.89 18.87 / 35.17 74.63 / 32.65

translates to lower perplexity and improved accuracy on downstream classification and generation
benchmarks.

In particular, SLIM improves classification accuracy by more than 5% at parameter ratios between
0.4 and 0.8 and increases the precision of GSM8K by nearly 10% at a 0.8 ratio. Furthermore,
performance can be enhanced by incorporating adaptive rank selection (SLIM+). This demonstrates
the compatibility of our method with adaptive rank selection.

We further conduct the experiments on multiple LLMs. Table 2 shows that our method outperforms
the baselines in large-language models of different models of different families and sizes.

5.3 EFFECTIVENESS OF CLOSED-FORM SOLUTION OBTAINED BY SLIM

Figure 1: The normalized MSE of each layer for
Mistral-7B at parameter ratio 0.8.

We conducted two ablation studies to demon-
strate the effectiveness of the closed-form so-
lution obtained by SLIM. First, we evaluated
SLIM without any finetuning on the block MSE
objective. As shown in Table 3, this approach
already outperforms the baselines, highlighting
the strength of the solution itself. Conversely,
we tested a scenario with only finetuning on
SVD-LLM, omitting our closed-form solution.
Figure 2 shows that finetuning alone is insuf-
ficient for the model to reach the performance
achieved by our full method. Together, these
observations confirm that our proposed closed-
form solution provides a significant and deci-
sive advantage.

5.4 COMPARISON UNDER THE INSTRUCTION FINETUNING SETTING

SVD-LLM proposed to apply instruction finetuning after model compression. We follow the same
setup and compare the results with SVD-LLM and AdaSVD. Table 4 shows the result with instruc-
tion finetuning on the entire alpaca-cleaned dataset of 51k samples.

As we can see, under the instruction finetuning setting, our proposed method still outperforms the
baselines across different parameter ratios.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Experimental results with instruction finetuning on alpaca-cleaned dataset.

Method Param Rate 0.8 Param Rate 0.6 Param Rate 0.4 Param Rate 0.2

WikiText-2 Perplexity ↓ / Classification Accuracy ↑
SVD-LLM (IFT) 7.99 / 54.06 10.10 / 48.75 15.89 / 40.14 48.18 / 34.61
AdaSVD (IFT) 7.99 / 53.71 10.58 / 49.14 16.14 / 40.90 45.26 / 34.53
SLIM+ (IFT) 7.74 / 56.15 7.99 / 51.95 12.37 / 44.26 28.33 / 35.62

Figure 2: Comparing SLIM and SVD-LLM
combined with different number of epochs of
block MSE optimization.

Figure 3: Comparing SLIM and SVD-LLM
compressed on different numbers of calibra-
tion samples.

5.5 COMPARISON WITH PRUNING METHODS

We compare our method against two model pruning baselines: BlockPruner (Zhong et al., 2024)
and LLM-Pruner (Ma et al., 2023). Due to the high memory requirements of LLM-Pruner, we
evaluated it on a smaller calibration set (64 samples of length 128). As shown in Table 5, our
method outperforms both baselines in their respective settings. In particular, our approach using the
smaller dataset (S=64, L=128) still surpasses the performance of BlockPruner, which was calibrated
on a much larger dataset (S=256, L=2048).

Table 6: Experiments for combination with quantization.

Method Param Rate 0.8 Param Rate 0.6 Param Rate 0.4 Param Rate 0.2

WikiText-2 Perplexity ↓ / Classification Accuracy ↑
SVDLLM (align 128) 7.39 / 52.02 15.40 / 38.68 72.33 / 32.03 938.00 / 31.50
SVDLLM (align 128, awq) 7.51 / 51.93 15.64 / 38.52 72.33 / 32.16 1096.63 / 31.72
SLIM (align 128) 6.68 / 56.98 9.20 / 48.74 17.73 / 39.07 81.96 / 32.85
SLIM (align 128, awq) 6.78 / 56.52 9.34 / 48.58 18.00 / 38.85 84.56 / 32.72

5.6 COMBINATION WITH QUANTIZATION.
Table 5: Comparing SLIM with other model prun-
ing methods.

Method PPL / Accuracy

LLM-Pruner (S=64,L=128) 7.51 / 48.70
BlockPruner (S=256,L=2048) 9.13 / 50.20
SLIM (S=64,L=128) 8.64 / 52.04
SLIM (S=256,L=2048) 6.73 / 55.89

Table 6 shows the result of combining low-rank
compression methods with AWQ quantization
to 4 bits. To employ AWQ quantization, one
need to align the dimensions of the matrices to
be the multiples of a certain number. We fol-
low the setting of ASVD (Yuan et al., 2023) to
round up the ranks to multiples of 128. As we
can see, our proposed method can be combined
with quantization to further reduce the model size with little loss in accuracy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.7 ABLATION STUDY

For the ablation study, we first investigate the impact of the number of calibration samples. As shown
in Figure 3, both SVD-LLM and our method benefit from increasing the sample size. However, our
approach demonstrates superior data efficiency, outperforming SVD-LLM even when using just 64
samples.

Next, we ablated the core mechanisms the SLIM method. The results in Table 7 confirm that both
the structural correction and the original weight regularization are critical, as removing either com-
ponent significantly degrades performance.

Table 7: Ablation of SLIM.

Method PPL / Accuracy

SLIM (no OPT) 6.94 / 52.80
SLIM (no OPT, w/o structural-correction) 7.39 / 50.57
SLIM (no OPT, w/ vanilla regularization) 7.00 / 51.88

5.8 QUALITATIVE RESULTS

Here, we provide some qualitative results to demonstrate the difference between our method and
SVD-LLM. Observing that our proposed method has a much higher accuracy than SVD-LLM on
GSM8K at parameter ratio 0.8, we sampled 50 GSM8K problems and examined the output for
SVD-LLM and our proposed method. We highlight the final extracted answer in yellow.

Table 8: Comparison of the output of SVD-LLM and SLIM on a GSM8K example

SVD-LLM SLIM

Answer: Eliza worked 40 hours at $10 per
hour. She worked 5 hours at 1.2 times her
regular hourly rate. She worked 40 hours at $10
per hour and 5 hours at 1.2 times her regular
hourly rate. She worked 40 hours at $10 per
hour and 5 hours at 1.2 times her regular hourly
rate. She worked 40 hours at $10 per hour and
5 hours at 1.2 times her regular hourly rate . . .

Incorrect

Answer: Eliza worked for 40 hours at $10 per
hour. She worked for 5 hours at 1.2 times her
regular hourly rate. So she worked for 40 hours
at $10 per hour and 5 hours at 1.2 times $10 per
hour. 40 x $10 = <<40 * 10 = 400 >> 400
dollars for 40 hours at $10 per hour. 5 x 1.2 x
$10 = <<5 * 1.2 * 10 = 60 >> 60 dollars for
5 hours at 1.2 times $10 per hour. Altogether,
Eliza earned 400 + 60 = <<400 + 60 = 460
>> 460 dollars for the week. ; ; ; ; ; . . .

Correct

A representative example in Table 8 highlights a common failure mode for SVD-LLM: getting
stuck in repetitive loops. In contrast, our method better preserves the original model’s mathematical
reasoning abilities (see Appendix A.4 for more examples). Interestingly, in the two cases where
SVD-LLM produced a correct final answer while ours was incorrect, we found that SVD-LLM’s
underlying reasoning was flawed.

6 CONCLUSION

In this paper, we introduces SLIM, a new method for the low-rank compression of large language
models. We formulate a joint optimization problem to find the optimal low-rank weights for an
entire transformer block, thereby minimizing the output reconstruction error. Our formulation allows
the incorporation of key architectural elements, including residual connections and normalizations.
Experimental results demonstrate that our method consistently achieves task accuracy improvements
of over 5% compared to existing techniques across a range of compression ratios and model families.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are dedicated to guaranteeing the reproducibility of our work. The proposed SLIM method is
described in Section 3, with detailed pseudocode provided in Algorithm 1. All hyperparameters,
benchmark details, evaluation metrics, and baselines are specified in the experimental setup (Sec-
tion 5.1). Upon acceptance of this paper, we will publicly release our source code.

ETHICS STATEMENT

This paper focuses on model compression techniques. No direct ethical concerns or issues arise
from the technical methodology presented.

REFERENCES

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
malisms. arXiv preprint arXiv:1905.13319, 2019.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. DeepSeek LLM: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pp. 7432–7439, 2020.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-rank
compression for large nlp models. Advances in neural information processing systems, 34:29321–
29334, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Leo Gao, Jonathan Tow, Stella Biderman, Shawn Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jasmine Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 10:8–9, 2021.

GemmaTeam. Gemma 3 technical report. arXiv preprint arXiv:2503.19786, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In International Conference on Learning
Representations, 2022.

Alan Julian Izenman. Reduced-rank regression for the multivariate linear model. Journal of multi-
variate analysis, 5(2):248–264, 1975.

AQ Jiang, A Sablayrolles, A Mensch, C Bamford, DS Chaplot, Ddl Casas, F Bressand, G Lengyel,
G Lample, L Saulnier, et al. Mistral 7b. arxiv 2023. arXiv preprint arXiv:2310.06825, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhiteng Li, Mingyuan Xia, Jingyuan Zhang, Zheng Hui, Linghe Kong, Yulun Zhang, and Xiaokang
Yang. Adasvd: Adaptive singular value decomposition for large language models. arXiv preprint
arXiv:2502.01403, 2025.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-Pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum.
Small batch size training for language models: When vanilla sgd works, and why gradient accu-
mulation is wasteful. arXiv preprint arXiv:2507.07101, 2025.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Kyuhong Shim, Minjae Lee, Iksoo Choi, Yoonho Boo, and Wonyong Sung. Svd-softmax: Fast
softmax approximation on large vocabulary neural networks. Advances in neural information
processing systems, 30, 2017.

Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured transforms for small-footprint deep
learning. Advances in Neural Information Processing Systems, 28, 2015.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. In The Thirteenth International Conference
on Learning Representations, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7370–7379, 2017.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in neural infor-
mation processing systems, 32, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. BlockPruner: Fine-
grained pruning for large language models. arXiv preprint arXiv:2406.10594, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LLMS

We used large language models (LLMs) solely for the purpose of polishing the writing in this paper.

A.2 PROOF OF THEOREM 1

By our definition
X̂ = concat([X, η1/2I]), Ŷ = concat([Y, η1/2I]),

thus we have

∥W̄h̄X − Y ∥2F + η∥W̄h̄ −Wh∥2F = ∥W̄h̄X − Y ∥2F + ∥η1/2W̄h̄I − η1/2WhI∥2F
=∥W̄h̄ concat([X, η1/2I])− concat([Y, η1/2I])∥2F = ∥W̄h̄X̂ − Ŷ ∥2F .

(12)

Theorem 1 from Izenman (1975) states that for the reduced-rank linear regression problem

min
W̄h̄;rank(W̄h̄)≤r

∥W̄h̄X − Y ∥2F , (13)

the solution is
W̄h̄ = SVDr(Y X†X)X†. (14)

Consequently, by change of variables, for

min
W̄h̄;rank(W̄h̄)≤r

∥W̄h̄X̂ − Ŷ ∥2F , (15)

the solution should be
W̄h̄ = SVDr((Ŷ X̂†)X̂)X̂†, (16)

which completes the proof.

A.3 HYPER PARAMETER FOR SLIM+

The only extra hyper parameter of SLIM+ compared to SLIM is the parameter ratio for the key and
value projection matrix. We reduce the parameter ratio for the query and output projection matrix to
keep the same total parameter ratio. Since the query and output projection matrix is often larger than
the key and value projection matrix, their reduction is often much smaller than the increment of the
key and value projection matrix. For Mistral-7B, we set the parameter ratio to 1.0 for the key and
value projection matrix for total parameter ratio 0.8, 0.6, and 0.4. For total parameter ratio 0.2, the
parameter ratio for the key and value projection matrix is set to 0.4. For other LLM models, we only
experiment with total parameter ratio 0.8, and the parameter ratio for the key and value projection
matrix is set to 1.0.

A.4 ADDITIONAL GSM8K EXAMPLES

We sampled 50 problems of GSM8K and example the output for SVD-LLM and our proposed
method. In Table 9, we’ve included five examples for a closer look. We highlight the final extracted
answer in yellow. The first three examples show instances where SLIM answered correctly, while
SVD-LLM failed. Conversely, in the remaining two examples, SVD-LLM provided the correct final
answer. Interestingly, in this two examples, we found that SVD-LLM’s underlying reasoning was
flawed.

Table 9: Comparison of the outputs of SVD-LLM and SLIM on GSM8K

SVD-LLM SLIM

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Question: Eliza’s rate per hour for the first 40
hours she works each week is $10. She also
receives an overtime pay of 1.2 times her regular
hourly rate. If Eliza worked for 45 hours this
week, how much are her earnings for this week?

Answer: Eliza worked 40 hours at $10 per
hour. She worked 5 hours at 1.2 times her regular
hourly rate. She worked 40 hours at $10 per hour
and 5 hours at 1.2 times her regular hourly rate.
She worked 40 hours at $10 per hour and 5 hours
at 1.2 times her regular hourly rate. She worked
40 hours at $10 per hour and 5 hours at 1.2 times
her regular hourly rate . . .

Incorrect

Question: Eliza’s rate per hour for the first 40
hours she works each week is $10. She also
receives an overtime pay of 1.2 times her regular
hourly rate. If Eliza worked for 45 hours this
week, how much are her earnings for this week?

Answer: Eliza worked for 40 hours at $10
per hour. She worked for 5 hours at 1.2 times
her regular hourly rate. So she worked for 40
hours at $10 per hour and 5 hours at 1.2 times
$10 per hour. 40 x $10 = <<40 * 10 = 400 >>
400 dollars for 40 hours at $10 per hour. 5 x 1.2 x
$10 = <<5 * 1.2 * 10 = 60 >> 60 dollars for 5
hours at 1.2 times $10 per hour. Altogether, Eliza
earned 400 + 60 = <<400 + 60 = 460 >> 460
dollars for the week. ; ; ; ; ; . . .

Correct

Question: John takes care of 10 dogs. Each dog
takes .5 hours a day to walk and take care of their
business. How many hours a week does he spend
taking care of dogs?

Answer: John takes care of dogs for .5 hours a
day. John takes care of dogs for .5 hours a day *
7 days a week = << .5 * 7 = 3.5 >> 3.5 hours a
week. John takes care of dogs for .5 hours a day
* 7 days a week = << .5 * 7 = 3.5 >> 3.5 hours
a week . . .

Incorrect

Question: John takes care of 10 dogs. Each dog
takes .5 hours a day to walk and take care of their
business. How many hours a week does he spend
taking care of dogs?

Answer: John spends 10 * .5 = <<10 * .5
= 5 >> 5 hours a day taking care of dogs. John
takes care of dogs every day, so he spends 5 * 7 =
<<5 * 7 = 35 >> 35 hours a week taking care of
dogs. ; ; ; ; ; . . .

Correct

Question: Grandma Jones baked 5 apple pies for
the fireman’s luncheon. She cut each pie into 8
pieces and set the five pies out on the buffet table
for the guests to serve themselves. At the end of
the evening, after the guests had taken and eaten
their pieces of pie, there were 14 pieces of pie
remaining. How many pieces were taken by the
guests?

Answer: Grandma Jones baked 5 apple pies.
She cut each pie into 8 pieces. She set the five
pies out on the buffet table for the guests to serve
themselves. At the end of the evening, after the
guests had taken and eaten their pieces of pie,
there were 14 pieces of pie remaining. 14 pieces
were taken by the guests. ; ; ; ; ; . . .

Incorrect

Question: Grandma Jones baked 5 apple pies for
the fireman’s luncheon. She cut each pie into 8
pieces and set the five pies out on the buffet table
for the guests to serve themselves. At the end of
the evening, after the guests had taken and eaten
their pieces of pie, there were 14 pieces of pie
remaining. How many pieces were taken by the
guests?

Answer: Grandma Jones baked 5 apple pies. She
cut each pie into 8 pieces. So she cut 40 pieces
of pie. She set 5 pies out on the buffet table. So
there were 40 pieces of pie on the buffet table. At
the end of the evening, after the guests had taken
and eaten their pieces of pie, there were 14 pieces
of pie remaining. So 26 pieces of pie were taken
by the guests. ; ; ; ; ; . . .

Correct

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Question: Marissa is hiking a 12-mile trail. She
took 1 hour to walk the first 4 miles, then another
hour to walk the next two miles. If she wants her
average speed to be 4 miles per hour, what speed
(in miles per hour) does she need to walk the
remaining distance?

Answer: Marissa walked 4 miles in 1 hour.
She walked 2 miles in 1 hour. Marissa walked
4 miles + 2 miles = << 4 + 2 = 6 >> 6 miles
in 2 hours. Marissa walked 6 miles in 2 hours.
Marissa walked 6 miles in . . .

Correct, but the reasoning is flawed

Question: Marissa is hiking a 12-mile trail. She
took 1 hour to walk the first 4 miles, then another
hour to walk the next two miles. If she wants her
average speed to be 4 miles per hour, what speed
(in miles per hour) does she need to walk the
remaining distance?

Answer: Marissa walked 4 miles in 1 hour,
so her average speed was 4 miles per hour. She
walked another 2 miles in another hour, so her
average speed was still 4 miles per hour. She
needs to walk the remaining 6 miles in 2 hours
so that her average speed will be 4 miles per
hour. She needs to walk 6 miles in 2 hours so
that her average speed will be 4 miles per hour. . . .

Incorrect

Question: Charlie wants to sell beeswax candles.
For every pound of beeswax, he can make 10
tapered candles. One pound of beeswax and the
wicks cost $10.00 in supplies. If he sells each
candle for $2.00 each, what is his net profit if he
makes and sells 20 candles?

Answer: Charlie sells 20 candles. He sells
20 candles for $2.00 each. He sells 20 candles for
$2.00 each. He sells 20 cand . . .

Correct, but the reasoning is flawed

Question: Charlie wants to sell beeswax candles.
For every pound of beeswax, he can make 10
tapered candles. One pound of beeswax and the
wicks cost $10.00 in supplies. If he sells each
candle for $2.00 each, what is his net profit if he
makes and sells 20 candles?

Answer: Charlie can make 10 tapered can-
dles from one pound of beeswax. One pound of
beeswax costs $10.00 in supplies. Charlie sells
each candle for $2.00 each. Charlie makes and
sells 20 candles. Charlie’s net profit is $200.00.\n
; ; ; ; ; . . .

Incorrect

14

	Introduction
	Background
	Structure of Transformer-based LLMs
	Low-Rank LLM Compression

	Proposed Method
	Related Work
	Experiments
	Setup
	Main Results
	Effectiveness of Closed-Form Solution Obtained by SLIM
	Comparison Under the Instruction Finetuning Setting
	Comparison with Pruning Methods
	Combination with quantization.
	Ablation Study
	Qualitative Results

	Conclusion
	Appendix
	Use of LLMs
	Proof of th:optimaltoregdiff
	Hyper Parameter for SLIM+
	Additional GSM8K Examples

