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Abstract

Inference scaling methods for LLMs often rely on decomposing problems into
steps (or groups of tokens), followed by sampling and selecting the best next
steps. However, these steps and their sizes are often predetermined or manually
designed based on domain knowledge. We propose dynamic decomposition, a
method that adaptively and automatically partitions solution and reasoning traces
into manageable steps during inference. By more effectively allocating com-
pute — particularly through subdividing challenging steps and prioritizing their
sampling — dynamic decomposition significantly improves inference efficiency. Ex-
periments on benchmarks such as APPS, MATH, and LiveCodeBench demonstrate
that dynamic decomposition outperforms static approaches, including token-level,
sentence-level, and single-step decompositions, reducing the pass@ 10 error rate
by 5.0%, 6.7%, and 10.5% respectively. These findings highlight the potential of
dynamic decomposition to improve a wide range of inference scaling techniques.

1 Introduction

Scaling inference efficiency remains a fundamental challenge for large language models (LLMs).
Many existing approaches improve inference by decomposing problems into smaller steps and
systematically exploring different solutions [} [2, 3] 4} |5} |6} [7, 18l |9, [10]. Some decomposition
methods often rely on domain-specific heuristics and hand-crafted rules [[11} [12} [13]. However,
manually partitioning problems or designing task-specific heuristics is costly and lacks generalization.
Moreover, identifying critical steps for an LLM can be non-trivial for humans. LLMs may assign
importance to seemingly trivial words (e.g., therefore or which), which, while counterintuitive to
humans, play a crucial role in autoregressive generation [[14]. Other approaches employ fixed, uniform
step sizes, such as token- or sentence-level decomposition [[1}[15]. All these methods rely on static
decomposition strategies, where step sizes are predefined or determined via heuristics. Such rigidity
risks overusing compute on steps that are easy for the LLM (but potentially difficult for humans)
while undersampling more challenging steps.

To overcome these limitations, we propose DISC (Dynamic decomposition Improves Scaling
Compute), a recursive inference algorithm that dynamically partitions solution steps based on diffi-
culty. Unlike prior methods, DISC adapts decomposition granularity during inference based on
both the available budget and problem complexity, ensuring finer granularity for more difficult steps.
By leveraging the autoregressive nature of LLMs, DISC efficiently locates difficult steps through
dynamically proposing step sizes, focusing compute on challenging regions rather than wasting
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/ Prompt: How far does a train with speed 60 mpg travel in 3.5 hours? \

Single step generation Entire generation is a single step
The train travels at 60 mph. \n In 3.5 hours, the distance it travels is:\n 60miles/hourx3.5hours=210miles.

0
Token level decomposition Y Each token is a step
The train travels at 60 mph. \n In 3.5 hours, the distance it travels is:\n 60miles/hourx3.5hours=210miles.
yo yl y2 .. . Y19 y20 y21
Sentence level decomposition Period or newline character marks end of step

The train travels at 60 mph. \n In 3.5 hours, the distance it travels is:\n 6Omiles/hourx3.5hours=210miles.

L}
yo y1 y2
Dynamic decomposition Dynamically adjusted steps and step sizes
The train travels at 60 mph. \n In 3.5 hours, the distance it travels is:\n 60miles/hourx3.5hours=210miles.
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Figure 1: Comparison of automatic decomposition strategies based on step size. Coarser steps
accelerate the search process but risk skipping over optimal solutions and committing to suboptimal
prefixes. In contrast, finer steps ensure more precise decisions but lead to slower search. A dynamic
strategy that adapts step size based on LLLM feedback offers a balanced approach, combining the
efficiency of coarse steps with the precision of fine-grained decomposition.

resources on trivial steps. DISC is generalizable, requires no human supervision, domain-specific
heuristics, prompt engineering, or process annotations, and is easily parallelizable, making it widely
applicable across tasks. Furthermore, DISC is plug-and-play with off-the-shelf search algorithms
and can be naturally integrated with greedy, beam, or Monte Carlo Tree Search.

Our main contributions are:

* We introduce DISC, a method for dynamically adjusting step sizes and decomposing solutions
during inference without human supervision, domain-specific heuristics, or process reward models.

* We demonstrate how DISC integrates decomposition directly into inference-time search, allocating
compute more effectively toward high-potential solution prefixes.

* We show that DISC improves inference scaling in terms of both sample efficiency, token efficiency,
and runtime, achieving up to 10% reduction in error relative to the baselines and up to 4x increase
in accuracy over the base model, with just 10 samples, including with reasoning models.

* We provide both empirical and theoretical insights into LLM reasoning, including identifying
critical intermediate steps and analysis of how DISC helps discover optimal solutions.

2 Preliminaries

2.1 Problem Setting

We consider a reasoning and code generation setting where we are given: a dataset X = {w(i)}ij\il,
a pretrained, autoregressive LLM 7 that generates solutions y € ), and a reward model R :
X - Y — [0,1] that evaluates the generated solutions. The goal is to find inputs to the LLM that
produce solutions with high reward. This setting includes program synthesis, where correctness is
verified using ground-truth tests [[16} 17, and mathematical reasoning, where solutions are validated
numerically [18} [19]. The reward model can be a ground-truth verifier, a trained heuristic [20],
self-consistency [21], or an LLM-as-a-judge [22] and because our focus is on decomposition rather
than verification, we use the ground-truth reward model where available.

We use the following hierarchical token notation: y is a token, p is a prefix that starts at the prompt
and concatenates multiple steps, s is a suffix that concatenates multiple steps and ends with the EOS
token, and y is a complete solution that starts at the prompt, concatenates multiple steps, and ends at
the end of sequence token EOS. We denote a concatenation of two tokens or token sequences with -,
e.g. p - s is the concatenation of prefix p and suffix s to form a complete solution y. We denote the
sampled suffix from prefix p using the LLM policy as: s ~ 7(-|p). We denote an optimal solution
with y* and an optimal suffix as s*, where there exist multiple optimal solutions. For our analysis,



we use the convention that (s*|p) = 0 if there does not exist a completion s* such that p - s* is
optimal. The size of a string |y|, refers to its length in tokens or characters.

2.2 Existing Decomposition Methods

Single-step generation. In a single-step generation, the entire solution is generated in one pass from
the prompt to the EOS token, treating it as a single action. This approach underlies the widely used
inference scaling method best of n (BoN) [[19, 23] 15 24], where n complete solutions are sampled,
and the highest-scoring one is selected. Single-step generation also plays a role in alignment and
fine-tuning methods such as DPO [25] and RLOO [26].

Token-level decomposition. At the opposite end of the spectrum, token-level decomposition treats
each atomic token as an individual step. While this approach dramatically increases search complexity,
it enables fine-grained search that can yield higher performance gains given sufficient compute [1].

Newline and sentence-level decomposition. A commonly used decomposition method segments
LLM generations into sentences or lines based on delimiters such as periods or newlines [27, [1} [11].
Typically, each newline corresponds to a new paragraph, equation, or line of code, which often
encapsulates a distinct reasoning step.

Challenge: Automatic and scalable decomposition

Existing decomposition methods are static and manually designed, resulting in either slow
convergence to good performance or fast convergence to poor performance. We propose
adaptive decomposition for fast convergence to a good performance.

2.3 Search for Inference Scaling

We differentiate between decomposition and search, where decomposition controls the number of
steps between new branches and search is the process of selecting which branch to explore. In other
words, decomposition is the construction of nodes and edges, and search is a process that occurs on
that structure. In this work, we propose a decomposition method that is plug-and-play with different
search methods. In our experimental results in Sec. .} we compare decomposition methods: token-
level decomposition, sentence-level decomposition, and DISC with the search methods: greedy,
beam [28], and Monte Carlo Tree Search [} [29]. Implementation details are provided in App. [F}

3 Methodology

J

cally decompose reasoning steps, adjust step sizes, and
allocate sampling compute. In Sec. [3.2} we present DISC
paired with a greedy search strategy, shown in Alg. [I]and
Fig.[3l In Sec.[3.4] we present the general case of DISC ose
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3.1 High-level Overview »x

At a high level, DISC with Greedy Search advances a Low probabiliy N High probability
base prefix p, forward by iteratively concatenating promis- 2 Sampling prefix /
ing steps to it. The core intuition is to dynamically allo-

cate compute by adjusting the step size: if a prefix shows Figure 2: Multiple iterations of Alg.
promising reward improvement, we take a large step for-
ward; if not, we contract the step and concentrate sampling
around that prefix. This adaptive behavior focuses the
LLM’s effort on regions of the search space that are more
likely to yield high-reward completions.

DISC dynamically refines its step sizes
across iterations, advancing and contracting
the prefix at which it samples from.

Fig[3]illustrates a single iteration of this decision process, where a candidate prefix is either accepted
and extended or rejected and contracted. Over multiple iterations, this process yields a full solution
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Figure 3: DISC with Greedy Search. One iteration of Alg.[T} We start with a base prefix A and a
candidate prefix B. We compare the sample statistics of each by evaluating a scoring function (e.g.,
z-score). If the candidate prefix B demonstrates a higher likelihood of reward improvement compared
to continuing from base prefix A, we accept B, commit it as the new base, and extend the candidate
to a further step (e.g., BD) on the best sampled solution. If B is not better, we reject it and propose a
shorter candidate (e.g., AC), contracting the step size. This process repeats until a new candidate is
accepted or all options are exhausted. The algorithm thus adaptively advances or contracts the step
size and search horizon based on the relative quality of completions from each prefix.

composed of several such accepted steps. Fig[2]shows how the prefix is incrementally constructed: it
displays the number of steps DISC has committed to the prefix, and how the prefix used for sampling
dynamically changes over time. Together, these figures highlight the local step-wise decision-making
and the global trajectory of prefix refinement throughout the search.

Assumptions. DISC makes minimal, broadly applicable assumptions, enabling generality and ease
of deployment. It avoids handcrafted prompts, process-level reward models, and domain-specific
heuristics. Its only requirement is access to a scalar outcome reward model (ORM) to guide search. In
the absence of a ground-truth ORM, self-supervised signals—like LLM critiques or unit tests—serve
as effective substitutes 30431} 132]. It also assumes the underlying policy 7 can generate continuations
from any prefix p, a standard feature of decoder-only language models.

3.2 DISC with Greedy Search Algorithm

4 e )

We now describe Alg. [T} The algorithm takes as input an v Mox

LLM 7, a reward model R, prompt «, initial partition frac- ;
tion v, threshold o, and sample budget N. It initializes Samples— 1 | Area o -Zsscore
the base prefix as p, = x and sets o = ay. :

At each iteration, the algorithm samples 7 from p,, to gen- " Reward distribution for prefix]
erate completions y* = p, - s*, computing rewards R(y"). Mean
Sampling stops when the cumulative reward exceeds o y Max

M =min{m € Zso | Y.~ R(y") > o}. This balances
sample quantity and quality. The solutions and their re-
wards are stored in Y, and the best suffix s* and z-score
are computed.

Reward distribution for prefix 2
A candidate prefix p,, is then formed by appending the first \ /
o fraction (token-wise) of s* to p,. It is accepted if its o
reward z-score z. is lower than the current z,. Assuming Figure 4: Reward Q1str1but1on of rollouts
rewards follow a location-scale family distribution (e.g., sampled from two different prefixes. The
Gaussian), a lower z-score implies a higher probability ~Probability of sampling a higher rollout from
of improvement, since Pr(R > maxge She (R(s)) =1— prefix 2 is higher than that of prefix 1.
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CDF(z,.) where CDF is the cumulative distribution function. Fig. E] displays how we can estimate
the probability of improvement from a reward distribution. A location-scale distribution of rewards is

supported empirically (see App. [C.5).

If the candidate is accepted, the algorithm updates the base prefix p, < p., resets @ = ap, and
updates the base z-score and best suffix. If rejected, the partition fraction contracts: a < « - ayg.
This contraction implements DISC’s recursive refinement mechanism, focusing the search on more
promising regions. The process repeats until the sample budget is exhausted or a correct solution is
found.

3.3 Analysis of DISC with Greedy Search Algorithm 1 DISC with Greedy Search

DISC exhibits two important properties: (i) the Require: LLM 7, Reward model R, prompt z,

z-score decreases monotonically over the course initial partition fraction v, negative binomial
of algorithm iterations, and (ii) the best candi- threshold o, sample budget N -
date solution always has a higher reward than // initialize base prefix and current partition
the best base solution. We leverage these proper- fraction

ties, together with assumptions about the quality ~ 1: Pp = &, @ = ap,n =0 o

of , to establish the following result. We also // compute base prefix statistics (_b)

develop a motivating theoretical example in App. DSy ={py 8" | ' ~ (P},

- maxsc s, (R(s)) —meansc s, (R(s))

2

3 Sscs, (R(s))
4: p, - sy = argmax g, R(s)
5

Theorem 1 (Optimality of DISC) Consider . while n < N do

Alg. |Il Suppose that for some problem x, the /I get candidate prefix (_c)
optimal solution is in the support of w(- | x). 6 P, = p, - split(s], ) -
Then at some n > 0, the base prefix contains /7 sample and cgmpute candidate prefix
EOS roken, the algorithm terminates, and this statistics (_c)
[ M

solution is an optimal solution. See App. [Glfor 7. S, ={p, st | s ~m(|p)}M,

proaf. ) _ maxses, (R(s))—meanses, (R(s))
T R Sdses, (F(5))

Remark 1 Our analysis is dependent on a 9: p. - 8p = argmax, g R(s)

strong policy assumption, which is "reverse en- 10: n<n+M

gineered" to be the weakest assumption on the /1 accept or reject the candidate prefix

policy such that our algorithm terminates at 11: if 2. < z or [s;| < 1 then

optimality. In other words, this assumption de- 12: Dy < D¢ Sp < S5,

pends on an instance-dependent property that 13: Q4= Q, 2p < Ze

must be checked empirically. The purpose of our 14 else

analysis is not to provide a universal guarantee, 15: e

but rather to understand how adaptive decom- 16: end if

position method can control real-time inference 17: end while

compute without sacrificing optimality. 18: yield p, - s;

3.4 DISC for Plug-and-Play with Search
Algorithms

In the previous section, we presented DISC with greedy search as a complete algorithm. However,
the core of DISC is the decomposition that controls from which token prefixes to query the model
and dynamically adjusts step sizes, which can be plug-and-played with other search algorithms like
Beam search and MCTS. The DISC EXPANDNODE and MAKECHILDREN are presented in Alg. [3]
These methods are conceptually similar to the DISC with greedy search, except that in the general
search context, each node stores its own base prefix, and so when a node is expanded it computes
its candidate prefix from the suffix to that node instead of from the best existing suffix. During the
expansion operator, multiple sets of children are generated, but only the children from the final prefix
are kept for search.

3.5 Example Decomposition

Using a sampling budget of N = 100 LLM calls, the decomposition of a representative MATH
problem is shown below. Each step is enclosed in brackets and color-coded based on the z-score of



sampling a better suffix conditioned on the current prefix. Brighter colors indicate lower z-scores,
signaling higher importance.

DISC example decomposition

[ and the width of the rectangle be w. Since the
perimeter of the rectangle is 24 inches, we have that 2/ + 2w = 24, so [ + w = 12. We wish
to maximize the area of the rectangle, | [is A = lw. Letl = 12 — w and plug into
the area:

A= (12— w)w= A=12w — w?
Now, we differentiate A with respect to w:
Al(w) =12 — 2w
We wish to maximize A, so we set A’(w) = 0, and solve for w:
12 2w =0= w =06

Since | = 12 — w, we have that [ = 12 — 6 = 6. Therefore, the area of the rectangle is

A=lw=6-6=[36] ]

\. J

DISC identifies the first step as highly important, which aligns with intuition—early reasoning forms
the foundation for all subsequent steps. In contrast, the final step, although large, is marked as low-
importance, indicating that DISC allocated minimal compute toward refining it. This suggests that
once earlier reasoning is fixed, there is limited opportunity for improvement in the final conclusion
using additional sampling. Interestingly, the third step, beginning with "which", is assigned high
importance and receives substantial attention from DISC. This step appears to act as a pivotal
decision point that shapes the direction of the remaining solution. This observation supports the idea
that certain tokens or sub-sequences function as critical reasoning forks or pivots—consistent with
findings from prior work [34].

Autoregressive models require autoregressive decomposition

While transition words such as ‘which’, ‘therefore’, ‘wait’, etc. may not appear significant to
human readers, our decomposition frequently identifies them as critical decision points for
autoregressive LLMs trained on next-token prediction, where selecting a different token at
these junctures can substantially alter the downstream reasoning and final outcome. Therefore,
it is essential for inference algorithms to allocate more compute toward sampling at these
steps, and to identify these steps automatically through LLM data rather than through human
design.

4 Experimental Results

4.1 Main Results

Benchmarks. We evaluate DISC on three benchmarks: APPS, MATH, and LiveCodeBench,
to assess its impact on inference scaling for both coding and reasoning. APPS [18]] consists of
5000 competitive programming problems across three difficulty levels, with the competition-level
subset being the hardest. We evaluate on a 200-problem subset due to computational constraints.
MATH [33] comprises 12,500 math problems. Since the ground-truth verifier provides only binary
rewards, we use a pretrained ORM [36]], trained via the method in [37]], with Llama-3.1-8B-Instruct
as the base model. We test on a 500-problem subset (MATHS500), identical to prior work [37, 23]].
LiveCodeBench [38] is a continuously updated dataset from Leetcode, AtCoder, and CodeForces,
ensuring LLMs have not been exposed to test problems. We evaluate on the 108 problems uploaded
between 10/01/2024 and 12/01/2024 to prevent contamination.

Baselines. We compare DISC against three prior decomposition methods: TokenSplit (token-level
decomposition), LineSplit (newline-based decomposition), and BoN (treating the entire solution as a
single step). These are all standard and the most commonly used methods (see Sec.[2.2).
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Figure 5: Token-level comparisons across benchmarks using gpt-4o-mini. (Left) APPS competition
level (Middle) MATHS500 (Right) LiveCodeBench. DISC achieves superior inference scaling over
baselines on all three benchmarks.

Metrics. We evaluate two key metrics: Pass@Kk, the proportion of problems solved within a sample
budget k, and Pass@token, the proportion solved within a given token budget. Note that k refers to
the sample budget, not thousands of samples, and error proportion refers to proportion not solved. We
use g = 0.15, 0 = 1.0, and temperature 7 = 0.2 by default for DISC unless otherwise specified.

Performance. Across all benchmarks, DISC consistently delivers stronger performance and better
scaling under both fixed token budgets (Fig.[5) and fixed sample budgets (Fig.[§). For example, on
APPS, the pass@ 10 error proportion decreases from 0.50 to 0.475; on MATHS00, from 0.15 to 0.14;
and on LiveCodeBench, from 0.57 to 0.51. These correspond to a 5.0%, 6.7 %, and 10.5% reduction
in error relative to the best baseline, respectively. These improvements are particularly meaningful
on more challenging benchmarks, where performance gains are harder to achieve, demonstrating
DISC ’s effectiveness in guiding search toward high-reward regions. Extended results and analyses

are provided in App.[D.1}[D.4] and[D.5]
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Model Generality. DISC also provides substantial gains across a range of models, including
open-source LLMs. For instance, it improves LLaMA’s pass@10 rate from 0.01 to 0.04—a 300%
relative increase. Similarly, it boosts Mistral’s performance from 0.0 to 0.02, and Qwen’s from 0.095
to 0.17, representing a 79 % relative increase. As shown in Fig.[6] (left), these improvements hold
consistently across sampling budgets, including in low-budget regimes. This demonstrates DISC ’s
general applicability and effectiveness even for weaker or resource-constrained models. Additional
results and analyses are provided in App.[C.3]

Reasoning Models. DISC also yields substantial gains when applied to strong long-form chain-of-
thought (CoT) reasoning models such as R1 [I5|39]. As shown in Fig.[6|(middle), DISC improves
accuracy by over 85% relative to the base R1 model using just 10 samples. Notably, Fig. 6] (right)
shows that even under a constrained token budget—matched to that of a single sample from the base
model—DISC still achieves over a 33% relative improvement. This demonstrates that DISC not
only scales well with more samples but is also highly effective at identifying and prioritizing critical
reasoning steps, leading to stronger performance even in low-resource settings.

Computational Overhead. DISC introduces negligible runtime overhead compared to standard
decoding baselines, as shown in Fig. [/} The vast majority of compute time—over 90% across all
settings—is still dominated by LLM token sampling, with only a minor fraction spent on auxiliary



operations such as candidate management, z-score normalization, and recursive branching. Despite
its dynamic control flow, DISC maintains a runtime composition nearly identical to that of methods
like BoN and LineSplit. Moreover, because DISC achieves higher success rates with fewer tokens
(Fig.[3), its effective runtime per correct solution is even lower. In practice, this makes DISC both
algorithmically efficient and computationally scalable, offering improved search performance without
additional inference cost. We provide a detailed runtime discussion in App.

DISC BoN LineSplit TokenSplit

Figure 7: Percentage of runtime spent on overhead vs LLLM token generation. DISC does not
increase the runtime overhead significantly.
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Figure 8: Comparison of Pass @k performance on APPS using gpt-4o-mini. (Left) self generated
validation tests, (Middle) with ground truth tests, (Right) with different search methods.

Self-Generated Validation. We further evaluate DISC in a self-generated validation setting, where
ground-truth reward models or curated tests are unavailable [30} 40} 41]. Here, the LLM generates its
own unit tests from the problem description, which serve as a proxy reward model for evaluating
candidate solutions. This setup offers a scalable alternative to costly manual test curation in real-
world code generation tasks.

As shown in Fig.|8| DISC scales effectively under this protocol, achieving a 54% relative improve-
ment over the base model. This demonstrates that DISC leverages decomposition-based reasoning
to produce higher-quality code even when supervision is noisy or incomplete.

However, self-generated validation has limitations: generated tests may be incomplete, inconsistent,
or narrow in coverage, potentially biasing performance estimates. While these issues do not affect
the observed scaling trends, improving test reliability and robustness remains an important direction.
Additional details and results are provided in App.

Search. We demonstrate that search strategies such as MCTS and beam search can be naturally
integrated with DISC using the approach described in Sec.[3.4] As shown in Fig.[46] greedy search
tends to explore deeper partitions within the same search budget due to its myopic nature, while
MCTS and beam search explore more diverse but shallower paths. Despite similar depth, MCTS
outperforms beam search by allocating its search budget more strategically—focusing exploration on
more promising candidates—resulting in superior overall performance, as seen in Fig.|8| Furthermore,
unlike greedy search, which irrevocably commits to prefixes as they are accepted, MCTS maintains
flexibility by exploring committing multiple candidate prefixes in parallel. Additional details and
analysis are provided in App.[H

4.2 Ablation Studies

Temperature. Typically, inference scaling methods achieve optimal performance at temperatures
around 0.6-0.8, as increased temperature promotes sample diversity [42]. Surprisingly, however,
DISC performs better at lower temperatures, as shown in Fig.[9} This trend is in stark contrast to
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BoN (Fig. [I6), where higher temperatures are generally beneficial. We believe this phenomenon
arises because DISC depends on estimating the z-score at each step using sample statistics. Lower
temperatures reduce sample variance, leading to more reliable estimates, which in turn improves
step selection. This is further supported by Fig. [T4 which shows that lower temperatures yield
lower standard deviations per step, indicating increased sampling consistency. Additional details and
analyses can be found in App. [C.T]

Acceptance Method. We perform an ablation study to evaluate whether using the z-score is an
effective criterion for accepting candidate prefixes. Specifically, we compare our standard z-score-
based acceptance method, DISC-Z, against four alternative baselines: DISC-R, which accepts
candidates uniformly at random; DISC-Q, which accepts if the candidate prefix has a lower mean
value; DISC-negQ, which accepts if the candidate has a higher mean; and DISC-negZ, which accepts
if the candidate has a higher z-score (rather than a lower one). As shown in Fig.[9] the choice of
acceptance criterion substantially influences performance. Among all methods, DISC-Z achieves the
highest performance, while DISC-negZ performs worse than random selection, underscoring the
importance of prioritizing candidates with a higher probability of improvement. Additional details
and analysis are in App.[C.2]

Partition Fraction ojp. As shown in Fig.[0]and Fig. 23] performance is highest when the partition
fraction lies in the range 0.15 < «p < 0.25. Smaller values of o generally yield better results
because they lead to more conservative proposals—i.e., shorter candidate prefixes. This conservatism
is beneficial due to the high cost of prematurely committing to a suboptimal prefix: once a candidate
prefix is accepted (in greedy-DISC), it becomes fixed and cannot be revised. By keeping candidate
prefixes short, the algorithm retains more flexibility to correct course in future steps. Additional
analysis is provided in App.[C4]

4.3 Analysis and Interpretation

Mean reward per step Standard deviation of rewards per step Frequency of (actual) partitons
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Figure 10: Analysis of decomposition methods. Dotted lines fit a linear model to indicate the trend.
(Left) Average reward per step: From step 3 onward, higher step counts strongly correlate with
increased average reward, demonstrating the effectiveness of decomposition. The dip between steps 1
and 3 likely occurs because simple problems are solved early, preventing further search. (Middle)
Standard deviation of rewards per step: Decomposition reduces sampling variance, improving
precision at deeper search depths. (Right) Frequency of the number of partition steps that the search
algorithm committed to the prefix during the search process.
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Our results strongly suggest that decomposition—whether line-based, token-based, or DISC —con-
sistently improves sample quality. Fig.[T0| (left and middle) shows how the mean and variance of
sampled rewards evolve with the step number, i.e., the number of steps committed to the prefix
during search. As the step number increases, the mean reward improves, indicating that longer
committed prefixes lead to higher-quality solutions. At the same time, the variance of rewards



decreases, suggesting that committing to a longer prefix also improves the precision of sampling.
These trends highlight the benefits of finer-grained decomposition and incremental commitment in
guiding the search process more effectively.

Furthermore, DISC achieves higher performance using fewer committed prefix steps—and thus fewer
sampling stages—under a fixed sampling budget. Fig. |10 (right) shows the distribution of actual
partitions, i.e., the number of steps effectively committed under a finite budget. As shown, DISC
typically requires only 1-5 actual partition steps, whereas other methods commit to significantly
more. This indicates that DISC is more efficient at identifying high-impact prefixes, enabling better
performance with fewer sampling decisions.

Limitations. While DISC demonstrates strong empirical performance, several limitations remain
(see Appendix [E] for a detailed discussion). In particular, DISC assumes access to a reasonably
accurate reward model. For example, in code generation tasks, this requires that either ground-truth
validation tests are available or the model can self-generate sufficiently reliable ones. Addressing
these limitations—through improved test generation, learned verifiers, and more robust evaluation
protocols—presents promising directions for future work.

Decomposition and Sample Quality

DISC enables more efficient exploration by identifying high-impact prefixes with fewer steps.
Incremental prefix commitment not only improves sample quality—yielding higher average
rewards—but also reduces reward variance, leading to more stable and reliable outputs under
a fixed sampling budget.

5 Related Work

Inference scaling. Inference scaling has emerged as a dominant paradigm, driven by the introduction
of ol- and rl-like chain-of-thought reasoning models [} 16} 43| i44]]. Several works examine the
trade-off between inference compute and training compute [45, 46]]. LLM inference often relies on
decomposing complex problems into intermediate reasoning steps, as seen in chain-of-thought (CoT)
prompting [47} 48| 49] and its variants [50, /51,52, 53]]. We extend inference scaling by introducing a
new approach for adaptive compute allocation [43} 54} 55].

LLM reasoning and code generation. LLM reasoning and code generation are central tasks
for inference scaling. Evolutionary inference scaling methods have been explored in program
generation [56}157, 158, 59, 160]]. Domain-specific decomposition strategies have been applied in code
generation, such as function-based decomposition [61} 162, 63]]. More broadly, decomposition often
involves prompting LLMs to generate subtask completions [64, 165, 66], which differs from methods
that refine a single LLM generation.

Reinforcement learning and Monte Carlo methods. Unlike standard RL, our setting resembles
a search problem where the goal is to identify the single highest-reward path. Nested Monte Carlo
search can accelerate optimal pathfinding [67]]. Under the bandit setting, this can be formulated as
identifying the arm with the highest maximum reward rather than the highest mean reward [68),169].

6 Conclusion

We introduce DISC, a dynamic decomposition framework that adaptively partitions solution steps
based on first order statistics that capture potential for improvement, improving inference scaling by
directing compute toward critical steps while balancing exploration and resource allocation. DISC
naturally integrates with search-based methods such as MCTS and beam search, further enhancing
performance. It also identifies challenging steps for LLMs, aiding curriculum learning, fine-tuning,
and dataset augmentation. By dynamically adjusting partitioning and step sizes based on available
compute, DISC enables more adaptive and efficient reasoning in large language models, with broad
implications for both training and inference optimization.
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A Code implementation of DISC

To aid reproducibility and practical adoption, we provide Python-style pseudocode in this section that
closely mirrors our actual implementation. The pseudocode abstracts away low-level engineering
details while preserving the core logic, function names, and control flow used in our codebase. This
alignment ensures that readers can easily translate the pseudocode into a working implementation or
modify it for their own use cases. All key components of the DISC algorithm—including dynamic
step refinement, z-score-based acceptance, and integration with search strategies—are reflected in
this pseudocode with minimal deviation from the actual code.

Python implementation of DISC

def dynamic_decomposition(problem, model, reward_model, split_str, complete_solution, fraction,
solution_budget, split_metric, stop_threshold=-float("inf"), stop_sum_score=1.0,
stop_if_solved=False, ):

wnn

Decomposes the solution using a dynamic binary search approach

Args:
problem (Problem): The problem to solve
model (Model): The model to use for generation
reward_model (function): The reward model to use for scoring
split_str (function): The function to use for splitting a string
complete_solution (function): The function to use for completing a solution
fraction (float): The fraction to split the string
solution_budget (int): The maximum number of solutions to generate
split_metric (function): The metric to use for splitting
stop_threshold (float): The threshold to stop splitting
stop_sum_score (float): The sum score to stop generating completions
stop_if_solved (bool): Whether to stop if the problem is solved

wnn

# Initialize results and decomposition steps
decomp_return = {
"generated_solutions": [],
"decomposition": []

}

while len(decomp_return["generated_solutions"]) < solution_budget:
# Combine all previous steps into an intermediate solution
intermediate_solution = "".join([step["step_str"] for step in decomp_return["decomposition
"1
new_scores = []
best_solution = None
best_completion = None
best_score = -float("inf")
sum_score = 0.0

# 1) Generate completions until we generate enough samples to estimate the split metric
while sum_score < stop_sum_score:
proposed_completion = complete_solution(problem, intermediate_solution, model)
proposed_solution = intermediate_solution + proposed_completion
decomp_return["generated_solutions"].append(proposed_solution)

# Update scores

proposed_score = reward_model(proposed_solution)
new_scores.append (proposed_score)

sum_score += proposed_score

# Track the best solution

if proposed_score > best_score:
best_solution = proposed_solution
best_score = proposed_score
best_completion = proposed_completion

# Stop early if problem is solved

if stop_if_solved and proposed_score >= 1.0:
decomp_return["decomposition"].append({"step_str": proposed_completion})
return decomp_return

new_metric = split_metric(new_scores)
last_metric = decomp_return["decomposition"][-1]["metric"] if decomp_return["decomposition
"] else None

# Determine the split target. We always split the step with the highest metric

is_split_new_step = last_metric is None or new_metric >= last_metric

split_target = decomp_return["decomposition"][-1]["step_str"] if not is_split_new_step
else best_completion
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# 3) Attempt to split the target
split_result = split_str(split_target, fraction)
if not split_result: # If we can’t split the target, we’re done
decomp_return["decomposition"].append({"step_str": best_completion, "metric":
new_metric})
return decomp_return

# Update decomposition based on split
partl, part2 = split_result
if is_split_new_step:
decomp_return["decomposition"].append({"step_str": partl, "metric": new_metricl})
# Stopping condition based on threshold
if new_metric < stop_threshold:
decomp_return["decomposition"].append({"step_str": part2})
return decomp_return
else:
decomp_return["decomposition"] [-1] = {"step_str": partl, "metric": last_metric}

return decomp_return

B Pseudocode for DISC
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Algorithm 2 Dynamic Decomposition

1:

W

—

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:

Y

Input: Problem instance x, reward model 7, partition function /, LLM policy model 7, partition
fraction «, solution budget /2, priority metric /2, metric stopping precision ¢, sampling stopping
threshold o, is inference mode biyference

QOutput: Final decomposition

Initialize /) < {generated_solutions : &, decomposition : &}

# Decompose the solution recursively until we reach the desired precision ¢ or run out of budget

while | .generated_solutions| < 7 do
Yintermediate < Concatenate([step.step_str V step € /).decomposition])

— I
beSt-ylinul — NOHC, beStnUcomplcliUn <~ None, — —00
# Step 1: Generate completions until we have enough samples to estimate the splitting metric.
Here we use a geometric sampling distribution
while sum( ) < o do
?/complction <~ (‘Ta yimm‘mcdintc)
Yproposed €~ Yintermediate S2) Ycompletion
Append Yproposed to [).generated_solutions
— (ypropo\cd)
Append to
if > then
beSt-yﬁnzll — Yproposed s beSt'l/C()ll]p]CTiﬂll < Yeompletion
(_
end if
if biyference and = 1.0 then
Append {step_str : ywmp]elm} to /).decomposition
Return
end if
end while
# Step 2: Compute splitting metric
Znew = R(Foew)
Z1ast <= 1.decomposition[—1].z if /).decomposition # & else — oo
# Step 3: Split the step with the higher metric
bsplit new step < Znew > Zast
Ytarget step — beSt'ycom])leti(m if bsplit new step else ~decomp05iti0n[_1] -SteP_Stf
Y1, Y2 < (.I/lm'gcl steps
if y; = None or y> = None then
Append {step_str : Yeompletion, Metric : ., } to .decomposition
Return
end if
if bsplit new step then
Append {step_str : y;, metric : 2, } to [).decomposition
if 2., < 0 then
Append {step_str : y> } to 1).decomposition
Return
end if
else
.decomposition[—1]  {step_str : y;, metric : 2, }
end if
end while
Return
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C Ablation studies

C.1 Ablation on Temperature

We conduct an ablation study to analyze the effects of temperature on DISC and BoN. Temperature
controls the randomness of token sampling in autoregressive models, influencing both exploration
and consistency. Higher temperatures encourage more diverse outputs, whereas lower temperatures
yield more deterministic generations. To examine its impact, we evaluate DISC and BoN on a
100-problem subset of APPS (the first 100 problems) using gpt-4o0-mini.

Figure [T] presents the Pass@token scaling curve for DISC across different temperatures. The
results indicate that lower temperatures lead to improved performance, as DISC benefits from more
deterministic step selection. Unlike BoN, which relies on broad solution sampling, DISC dynamically
refines steps, making stable token probabilities advantageous.

Figure [12]illustrates the frequency of actual partitions made by DISC at different temperatures. As
temperature increases, the number of partitions fluctuates more, suggesting that high temperature
introduces instability in step selection. Lower temperatures provide more structured decomposition,
reducing unnecessary subdivisions.

In Figure[I3] we visualize the mean reward per step. The trend shows a linear increase in reward as
step number grows, demonstrating that deeper decomposition results in progressively better solutions.
This reinforces that DISC effectively allocates computation towards refining difficult steps.

The mean standard deviation per step is shown in Figure[I4] Lower temperatures yield lower standard
deviations, confirming that DISC benefits from reduced variability in sample quality. This consistency
allows for more reliable prioritization of difficult steps, enhancing overall inference efficiency.

For comparison, Figure[I6and Figure[T5]display Pass @token and Pass @k scaling curves for BoN
across different temperatures. Unlike DISC, BoN achieves peak performance at a temperature around
0.6-0.8, balancing diversity and consistency. Higher temperatures increase exploration but degrade
precision, while lower temperatures hinder sample diversity, reducing the probability of obtaining
high-quality completions.

These findings highlight the fundamental difference between DISC and BoN: DISC benefits from
lower variance and stable decomposition, while BoN relies on broader exploration facilitated by
moderate temperature settings. As a result, optimal temperature settings differ significantly between

these methods, with DISC favoring deterministic sampling and BoN requiring a balance between
diversity and coherence.
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Pass@token scaling curves
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Figure 11: Pass@token scaling curve for dif-
ferent temperatures on APPS using gpt-4o-
mini. The lower the temperature, the stronger
the DISC performance.

Mean reward per step

0.9 |
—— DISC-0.2temp

0.8 —— DISC-0.4temp {

: —— DISC-0.6temp
T V7N
© —— DISC-0.8temp /f
2071 DISC-1.0temp /__/OZ‘ - \/
; DISC-1.2temp )
® 0.6 -
=

0.5 A

6 8 10 12 14
Step number

Figure 13: Mean reward per step of DISC
with different temperatures on APPS using
gpt-4o-mini. The mean reward scales linearly
with step number.
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best performance and balance between diversity
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C.2 Acceptance Method

Pass@token scaling for different priority metrics
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Figure 17: Token level comparison of different
priority metrics on DISC in the APPS setting
with gpt-40-mini. Both Q and Z based priority
metrics perform well.
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Figure 19: Mean reward per step of DISC
with different priority metrics on APPS using
gpt-4o-mini. All metrics display strong correla-
tion between step depth and the mean reward.
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Figure 18: Partition frequency of DISC with
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40-mini.

Standard deviation of rewards per step

0.12 A \
N T TR

0.10 A ;
- y
@ 0,08 / N
° o /
20061 — DISCR A ‘ /
Q — X J!
< 0.04 DISC-Q NN/ )\//

— DISC-Z \/
0.02 DISC-negQ K
DISC-negZ
0.00 1 SC-neg

2 4 6 8 10 12 14
Step number

Figure 20: Mean standard deviation per step
of DISC with different priority metrics on
APPS using gpt-4o-mini. All metrics display
correlation between step depth and the standard
deviation.

We analyze the impact of different acceptance methods on DISC’s performance. These meth-
ods govern whether a candidate prefix is accepted for further decomposition, directly influencing
efficiency, stability, and final solution quality.

We begin by introducing notation to characterize the distribution of rewards obtained when sampling
completions from a given prefix p. Let R, denote the random variable of the reward of a completion
sampled from the LLM policy 7 conditioned on prefix p:

Ry :=R(p-s), wheres~ m(-|p).
Let Fy, p, and o, be the cumulative distribution function (CDF), mean, and standard deviation of
Ry, respectively.
To estimate these quantities in practice, we sample M completions from the policy:

Ypo={(p s R(s") | s ~n(|p)},_,-
From these samples, we compute the empirical mean and standard deviation:

1 M 1 M
== i =.|= D — pp)?
Hp M lzzl R(S )’ Op M ; (R(S ) Mp) .
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Let r,(gl) = max; R(s") denote the sample maximum reward observed for prefix p.

We evaluate DISC on the first 200 competition-level APPS problems using gpt-4o-mini at a fixed
temperature of 0.8. The following acceptance methods are compared:

DISC-Z: accepts if the candidate prefix c has a lower z-score than the base prefix b.

DISC-Q: accepts if the candidate prefix has a lower mean reward, i.e., fte < fip.

DISC-negZ: accepts if the candidate has a higher z-score.

DISC-negQ: accepts if the candidate has a higher mean reward.

DISC-R: accepts a candidate uniformly at random.

Z-score Based Acceptance (DISC-Z). For a base prefix b and candidate prefix ¢, we estimate the

. 1
z-score of the sample maximum 7"((; ) as:

ze = ——C, 0P[R, >rM]=1-F.(r)).

We accept c if z. < zp. A lower z-score implies a greater tail probability mass and thus a higher
chance of improvement.

Q-based Acceptance (DISC-Q). This method accepts c if its sample mean is lower than that of b:

He < Hp-

While simple, this method compares absolute expected values without accounting for reward variance,
making it less robust to noise in 7’s samples.

Empirical Comparison. Figure [I7] shows token-level performance across methods. DISC-Z
significantly outperforms alternatives, highlighting the value of normalizing reward advantage by
variance.

Figure [T§] shows that DISC-Z produces fewer but more meaningful partitions, suggesting better
allocation of compute.

Figure|19|shows that DISC-Z achieves sharper reward gains early on, indicating better prioritization
of impactful refinements.

Figure [20]reports step-wise reward variance. DISC-Z yields the most stable and consistent improve-
ments.

Why Z-score Works Best

Z-score based acceptance balances the mean and variance of reward samples, estimating the
probability of improvement in a statistically grounded way. This leads to more reliable and
efficient decomposition decisions.

Overall, our results confirm that acceptance method design is critical for dynamic decomposition.
Among all tested methods, DISC-Z consistently delivers the best performance and compute efficiency.
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C.3 Model Ablation

Token scaling for open source models
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Figure 21: Pass@token scaling curve for open
source models with DISC on APPS. DISC
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Figure 22: Partition frequency of DISC with
open source models on APPS.

also demonstrates strong performance gains with
open source models.
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Figure 23: Mean reward per step of DISC
with open source models on APPS.

Figure 24: Mean standard deviation per step
of DISC with open source models on APPS.

We investigate how different LLMs perform when used with DISC on 200 competition-level APPS
problems, given a sample budget of 30. The groundtruth reward model was used to evaluate
correctness, and all models were set to a temperature of 0.8. Due to the challenging nature of the
benchmark, open-source models struggled to achieve strong performance independently. However,
when paired with DISC, their performance significantly improved.

Figure [2T] presents the Pass @token scaling curve for open-source models using DISC. The results
demonstrate that DISC substantially enhances the capabilities of these models, closing the gap
between them and proprietary alternatives.

Figure 22] visualizes the partition frequency of DISC with different open-source models. Compared
to their standalone performance, the use of DISC led to more structured and effective decomposition,
highlighting its adaptability to different architectures.

The mean reward per step is shown in Figure[23] Similar to prior findings, we observe that deeper
decomposition leads to increasingly higher rewards. Notably, even lower-capacity models benefit
from DISC ’s ability to iteratively refine their solutions.

Finally, Figure [24] presents the mean standard deviation per step. With DISC, the variance in
performance is significantly reduced, resulting in more stable and reliable inference.

Overall, these findings emphasize that DISC is a robust framework capable of enhancing inference
performance across diverse LLMs, particularly those with limited standalone capabilities.
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C.4 Ablation on Partition Fraction o
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Figure 25: Token level comparison of different ~ Figure 26: Effect of partition fraction oo in DISC
DISC splitting fraction cg on APPS compe-  on APPS with gpt-4o-mini. The range 0.15 < ao <
tition level. 0.15 < ay < 0.25 seems to be  0-25 appears optimal.

optimal.

We include additional analysis on the effect of the initial partition fraction «p, which determines
the fraction of the best suffix used to propose a new candidate prefix at each iteration. As shown in
Figures @ and@ we observe that performance peaks in the range 0.15 < ag < 0.25, with both
token-level and Pass @k metrics favoring this region.

This behavior aligns with the underlying motivation of DISC: a smaller o results in more conser-
vative candidate proposals—shorter steps that allow for finer-grained refinement. This is beneficial
because committing to suboptimal prefixes early in the search can lead to irrevocable errors, especially
in greedy search variants. Smaller values of o give the algorithm more flexibility to adjust course
later on, while still making meaningful progress toward a complete solution. Conversely, large
ag values (e.g., ag > 0.3) result in overly aggressive expansions that risk committing to noisy or
premature completions, leading to reduced accuracy and inefficient use of sampling budget.

Therefore, the optimal range of ag reflects a balance between exploration and commit-
ment—proposing candidate steps that are informative enough to guide search, yet cautious enough to
preserve the ability to refine future decisions. This ablation confirms that adaptive decomposition
benefits from conservative, incremental prefix extension when navigating complex reasoning or
program synthesis tasks.

C.5 Reward Distribution

Distribution of rewards for 100 samples
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Figure 27: Reward distribution for 100 samples on a given MATHS00 problem. The rewards
appear to be roughly normal shaped.
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A key assumption in our algorithm is that the distribution of rewards for sampled completions from
a given prefix follows a location-scale family, such as the Gaussian distribution. This assumption
enables the use of z-scores to estimate the relative quality of candidate prefixes and to guide step
acceptance. As shown in Figure the empirical reward distribution for 100 samples on a rep-
resentative MATHS00 problem appears approximately Gaussian, with a unimodal and symmetric
shape. While we do not assume exact normality, this empirical observation supports the use of
z-score-based comparisons, as the Gaussian approximation provides a reliable proxy for estimating
tail probabilities and potential for reward improvement. We observe similar patterns across other
problems and benchmarks, further validating this modeling choice.
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D Main Results Extended

D.1 APPS
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Figure 28: Sampling frequency of each step averaged over the problems on APPS with gpt-4o-
mini. DISC seems to have a slight preferences for spending more compute on earlier found steps.
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Figure 29: Comparison of actual and planned partitions on APPS. DISC outperforms other
methods with fewer partitions by efficiently identifying critical steps. Unlike token and line split
methods, which plan many partitions but search only a subset, DISC dynamically adjusts partitioning
based on budget.

We provide extended analysis of DISC ’s behavior on the APPS benchmark using gpt-4o-mini.
Figure 28] shows the average sampling frequency per step across all problems. Interestingly, DISC
exhibits a slight preference for allocating more sampling budget to earlier-discovered steps. This
behavior reflects the intuition that early steps in a solution often set up the structure for later reasoning,
and refining these foundational steps yields more downstream improvements.

Figure 29| compares the number of actual partitions (i.e., accepted and committed steps) with the
number of planned partitions (i.e., proposed candidate splits) across decomposition methods. Token-
level and line-based methods typically predefine many steps but only explore a subset due to budget
constraints, leading to inefficient allocation. In contrast, DISC adaptively proposes and accepts
partitions in real time based on sample statistics and reward feedback, resulting in significantly
fewer actual partitions while maintaining or exceeding performance. This efficiency demonstrates
DISC s ability to identify and focus on high-impact steps, avoiding wasted compute on unnecessary
refinements and enabling stronger performance within the same sampling budget.
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D.2 Additional Examples

Below is another computed decomposition for the same problem as the one shown in the main text:

DISC example decomposition (Lagrange method)

[ Let = be the length and y be the width of the rectangle. Since the perimeter is 24 inches, we
have 2x + 2y = 24 = v +y = 12. ] | Therefore, | [ we must maximize the area xy subject
to this constraint. ]

[ We use the method of Lagrange multipliers. The Lagrangian is

L(z,y,\) =2y — NMa +y—12).
We differentiate with respect to z, y, and A to obtain

oL oL

oL
o y 0, oy x 0, B3\ T +y 0

We findthatz =y =\, sox =y = 1—22 = 6. Therefore, the maximum area of the rectangle

is6-6=[36] ]

DISC again highlights how initial constraint formulation is of medium importance—providing
essential structure but not representing a reasoning fork. The token '"Therefore," is marked as
high-importance, capturing a critical conceptual transition from constraint setup to the optimization
approach. Notably, the bulk of the mathematical machinery involving partial derivatives and substitu-
tions receives low importance, consistent with the idea that such computations are largely mechanical
once the decision to use Lagrange multipliers is made. Interestingly, the final step involving the boxed
answer is also marked low, suggesting DISC allocates minimal compute here once earlier reasoning
is settled—underscoring the idea that key inference pivots lie upstream in the decision flow.

D.3 APPS with Self-generated Validation Tests

We examine DISC performance on APPS when using self-generated validation tests. All methods
utilized the same set of self-generated validation tests to ensure fair comparisons. Each problem
received 5-10 validation tests, with the exact number determined dynamically by the LLM. We
evaluated a subset of 100 APPS problems, generating samples until the sample budget was exhausted
or a correct solution was found.

Figure [31]illustrates the Pass@token scaling curve, showing that DISC maintains strong scaling
performance in this setting, though at a slightly lower rate compared to ground-truth verification.

Figure 32 and Figure [33]compare actual and planned partition frequencies, respectively. The results
indicate that DISC continues to make structured decompositions even with self-generated validation,
preserving its efficiency.

The mean reward per step, shown in Figure [34] follows a similar trend as in previous experiments,
reinforcing that DISC effectively allocates compute resources for iterative refinement.

Lastly, Figure 35] demonstrates that DISC maintains lower standard deviations in performance,
indicating stable quality improvements across steps.
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Figure 34: Mean reward per step of different
decomposition methods on APPS with gpt-4o-
mini and self-generated validation tests.
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D.4 MATHS00

Completions for MATHS500 include both the reasoning steps and the final answer. Since MATHS500
contains more problems than APPS200 and MATH problems tend to be relatively easier, solution
quality saturates quickly. Therefore, we use a lower sample budget of 10 for these experiments.

Figure 36 presents the Pass @k performance for different decomposition methods on MATH500. We
observe that all decomposition-based approaches achieve similar Pass @k performance, consistently
outperforming BoN. This indicates that the structured nature of MATH problems allows multiple
decomposition strategies to be effective.

Despite similar Pass@k results, the true advantage of DISC lies in its token efficiency, as shown
in Figure[5] DISC significantly reduces the number of tokens required to reach correct solutions
compared to alternative methods, demonstrating its ability to allocate computational effort efficiently
in mathematical reasoning tasks.

Additionally, we analyze the partitioning behavior of DISC on MATH500. Figure [37]illustrates the
actual partition frequency for different decomposition methods. The planned partitioning behavior,
shown in Figure [38] further highlights how DISC effectively balances exploration and refinement.

Finally, we present the mean standard deviation per step in Figure[39] Lower variance suggests that
DISC produces more stable and reliable decompositions over multiple runs, reinforcing its robustness
in both mathematical and program synthesis domains.

Pass@k scaling curves on MATH Frequency of (actual) partitons
_ 0.86 DISC 0.8 —— DISC
X .
€] —8— TokenSplit a —— TokenSplit
A 1 . .
8 0847 o Linesplit S o6 LineSplit
= BoN g_
§ 0.82 A g
5 c 0.4 A
t S
5 0.80 A S
£ £ 0.2
g &
£ 0.78
a
0.0 A R S
2 4 6 8 10 0 1 2 3 4 5
Number of solutions generated (k) Number of partitions
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Figure 38: Planned partitioning strategy of dif- Figure 39: Mean standard deviation per
ferent decomposition methods on MATHS00. step for different decomposition methods on
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D.5 LiveCodeBench

We evaluate DISC on LiveCodeBench, a benchmark designed for code generation tasks with a focus
on real-world software development challenges. LiveCodeBench presents a unique set of problems
requiring both reasoning and structured decomposition, making it a suitable testbed for evaluating
DISC’s ability to refine and improve intermediate steps.

Figure 40| shows the Pass @k comparison of different decomposition methods on LiveCodeBench.
DISC consistently scales better than other decomposition methods, highlighting its ability to refine
intermediate steps more effectively in complex coding scenarios.

Figure ] illustrates the observed partition frequency of different decomposition methods. The struc-
tured approach of DISC results in well-balanced decomposition across steps, reducing unnecessary
partitioning while maintaining sufficient granularity for improved solution refinement.

Figure 2] displays the planned partition frequency across methods. DISC dynamically determines the
most effective partitions based on the evolving problem state, leading to more targeted and efficient
decompositions.

Finally, Figure[d3]presents the mean standard deviation per step across decomposition methods. Lower
variance in DISC suggests that it produces more stable and reliable decompositions, reinforcing its
robustness for solving LiveCodeBench problems.
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Figure 40: Pass@k performance comparison  Figure 41: Observed partition frequency of

for different decomposition methods on Live-  different decomposition methods on Live-

CodeBench. DISC consistently outperforms  CodeBench. DISC effectively balances prob-

other methods in structured problem refinement.  lem segmentation while avoiding excessive par-
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D.6 Computational Overhead

We analyze the computational overhead of DISC by measuring the runtime breakdown between
actual LLM token generation and all auxiliary operations (e.g., z-score computation, candidate prefix
management, and recursive decomposition logic). Since token generation is the dominant cost in LLM
inference, reporting relative percentages of runtime—rather than absolute wall-clock time—offers
a more meaningful and consistent comparison. Absolute runtime can vary significantly across
hardware configurations, backend optimizations, or batching strategies, whereas percentage-based
measurements isolate algorithmic overhead from infrastructure-dependent variance.

As shown in Figure [/} the proportion of runtime DISC spends on LLM token generation versus
auxiliary logic closely matches that of baseline methods such as BoN and LineSplit. This indicates
that DISC introduces negligible additional overhead despite its dynamic behavior and internal scoring
computations. In practice, more than 90% of total runtime is still dominated by LLM token sampling
across all methods.

Furthermore, because DISC achieves better performance with fewer tokens (i.e., improved token
efficiency), its effective runtime per successful solution is actually lower than that of less efficient
baselines. This combination—minimal added overhead and superior token scaling—makes DISC a
highly practical method for real-world inference settings, where total compute cost is often tightly
constrained.
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E Limitations

While DISC demonstrates strong empirical performance and generality across tasks and models,
several limitations merit discussion.

Reliance on LLM-Generated Test Validation. Our evaluation framework employs self-generated
test validation, where the LLM is prompted to produce its own unit tests for a given code generation
task, and these tests are used as a proxy reward model. This approach enables scalable evaluation in
the absence of ground-truth test cases, but its effectiveness depends critically on the quality of the
generated tests. In particular:

* The LLM’s ability to produce meaningful and comprehensive tests directly impacts evalua-
tion fidelity. Poor coverage or semantically shallow tests may overestimate correctness.

* The framework assumes that most generated tests are correct and executable. For complex
or underspecified tasks, this assumption may fail, leading to false positives or noisy reward
signals.

* Since generated tests may not align with reference solutions, cross-method comparison can
become inconsistent.

These issues are consistent with observations in prior work such as CodeT [30], which highlights
tradeoffs between scalability and reliability in test-based self-evaluation.

Dependence on Reward Model Availability. DISC requires access to a scalar reward signal to
guide step-wise decomposition. While tasks like code generation or math reasoning naturally provide
verifiers (e.g., test cases or numerical checks), applying DISC to domains lacking explicit reward
signals necessitates constructing auxiliary reward models or LLM-based critics, which introduces
additional complexity and potential bias.

Scope Limited to Single-Turn Generation. The current formulation of DISC is designed for single-
pass generation tasks. It does not yet handle multi-turn or interactive settings where intermediate
reasoning steps can elicit feedback or modify the problem context. Extending DISC to such interactive
regimes remains an important direction for future work.

Reduced Benefit in Trivial or Non-Compositional Tasks. DISC allocates computational budget
adaptively across reasoning steps. When a task is trivially solvable or lacks compositional struc-
ture—such that early reasoning does not meaningfully constrain the final outcome—the gains from
decomposition and step-wise control diminish.

Despite these limitations, we believe that DISC provides a strong foundation for adaptive, reward-
driven reasoning. Future extensions could integrate learned verifiers, support multi-turn interaction,
and explore joint reasoning—evaluation co-evolution.
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F Search and Scaling

F.1 DISC Plug-and-Play Search

Algorithm 3 DISC: Decomposition for Plug-and-Play Search

Require: LLM 7, Reward model R, prompt z, initial partition fraction oy, negative binomial
threshold o, total budget N, current budget n

1: function EXPANDNODE(parent prefix p,, parent z score z;, suffix to child s.)
2 o= Qo

3:  while n < N do

4: P.=Dy- Split(SCa Oé)

5: Y. =MAKECHILDREN(p,)

6: ze = (max(Y,) — mean(Y.))/std(Y:)
7 n<—n+M

8: if 2. < z, then

9: break

10: else

11: a — oo

12: end if

13:  end while
14:  returnp, Y,

15: function MAKECHILDREN(parent prefix p;,)
16: YV ={(p,-s" R(s")) | s ~7(-|p,) L
17:  returnY

F.2 Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTYS) is a widely used algorithm for sequential decision-making in large
search spaces, particularly in applications such as game playing, planning, and inference scaling. The
algorithm builds a search tree incrementally by simulating different sequences of actions and updating
estimates of state quality. A key advantage of MCTS is its ability to balance exploration (discovering
new states) and exploitation (refining promising ones) using a data-driven search process. The MCTS
pipeline consists of four fundamental steps: selection, expansion, simulation, and backpropagation.

F.2.1 Selection

Starting from the root node representing the current state s, MCTS iteratively traverses the search
tree by selecting child nodes based on a selection policy. The most commonly used selection criterion
is the Upper Confidence Bound for Trees (UCT), which balances exploration and exploitation:

UCT(s,d) = Q(s,d) + ¢ )

where Q(s, d) represents the estimated value of selecting action d from state s, n(s, d) is the visit
count for this action, and c is a hyperparameter controlling the trade-off between exploring new
actions and favoring those with high past rewards.

F.2.2 Expansion

Once a leaf node (a previously unexplored state) is reached, the algorithm expands the tree by adding
one or more new nodes. These new nodes represent potential future states s’ generated by sampling
an action d from a predefined policy. This step broadens the search space and allows MCTS to
evaluate new possibilities.
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F.2.3 Simulation

Following expansion, the algorithm conducts a simulation (or rollout) from the newly added state.
This step involves generating a sequence of actions according to a predefined policy until reaching a
terminal state or an evaluation horizon. The outcome of the simulation, denoted as v(s’), provides an
estimate of the quality of the new state. Depending on the application, this could represent a game
result, an optimization score, or an inference accuracy metric.

F.2.4 Backpropagation

The final step involves propagating the results of the simulation back up the search tree to refine the
estimated values of prior states and actions. Each node along the trajectory 7 = [sg, d1, S2, ..., S_1]
is updated iteratively:

Q(Si7di+1)(t+1) <~ (1 - an)@(3i7di+l)(t) + an maX{Q(Sivdi-&-l)(t)aQ(si+1»di+2)(t+l)}> ()

where «, is a learning rate that depends on the visit count, and the maximum function ensures that
the best-performing trajectories are emphasized.

MCTS has been widely adopted in inference scaling techniques due to its ability to efficiently
allocate computational resources, focusing more on high-reward states while avoiding unnecessary
exploration of unpromising regions. In later sections, we explore how MCTS can be combined with
dynamic decomposition to further optimize inference scaling.

F.2.5 Combining Dynamic Decomposition with MCTS

MCTS can be enhanced by integrating dynamic decomposition, where each node in the search tree
represents a decomposition of the problem into steps. Instead of treating states as atomic decisions,
we recursively decompose reasoning steps, dynamically adjusting granularity based on difficulty.

In this framework:
» Each node in the MCTS tree represents a partial decomposition of the problem, with child
nodes corresponding to alternative step partitions.

* Branching occurs by generating candidate next steps using dynamic decomposition, allowing
finer steps for complex regions while maintaining efficiency for simpler ones.

* The selection step prioritizes nodes that represent more promising decompositions, dynami-
cally refining challenging areas through recursive subdivision.

» The backpropagation step ensures that decompositions leading to high-quality solutions are
reinforced, helping the search tree converge toward optimal inference paths.

By integrating dynamic decomposition with MCTS, we efficiently allocate compute to the most
critical reasoning steps, improving inference quality while maintaining computational efficiency.

F.3 Beam Search

Beam search is a heuristic search algorithm commonly used in inference tasks where computational
efficiency is a priority. Unlike exhaustive search methods, beam search maintains only the top k
best candidates at each step, making it an effective strategy for structured prediction problems and
sequential decision-making.

At each iteration:
* The algorithm selects the k¥ most promising partitions from the previous step based on an
evaluation metric.
* Each selected partition is expanded by generating possible next-step samples.

* The newly generated partitions are ranked, and only the top k candidates are retained for the
next iteration.

* This process continues until a stopping criterion is met, such as reaching a predefined depth
or finding a sufficiently high-quality solution.
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Beam search provides a computationally efficient way to explore structured solution spaces while
maintaining high-quality search trajectories. By integrating beam search with dynamic decomposition,
we ensure that inference computation is allocated efficiently, focusing on the most promising reasoning
paths at each step.

F.4 Additional Results and Analysis

Pass@k for different search methods

Pass@token for different search methods
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Figure 44: Pass@k on APPS with gpt-40-mini
using different search methods. MCTS scales
best, followed by greedy search, followed by
beam search.

Figure 45: Token level comparison of differ-
ent decomposition search methods combined
with DISC on APPS with gpt-40-mini. MCTS
scales best, followed by greedy search, followed
by beam search.
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Figure 46: Actual partition frequency of differ-
ent decomposition search methods combined
with DISC on APPS with gpt-40-mini. Greedy
is able to search to higher depths given the same
sampling budget.

Figure 47: Mean standard deviation of differ-
ent decomposition search methods combined
with DISC on APPS with gpt-4o-mini. All
search methods display decreasing standard de-
viation with search depth.

Experiments comparing different search methods were conducted on a 100-problem subset of the
APPS dataset (first 100 problems) using GPT-40-mini. All methods used a temperature of 0.2, with
a = 0.15, Q priority metric, and o = 1.0.

Token-level comparison: As shown in Figure 5] MCTS scales best among the tested methods,
demonstrating superior efficiency in identifying promising partitions. Greedy search follows closely,
while beam search exhibits the slowest scaling.

Partition frequency analysis: Figure [f6]reveals that greedy search explores to greater depths within
the same sampling budget. This suggests that greedy search prioritizes deep refinements, whereas
MCTS and beam search balance depth with breadth.
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Step variance analysis: Figure 47|illustrates that all search methods display decreasing standard
deviation with increasing search depth. This trend indicates that deeper searches converge towards
stable, high-quality partitions, reinforcing the benefits of dynamic decomposition.

These results highlight the trade-offs between search methods: MCTS offers robust exploration-
exploitation balance, greedy search favors depth-first refinement, and beam search provides a struc-
tured yet computationally constrained approach. The integration of dynamic decomposition further
enhances these search strategies by adaptively allocating computational resources to critical reasoning
steps.
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G Theoretical analysis

G.1 Main Theorem

We begin by introducing notation to characterize the distribution of rewards obtained when sampling
completions from a given prefix p.

Let R, denote the random variable of the reward of a completion sampled from the LLM policy 7
conditioned on prefix p:

R,:=R(p-s), wheres~ n(-|p).

Let Fy, jip, and oy, be the cumulative distribution function (CDF), mean, and standard deviation of
Ry, respectively.

We define a solution y* as correct if it achieves a reward of at least r* = 1, i.e., R(y*) > 1. Then,
the probability that a random sample from 7 (- | p) yields a correct solution is given by:

PR, > 1] =1 — F,(1).

For a given set of M independent samples from 7(- | p), let r;*** denote the maximum observed
reward among them, i.e., the sample maximum.

We make the following problem assumption:

Assumption 1 A correct solution exists in the support of the policy w(y*|x) > 0 and the length of
the correct solution is finite: |y*| = K < oco.

We make the following assumptions about the policy 7:
Assumption 2 We assume Ry, belongs to a location-scale family with base CDF FFg.

Remark 2 The location-scale family includes common distributions such as the Normal, Cauchy,
and Logistic distributions, which are characterized by being affine transformations of a fixed base
distribution. Specifically, a random variable X belongs to a location-scale family if it can be written
as X = u+ oZ, where Z ~ Fg is a standardized random variable, and . € R and o > 0 are the
location and scale parameters, respectively. We observe empirical evidence supporting this modeling

choice for Ry, in Appendix|C.5|

Assumption 3 (Reward distribution converges with prefix) Consider some base prefix b and
some candidate prefix ¢ = b - x for any token sequence x. Then, o. < op. Furthermore, if b
is a complete solution (it ends in an EOS token) then oy, = 0.

Remark 3 This assumption reflects the intuition that as more tokens are appended to a prefix, the
LLM becomes increasingly committed to a narrower set of likely continuations, leading to lower
uncertainty in the reward distribution. In the limit, once a complete solution is formed (i.e., the
sequence ends with an EOS token), the reward becomes deterministic, and the variance collapses to
zero.

We emphasize that this assumption is not required for proving the optimality of DISC. However, the
greater the difference between o. < oy, the faster the convergence, as DISC will be able to prune
suboptimal paths more confidently with fewer samples.

Assumption 4 (Reward distribution converges slowly) If Algorithm[l|accepts a candidate prefix
c over a base prefix b, then we assume the standard deviation of the reward distribution under c is a

lower bounded:
> (1 do c
Oc Z A Ob

is the optimality gap between the true maximum reward r* and the current

max
b —Hb T He

where A = r* — rinax

best sample under prefix b, and § = ~ - is the z-score drop, which quantifies the
change in how surprising the best sample is under each distribution.
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Remark 4 This assumption enforces that if we transition from base prefix b to candidate prefix
¢, the standard deviation (spread) of the reward distribution under c cannot shrink too drasti-
cally—especially when: (i) we are still far from the optimal reward (i.e., A is large), and (ii) the
improvement in sample quality is not significant (i.e., § is small). Intuitively, this prevents committing
to a sharp but unreliable prefix unless there is strong evidence of progress. If ¢ does not yield
sufficiently better samples or has low variance, it may hinder further exploration. This assumption
ensures that accepted prefixes preserve enough reward diversity to support continued search.

Remark 5 While we list the confidence property Assumption 4| as an assumption, it can also be
enforced directly as an explicit acceptance criterion in Algorithm|l] Specifically, the algorithm could
be modified to accept a candidate prefix c over base b only if both § > 0 and: (1 — %) op < Oe.
where A can be computed because r* = 1.

Combining Assumptions and we can write: 2= € [(1 - 92) | 1]. This balances exploration
with exploitation.

Assumption 5 (Accurate estimates of 11, and o, ) We assume that we sample Ry, enough times to
get accurate estimates of the true mean [i, ~ p, and standard deviation 6, ~ op. Because estimates
of mean and standard deviation are accurate, the estimates of the z-scores are also accurate.

Next we prove that Alg. [I] will never commit a candidate prefix that with a lower probability of
sampling a correct solution than the base.

Lemma 1 Consider Algorithm|l} applied to a base prefix b and a candidate prefix c, with corre-
sponding reward distributions Fy, and F.. Then, the probability of sampling a correct suffix from 7
does not decrease after accepting c:

7(s* | b) < m(s* | ¢).

Proof 1 A candidate prefix c is accepted by Algorithm|[l|if either of the two conditions are true: (i)
the standardized score (z-score) of ¢ is lower than that of b: z. < zy, or (ii) the first « fraction of
tokens in the best suffix contains no tokens, and the prefix is accepted by default. In case (ii): if c is
the empty prefix, then c = b, and the distributions are unchanged, so the result follows trivially.

It remains to show case (i): if z. < z, then, w(s* | ¢) > w(s* | b).

max __

First, we define the z-score change § > 0 as § = "e— 4 _ Ie —F< and the optimality gap A > 0

Jb c
as A = r* — 2 Then, we note that our algorithmic implementation initializes the set of candidate

samples with the best solution, i.e. max(Yy) € Y.. Therefore, we have that the sample max of the

candidate rewards is greater than or equal to that of the base: rZ*** > rg'®x.,

Using this information, we can rewrite the z-score inequality:

* * e A A
T i T ’“‘2(5—+>20 3)

Ob Oc Oc Ob

where we first plug in the definitions of § and A, do algebraic manipulation, and then apply
assumption[d] The final inequality implies Fo(r*) < Fy(r*), which implies w(s* | ¢) > m(s* | b)
because P[Rp, > r*] = 1 — Fp(r*) and Fp, is monotonic in z score.

Theorem 2 (Optimality of DISC) Consider Algorithm[I|applied to a problem input  and assume
Assumptions 1, 2, 4, and 5 hold. Then, with probability 1, there exists a finite number of accepted
prefixes k > 0 and algorithm iterations n. > 0 such that the algorithm terminates, and the best
solution y,, found is a correct solution: R(y;) > 1.

Proof 2 We define the base prefix by, as the result of appending k accepted candidate prefixes. We
now proceed with the induction.

We first prove by induction that the probability of sampling a correct suffix remains strictly positive
after each accepted prefix.

Base Case (k = 0): Initially, by = x. By assumption, there exists at least one correct solution
y* = x - s* such that n(s* | ) > 0 and R(y*) > 1. Hence, there is a non-zero probability of
sampling a correct suffix from by.
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Inductive Step: Assume that after k accepted prefixes, the base prefix by, satisfies:
w(s*|by) >0 and R(by-s*)>1

Sor some correct suffix s*. Let by, 11 = by, - ¢ be the base prefix after appending the (k+1)-th accepted
candidate prefix c. By Lemmall] the probability of sampling a correct suffix does not decrease:

w(s* | bry1) > w(s* | bg) > 0.
Therefore, at every accepted prefix by, the probability of sampling a correct suffix remains bounded
below by some ¢ > 0, where ¢ > n(y* | ).

Termination: Let My, be the number of samples from accepted candidate prefix by. Since we sample
Jfrom the accepted candidate prefix by, at least once (My, > 1), samples are independent, and the
probability of sampling a correct suffix is at least w(y* | &) > 0, the probability of not sampling a
correct solution after accepting k prefixes is at most

(1-n(y" =)

Hence, the probability of never sampling a correct solution after infinitely many accepted prefixes is

k

lim (1-7(y* |z))* =0,

k—o0
which implies that, with probability 1, the algorithm will eventually sample a correct suffix.

Furthermore, this implies that the number of accepted prefixes k before obtaining a correct solution
is almost surely finite. This follows from the fact that the number of independent trials before the first
success with fixed success probability p := 7(y* | ©) > 0 is a geometric random variable, which is
finite with probability 1.

Therefore, there exists a finite number of accepted prefixes k > 0 such that the algorithm terminates
and returns a correct solution y* satisfying R(y*) > 1.

Since the algorithm either accepts a candidate prefix or contracts it by a factor a € (0, 1) uniil the
prefix length is 0, there can only be finitely many contractions before the candidate prefix is rejected
or accepted. Therefore the algorithm must accept a candidate prefix in finite number of iterations,
and so the total number of algorithm iterations n before finding a correct solution is also finite.

Remark 6 Unlike Best-of-N (BoN), where the probability of sampling a correct solution remains
constant across samples, DISC dynamically refines the sampling distribution by appending infor-
mative prefixes. As established in Lemmall| the probability of generating a correct solution under
DISC is non-decreasing across iterations. Consequently, DISC achieves faster convergence to a
correct solution in expectation compared to BoN. This theoretical advantage is corroborated by
our empirical results in Figure 5| which show that DISC consistently outperforms BoN in terms of
efficiency and scalability with respect to token budget.

G.2 A Motivating Example on DISC

We use the Wiener process W (¢) as an example where there are intractably many actions and steps.
Suppose we start at t = 0 with W (0) = 0. At each round k, the algorithm can choose one of the two
options:

1. samples a trajectory and observe the final value W (T') at time ¢t = T, as the reward signal. Denote
the whole trajectory as w/(+).

2. chooses one trajectory from the previous rounds (denoted as w, () for round s), and time ¢y; then
sample a trajectory at t = to with W (ty) = ws(to). Denote the concatenated trajectory as wy,(-)
with wg () = ws(t) when t < ¢g.

Note that we are only able to observe the final reward W (t). At any intermediate time ¢ € (0,7"), the
current value T () is not observable. The goal is to design an algorithm that can reach the highest
reward among the K trajectories. Formally speaking, we aim to maximize the maximum:

max wy (1).
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One naive solution is to call option 1 for K times and return the best-of-K reward, each following:
W(T) ~N(0,T).
Alternatively, suppose there is a promising path w(-) with a high final reward w(7T') = R. It is natural

to consider starting at some midpoint a7 (0 < a < 1) and perform more completions to obtain an
even higher reward than R. The reward distribution sampled this way is

W' (T) ~ N(w(aT), (1 —a)T).
The remaining question is which o we should choose. One option is to maximize the probability that

the newly sampled reward is higher than R:

POW/(T) > R) =1 — @(R‘w(om)

(1-a)T
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H Compute Resources Used

All evaluations involving OpenAl proprietary models (e.g., GPT-40-mini, GPT-3.5) were performed
via the OpenAl API. These API calls were made from standard desktop machines using CPU-only
inference and incur no dependency on local GPU availability, making the method broadly accessible
for replication.

For open-source model experiments (e.g., LLaMA-3.1-8B-Instruct, Mistral, Qwen), inference was
conducted on a single NVIDIA A100 GPU. All such experiments were executed sequentially on
this GPU, which has 80GB of memory, ensuring consistent and reproducible runtime characteristics
across model families.

This setup reflects the lightweight computational overhead of our method and demonstrates that DISC
can scale effectively even in constrained or CPU-only environments when using hosted APIs.

I Impact Statement

Positive Societal Impacts This work introduces a general and lightweight method—Dynamic
Decomposition (DISC)—that significantly improves inference efficiency for large language models
(LLMs) without requiring additional training, domain-specific engineering, or specialized hardware.
By enabling better performance using fewer samples and tokens, DISC reduces the cost and envi-
ronmental footprint associated with LLM deployment, making advanced reasoning models more
accessible to research groups and developers with limited compute budgets.

Additionally, DISC’s ability to prioritize critical reasoning steps has the potential to improve the
transparency and interpretability of LLM outputs, which is beneficial in high-stakes applications
such as education, scientific reasoning, and assistive tools for programming or mathematics. Its
plug-and-play compatibility with open-source models also democratizes access to high-performance
inference techniques.

Negative Societal Impacts As with all improvements in LLM inference capabilities, this work may
accelerate the deployment of models in settings where societal risks are not fully mitigated—such
as the automated generation of persuasive misinformation, cheating in educational contexts, or
manipulation via high-fidelity language generation. Furthermore, by making LLM inference more
efficient, DISC could contribute to increased usage of models without corresponding increases in
ethical oversight or alignment safeguards.

Careful integration of this method should therefore include responsible use policies, limitations on
deployment domains, and alignment with values such as transparency, fairness, and accountability.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope. The paper introduces a novel framework for decomposing behavior in sequential
decision-making using value-based segmentation, proposes an instantiation via a modified
value iteration algorithm, and demonstrates empirical results across diverse domains includ-
ing control, navigation, and language modeling. These contributions are clearly outlined in
both the abstract and introduction and are elaborated upon in Sections 2 (Framework), 3
(Method), and 4 (Experiments).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

44



2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are discussed in Section 3.1, where the authors acknowledge
that the value-based decomposition relies on having access to a value function, which may
not always be readily available or accurate in real-world settings. They also note that while
the method is general, its effectiveness can depend on the specific domain and value structure.
These points transparently address the boundaries of the current approach.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper presents a clear set of theoretical results in Section 3, supported by
assumptions which are stated explicitly. Lemma 1 and Theorem 1 build directly on these
assumptions and are accompanied by informal but complete proofs that are consistent with
the problem setting. The paper also explicitly states the limitations of its theoretical analysis,
acknowledging that some assumptions are empirically motivated rather than rigorously
provable, which is standard in empirical LLM research. The justification is sufficient and
appropriate for a NeurIPS submission.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
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* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the experimental setup, in-
cluding datasets (APPS, MATHS500, and LiveCodeBench), evaluation metrics (pass @k,
pass@token), model configurations (e.g., LLaMA-3.1-8B-Instruct, GPT-40-mini), sampling
temperature (7 = 0.2), and DISC hyperparameters (e.g., ¢g = 0.15, 6 = 1.0). The algorithm
is specified in pseudocode (Alg. 1 and 2), and ablation studies are conducted to analyze
sensitivity to temperature, acceptance criteria, and partition fraction. While code is not
included in the paper, the level of detail is sufficient to reimplement the approach and verify
the core findings.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
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Justification: The code and data are not yet publicly available at submission time due to
anonymity constraints. However, we commit to releasing the full implementation—including
scripts for running DISC, benchmark evaluation, and reproduction of all figures and ta-
bles—upon publication. The code will be made available on GitHub with comprehensive
instructions to ensure faithful reproduction of results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper clearly specifies test set sizes and evaluation protocols for each
benchmark: a 200-problem subset of APPS, the MATHS00 subset of MATH, and 108
LiveCodeBench problems from a specified date range to avoid contamination. It also details
hyperparameters for DISC (e.g., g = 0.15,60 = 1.0, temperature 7 = 0.2), and discusses
how these were selected via ablation studies. Since the work focuses on inference rather
than training, training details such as optimizers are not applicable. Pretrained models (e.g.,
LLaMA-3.1-8B-Instruct) are used directly without further fine-tuning.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper follows standard field practice by providing statistical variation
where appropriate. These conventions are consistent with accepted norms in the LLM
inference scaling literature.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper includes a dedicated section in the appendix detailing the compute
resources used. Evaluations involving OpenAl proprietary models (e.g., GPT-40-mini,
GPT-3.5) were conducted via the OpenAl API from standard desktop machines with CPU-
only inference. For open-source models such as LLaMA-3.1-8B-Instruct, Mistral, and
Qwen, inference was run on a single NVIDIA A100 GPU with 80GB of memory. This
setup demonstrates that DISC is lightweight and can be reproduced under modest compute
conditions. The disclosure is sufficient to support replication of experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The paper adheres to the NeurIPS Code of Ethics by utilizing publicly available
datasets (APPS, MATHS500, LiveCodeBench) that do not contain personally identifiable
information, thereby respecting privacy and consent considerations. The research does not
involve human subjects, surveillance, or any form of deceptive practices. The proposed
DISC method aims to enhance the efficiency of large language model inference, potentially
reducing computational resources and associated environmental impact. The paper also
includes discussions on limitations and potential biases, aligning with the ethical standards
outlined by NeurIPS.

Guidelines:
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a dedicated Impact Statement in the appendix that dis-
cusses both positive and negative societal impacts. On the positive side, DISC improves
inference efficiency for LLMs without additional training or hardware, lowering costs and
environmental impact while enhancing accessibility. It also promotes interpretability and
aligns well with open-source use cases. On the negative side, the paper acknowledges
that increased efficiency could accelerate deployment of LLMs in settings with insufficient
ethical oversight, potentially contributing to misuse such as misinformation or academic
dishonesty. These trade-offs are explicitly addressed in alignment with responsible Al
practices.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any new pretrained models, image generators, or
scraped datasets that would pose a high risk of misuse. The work builds upon existing,
publicly available models and datasets, and focuses solely on inference-time methods.
Therefore, this question is not applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses publicly available datasets (APPS, MATH, LiveCodeBench)
and models (e.g., GPT-40-mini via OpenAl API, LLaMA-3.1-8B-Instruct, Mistral, Qwen)
and appropriately cites their original sources. These assets were used in accordance with

their respective licenses and terms of use. The paper does not redistribute any of these assets
and respects the usage guidelines set by their creators.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets such as datasets, pretrained models,
or novel codebases at submission time. The proposed method, DISC, is described in
detail in the paper and appendix, and the authors commit to releasing the code with full
documentation upon publication.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

50


paperswithcode.com/datasets

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve any crowdsourcing experiments or human
subjects. All results are derived from automated evaluation of LLM-generated outputs using
standard benchmarks and computational metrics.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study does not involve human participants or any form of user study.
Therefore, there were no risks to disclose, and IRB approval was not required.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?

Answer: [Yes]

Justification: The paper centrally focuses on improving inference-time performance for
LLMs through a novel method called Dynamic Decomposition (DISC). It clearly describes
how LLMs are used in both the methodology and experiments, including the use of autore-
gressive LLMs like GPT-40-mini and LLaMA-3.1-8B-Instruct. DISC interacts with these
models by dynamically querying continuations from intermediate prefixes, making the LLM
usage both critical and fully documented throughout the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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