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FedRIR: Rethinking Information Representation in Federated
Learning

Anonymous Author(s)

Abstract
Mobile and Web-of-Things (WoT) devices at the network edge gen-

erate vast amounts of data formachine learning applications, yet pri-

vacy concerns hinder centralized model training. Federated Learn-

ing (FL) allows clients (devices) to collaboratively train a shared

model coordinated by a central server without transfer private

data, but inherent statistical heterogeneity among clients presents

challenges, often leading to a dilemma between clients’ needs for

personalized local models and the server’s goal of building a gener-

alized global model. Existing FL methods typically prioritize either

global generalization or local personalization, resulting in a trade-

off between these two objectives and limiting the full potential of

diverse client data. To address this challenge, we propose a novel

framework that simultaneously enhances global generalization and

local personalization by Rethinking Information Representation
in the Federated learning process (FedRIR). Specifically, we in-
troduce Masked Client-Specific Learning (MCSL), which isolates

and extracts fine-grained client-specific features tailored to each

client’s unique data characteristics, thereby enhancing personal-

ization. Concurrently, the Information Distillation Module (IDM)

refines the global shared features by filtering out redundant client-

specific information, resulting in a purer and more robust global

representation that enhances generalization. By integrating the

refined global features with the isolated client-specific features, we

construct enriched representations that effectively capture both

global patterns and local nuances, thereby improving the perfor-

mance of downstream tasks on the client. Extensive experiments

across diverse datasets demonstrate that FedRIR significantly out-

performs state-of-the-art FL methods, achieving up to a 3.93% im-

provement in accuracy while ensuring robustness and stability in

heterogeneous environments.

CCS Concepts
• Computing methodologies → Machine learning; Distributed
algorithms; • Human-centered computing→ Ubiquitous and
mobile computing.

Keywords
Federated Learning, Information Representation, Information Dis-

tillation, Masked Representation Learning
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1 Introduction
Mobile and Web-of-Things (WoT) devices at the network edge now

generate massive amounts of data daily [9, 39], which recent ad-

vancements in deep learning have demonstrated to be crucial for

achieving high performance in data-driven models [8, 10, 21]. How-

ever, data at individual clients is often scarce and biased, making it

challenging to build accurate and robust models [4, 11]. Aggregat-

ing data from multiple clients into a centralized dataset might seem

like a natural solution, but privacy and security concerns associated

with sharing sensitive data across clients significantly hinder this

approach [17, 31].

Federated Learning (FL) offers a promising solution to these

challenges by enabling collaborative model training across multiple

clients without the need to transfer local data [30, 38]. In FL, each

client retains its private data and trains a local model, sharing only

model parameters with a central server. This approach addresses

privacy concerns while leveraging collective data to improve overall

model performance. However, client data is typically non-IID [28,

44, 46], and the heterogeneity issue poses a significant challenge

for traditional FL methods, such as FedAvg, as a single global model

often fails to adequately capture the diverse data characteristics,

leading to suboptimal performance across clients [20, 35].

Personalized Federated Learning (pFL) was introduced to tackle

data heterogeneity across clients. It aims to build models tailored

to each client by leveraging client-specific data variations to im-

prove overall performance [18, 35]. In pFL, each client maintains

a personalized component that adapts to its local data, while also

contributing the parameters of a global component aimed at ex-

tracting refined global features. These global parameters are then

aggregated on the server to improve generalization and address

challenges associated with data scarcity. However, existing pFL

methods often prioritize either global information representation,

such as in FedRoD [5], or personalized information representation,

as demonstrated by FedPer [1] and FedRep [7], during local training.

This singular focus tends to overlook the complementary aspect,

limiting the ability to effectively balance collaborative learning

with personalization. Although methods like FedProto [36] attempt

to bridge this gap by employing prototypes to guide personalized

feature extraction, their effectiveness heavily relies on the qual-

ity of global representations. Poor global features can misguide

the personalization process, leading to suboptimal performance in

both global and personalized objectives [45]. The recently proposed

FedAKD [12] seeks to optimize both global and personalized models

through server-side and client-side knowledge distillation, but it

relies on a reference dataset accessible to both the server and clients,
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which is often impractical in real-world scenarios. Therefore, it is

crucial to develop methods that can simultaneously enhance global

generalization and local personalization within federated learning.

To meet this need, we propose FedRIR, an innovative pFL frame-

work that enhances both local personalization and global general-

ization by jointly optimizing two key components: Masked Client-

Specific Learning (MCSL) and the Information Distillation Model

(IDM). MCSL isolates and extracts client-specific features by apply-

ing masking techniques that emphasize the unique characteristics

of each client’s data. IDM refines the shared global features by filter-

ing out redundant or overly client-specific information, producing

a purer and more robust global representation that captures com-

mon patterns across all clients. By integrating these components,

FedRIR achieves an effective balance between personalization and

generalization. In summary, the main contributions of this paper

are as follows:

• Propose a Masked Client-Specific Learning mechanism that

effectively extracts client-specific heterogeneous informa-

tion, enhancing model personalization.

• Develop an Information Distillation Module that refines

global features, resulting in a purer global representation

and optimizing the model’s capacity for improved general-

ization.

• Extensive experiments demonstrate that FedRIR not only

achieves superior performance and communication effi-

ciency but also maintains robustness and stability across

various heterogeneous scenarios, outperforming state-of-

the-art methods.

2 Related Work
2.1 Personalized Federated Learning
Personalized Federated Learning (pFL) has been proposed to ad-

dress statistical heterogeneity and improve personalization in FL

by training a unique, personalized model for each client rather than

relying on a single global model [35, 42].

Existing pFL approaches can be grouped into five main cate-

gories [47]: (1)Meta-learning-based pFL:Methods like Per-FedAvg [14]

fine-tune the global model using local data, resulting in a more per-

sonalized model for each user. Although this method enhances

personalization, it may face challenges in maintaining consistency

across clients due to local data variations. (2) Regularization-based

pFL: Ditto [27] uses a proximal term to incorporate global informa-

tion from the global model parameters during local training. This ap-

proach helps balance personalization and global consistency, but it

may not fully capture the individual nuances of each client’s data. (3)

Personalized-aggregation-based pFL: Approaches like FedALA [44]

use an Adaptive Local Aggregation module to dynamically merge

the global model with the local model for each client. Although

this technique is effective, its success depends on how well the

aggregation aligns with each client’s specific needs, which can

be challenging in diverse settings. (4) Model-splitting-based pFL:

Methods such as FedRep, FedPer [1], and FedRoD split the model

into a global feature extractor and a client-specific head. These ap-

proaches focus on enhancing either global or personalized feature

representation, potentially limiting overall model performance by

not fully integrating both aspects. (5) Knowledge-distillation-based

pFL: FedKD [40] utilizes knowledge distillation to train a student

model guided by a teacher model, sharing only the student model

to significantly reduce communication costs. Although this method

is efficient, it may not adequately balance global and personalized

information representation.

Despite advancements, existing pFL methods often prioritize

either global or personalized information representation during

local training. This focus limits their ability to achieve a balance

between collaborative learning and personalization, especially in

diverse and heterogeneous data environments.

2.2 Masked Representation Learning
Masked representation learning is a self-supervised technique that

predicts masked components using contextual information, allow-

ing models to learn rich and meaningful representations without

labeled data. This approach has gained widespread adoption across

various domains, especially in Natural Language Processing (NLP)

and Computer Vision (CV) [10, 15, 19].

In NLP, masked language models have transformed how ma-

chines understand and generate human language. The ground-

breaking work by Devlin et al. [10] introduced BERT, which uses

masked language modeling to capture bidirectional context. By

randomly masking a subset of input tokens and training the model

to predict them, BERT effectively learns deep contextual represen-

tations that serve as the foundation for various downstream tasks,

including question answering, sentiment analysis, and machine

translation. Similarly, in CV, masked representation learning has

been successfully adapted to image data. He et al. [19] proposed
the Masked Autoencoder (MAE), which improves efficiency by

sparsely applying the ViT [13] encoder to the visible (unmasked)

content only. MAE employs high masking ratios, typically masking

75% of the input patches, thereby reducing computational over-

head and promoting the learning of more robust and generalizable

features from the visible data. Beyond NLP and CV, masked rep-

resentation learning has been applied in other domains such as

audio processing [32], where models learn audio representations

by auto-encoding masked spectrogram patches, and graph neural

networks [25], where masking nodes or edges helps facilitate the

learning of structural and relational information.

MCSL extends masked representation learning to federated set-

tings by focusing on extracting client-specific representations finely

tuned to each client’s unique data characteristics. By utilizing a

proper masking ratio, MCSL enhances client-specific feature ex-

traction while mitigating the risk of overfitting to local data. As a

crucial component in improving personalization within pFL, MCSL

leverages the strengths of masked learning to develop more efficient

and privacy-preserving models in federated environments.

3 Methodology
3.1 Overview
In pFL, we consider 𝑁 clients, each with its own privacy-sensitive

dataset D𝑖
exhibiting statistical heterogeneity. The goal of the

proposed FedRIR framework is to improve both the generalization

and personalization of the overall model by refining the global and

client-specific representations. This is achieved through iterative
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Figure 1: The workflow of the proposed FedRIR framework.

local client updates and server aggregation at each communication

round. The FedRIR workflow is shown in Figure 1.

3.1.1 Local Client Update. As shown in Figure 1, the FedRIR train-

ing process consists of two key stages: Masked Client-Specific

Learning (MCSL) and Information Distillation (ID).

In the MCSL stage, client-specific representations are learned.

For each client 𝑖 , the input data 𝑥𝑖 undergoes a masking opera-

tion, resulting in masked data 𝑥𝑖
𝑚𝑎𝑠𝑘𝑒𝑑

. The masked data is then

processed by a client-specific feature extractor F 𝑖
𝑐𝑠 to obtain client-

specific features 𝑓 𝑖𝑐𝑠 . These features are subsequently used by a

generator G𝑖
to reconstruct the original input 𝑥𝑖 .

The ID stage focuses on refining global representations by fil-

tering out redundant information. At this stage, the client-specific

feature extractor F 𝑖
𝑐𝑠 is frozen to preserve the learned parameters.

The original input 𝑥𝑖 is processed by the frozen F 𝑖
𝑐𝑠 to yield 𝑓 𝑖𝑐𝑠

and by the global feature extractor F𝑔 to produce global features

𝑓𝑔 . An Information Distillation Module (IDM) is then applied to

eliminate redundant client-specific details from the global features

by minimizing the mutual information between the global features

and the client-specific features.

Finally, a classification head H 𝑖
maps the concatenated features

𝑓𝑔 and 𝑓 𝑖𝑐𝑠 , forming the personalized features 𝑓 𝑖𝑝 = concat(𝑓𝑔, 𝑓 𝑖𝑐𝑠 ),
to the classification label space on the client. This mapping, rep-

resented as 𝑦𝑖 = H 𝑖 (𝑓 𝑖𝑝 ), integrates the refined global features

with the client-specific features to construct enriched representa-

tions that capture both global patterns and local nuances, enabling

accurate predictions.

3.1.2 Server Aggregation. After each round of local updates, each

client 𝑖 sends the learned parameters of its global feature extractor

F𝑔 to the server for aggregation. Following a similar approach to

FedAvg, the aggregation process is defined as:

¯WF𝑔 =

𝑁∑︁
𝑖=1

|D𝑖 |∑𝑁
𝑖=1

|D𝑖 |
W𝑖

F𝑔 (1)

Here,
¯WF𝑔 represents the globally aggregated parameters of

all participating global feature extractors, and |D𝑖 | denotes the
number of data samples on the 𝑖-th client. After

¯WF𝑔 is computed,

it is broadcast to all clients. Each client then updates its local global

feature extractor F𝑔 by replacing its parameters with the globally

aggregated parameters
¯WF𝑔 .

3.2 Masked Client-Specific Learning
In FL, an effective client-specific feature extractor should accurately

capture the unique characteristics of each client’s data without sim-

ply overfitting to the training samples. To achieve this, we introduce

Masked Client-Specific Learning (MCSL). MCSL encourages the

client-specific feature extractor to focus on truly client-specific as-

pects of the data by masking parts of the input, which helps isolate

and highlight the distinctive features of each client’s dataset. This

process ensures that the client-specific feature extractor is finely

tuned to the client’s unique data distribution, while also avoiding

overfitting.

Capturing the unique aspects of local data D𝑖 = {(𝑥𝑖
𝑘
, 𝑦𝑖

𝑘
)} |D

𝑖 |
𝑘=1

on client 𝑖 can be theoretically framed as maximizing the mutual

information between the input data 𝑥𝑖 and the client-specific repre-

sentation 𝑓 𝑖𝑐𝑠 [37]. Maximizing this mutual information encourages

the feature extractor to retain as much relevant information about

the input on client 𝑖 as possible, thereby enhancing personalization.

This can be expressed as:

arg max 𝐼 (𝑥𝑖 ; 𝑓 𝑖𝑐𝑠 ) = arg maxE𝑝 (𝑥𝑖 ,𝑓 𝑖𝑐𝑠 )

[
log

𝑝 (𝑥𝑖 |𝑓 𝑖𝑐𝑠 )
𝑝 (𝑥𝑖 )

]
(2)

Since directly modeling the conditional distribution 𝑝 (𝑥𝑖 |𝑓 𝑖𝑐𝑠 ) is
intractable, we adopt an approach based on the Barber-Agakov

(BA) bound [2], introducing an auxiliary distribution 𝑞(𝑥𝑖 |𝑓 𝑖𝑐𝑠 ) to
derive a tractable lower bound for the mutual information 𝐼 (𝑥𝑖 ; 𝑓 𝑖𝑐𝑠 ):

𝐼BA := 𝐻 (𝑥𝑖 ) + E𝑝 (𝑥𝑖 ,𝑓 𝑖𝑐𝑠 )
[
log𝑞(𝑥𝑖 |𝑓 𝑖𝑐𝑠 )

]
≤ 𝐼 (𝑥𝑖 ; 𝑓 𝑖𝑐𝑠 ) (3)

Here, 𝐻 (𝑥𝑖 ) = E𝑝 (𝑥𝑖 ) [− log𝑝 (𝑥𝑖 )] is the entropy of the input data

𝑥𝑖 , which depends solely on the data collection process and is inde-

pendent of the feature extraction process. Consequently, we focus

on maximizing the second term of 𝐼BA, which represents the pro-

cess of reconstructing the original input 𝑥𝑖 from the client-specific

features 𝑓 𝑖𝑐𝑠 . To achieve this, we employ a variational autoencoder

(VAE) [22] framework, constructing an encoder F 𝑖
𝑐𝑠 to extract the

client-specific features 𝑓 𝑖𝑐𝑠 and a generator G𝑖
to reconstruct the

input data 𝑥𝑖 . The loss function to minimize the reconstruction

error and thereby maximize 𝐼 (𝑥𝑖 ; 𝑓 𝑖𝑐𝑠 ) is:

L𝑟𝑒𝑐𝑜𝑛 =


G𝑖 (𝑓 𝑖𝑐𝑠 ) − 𝑥𝑖




2

(4)

However, previous researches [19, 37] indicate that direct recon-

struction from the original input 𝑥𝑖 can lead to trivial solutions,

3
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such as simply copying the input, which fails to capture meaningful

representations. This issue is especially problematic in federated

learning, where each client’s data is typically heterogeneous and

limited in size. To address this, we introduce random masking of

portions of the input data, preventing the client-specific feature

extractor F 𝑖
𝑐𝑠 from overfitting. This effectively transforms the VAE

into a denoising autoencoder (DAE) [37], with the modified recon-

struction loss:

L𝑟𝑒𝑐𝑜𝑛 =




G𝑖
(
F 𝑖
𝑐𝑠 (𝑥𝑖𝑚𝑎𝑠𝑘𝑒𝑑

)
)
− 𝑥𝑖





2

(5)

3.3 Information Distillation
Once the client-specific features 𝑓 𝑖𝑐𝑠 have been extracted, a global

feature extractor F𝑔 is used to derive global features 𝑓𝑔 from the in-

put sample 𝑥𝑖 . To ensure that the global feature extractor effectively

captures pure and generalized features, we introduce an Informa-

tion Distillation (ID) strategy. This strategy distills out redundant

client-specific information from the global features, leading to two

key benefits: (1) reducing the influence of non-common noise (un-

expected client-specific noise) when the parameters of the global

feature extractor are aggregated on the server, and (2) minimizing

redundancy between the client-specific and global features, thereby

improving the performance of subsequent downstream tasks when

these features are concatenated. By reducing the mutual informa-

tion 𝐼 (𝑓𝑔, 𝑓 𝑖𝑐𝑠 ), we ensure that the global and client-specific features
capture distinct aspects of the data, minimizing redundancy. This

enhances the informativeness of both representations, leading to

improved model performance. The ID process is formally defined

as:

arg min 𝐼 (𝑓 𝑖𝑐𝑠 , 𝑓𝑔) = arg minE𝑝 (𝑓 𝑖𝑐𝑠 ,𝑓𝑔 )

[
log

𝑝 (𝑓𝑔 |𝑓 𝑖𝑐𝑠 )
𝑝 (𝑓𝑔)

]
(6)

However, directly solving Eq. (6) is challenging due to the in-

tractability of the conditional distribution 𝑝 (𝑓𝑔 |𝑓 𝑖𝑐𝑠 ). To address this,
we employ a practical approach using a variational approximation

𝑞𝜃 (𝑓𝑔 |𝑓 𝑖𝑐𝑠 ), as proposed in [3, 6], to estimate a reliable upper bound

of the mutual information. Specifically, we utilize the Variational

Constrastive Log-ratio Upper Bound (vCLUB) [6] to derive this

bound:

𝐼vCLUB := E𝑝 (𝑓 𝑖𝑐𝑠 ,𝑓𝑔 )
[
log𝑞𝜃 (𝑓𝑔 |𝑓 𝑖𝑐𝑠 )

]
− E𝑝 (𝑓 𝑖𝑐𝑠 )E𝑝 (𝑓𝑔 )

[
log𝑞𝜃 (𝑓𝑔 |𝑓 𝑖𝑐𝑠 )

]
≥ 𝐼 (𝑓 𝑖𝑐𝑠 , 𝑓𝑔)

(7)

By minimizing this upper bound, the redundancy between 𝑓𝑔 and

𝑓 𝑖𝑐𝑠 is significantly reduced, resulting in more distinct and informa-

tive global and client-specific features. In practice, 𝑞𝜃 (𝑓𝑔 |𝑓 𝑖𝑐𝑠 ) is typ-
ically implemented with neural networks, and we introduce an In-

formation Distillation Module I𝑖
to implement and train 𝑞𝜃 (𝑓𝑔 |𝑓 𝑖𝑐𝑠 )

with the following loss function:

L𝑖𝑑 = 𝐼vCLUB (𝑓 𝑖𝑐𝑠 , 𝑓𝑔) (8)

Then, the extracted client-specific features 𝑓 𝑖𝑐𝑠 and the refined

global features 𝑓𝑔 are concatenated into personalized features 𝑓 𝑖𝑝 =

[𝑓 𝑖𝑐𝑠 , 𝑓𝑔], which is fed into a classification head H 𝑖
to compute the

personalized classification output. This classification process is

trained with the following loss functions:

L𝑐𝑙𝑠 = CrossEntropy

(
H 𝑖 (𝑓 𝑖𝑝 ), 𝑦𝑖

)
(9)

Thus, the overall loss function at client 𝑖 is:

L = L𝑖𝑑 + L𝑐𝑙𝑠 (10)

In our implementation, we set the balance hyperparameters be-

tween the different loss components to 1, and the full learning

procedure is detailed in Algorithm 1.

Algorithm 1 The learning procedure of FedRIR

Input: 𝑁 clients {𝐶𝑖 }𝑁
𝑖=1

with their local data {D𝑖 }𝑁
𝑖=1

; initial

weights of F 𝑖
𝑐𝑠 ,G𝑖 , F𝑔,H 𝑖 ,I𝑖

; masked ratio 𝑟 ; client joining

ratio 𝜌 ; total communication rounds 𝑇 .

Output: Trained model parameters of F𝑔, {F 𝑖
𝑐𝑠 ,H 𝑖 }𝑁

𝑖=1
.

1: Each client 𝑖 initializes its local models F 𝑖
𝑐𝑠 ,G𝑖 , F𝑔,H 𝑖 ,I𝑖

.

2: for iteration 𝑡 = 0, · · · ,𝑇 do
3: Server samples a clients subset {𝐶𝑖 }𝜌×𝑁

𝑖=1
.

4: Server broadcasts
¯WF𝑔 to all selected clients.

5: for Client 𝐶𝑖 ∈ {𝐶𝑖 }𝜌×𝑁
𝑖=1

in parallel do
⊲ Masked Client-Specific Learning

6: Mask the local data 𝑥𝑖 with ratio 𝑟 to obtain 𝑥𝑖
𝑚𝑎𝑠𝑘𝑒𝑑

.

7: Optimize F 𝑖
𝑐𝑠 andG𝑖

on 𝑥𝑖
𝑚𝑎𝑠𝑘𝑒𝑑

byminimizingL𝑟𝑒𝑐𝑜𝑛 .

⊲ Information Distillation
8: Freeze F 𝑖

𝑐𝑠 .

9: Compute 𝑓 𝑖𝑐𝑠 = F 𝑖
𝑐𝑠 (𝑥𝑖 ) and 𝑓𝑔 = F𝑔 (𝑥𝑖 ).

10: Update F𝑔 ,H 𝑖
and I𝑖

by minimizing L = L𝑖𝑑 + L𝑐𝑙𝑠 .

11: end for
⊲ Server Aggregation

12: Server collectsW𝑖
F𝑔 from all selected clients.

13: Server computes
¯WF𝑔 using Eq. (1).

14: end for
15: return Trained model parameters of F𝑔, {F 𝑖

𝑐𝑠 ,H 𝑖 }𝑁
𝑖=1

.

4 Experiments
4.1 Statistically Heterogeneous Settings
We evaluate model performance under various heterogeneous data

scenarios using three settings: pathological, practical, and real-

world. These settings simulate different degrees of statistical het-

erogeneity commonly observed in federated learning environments.

Figure 2 illustrates the data distribution on FMNIST [41] and Ci-

far10 [23] datasets in the pathological and practical settings with

20 clients.

4.1.1 Pathological Setting. This setting simulates extreme hetero-

geneity by assigning each client a subset of classes, resulting in non-

overlapping labels among clients. For FMNIST and Cifar100 [23],

each client receives data from only 2 out of 10 and 10 out of 100

classes, respectively, following the approach of FedCP [45]. This

setup emphasizes the model’s ability to learn in highly fragmented

environments.
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Figure 2: The data distribution on FMNIST and Cifar10
datasets in pathological and practical settings with 20 clients.
The size of a circle indicates the number of local data.

4.1.2 Practical Setting. This setting evaluates performance in sce-

narios that closely resemble real-world data distribution using the

Dirichlet distribution, as implemented in previous works [26, 45].

This setting is applied to the Cifar10 and MNIST [24] datasets, and

we sample 𝑞𝑐,𝑖 ∼ 𝐷𝑖𝑟 (𝛼) to determine the proportion of samples

from class 𝑐 allocated to client 𝑖 . For our experiments, without

explicitly stated, 𝛼 is set to 0.1.

4.1.3 Real-world Setting. The real-world setting involves hetero-

geneous datasets with significant differences in data distributions

across clients due to varying acquisition conditions. We utilize two

datasets: (1) OfficeCaltech10 [16], which includes four distinct data

sources, three from Office-31 and one from Caltech-256, each ac-

quired using different camera devices or in different environments

with various backgrounds. (2) DomainNet [34], which comprises

images from six different sources. Each client in our experiments is

assigned data from only one of these sources, resulting in non-IID

data across clients.

4.2 Implementation Details
Following the setup in FedRoD, unless otherwise specified, our

experiments involve 20 clients with a participation ratio of 𝜌 = 1,

and each client’s data is divided into a training set (75%) and a

test set (25%). Based on our hyper-parameter analysis, we set the

masking ratio 𝑟 = 0.6. Consistent with previous works [29, 43],

we use a simple CNN for the feature extractors F , composed of

two convolutional layers, each followed by Batch Normalization,

ReLU activation, and Max Pooling layers. The classification headH
includes a fully connected layer, while the information distillation

module I consists of four fully connected layers, each followed by a

ReLU activation function. The generator G uses two deconvolution

layers. Additionally, each task is trained for 1000 communication

rounds using the Adam optimizer with a learning rate of 5× 10
−4

, a

batch size of 100, and one epoch per local training round. Addition-

ally, all experiments are conducted on a machine equipped with

an Intel Xeon Gold 5220 CPU @ 2.20GHz and an NVIDIA GeForce

RTX 3090 GPU. Additionally, each experiment is repeated three

times to ensure statistical significance, and we report the mean and

standard deviation of the results.

4.3 Performance Comparison
We evaluate the performance of FedRIR in terms of effectiveness,

scalability, stability, and hyper-parameter impact, comparing it with

eleven state-of-the-art federated learning methods. These include

Local Training (each client trains independently without server

communication), FedAvg [30], per-FedAvg [14], FedProto [36], Ditto [27],

FedRep [7], FedRoD [5], FedBABU [33], FedALA [44], FedKD [40],

and FedCP [45]. The results across diverse heterogeneous scenarios

are shown in Table 1.

4.4 Effectiveness

Figure 3: t-SNE visualization of global features extracted by
FedRoD, FedProto, FedCP and FedRIR on Cifar10 dataset,
with color represents a different class.

4.4.1 Global Generization Effectiveness. As demonstrated in Ta-

ble 1, FedRIR consistently outperforms Local Training, effectively

capturing and utilizing shared knowledge among clients to enhance

performance beyond what isolated local models can achieve. For in-

stance, on the real-world datasets OfficeCaltech10 and DomainNet,

FedRIR surpasses Local Training by 4.57% and 3.93%, respectively,

highlighting its ability to leverage federated learning to improve

generalization across diverse data distributions. When compared to

exact global methods like FedAvg, FedRIR shows substantial advan-

tages, particularly in non-IID environments where FedAvg struggles

with conflicting updates from heterogeneous client data, resulting

in poor generalization. For example, on Cifar100, FedAvg achieves

only 26.50%, significantly lower than FedRIR’s performance.

Figure 3 provides further insight into the superior global feature

separation achieved by FedRIR. When compared to pFL methods
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Table 1: The average test accuracy (%) across different federated learning methods in various heterogeneous scenarios, along
with the number of communication parameters used by each method.

Scenarios Pathological Practical (𝛼 = 0.1) Real-world # of Comm. Params.

Datasets Cifar100 FMNIST MNIST Cifar10 OfficeCaltech10 DomainNet -

Local Training 69.41±0.22 86.36±0.04 99.16±0.02 89.27±0.25 68.66±0.34 57.99±0.03 -

FedAvg 26.50±0.55 86.01±0.15 97.49±0.32 53.41±0.34 68.14±0.45 54.92±0.33 5.597M

Per-FedAvg 56.61±0.19 86.23±0.16 98.30±0.24 85.93±0.12 66.61±0.56 50.46±0.64 5.597M

FedProto 68.08±0.27 84.08±0.04 99.18±0.02 86.94±0.16 66.81±0.56 55.94±0.18 5.120K
Ditto 69.44±0.21 86.14±0.05 99.15±0.03 89.61±0.11 68.98±0.13 55.02±0.14 5.597M

FedRep 67.97±0.32 85.86±0.07 99.34±0.03 90.14±0.03 69.50±0.59 58.38±0.03 5.592M

FedRoD 64.04±0.65 86.43±0.20 99.49±0.02 89.64±0.03 69.66±0.63 57.49±0.39 5.597M

FedBABU 60.34±0.14 84.26±0.25 98.92±0.00 88.05±0.14 68.24±0.61 56.16±0.38 5.592M

FedALA 63.31±0.48 86.65±0.01 99.32±0.01 89.42±0.11 67.77±0.65 55.92±0.39 5.597M

FedKD 69.61±0.17 86.12±0.01 98.81±0.03 89.77±0.11 68.19±1.05 57.20±0.03 5.590M

FedCP 65.15±0.31 85.85±0.09 99.44±0.05 89.86±0.04 67.82±0.41 59.02±0.02 6.124M

FedRIR 72.07±0.12 90.58±0.07 99.69±0.01 91.64±0.03 73.23±0.59 61.92±0.12 5.592M

Δ SOTA ↑ 2.46 ↑ 3.93 ↑ 0.20 ↑ 1.50 ↑ 3.57 ↑ 2.90

that emphasize global feature enhancement, such as FedRoD and

FedProto, as well as methods that explore both global and person-

alized representations, such as FedCP, FedRIR demonstrates clearer

and more distinct clustering across classes. The minimal overlap

between different categories in FedRIR’s global features reflects a

well-separated and interpretable global representation. In contrast,

FedRoD and FedCP show significant class overlap, indicating subop-

timal global feature extraction. Although FedProto achieves clearer

boundaries between some classes, misclassifications are evident,

particularly where certain truck samples (light blue club suit sym-

bols ♣) are incorrectly clustered with automobiles (orange squares

□). FedRIR’s use of information distillation strategy plays a critical

role in addressing these issues by filtering out redundant client-

specific information to refine the shared global model, ultimately

resulting in superior generalization across clients.

4.4.2 Local Personalization Effectiveness. FedRIR stands out for its

strong personalization capabilities, surpassing methods like Per-

FedAvg, which struggles to balance local personalization and global

accuracy. This issue is particularly evident in non-IID settings,

where Per-FedAvg achieves only 56.61% accuracy on Cifar100. In

contrast, FedRIR combines individual client characteristics with

refined global knowledge, enabling superior model adaptation and

personalization across diverse data. Methods like Ditto fall short in

personalization compared to FedRIR, as they struggle to capture the

nuances of client-specific data. This limitation is evident in Ditto’s

lower accuracy on real-world datasets like DomainNet (55.02%),

whereas FedRIR achieves 61.92%.

Similarly, approaches such as FedRep and FedPer, despite focus-

ing on personalization, fail to fully leverage the global aggregated

information from the federated learning paradigm to enhance per-

sonalization. This often results in neglecting essential global in-

sights or facing conflicts between global and personalized objectives,

leading to lower performance (e.g., FedRep: 58.38% on DomainNet).

Furthermore, FedALA’s adaptive local aggregation aims to merge

global and local models, but its performance (67.77% on OfficeCal-

tech10) is limited by the alignment between the aggregation and

the specific needs of each client. FedKD uses knowledge distillation

to reduce communication costs but compromises accuracy on di-

verse datasets, achieving only 57.20% on DomainNet compared to

FedRIR’s 61.92%. Similarly, FedCP separates global and personalized

information without a robust refinement mechanism, leading to

lower accuracy on Cifar100 (65.15%) compared to FedRIR’s 72.07%.

These comparisons highlight FedRIR’s ability to optimize global and

personalized representations concurrently, consistently delivering

superior personalization across diverse datasets.

4.4.3 Communication Overhead Effectiveness. In addition to its

superior performance, FedRIR maintains efficient communication

overhead, which is critical in federated learning environments. De-

spite incorporating more advanced personalization mechanisms,

FedRIR’s communication costs are comparable to simpler methods

like FedAvg, FedRep, and Ditto. By focusing on refining only the

most essential features through MCSL and ID, FedRIR minimizes

the amount of redundant or unnecessary data that needs to be

transmitted between clients and the server. This makes it practical

and scalable for real-world deployments, where communication

efficiency is a crucial factor. For example, methods like FedKD,

which uses knowledge distillation to reduce communication costs,

may sacrifice model accuracy, especially in heterogeneous settings,

whereas FedRIR achieves both high accuracy and comparable com-

munication overhead, ensuring that its strong performance can

be maintained in large-scale federated learning systems without

imposing excessive communication burdens.

Overall, FedRIR’s ability to simultaneously enhance generaliza-

tion and personalization, while maintaining efficient communica-

tion, positions it as a robust and scalable solution for federated

learning in diverse and challenging environments.
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Table 2: The averaged test accuracy (%) of Cifar100 classifica-
tion for client amounts scalability.

𝑁 = 10 𝑁 = 20 𝑁 = 50 𝑁 = 100

FedAvg 30.26±0.02 30.10±0.12 21.17±0.05 14.14±0.06
Per-FedAvg 45.54±0.03 43.96±0.04 37.43±0.08 33.58±0.09
FedProto 48.09±0.02 46.15±0.06 44.80±0.06 41.68±0.08
Ditto 46.33±0.04 45.24±0.05 43.28±0.10 41.09±0.10
FedRep 49.60±0.03 47.87±0.09 45.06±0.08 40.88±0.09
FedRoD 49.18±0.03 50.05±0.26 46.81±0.08 42.31±0.09
FedBABU 49.42±0.02 49.63±0.29 43.36±0.07 37.20±0.06
FedALA 52.85±0.03 48.63±0.04 45.09±0.08 40.66±0.09
FedKD 51.68±0.04 50.31±0.05 47.30±0.08 44.29±0.10
FedCP 50.21±0.01 48.38±0.47 45.89±0.04 41.85±0.07
FedRIR 56.86±0.04 54.75±0.05 53.63±0.03 50.02±0.04
Δ SOTA ↑ 4.01 ↑ 4.44 ↑ 6.33 ↑ 5.73

4.5 Scalability
To assess the scalability of FedRIR, we adopted the methodology

from FedCP, partitioning the Cifar100 dataset into 10, 20, 50, and

100 sub-datasets to simulate 10, 20, 50, and 100 clients, respectively.

As shown in Table 2, FedRIR consistently outperforms state-of-

the-art methods across various client numbers, maintaining strong

performance even as the number of clients increases and data be-

comes increasingly fragmented. FedRIR’s accuracy remains robust,

decreasing moderately from 56.86% with 10 clients to 50.02% with

100 clients, a decline of only 6.84 percentage points. In comparison,

other methods suffer more pronounced performance drops.

As the number of clients grows, the performance gap between

FedRIR and competing methods widens, highlighting FedRIR’s su-

perior scalability. For example, with 10 clients, FedRIR outperforms

the second-best method, FedALA, by 4.01 percentage points. How-

ever, this margin expands to 5.73 percentage points with 100 clients,

demonstrating FedRIR’s resilience against increasing client hetero-

geneity and data fragmentation.

This trend underscores the effectiveness of FedRIR’s design,

particularly the combination of Masked Client-Specific Learning

(MCSL) and Information Distillation (ID), which enable it to handle

the complexities associated with scaling to larger numbers of clients

more effectively than other approaches. The results affirm that

FedRIR not only scales well but also becomes increasingly advanta-

geous in large-scale federated learning environments, maintaining

stability and accuracy where other methods falter.

4.6 Stability
We also evaluate the stability of our FedRIR in client dropout scenar-

ios, which are commonly assessed in many pFL methods [33, 43, 45].

This situation is prevalent in real-world settings as some clients

may accidentally drop out due to battery depletion or unstable

network connections, resulting in not all clients participating in

every communication round. Following the strategy used in pre-

vious work [45], we vary the client joining ratio 𝜌 during each

communication round on the FMNIST dataset in the training phase.

Specifically, in our experiment, the client joining ratio 𝜌 is randomly

Table 3: The averaged test accuracy (%) of FMNIST classifica-
tion with different participation ratios.

Algorithm 𝜌 = 1.0 𝜌 ∈ [0.5, 1] 𝜌 ∈ [0.1, 1]
Per-FedAvg 93.19±0.12 92.53±0.54 92.46±0.47
FedProto 92.19±0.04 91.77±0.08 90.36±0.57
Ditto 95.98±0.01 95.36±0.43 95.02±1.01
FedRep 95.47±0.03 95.04±0.04 94.65±0.03
FedROD 95.57±0.02 95.22±0.32 94.48±0.93
FedBABU 95.21±0.13 95.21±0.13 95.28±0.15
FedALA 95.56±0.00 95.39±0.12 95.15±0.11
FedKD 95.17±0.03 94.92±0.05 94.21±0.08
FedCP 95.19±0.09 95.03±0.12 94.97±0.08
FedRIR 97.51±0.00 97.48±0.04 97.43±0.02
Δ SOTA ↑ 1.53 ↑ 2.09 ↑ 2.15

sampled within a given range, such as [0.5, 1.0] and [0.1, 1.0], for
each training epoch. As shown in Table 3, although all methods

exhibit performance drops as 𝜌 becomes more variable, FedRIR con-

sistently maintains superior performance among the pFL methods,

with the smallest performance decline. Additionally, the standard

deviations of the results obtained by per-FedAvg, FedProto, Ditto,

and FedRoD increase under unstable conditions, for example, when

𝜌 ∈ [0.1, 1.0].

4.7 Effect of Hyper-parameters
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Figure 4: The impact of different mask ratios on the perfor-
mance of the FedRIR method.

4.7.1 Effect of Mask Ratio 𝑟 . We conducted a series of experiments

focusing on the Masked Client-Specific Learning (MCSL) compo-

nent by applying various mask ratios. The results demonstrate three

key observations: first, as the mask ratio increases, the test accuracy

initially improves for all datasets, but after reaching an optimal

point, the accuracy either stabilizes or slightly declines for some

datasets. Second, using masking consistently outperforms no mask-

ing across all datasets, validating the effectiveness of our proposed

Masked Client-Specific Learning approach. Third, despite the opti-

mal mask ratio varying slightly among datasets, a mask ratio of 0.6
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provides the best trade-off, maximizing test accuracy and ensuring

robust performance across different datasets. This balance confirms

that a mask ratio of 0.6 is optimal for enhancing model performance

and stability in diverse scenarios. Based on these findings, we have

chosen 0.6 as the mask ratio for all subsequent experiments.

4.7.2 Effect of Heterogeneity Degree 𝛼 . We conduct experiments

on the FMNIST dataset under varying degrees of heterogeneity by

adjusting the parameter 𝛼 in the practical setting. The smaller the

𝛼 is, the more likely the clients hold samples from one class. The

averaged test accuracy for different values of 𝛼 is presented in Table

4. The results show that as 𝛼 increases, indicating less heterogene-

ity, the performance of FedAvg improves steadily, suggesting that

FedAvg benefits from more homogeneous data distributions across

clients. Conversely, all other pFL methods exhibit a decline in per-

formance as 𝛼 increases. This trend highlights their struggle with

more homogeneous data distributions, where the need for strong

personalization is reduced. Notably, FedRIR shows significant im-

provement over other methods, demonstrating superior robustness

across all degrees of heterogeneity. As 𝛼 increases, the performance

gap between FedRIR and the second-best method widens, confirm-

ing the efficacy of FedRIR in handling varying degrees of data

heterogeneity.

Table 4: The averaged test accuracy (%) of the FMNIST classi-
fication for heterogeneity.

𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 1.0

FedAvg 71.99±0.24 77.41±0.01 79.16±0.12 79.56±0.06
Per-FedAvg 93.19±0.12 86.46±0.05 84.07±0.03 82.94±0.03
FedProto 92.19±0.04 85.24±0.07 80.50±0.06 79.20±0.00
Ditto 95.98±0.01 90.07±0.02 86.90±0.04 85.20±0.02
FedRep 95.47±0.03 89.40±0.05 86.89±0.03 84.71±0.05
FedRoD 95.57±0.02 89.49±0.15 87.39±0.13 85.14±0.19
FedBABU 95.21±0.13 87.95±0.57 85.72±0.01 83.55±0.31
FedALA 95.56±0.00 89.52±0.11 86.10±0.10 84.90±0.08
FedKD 95.17±0.03 89.29±0.03 85.92±0.06 84.60±0.06
FedCP 95.19±0.09 88.75±0.06 85.47±0.09 84.13±0.08
FedRIR 97.51±0.00 92.53±0.02 90.72±0.03 89.66±0.03
Δ SOTA ↑ 1.53 ↑ 2.46 ↑ 3.33 ↑ 4.46

4.8 Ablation Study
The ablation study in Table 5 highlights the importance of the key

components, Masked Client-Specific Learning (MCSL) and Informa-

tion Distillation (ID) in FedRIR, along with the impact of setting the

masking ratio 𝑟 to zero. When the masking mechanism is disabled

(FedRIR 𝑟 = 0), performance declines across all datasets, partic-

ularly on Cifar100, where accuracy drops from 72.07% to 69.28%,

emphasizing that masking helps prevent overfitting and improves

feature extraction. Removing MCSL (FedRIR w/o MCSL) results

in an even larger performance decrease, particularly on Cifar100

(to 68.88%) and OfficeCaltech10 (to 71.44%), demonstrating that

client-specific feature learning is essential for handling diverse data

distributions. Interestingly, on OfficeCaltech10, which represents

FedRIR w/o MCSL FedRIR

Client 0
Client 1
Client 2
Client 3

Figure 5: t-SNE visualization of client-specific features ex-
tracted by FedRIR w/o MCSL and FedRIR on OfficeCaltech10
dataset, with color represents a different client.

a real-world dataset with significantly heterogeneous client data,

the absence of ID (FedRIR w/o ID) yields slightly better results

(72.38%) compared to removing MCSL. This suggests that in real-

world datasets like OfficeCaltech10, where client data distributions

vary widely, MCSL plays a more crucial role in achieving person-

alization, as capturing the unique characteristics of each client’s

data is more important than refining global features. Thus, while

ID is essential for aligning global knowledge, in datasets with high

client-level variability, such as real-world scenarios, MCSL is the

key driver of performance by tailoring the model to each client’s

specific data, which is evident in Figure 5. Without MCSL (left),

client-specific features are poorly separated, leading to significant

overlap between client data. In contrast, FedRIR (right) shows clear

clustering of client features, highlighting the importance of MCSL

in handling diverse data distributions effectively.

Table 5: Ablation Study

Settings Pathological Practical Real-world

Datasets Cifar100 Cifar10 OfficeCaltech10

FedRIR 72.07±0.12 91.64±0.03 73.23±0.59
FedRIR (𝑟 = 0) 69.28±0.04 90.93±0.02 71.92±0.56
FedRIR w/o MCSL 68.88±0.03 90.76±0.10 71.44±0.48
FedRIR w/o ID 68.37±0.06 90.68±0.14 72.38±1.46

5 Conclusion
In this paper, we introduced FedRIR, a novel framework for fed-

erated learning that balance personalization and generalization

through Masked Client-Specific Learning (MCSL) and Information

Distillation (ID). Extensive experiments across pathological, practi-

cal, and real-world scenarios demonstrate that FedRIR consistently

outperforms state-of-the-art methods in feature representation and

classification accuracy. The key innovation lies in client-specific

representation learning and refining global shared information,

enhancing personalization and generalization. FedRIR also shows

remarkable scalability and stability with varying client participa-

tion and comparable communication overhead, making it a robust

and efficient solution for federated learning.
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