
Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

TRAINING, ARCHITECTURE, AND PRIOR
FOR DETERMINISTIC UNCERTAINTY METHODS

Bertrand Charpentier, Chenxiang Zhang, Stephan Günnemann
Technical University of Munich, Germany
{charpent,zch,guennemann}@in.tum.de

ABSTRACT

Accurate and efficient uncertainty estimation is crucial to build reliable Machine
Learning (ML) models capable to provide calibrated uncertainty estimates, gener-
alize and detect Out-Of-Distribution (OOD) datasets. To this end, Deterministic
Uncertainty Methods (DUMs) is a promising model family capable to perform
uncertainty estimation in a single forward pass. This work investigates important
design choices in DUMs: (1) we show that training schemes decoupling the core
architecture and the uncertainty head schemes can significantly improve uncer-
tainty performances. (2) we demonstrate that the core architecture expressiveness
is crucial for uncertainty performance and that additional architecture constraints
to avoid feature collapse can deteriorate the trade-off between OOD generaliza-
tion and detection. (3) Contrary to other Bayesian models, we show that the prior
defined by DUMs do not have a strong effect on the final performances.

1 INTRODUCTION

Safety is critical to the adoption of deep learning in domains such as autonomous driving, medical
diagnosis, or financial trading systems. A solution for this problem is to create reliable models
capable to estimate the uncertainty of its own predictions. Different uncertainty types are divided
in aleatoric uncertainty quantified by the inherited noise in the data, thus irreducible; epistemic
uncertainty quantified by the modeling choice or lack of data, thus reducible; predictive uncertainty,
a combination of aleatoric and epistemic (Gal, 2016). In practice, high quality uncertainty estimates
must be calibrated and able to detect Out-Of-Distribution (OOD) data like anomalies while
preserving good Out-Of-Distribution (OOD) generalization performances like on dataset shifts.

Recently, a family of methods for uncertainty estimation named Deterministic Uncertainty Methods
(DUMs) have emerged (Postels et al., 2022). Contrary to uncertainty methods such as Ensembles
(Lakshminarayanan et al., 2017), MC Dropout (Gal & Ghahramani, 2016) or other Bayesian neu-
ral networks on weights (Blundell et al., 2015), which require multiple forward passes to make
predictions, DUMs only require a single forward pass, thus making them significantly more compu-
tationally efficient. Generally, DUMs are composed of three components with high potential impact
on their performances: the training procedure which is supposed to optimize the model toward high
predictive and uncertainty performances, the core architecture which is supposed to define infor-
mative embeddings used to make predictions, and the prior which is supposed to define the default
uncertain predictions. In this work, we investigate the role of these three components on the quality
of DUMs uncertainty estimates by evaluating calibration performances, OOD detection, and OOD
generalization. Our main contributions are:

• Training: We show that decoupling the learning rates of the core architecture and un-
certainty heads of DUMs, jointly training the core architecture and the uncertainty head
of DUMs, and pretraining with more data and higher data quality improve uncertainty
performances.

• Architecture: We demonstrate that the expressiveness of the core architecture defined by
the architecture type, architecture size, and dimension of the latent space is crucial for
both predictive and uncertainty performances. Further, we show that applying additional
regularization constraints to avoid feature collapse does not find better trade-off between
OOD detection and generalization, even sometimes degrading performances.

1



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

• Prior: In contrast to Bayesian neural networks on weights where the choice of prior is
critical (Wenzel et al., 2020; Fortuin et al., 2022; Noci et al., 2021; Kapoor et al., 2022), we
empirically show that the choice of prior defined in the training loss or in the uncertainty
head of DUMs has a relatively small effect on the final uncertainty performances.

2 DETERMINISTIC UNCERTAINTY METHODS

We consider a classification task where the goal is to predict the label y(i) ∈ {1, . . . , C} based on
the input feature x(i) ∈ RD. In this case, a DUM generally performs predictions in two main steps:
(1) A core architecture fϕ maps the input features x(i) ∈ RD to a latent representation z(i) ∈ RH ,
i.e. fϕ(x(i)) = z(i). In practice, important design choices are the latent dimension H and the archi-
tecture fϕ which should be adapted to the task (see section 4). Further, multiple works proposed to
apply additional bi-Lipschitz or reconstruction constraints to enrich the informativeness of the latent
representation z(i) (see section 4). (2) An uncertainty head gψ maps the latent representation z(i) to
a predicted label ŷ(i) and an associated (aleatoric, epistemic, or predictive) uncertainty estimate u(i),
i.e. gψ(z

(i)) = (ŷ(i), u(i)). In practice, important design choices are the type of uncertainty head
which are generally instantiated with a Gaussian Process (GP) (Liu et al., 2020; van Amersfoort
et al., 2021; 2020; Biloš et al., 2019; Charpentier et al., 2022b), a density estimator (Charpentier
et al., 2020; 2022a;b; Stadler et al., 2021; Biloš et al., 2019; Mukhoti et al., 2021; Postels et al.,
2020a; Winkens et al., 2020; Wu & Goodman, 2020), or an evidential model (Charpentier et al.,
2020; 2022a;b; Stadler et al., 2021; Biloš et al., 2019; Malinin & Gales, 2018), and the choice of
the prior used by the uncertainty head (see section 5). Beyond core architecture and uncertainty
head, another important choice is the training procedure which can either couple or decouple the
parameters of the core architecture and uncertainty head (see section 3).

In this work we focus on two recent DUMs which cover different types of uncertainty heads: Nat-
ural Posterior Network (NatPN) Charpentier et al. (2022a) which learns an evidential distribution
based on density estimation on the latent space, and Deterministic Uncertainty Estimator (DUE) (van
Amersfoort et al., 2021) which learns a deep Gaussian Process by parametrizing learnable inducing
points in the latent space (see appendix A.1 for further method details). While NatPN is capable to
differentiate aleatoric, epistemic, and predictive uncertainty, DUE only outputs the predictive uncer-
tainty. For all the experiments, we use the same default setup: we first pretrain the encoder with the
cross-entropy loss until convergence, then load the pretrained encoder and jointly train the encoder
and uncertainty head (see appendices B to D for further compenent details). We report the predictive
performance via accuracy, and the uncertainty performances with Brier Score and OOD detection
results after averaging over 5 seeds (see appendix A.3 for further metric details). We perform our
experiments on MNIST (LeCun et al., 1998), CIFAR10 and CIFAR100 (Krizhevsky, 2009), and
Camelyon (Koh et al., 2021). OOD results reported in tables 1 to 4 averages the uncertainty estima-
tion from five OOD datasets: SVHN, STL10, CelebA, Camelyon and SVHN OODom (Netzer et al.,
2011; Coates et al., 2011; Liu et al., 2015). Our code and additional material is available online1.

Related work. Previous works survey OOD detection methods (Yang et al., 2021), OOD generazi-
lation methods (Shen et al., 2021), or a wide range of uncertainty estimation methods (Gawlikowski
et al., 2021; Psaros et al., 2023; Ulmer, 2021; Abdar et al., 2021) by presenting key methods and
challenges. These surveys do not focus on deterministic methods and do not make empirical analy-
sis. Other works propose great empirical studies to compare uncertainty estimation methods under
shifts (Ovadia et al., 2019), or analyze the role of the prior in Bayesian neural networks on weights
(Wenzel et al., 2020; Fortuin et al., 2022; Noci et al., 2021; Kapoor et al., 2022). These works do not
focus on DUMs. Closer to our work, Postels et al. (2022) compares methods in the DUMs family
and demonstrate calibration limitations. In contrast, we evaluate the role of components in DUMs
and show that carefully specifying training, architecture, or prior can improve uncertainty metrics
like calibration and OOD detection but also ID and OOD predictive performances.

1https://www.cs.cit.tum.de/daml/training-architecture-prior-dum/

2

https://www.cs.cit.tum.de/daml/training-architecture-prior-dum/


Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

3 TRAINING FOR DUMS

In this section, we study the importance of the training procedure in the performance of DUMs. To
this end, we look at decoupling the learning rates of the core encoder architecture and the uncertainty
head, different training schemes, and different pretraining schemes.

Decoupling learning rates. We decouple the learning rates of the core architecture and the uncer-
tainty head. We show the validation results for CIFAR100 as ID and SVHN as OOD with the core
architecture ResNet18 in fig. 1. Observation: We observe that, when using different learning rates
for the core architecture and the uncertainty head, NatPN improves Brier Score and OOD epistemic
results and DUE significantly improves both predictive and uncertainty results. Hence, this shows
that decoupling learning rates can improve results of DUMs, thus suggesting that the core architec-
ture and the uncertainty head have training dynamics which requires different considerations.

5e
-0

3
1e

-0
3

5e
-0

4
1e

-0
4

5e
-0

5
1e

-0
5

[N
at

PN
] U

nc
er

ta
in

ty
 h

ea
d 

LR 46.3 65.9 63.9 38.9 31.6 12.5

52.4 42.5 69.6 13.8 3.5 1.0

62.4 48.6 71.5 32.6 10.7 2.7

72.2 71.9 71.8 70.9 70.9 22.8

72.4 72.0 71.7 70.9 71.1 23.3

72.2 72.0 71.8 71.4 71.1 35.3

Accuracy ( )

99.5 99.2 99.1 99.2 99.2 99.4

91.8 98.1 56.3 98.2 99.5 99.9

81.1 65.9 45.3 91.1 97.8 101.3

53.9 42.8 41.0 40.4 40.8 89.9

50.8 41.9 40.4 40.0 40.3 96.6

50.6 41.6 40.0 39.4 40.1 83.1

Brier Score ( )

78.4 78.2 74.6 63.6 72.2 48.6

72.9 57.0 82.9 54.3 63.0 49.1

68.4 80.5 83.0 55.0 47.6 56.3

84.3 81.9 82.4 80.8 79.3 62.9

84.0 84.0 81.4 79.9 77.3 63.2

84.6 82.2 82.5 78.4 79.1 65.5

OOD Predictive ( )

Core architecture LR

52.0 40.6 72.2 54.5 47.3 69.0

62.0 59.6 76.5 64.8 26.3 48.7

72.9 63.7 71.8 51.0 31.0 36.7

72.5 72.3 71.7 75.4 60.7 37.4

68.3 71.4 73.2 66.2 71.8 30.8

57.7 61.2 58.3 52.8 49.6 35.6

OOD Epistemic ( )

1e-05 5e-05 1e-04 5e-04 1e-03 5e-03
Core architecture LR

5e
-0

3
1e

-0
3

5e
-0

4
1e

-0
4

5e
-0

5
1e

-0
5[D
U

E
] U

nc
er

ta
in

ty
 h

ea
d 

LR

72.4 72.0 71.9 71.2 70.5 41.8

72.1 71.0 70.9 68.7 62.2 21.7

71.3 70.2 69.6 59.7 46.3 10.9

28.5 18.9 19.5 14.5 11.6 2.4

10.8 7.9 8.1 8.1 5.8 1.0

1.6 1.0 1.1 1.1 1.0 1.1

1e-05 5e-05 1e-04 5e-04 1e-03 5e-03
Core architecture LR

40.8 40.8 40.8 41.3 42.3 78.3

43.0 43.4 43.1 47.3 58.8 93.3

51.9 54.2 54.9 69.8 81.8 97.4

97.2 97.8 97.7 98.0 98.3 99.3

98.7 98.9 98.9 99.1 99.1 99.5

99.5 99.5 99.5 99.5 99.5 99.5

1e-05 5e-05 1e-04 5e-04 1e-03 5e-03
Core architecture LR

81.2 81.0 80.1 75.9 80.2 57.9

81.4 80.5 78.8 76.4 70.8 54.6

82.0 81.5 80.4 68.8 67.6 64.3

78.3 76.6 71.5 57.2 51.9 55.0

72.0 68.2 56.2 54.2 50.8 51.2

57.8 50.5 50.5 50.6 50.6 50.2

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Figure 1: Results of DUMS on CIFAR100 with ResNet18 when decoupling learning rates of the
core architecture and the uncertainty head. Decoupling learning rates improve DUMs performance.

Training schemes. We compare two settings: the joint training in which we jointly train the weights
of the core architecture and uncertainty head, and the sequential training in which we only train the
uncertainty head by keeping the weights of the pretrained core architecture fixed. For each of the
setting, we apply two additional techniques to stabilize the training: adding a batch normalization
to the last layer of the encoder to enforce latent representations to locate in a normalized region
(Ioffe & Szegedy, 2015; Charpentier et al., 2022a), and resetting the last layer to retrain its weights
to improve robustness to spurious correlation (Kirichenko et al., 2022). We show the results for
CIFAR100 as ID and five difference OOD datasets with the ResNet18 as core architecture in ta-
ble 1 and additional results in the appendix table 7. Observation: We observe that, compared to its
sequential counterpart, joint training consistently improves DUMs performance for most metrics,
thus suggesting that joint training should be preferred in practice for DUMs. Furthermore, while
the GP-based method DUE does not benefit from stabilization techniques, we observe that they can
significantly increase performance of the density-based method NatPN. This behavior is intuitively
explained by the practical difficulty to accurately fit densities in high dimensional latent space. This
can be significantly improved by using more powerful density estimator (see table 5 in appendix).

Pretraining schemes. We compare multiple training schemes which differ in terms of amount and
quality of data used for pretraining. Hence, we do not pretrain the core architecture or pretrain it
with 10% of CIFAR100, 100% of CIFAR100 without and with Gaussian noise, or ImageNet. We
show the results for CIFAR100 as ID and five different OOD datasets with ResNet50 as core archi-
tecture in table 2 and additional results in the appendix table 8. Observation: We observe that, while
too few data for pretraining does not improve final performance of DUMs, the overall performance
significantly increase when the encoder is pretrained with high quantity and high quality of data.
Similarly to Kirichenko et al. (2020), this suggests that the embedding quality is important to im-
prove uncertainty quantification. Here, we show additionally that embeddings pretrained with many
high quality data are crucial to facilitate the prediction of the uncertainty head.

3



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Table 1: Results of DUMs on CIFAR100 with
ResNet18 under different training schemes us-
ing joint/sequential training with no additional
layer, an additional batch norm layer, or reset-
ting the last layer. Gray cells indicate the best
between joint/sequential while bold numbers in-
dicate the best overall. OOD results are aver-
aged over OOD datasets. We observe that joint
training works best and stabilization techniques
can improve performances.

Method Train Schema Accuracy (↑) Brier Score (↓) OOD Pred. (↑) OOD Epis. (↑)

NatPN

joint 71.12 ± 0.18 41.06 ± 0.18 75.17 ± 1.60 63.94 ± 2.80
joint + bn 71.60 ± 0.14 41.11 ± 0.12 74.22 ± 0.94 66.17 ± 2.55
joint + reset 71.61 ± 0.18 40.76 ± 0.18 75.35 ± 0.71 69.02 ± 1.49
sequential 72.00 ± 0.19 42.20 ± 0.09 75.09 ± 0.86 53.49 ± 2.56
sequential + bn 71.98 ± 0.18 42.39 ± 0.11 75.01 ± 0.86 52.34 ± 2.81
sequential + reset 71.79 ± 0.17 40.95 ± 0.14 74.63 ± 0.85 61.90 ± 2.14

DUE

joint 72.33 ± 0.11 40.80 ± 0.11 74.74 ± 0.89 -
joint + bn 72.30 ± 0.09 40.85 ± 0.12 74.63 ± 0.95 -
joint + reset 71.94 ± 0.12 41.43 ± 0.12 74.89 ± 0.76 -
sequential 72.07 ± 0.10 41.66 ± 0.10 74.82 ± 0.90 -
sequential + bn 72.04 ± 0.13 41.73 ± 0.11 74.88 ± 0.95 -
sequential + reset 71.56 ± 0.14 42.30 ± 0.11 75.08 ± 1.01 -

Table 2: Results of DUMs with ResNet50 un-
der different pretraining schemes using no
pretraining, pretraining on 10% of CIFAR100,
100% of CIFAR100 without Gaussian noise and
with Gaussian noise, or ImageNet. OOD results
are averaged over OOD datasets. Bold numbers
indicate best results among all settings. We ob-
serve that high quantity and high quality of data
can improve performances.

Method Pretrain Schema Accuracy (↑) Brier Score (↓) OOD Pred. (↑) OOD Epis. (↑)

NatPN

None 78.45 ± 1.94 30.16 ± 2.57 79.85 ± 3.30 85.81 ± 2.05
C100 (10%) 67.25 ± 0.71 44.69 ± 0.94 68.10 ± 1.90 78.50 ± 3.27
C100 (100%) + N (0.5) 72.50 ± 1.07 39.36 ± 1.43 68.66 ± 3.76 73.54 ± 1.84
C100 (100%) + N (0.1) 75.25 ± 0.61 35.99 ± 0.88 69.78 ± 4.65 75.81 ± 2.85
C100 (100%) 76.31 ± 0.45 34.32 ± 0.51 78.95 ± 3.19 76.91 ± 2.64
ImageNet 84.22 ± 0.12 23.67 ± 0.27 84.95 ± 1.48 89.08 ± 0.70

DUE

None 72.41 ± 0.24 47.35 ± 0.25 80.04 ± 1.28 -
C100 (10%) 63.86 ± 0.58 50.94 ± 0.53 72.44 ± 1.32 -
C100 (100%) 76.38 ± 0.35 36.89 ± 0.50 81.71 ± 1.87 -
C100 (100%) + N (0.5) 72.10 ± 1.00 42.48 ± 1.18 74.89 ± 1.97 -
C100 (100%) + N (0.1) 75.31 ± 0.91 38.31 ± 1.22 79.43 ± 1.93 -
ImageNet 82.42 ± 0.14 28.09 ± 0.19 90.24 ± 0.51 -

4 ARCHITECTURE FOR DUMS

In this section, we study the impact of the architecture component in DUMs. To this end, we
look at different latent dimensions, different architectural types and size, and applying different
regularization constraints to avoid feature collapse (van Amersfoort et al., 2021).

Latent dimension. We vary the dimension of the output space of the core architecture.
We show the results for each pair of ID dataset and its distribution shifted OOD dataset
(MNIST/CMNIST, CIFAR/CIFAR-C, CamelyonID/CamelyonOOD) with the core architecture
ResNet18 for MNIST/CIFAR, and WideResNet-28-10 for Camelyon in fig. 2 and additional un-
certainty estimation results in the appendix fig. 10. Observation: We observe that increasing the
latent dimensions leads to improvement for DUMs on ID and OOD datasets with particularly sig-
nificant improvement for NatPN (see fig. 2). This suggests that higher latent dimensions are more
expressive by encoding more information. However, we observe that a too high latent dimension can
degrade OOD detection performance by causing numerical instabilities in the training (see fig. 10),
suggesting a trade-off between OOD generalization and OOD detection.

40

60

80

100

Ac
cu

ra
cy

MNIST

85

90

95
CIFAR10

NatPN ID NatPN OOD DUE ID DUE OOD

60

70

CIFAR100

70

80

90

Camelyon

4 8 16 32 64
0

25

50

75

100

B
ri

er
 S

co
re

8 16 32 64 128
10

20

30

16 32 64 128 256
40

60

80

32 64 128 256 512

20

40

Figure 2: Results of DUMs when varying the latent dimension size. We observe that increasing the
latent dimension consistently leads to similar or better predictive performance.

Architecture type and size. We compare the influence of the type and size of the core architecture
on the performance of DUMs. We consider residual, convolutional, and transformer architectures
like ResNet18, ResNet50, EfficientNetV2, and Swin (He et al., 2016; Tan & Le, 2021; Liu et al.,
2021). We show the results for DUMs trained on CIFAR100 as ID with the different core archi-
tectures in table 3 and additional results at appendix table 9. Observation: We observe that models
with more parameters achieve better results. In particular, ResNet50 achieves significantly better re-
sults than ResNet18. Further, more recent core architectures like EfficientNetV2 and Swin are better
calibrated and more expressive leading to a better overall performance. This can be explained by
the fact that they are more expressive and provide more informative embeddings for the uncertainty

4



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

50

100

Ac
cu

ra
cy

MNIST

60

70

CIFAR100

NatPN ID NatPN OOD DUE ID DUE OOD

None Residual bi-Lip.
Configuration

70

80

90

100

O
O

D
 P

re
d.

None Residual bi-Lip.
Configuration

70

80

Figure 3: Results OOD generalization and
detection of DUMs with none, residual and
bi-lipschitz architecture constraints on
MNIST/CMNIST and CIFAR/CIFAR-C.
Bi-lipschitz can improve OOD detection by
mitigating feature collapse (see fig. 8a) at the
expense of degrading OOD generalization.

25

50

75

100

Ac
cu

ra
cy

MNIST

60

65

70

CIFAR100

NatPN ID NatPN OOD DUE ID DUE OOD

0 0.1 0.5 1.0 2.0 4.0

80

90

100

O
O

D
 P

re
d.

0 0.1 0.5 1.0 2.0 4.0

80

85

Figure 4: Results OOD generalization and de-
tection of DUMs with reconstruction archi-
tecture constraints on MNIST/CMNIST and
CIFAR/CIFAR-C. Increasing the reconstruction
strength λ improves the OOD generalization on
simple MNIST/CMNIST dataset but fails for
complex datasets. Reconstruction fails to im-
prove OOD detection since it does not avoid fea-
ture collapse (see fig. 8b).

head to operate on. This aligns with Minderer et al. (2021) which states that the architecture type is
important for the calibration properties.

Table 3: Results of DUMs for different architecture types. including residual, convolutional, and
transformer architectures on CIFAR100. OOD results are averaged over OOD datasets. Bold num-
bers indicate best results among all settings. Larger and more recent architectures are better cali-
brated with similar or better uncertainty estimation.

Method Architecture #Parameters Accuracy (↑) Brier Score (↓) OOD Pred. (↑) OOD Epis. (↑)

NatPN

ResNet18 11.6M 80.31 ± 0.09 33.69 ± 0.15 87.49 ± 1.90 81.79 ± 1.38
ResNet50 25.5M 84.22 ± 0.12 23.67 ± 0.27 84.95 ± 1.48 89.08 ± 0.70
EffNet V2 S 21.4M 88.43 ± 0.10 17.08 ± 0.10 87.79 ± 0.77 89.47 ± 0.59
Swin T 28.2M 87.99 ± 0.09 18.48 ± 0.06 85.91 ± 1.17 90.23 ± 0.81

DUE

ResNet18 11.6M 78.85 ± 0.19 36.57 ± 0.15 88.04 ± 0.67 -
ResNet50 25.5M 82.42 ± 0.14 28.09 ± 0.19 90.24 ± 0.51 -
EffNet V2 S 21.4M 86.92 ± 0.08 21.07 ± 0.06 89.43 ± 0.67 -
Swin T 28.2M 86.93 ± 0.05 23.23 ± 0.05 89.90 ± 0.36 -

Regularization constraints. Feature collapse is a phenomenon where a model may discard impor-
tant parts of the input information during its training phase, which may degrade OOD detection per-
formance (van Amersfoort et al., 2021). Two techniques to avoid feature collapses are bi-Lipschitz
constraints via combining residual connections and lipschitz constraints (Liu et al., 2020), and recon-
struction constraints via adding an additional reconstruction term in the loss (Postels et al., 2020b).
We show the results for DUMs trained on the datasets MNIST and CIFAR100 with ResNet18 in
figs. 3 and 4 and additional results for other datasets (Toy dataset, CIFAR10, Camelyon) at ap-
pendix C. Observation: We observe that the reconstruction technique is not capable to avoid feature
collapse. Indeed, we show that, even with reconstruction constraints, some (non-discriminative)
features can completely collapse (see figs. 8b and 9b for toy examples). Hence, while this method
can lead to small OOD improvements on simple tasks (see e.g. MNIST in fig. 4), this benefit does
not generalize to more complex tasks (see e.g. CIFAR100 in fig. 4). In contrast, we observe that
bilipschitz constraints indeed mitigate the collapse of features (see figs. 8a and 9a for toy exam-
ples), leading to similar or higher OOD detection performance (see fig. 3). The mitigation of feature
collapse can be mostly assigned to the residual connection constraints. However, bilipschitz con-
straints can improve OOD detection results on simple tasks (e.g. MNIST, CIFAR10), it degrades
OOD generalization performance (see fig. 3) and does not significantly improve OOD detection on
more complex tasks (see e.g. Camelyon, CIFAR100 in fig. 6). Intuitively, maintaining features
which are not discriminative to the task might introduce spurious correlations, thus degrading per-
formances. E.g. enforces the architecture to encode the color feature in the latent space decreases
the performance of the OOD CMNIST datasets after training on the ID MNIST dataset.

5



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

5 PRIOR FOR DUMS

In this section, we study the effect that the prior component has in DUMs. More specifically, we
investigate the relationships between aleatoric uncertainty and the prior specified for DUMs. In
particular, this is motivated by Kapoor et al. (2022) which shows that using priors that forces model
to be confident on the training data points can improve its performance by explicitly accounting for
aleatoric uncertainty. To this end, we look at entropy regularization defining a training prior in the
loss, prior evidence and kernel function defining a functional prior in the uncertainty head.

Prior. We compare different prior specifications including entropy regularization defining a train-
ing prior in the loss, prior evidence and kernel function defining a functional prior in the uncertainty
head. Entropy regularization is the entropy term H(Q) in the Bayesian loss used to train NatPN
which encourages a (uniform) prior distributions with high entropy (Charpentier et al., 2022a). We
control the strength of the regularization factor λ. Further, NatPN also explicitly defines a prior
via the parameters χprior and nprior. While χprior defines the default categorical prediction via a
uniform categorical distribution, the evidence parameter nprior defines the prior number of pseudo-
observations and can be varied. Finally, we vary the prior of DUE by using different kernel functions
in the learned GP including Matern kernel, RQ kernel, and RBF (Rasmussen & Williams, 2006).
Observation: Contrary to other Bayesian neural networks (Kapoor et al., 2022), we observe that pre-
dictive and uncertainty performances of DUMs are not very sensitive to the prior specification (see
figs. 5 and 14 and table 4), thus suggesting a higher robustness to prior mispecification. Nonethe-
less, a too strong entropy regularization toward an uniform prior degrades more performance of
DUMs trained on dataset with low label noise than on high label noise. This suggests that a too high
discrepancy between the model prior and the dataset aleatoric uncertainties can impact performance.

0 1e-5 1e-4 1e-3

20

40

60

Ac
cu

ra
cy

CIFAR100

+0% noise
+10% noise
+20% noise

0 1e-5 1e-4 1e-3

50

60

70

O
O

D
 P

re
d.

SVHN

0 1e-5 1e-4 1e-3

60

65

70

STL10

0 1e-5 1e-4 1e-3

50

55

CelebA

0 1e-5 1e-4 1e-3

40

60

Camelyon OOD

0 1e-5 1e-4 1e-3
90

95

100

SVHN OODom.

50 100 500 1000
evidence prior

40

60

Ac
cu

ra
cy

CIFAR100

+0% noise
+10% noise
+20% noise

50 100 500 1000
evidence prior

65

70

75

O
O

D
 P

re
d.

SVHN

50 100 500 1000
evidence prior

65

70

STL10

50 100 500 1000
evidence prior

52

54

56

CelebA

50 100 500 1000
evidence prior

55

60

65

Camelyon OOD

50 100 500 1000
evidence prior

90

95

100

SVHN OODom.

Figure 5: Results of enforcing different prior in NatPN on CIFAR100 by changing the (top) entropy
regularization λ and the (bottom) evidence prior nprior. Different priors do not lead consistent
results improvements.

Table 4: Results of enforcing different prior in DUE on CIFAR100 and Camelyon by changing
the kernel function. OOD results are averaged over OOD datasets. Different priors lead to similar
performance.

CIFAR100 Camelyon

Kernel Accuracy (↑) Brier Score (↓) OOD Pred. (↑) Accuracy (↑) Brier Score (↓) OOD Pred. (↑)

Matern52 71.80 ± 0.18 41.37 ± 0.24 75.90 ± 1.18 79.81 ± 2.72 32.46 ± 3.22 58.86 ± 6.20
Matern32 71.80 ± 0.21 41.62 ± 0.22 76.15 ± 1.18 80.23 ± 2.71 32.77 ± 3.20 58.50 ± 5.83
Matern12 71.70 ± 0.18 43.10 ± 0.22 75.70 ± 1.19 79.30 ± 2.96 32.67 ± 3.28 59.13 ± 6.39
RQ 71.83 ± 0.19 41.16 ± 0.25 75.93 ± 1.21 80.31 ± 2.55 32.22 ± 3.14 58.69 ± 6.09
RBF 71.85 ± 0.19 41.17 ± 0.24 76.14 ± 1.19 80.45 ± 2.49 32.13 ± 3.11 58.86 ± 5.91

6 CONCLUSION

We investigate important design choice in DUMs. We show that training of DUMs can be improved
by decoupling the the optimization of the core architecture and the uncertainty head. We show that
expressive core architecture can improve DUMs performances. In contrast, additional constraints
to avoid feature collapse do not consistently lead to better performance, potentially degrading the
OOD generalization and detection trade-off. Finally, we show that the choice of prior for DUMs
does not lead to important performance improvements.

6



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

REFERENCES

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U. Rajendra Acharya, Vladimir
Makarenkov, and Saeid Nahavandi. A review of uncertainty quantification in deep learning: Tech-
niques, applications and challenges. Information Fusion, 2021.

Martı́n Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv, 2019.

Marin Biloš, Bertrand Charpentier, and Stephan Günnemann. Uncertainty on asynchronous time
event prediction. In NeurIPS, 2019.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. ICML, 2015.

Bertrand Charpentier, Daniel Zügner, and Stephan Günnemann. Posterior network: Uncertainty
estimation without OOD samples via density-based pseudo-counts. In NeurIPS, 2020.

Bertrand Charpentier, Oliver Borchert, Daniel Zügner, Simon Geisler, and Stephan Günnemann.
Natural posterior network: Deep bayesian predictive uncertainty for exponential family distribu-
tions. In ICLR, 2022a.

Bertrand Charpentier, Ransalu Senanayake, Mykel Kochenderfer, and Stephan Günnemann. Disen-
tangling epistemic and aleatoric uncertainty in reinforcement learning, 2022b.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. arXiv, 2018.

Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer networks in unsu-
pervised feature learning. In Geoffrey J. Gordon, David B. Dunson, and Miroslav Dudı́k (eds.),
AISTATS, 2011.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In
NeurIPS, 2019.

Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar Rätsch,
Richard E. Turner, Mark van der Wilk, and Laurence Aitchison. Bayesian neural network pri-
ors revisited. In ICLR, 2022.

Yarin Gal. Uncertainty in deep learning. University of Cambridge, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. ICML, 2016.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna M. Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, Muhammad
Shahzad, Wen Yang, Richard Bamler, and Xiao Xiang Zhu. A survey of uncertainty in deep
neural networks. arXiv, 2021.

Tilmann Gneiting and Adrian Raftery. Strictly proper scoring rules, prediction, and estima-
tion. Journal of the American Statistical Association, 102:359–378, 03 2007. doi: 10.1198/
016214506000001437.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. SVPR, 2016.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In ICLR, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Sanyam Kapoor, Wesley J. Maddox, Pavel Izmailov, and Andrew Gordon Wilson. On uncertainty,
tempering, and data augmentation in bayesian classification. arXiv, 2022.

7



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect
out-of-distribution data. In NeurIPS, 2020.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
for robustness to spurious correlations. arXiv, 2022.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran S. Haque, Sara M. Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A
benchmark of in-the-wild distribution shifts. In ICML, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. arXiv, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. NeurIPS, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proc. IEEE, 1998.

Jeremiah Z. Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, and Balaji Lakshmi-
narayanan. Simple and principled uncertainty estimation with deterministic deep learning via
distance awareness. In NeurIPS, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In ICCV, December 2015.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. In Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2018.

Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby,
Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks. In NeurIPS,
2021.

Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip H. S. Torr, and Yarin Gal. Determin-
istic neural networks with appropriate inductive biases capture epistemic and aleatoric uncertainty.
arXiv, 2021.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Lorenzo Noci, Kevin Roth, Gregor Bachmann, Sebastian Nowozin, and Thomas Hofmann. Dis-
entangling the roles of curation, data-augmentation and the prior in the cold posterior effect. In
NeurIPS, 2021.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model's uncertainty? evaluating
predictive uncertainty under dataset shift. In NeurIPS, 2019.

Janis Postels, Hermann Blum, Cesar Cadena, Roland Siegwart, Luc Van Gool, and Federico
Tombari. Quantifying aleatoric and epistemic uncertainty using density estimation in latent space.
arXiv, 2020a.

Janis Postels, Hermann Blum, Cesar Cadena, Roland Siegwart, Luc Van Gool, and Federico
Tombari. Quantifying aleatoric and epistemic uncertainty using density estimation in latent space.
arXiv, 2020b.

Janis Postels, Mattia Segù, Tao Sun, Luca Daniel Sieber, Luc Van Gool, Fisher Yu, and Federico
Tombari. On the practicality of deterministic epistemic uncertainty. In ICML, 2022.

8



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Apostolos F. Psaros, Xuhui Meng, Zongren Zou, Ling Guo, and George Em Karniadakis. Uncer-
tainty quantification in scientific machine learning: Methods, metrics, and comparisons. Journal
of Computational Physics, 2023.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
ICML, 2015.

Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
out-of-distribution generalization: A survey, 2021.

Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, and Stephan Günnemann.
Graph posterior network: Bayesian predictive uncertainty for node classification. In NeurIPS,
2021.

Vincent Stimper, Bernhard Schölkopf, and José Miguel Hernández-Lobato. Resampling Base Dis-
tributions of Normalizing Flows. In AISTATS, 2022.

Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training. In ICML, 2021.

Dennis Ulmer. A survey on evidential deep learning for single-pass uncertainty estimation, 2021.

Joost van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a
single deep deterministic neural network. In ICML, 2020.

Joost van Amersfoort, Lewis Smith, Andrew Jesson, Oscar Key, and Yarin Gal. On feature collapse
and deep kernel learning for single forward pass uncertainty. arXiv preprint arXiv:2102.11409,
2021.

Florian Wenzel, Kevin Roth, Bastiaan S. Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes
posterior in deep neural networks really? In ICML, 2020.

Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek Natarajan, Joseph R. Ledsam,
Patricia MacWilliams, Pushmeet Kohli, Alan Karthikesalingam, Simon Kohl, Taylan Cemgil,
S. M. Ali Eslami, and Olaf Ronneberger. Contrastive training for improved out-of-distribution
detection, 2020.

Mike Wu and Noah D. Goodman. A simple framework for uncertainty in contrastive learning. arXiv,
2020.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey, 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

9



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

A APPENDIX

A.1 DETERMINISTIC UNCERTAINTY METHODS

NatPN. The deep Bayesian uncertainty model NatPN (Charpentier et al., 2022a) can be decom-
posed into these steps: (1) a core architecture predicts one latent representation of the input x(i) i.e.
z(i) = fϕ(x

(i)) ∈ RH , (2) While a density estimator P(.|w) predicts the evidence parameter up-
date n(i) = NHP(z(i)|w) where the NH is a scaling factor named certainty budget, a single linear
decoder gψ outputs the parameter update χ(i) = gψ(z

(i)) ∈ RL, which can be viewed as a softmax
output prediction. (3) We perform an input-dependent Bayesian update which can be expressed in a
closed-form as:

Q(θ(i)|χpost,(i), npost,(i)) = exp(npost,(i)θ(i)Tχpost,(i) − npost,(i)A(θ(i)))

where χpost,(i) =
npriorχprior + n(i)χ(i)

nprior + n(i)
, npost,(i) = nprior + n(i)

where χprior, nprior are fixed prior parameters, and χpost,(i), npost,(i) are the input-dependent posterior
parameters. For the classification, the variable θ(i) represents the normalized categorical vector p(i).
The predictive uncertainty is computed via the entropy of the predictive categorical distribution,
and the epistemic uncertainty is computed via the evidence parameter npost,(i). We train all the
components of neural network parameters {ϕ,w,ψ} jointly with the Bayesian loss (Charpentier
et al., 2022a):

L(i) ∝ E[θ(i)]Tu(y(i))− E[A(θ(i))]− λH[Qpost,(i)] (1)

where λ is the regularization factor of the entropy term representing. We refer to (Charpentier et al.,
2022a) for a more detailed description of the method.

DUE. The deep kernel learning method DUE (van Amersfoort et al., 2021) can be decomposed
into these steps: (1) a core architecture predicts one latent representation of the input x(i) i.e.
z(i) = fθ(x

(i)) ∈ RH , (2) a Gaussian Process defined from a fixed set of K learnable inducing
points {ϕk}Kk=1 and a predefined positive definite kernel κ(·, ·) predicts the mean µ(x(i)) and the
variance σ(x(i)) of a Gaussian distribution, and (3) we apply softmax to the mean output µ(x(i)) for
the classification prediction, i.e. p(i) = softmax(µ(x(i)). We train the neural network parameters
θ and the inducing points {ϕk}Kk=1 jointly with a variational ELBO loss. For classification, the
predictive uncertainty is computed as the entropy of the predictive categorical distribution. We refer
to (van Amersfoort et al., 2021) for a more detailed description of the method.

A.2 DATASET DETAILS

We split all the training datasets into train, validation and test sets. For all the datasets, the test
set is fixed while the training/validation sets are split in 80/20% respectively. The random split of
training/validation sets change depending on the seeds to ensure more diversity.

MNIST (LeCun et al., 1998). Image classification dataset. Similarly as in Arjovsky et al. (2019),
we create the CMNIST dataset for domain generalization experiments by expanding the input’s size
to 3 x 28 x 28 and zeroing one of the three channels. For OOD detection we use the test set of
MNIST as ID dataset and compare to: KMNIST (Clanuwat et al., 2018), CIFAR10, CMNIST, and
KMNIST OODom, where we scale the input by 255. The batch size used is 512.

CIFAR (Krizhevsky, 2009). Image classification dataset. We apply two data augmentations meth-
ods to the training data:the random horizontal flip and random cropping with padding equal to 4.
For domain generalization we use the corrupted version CIFAR-C (Hendrycks & Dietterich, 2019)
and report the average metric of 15 corruptions for the level of corruption severity of 1. For OOD
detection we use the test set of CIFAR10 as ID dataset and compare to: SVHN (Netzer et al., 2011),
STL10 (Coates et al., 2011), CelebA (Liu et al., 2015), Camelyon (Test OOD), and SVHN OODom.
Since the Camelyon (Test OOD) dataset is large (85k), we extract only 10k subset of images as the
OOD datasets. The batch size used is 128.

Camelyon (Koh et al., 2021). Image classification dataset. We apply two data augmentations emth-
ods to the training data: random horizontal flip and random rotation of 15 degrees. For domain

10



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

generalization the dataset already provide the distribution shifted validation and test splits. For
OOD detection we use the ID validation set of Camelyon as ID dataset (the ID test set is not avail-
able) and compare to: SVHN, STL10, CelebA, Camelyon (Test OOD), and SVHN OODom. The
batch size used is 32.

Each OOD dataset is rescaled to the same size as the ID dataset and normalized with zero mean
and unit variance based on the statistics of ID dataset (for the Camelyon dataset we don’t apply any
normalization as in Koh et al. (2021)).

A.3 METRIC DETAILS

Accuracy. The standard accuracy 1
N

∑
i 1[y

∗,(i) = y(i)] is used, where y∗,(i) is the true label and
y(i) is the predicted label.

Calibration. The Brier score 1
C

∑N
i ||p(i) − y∗,(i)|| is used, where p(i) is the predicted softmax

probability and y∗,(i) is the one-hot encoded true label. Lower calibration indicates a better cali-
brated model. Note that in constrast with the Expected Calibration Error (ECE), the Brier score is
a strictly proper scoring rule which makes it a particularly good evaluation metric for calibration
Gneiting & Raftery (2007).

OOD Generalization. We apply accuracy and calibration to the distribution shifted OOD dataset
and compare the results with the ID dataset to estimate the model’s ability for generalization.

OOD Detection. We treat this task as a binary classification, where we assign class 1 to ID data and
class 0 to OOD data using the aleatoric, epistemic, and predictive uncertainty estimates as scores
for OOD data. This allows to compute the final scores using the area under the receiver operating
characteristic curve (AUC-ROC) to measure the model’s ability to detect OOD data.

A.4 MODEL DETAILS

Core architecture. We use the same feature extractor for both the DUMs architecture. The list
of core architectures used across the experiments are: ResNet18 / ResNet50 / EfficientNet / Swin
(He et al., 2016; Tan & Le, 2021; Liu et al., 2021) from the torchvision repository 2 and Wide-
ResNet-28-10 (Zagoruyko & Komodakis, 2016) from the original implementation of DUE. Except
for the experiment on architecture type and size where ResNet18 has output channels for the residual
blocks with size [64, 128, 256, 512], ResNet18 has output channels for the residual blocks with size
[32, 64, 128, 256] which causes small differences in final accuracy.

Uncertainty head. For DUE we use the original implementation 3 with by default we use the RBF
kernel function. For NatPN we use the original implementation 4 but change the uncertainty head
with a more expressive density estimator. As seen in Table 5, we found that a more expressive
normalizing flow with resampled base (Durkan et al., 2019; Stimper et al., 2022) improves signif-
icantly the results over a simpler radial normalizing flow (Rezende & Mohamed, 2015) across all
the metrics. For all the experiments (except toys where we use radial flow) we use NSF-R with 16
layers.

Table 5: Normalizing flow expressivity comparison. Using more expressive normalizing flow
significantely improves all the results for NatPN.

CIFAR100 Camelyon

Head Accuracy (↑) Brier Score (↓) OOD Pred. (↑) OOD Epis. (↑) Accuracy (↑) Brier Score (↓) OOD Pred. (↑) OOD Epis. (↑)

Radial 71.09 ± 0.21 52.27 ± 0.28 72.84 ± 1.82 50.95 ± 2.16 83.14 ± 0.93 24.55 ± 1.91 60.27 ± 5.29 69.16 ± 7.94
NSF-R 71.61 ± 0.07 43.44 ± 0.11 73.54 ± 1.69 72.85 ± 1.25 89.84 ± 7.93 12.52 ± 6.17 64.14 ± 10.42 81.33 ± 8.78

2https://pytorch.org/vision/stable/models.html
3https://github.com/y0ast/DUE
4https://github.com/borchero/natural-posterior-network

11

https://pytorch.org/vision/stable/models.html
https://github.com/y0ast/DUE
https://github.com/borchero/natural-posterior-network


Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

B TRAINING FOR DUMS DETAILS

By default, we first start by only pretraining the core encoder architecture using the cross-entropy
loss, before attaching the DUM uncertainty head to the pretrained encoder and continue with the
joint training phase. We do not pretrain the encoder for MNIST. we provide further details in table 6.
Following the original method in Charpentier et al. (2022a), we train the NatPN uncertainty head
before (warmup) and after (finetune) the joint training. In the warmup phase, we use the lambda
scheduler increasing linearly from zero to LR head value in table 6. In the finetune phase, we use a
multistep scheduler that scales the learning rate by 0.2 at 70% and 90% of the training starting from
the LR head value in table 6. We warmup for 0/5/0 and finetune for 60/200/5 epochs for the datasets
MNIST/CIFAR/Camelyon respectively.

Table 6: Default training hyperparameters. For CIFAR10, CIFAR100 and Camelyon we first
pretrain a core encoder architecture for the join training phase. In MNIST we directly joint train
given its lower computational cost.

Dataset Phase Encoder Epochs Optimizer
Enc. / Head

LR
Enc. / Head

LR scheduler
Enc. / Head

Weight decay
Enc. / Head

Latent
Dimension

MNIST
Pretrain - - - - - - -
Joint train (DUE) ResNet18 20 AdamW / AdamW 1e-3 / 1e-4 cosine ηmin=5e-4 / - 1e-6 / 1e-6 16
Joint train (NatPN) ResNet18 20 AdamW / AdamW 1e-3 / 5e-3 cosine ηmin=5e-4 / - 1e-6 / 1e-6 16

CIFAR10 & CIFAR100
Pretrain ResNet18 200 SGD 1e-1 cosine ηmin=5e-4 5e-4 -
Joint train (DUE) ResNet18 20 AdamW / AdamW 1e-4 / 1e-4 cosine ηmin=1e-5 / - 1e-6 / 1e-6 64
Joint train (NatPN) ResNet18 20 AdamW / AdamW 1e-5 / 5e-3 cosine ηmin=1e-5 / - 1e-6 / 1e-6 64

Camelyon
Pretrain WideResNet28-10 5 AdamW 1e-3 cosine ηmin=1e-5 1e-8 -
Joint train (DUE) WideResNet28-10 1 AdamW / AdamW 1e-5 / 5e-3 cosine ηmin=1e-6 / - 1e-6 / 1e-6 128
Joint train (NatPN) WideResNet28-10 1 AdamW / AdamW 5e-6 / 1e-5 cosine ηmin=1e-6 / - 1e-6 / 1e-6 128

Decoupling learning rate. In this experiment we use different values for the learning rates of the
core architecture and of the uncertainty head. After the decoupling learning rate experiment, we
choose the best combination of learning rates through model selection via the validation results and
apply it to other experiments. E.g., for the joint training schema and pretraining schema experiments,
NatPN uses a learning rate of 1e-4/1e-4 for encoder/head respectively, while for DUE it is 1e-5/5e-3.

Training schemes. In this experiment, we compare the joint training in which we jointly train the
weights of the core architecture and uncertainty head, and the sequential training in which we only
train the uncertainty head by keeping the weights of the pretrained core architecture fixed. For each
of the setting, we apply two additional techniques to stabilize the training: adding a batch normal-
ization to the last layer of the encoder to enforce latent representations to locate in a normalized
region (Ioffe & Szegedy, 2015; Charpentier et al., 2022a), and resetting the last layer to retrain its
weights to improve robustness to spurious correlation (Kirichenko et al., 2022).

Pretraining schemes. In this experiment, we do not pretrain the core encoder architecture or pre-
train it with 10% of CIFAR100, 100% of CIFAR100, and ImageNet. We use ResNet50 as the core
architecture with the default setting in table 6 for CIFAR100 but changing LR to 5e-2. The pre-
trained model on ImageNet is loaded from the torchvision. The re-scaling transformation applied
to CIFAR100 uses the bilinear interpolation, and we add the Gaussian noise with zero mean and
variance of 0.1 and 0.5 to the training set to simulate lower quality data. For the schemes None and
C100 (10%) which use no or few pretraining data, we increase the joint training phase to 200 epochs
with for the core architecture to ensure proper convergence.

C ARCHITECTURE FOR DUMS DETAILS

For all the architecture experiments we used the default training settings in appendix B and table 6.

Bi-Lipschitz training details. In the None configuration, we removed the residual connection from
the architecture for both the pretraining of the encoder and the joint training phase. In the Resid-
ual configuration, we did not modify anything since both ResNet and WideResNet already use the
residual connection. While for the bi-Lipschitz configuration, we added the spectral normalization
during both the pretraining and also joint training phase. Following the original method presented in
van Amersfoort et al. (2021), we used the same implementation and applied spectral normalization
to the linear, convolution, and batch normalization layers. During the model selection, using the

12



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Table 7: Train schema OOD detection. Uncertainty estimation results broken down for each
OOD dataset. We observe that NatPN performs significantly better when using joint, while DUE is
insensitive to the schema used. The ID dataset used for training is CIFAR100.

Model OOD Data Train Schema OOD Alea. (↑) OOD Epis. (↑) OOD Pred. (↑)

NatPN

SVHN

joint 80.64 ± 1.22 65.00 ± 3.18 80.64 ± 1.22
joint + bn 82.07 ± 0.62 69.98 ± 4.40 82.07 ± 0.62
joint + reset 80.77 ± 1.63 74.67 ± 2.37 80.77 ± 1.63
sequential 80.76 ± 0.95 43.99 ± 4.16 80.76 ± 0.95
sequential + bn 80.64 ± 0.83 44.46 ± 5.63 80.64 ± 0.83
sequential + reset 78.92 ± 1.06 59.54 ± 4.25 78.92 ± 1.06

STL10

joint 76.63 ± 0.20 58.79 ± 0.24 76.63 ± 0.20
joint + bn 76.53 ± 0.22 63.51 ± 0.38 76.53 ± 0.22
joint + reset 76.92 ± 0.36 64.44 ± 0.52 76.92 ± 0.36
sequential 77.57 ± 0.20 42.83 ± 0.62 77.57 ± 0.20
sequential + bn 77.64 ± 0.22 44.26 ± 0.59 77.64 ± 0.22
sequential + reset 77.35 ± 0.15 57.56 ± 0.38 77.35 ± 0.15

CelebA

joint 51.42 ± 1.29 28.90 ± 1.59 51.42 ± 1.29
joint + bn 51.45 ± 1.15 27.67 ± 2.45 51.45 ± 1.15
joint + reset 52.01 ± 0.46 32.54 ± 0.32 52.01 ± 0.46
sequential 52.58 ± 1.08 24.41 ± 1.94 52.58 ± 1.08
sequential + bn 52.44 ± 1.11 23.65 ± 1.85 52.44 ± 1.11
sequential + reset 53.12 ± 0.92 26.82 ± 1.41 53.12 ± 0.92

Camelyon

joint 67.17 ± 5.30 67.03 ± 9.00 67.17 ± 5.30
joint + bn 61.06 ± 2.70 69.69 ± 5.54 61.06 ± 2.70
joint + reset 67.07 ± 1.12 73.45 ± 4.22 67.07 ± 1.12
sequential 64.54 ± 2.08 56.23 ± 6.07 64.54 ± 2.08
sequential + bn 64.34 ± 2.12 49.31 ± 5.99 64.34 ± 2.12
sequential + reset 63.76 ± 2.13 65.59 ± 4.65 63.76 ± 2.13

SVHN OODom.

joint 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
joint + bn 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
joint + reset 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sequential 99.99 ± 0.00 100.00 ± 0.00 99.99 ± 0.00
sequential + bn 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sequential + reset 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

DUE

SVHN

joint - - 80.75 ± 0.79
joint + bn - - 80.47 ± 1.09
joint + reset - - 80.92 ± 0.70
sequential - - 81.04 ± 0.82
sequential + bn - - 81.20 ± 0.86
sequential + reset - - 80.66 ± 1.07

STL10

joint - - 77.20 ± 0.19
joint + bn - - 77.24 ± 0.22
joint + reset - - 77.42 ± 0.25
sequential - - 77.50 ± 0.09
sequential + bn - - 77.52 ± 0.13
sequential + reset - - 77.48 ± 0.17

CelebA

joint - - 47.99 ± 1.25
joint + bn - - 47.90 ± 1.13
joint + reset - - 49.10 ± 0.86
sequential - - 48.07 ± 0.99
sequential + bn - - 48.43 ± 1.06
sequential + reset - - 49.39 ± 1.29

Camelyon

joint - - 67.76 ± 2.20
joint + bn - - 67.54 ± 2.33
joint + reset - - 67.03 ± 2.00
sequential - - 67.49 ± 2.58
sequential + bn - - 67.23 ± 2.72
sequential + reset - - 67.85 ± 2.54

SVHN OODom.

joint - - 100.00 ± 0.00
joint + bn - - 100.00 ± 0.00
joint + reset - - 100.00 ± 0.00
sequential - - 100.00 ± 0.00
sequential + bn - - 100.00 ± 0.00
sequential + reset - - 100.00 ± 0.00

validation set results, we find that the best Lipschitz constant c for DUE is 4, and for NatPN is 5.
For both the models the power iteration parameter is set to 1. For the toy dataset we use an encoder
with 4 linear layers of 128 dimension each.

Reconstruction training details. The decoder reconstructs the input extracted from the last residual
block of the encoder, before the pooling layer. During the pretraining phase, both the encoder
and decoder are trained with the cross-entropy loss plus a MSE reconstruction term. During the
joint training phase, we load the pretrained encoder and decoder, and joint train with the DUMs’
respective loss plus the MSE reconstruction term. For the toy dataset we use an encoder with 4
linear layers of 128 dimension each.

13



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Table 8: Pretrain schema OOD detection. Uncertainty estimation results broken down for each
OOD dataset. We see how ImageNet pretrained encoder consistently performs better than other
settings for 4/5 OOD datasets. The ID dataset used in the joint training phase is CIFAR100.

Model OOD Data Pretrain Schema OOD Alea. (↑) OOD Epis. (↑) OOD Pred. (↑)

NatPN

SVHN

None 79.95 ± 1.18 77.87 ± 2.54 79.95 ± 1.18
C100 (10%) 71.81 ± 1.67 75.16 ± 2.20 71.81 ± 1.67
C100 (100%) + N (0.5) 80.76 ± 1.03 61.15 ± 6.04 80.76 ± 1.03
C100 (100%) + N (0.1) 79.86 ± 1.81 60.50 ± 7.54 79.86 ± 1.81
C100 (100%) 81.76 ± 1.38 65.72 ± 4.91 81.76 ± 1.38
ImageNet 89.34 ± 0.66 92.02 ± 0.49 89.34 ± 0.66

STL10

None 80.34 ± 0.77 78.05 ± 2.37 80.34 ± 0.77
C100 (10%) 74.64 ± 0.72 62.43 ± 2.92 74.64 ± 0.72
C100 (100%) + N (0.5) 79.92 ± 0.32 56.81 ± 3.69 79.92 ± 0.32
C100 (100%) + N (0.1) 80.63 ± 0.94 57.72 ± 3.93 80.63 ± 0.94
C100 (100%) 80.70 ± 1.33 66.07 ± 2.60 80.70 ± 1.33
ImageNet 85.46 ± 0.50 90.76 ± 0.31 85.46 ± 0.50

CelebA

None 73.59 ± 3.78 76.19 ± 3.32 73.59 ± 3.78
C100 (10%) 73.26 ± 1.79 63.31 ± 3.66 73.26 ± 1.79
C100 (100%) + N (0.5) 66.88 ± 2.72 49.00 ± 3.23 66.88 ± 2.72
C100 (100%) + N (0.1) 73.15 ± 0.92 46.91 ± 6.50 73.15 ± 0.92
C100 (100%) 73.61 ± 2.16 58.11 ± 2.85 73.61 ± 2.16
ImageNet 59.30 ± 3.77 64.80 ± 2.15 59.30 ± 3.77

Camelyon

None 65.37 ± 10.77 96.95 ± 2.01 65.37 ± 10.77
C100 (10%) 20.84 ± 5.27 91.58 ± 7.56 20.84 ± 5.27
C100 (100%) + N (0.5) 40.19 ± 5.07 76.33 ± 5.84 40.19 ± 5.07
C100 (100%) + N (0.1) 45.39 ± 10.58 83.79 ± 5.27 45.39 ± 10.58
C100 (100%) 58.69 ± 11.10 94.63 ± 2.85 58.69 ± 11.10
ImageNet 90.64 ± 2.47 97.82 ± 0.56 90.64 ± 2.47

SVHN OODom.

None 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
C100 (10%) 99.96 ± 0.04 100.00 ± 0.00 99.96 ± 0.04
C100 (100%) + N (0.5) 99.94 ± 0.06 100.00 ± 0.00 99.94 ± 0.06
C100 (100%) + N (0.1) 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
C100 (100%) 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
ImageNet 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

DUE

SVHN

None - - 82.66 ± 0.77
C100 (10%) - - 77.24 ± 0.53
C100 (100%) + N (0.5) - - 80.61 ± 1.01
C100 (100%) + N (0.1) - - 77.94 ± 1.18
C100 (100%) - - 78.76 ± 1.74
ImageNet - - 92.18 ± 0.11

STL10

None - - 78.91 ± 1.06
C100 (10%) - - 75.98 ± 0.87
C100 (100%) + N (0.5) - - 79.49 ± 0.33
C100 (100%) + N (0.1) - - 80.21 ± 0.83
C100 (100%) - - 79.63 ± 1.34
ImageNet - - 89.56 ± 0.53

CelebA

None - - 65.64 ± 1.77
C100 (10%) - - 74.62 ± 1.56
C100 (100%) + N (0.5) - - 66.58 ± 3.20
C100 (100%) + N (0.1) - - 75.15 ± 1.84
C100 (100%) - - 74.60 ± 1.11
ImageNet - - 72.19 ± 1.42

Camelyon

None - - 73.00 ± 2.81
C100 (10%) - - 34.84 ± 3.53
C100 (100%) + N (0.5) - - 47.78 ± 5.30
C100 (100%) + N (0.1) - - 63.88 ± 5.79
C100 (100%) - - 75.58 ± 5.17
ImageNet - - 97.28 ± 0.47

SVHN OODom.

None - - 100.00 ± 0.00
C100 (10%) - - 99.51 ± 0.12
C100 (100%) + N (0.5) - - 99.99 ± 0.00
C100 (100%) + N (0.1) - - 99.99 ± 0.00
C100 (100%) - - 99.99 ± 0.00
ImageNet - - 100.00 ± 0.00

D PRIOR FOR DUMS DETAILS

For all the prior experiments we use the default training settings in appendix B and table 6. In
the following experiments, we vary the entropy regularization λ and the evidence prior nprior for
NatPN, and the choice of kernel for DUE.

Before starting the training, we inject the artificial aleatoric noise by reassigning the target y with a
randomly chosen class. Two datasets with different degree of noise are used, where 10% and 20%
of all the labels in the training dataset are reassigned.

14



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

50

75

100

Ac
cu

ra
cy

MNIST

70

80

90

CIFAR10
NatPN ID NatPN OOD DUE ID DUE OOD

40

60

CIFAR100

70

80

90

Camelyon

None Residual bi-Lip.
0

50

B
ri

er
 S

co
re

None Residual bi-Lip.

10

20

30

None Residual bi-Lip.

20

40

60

None Residual bi-Lip.
0

25

50

Figure 6: Results OOD generalization and OOD detection results of DUMs with none, residual
and bi-lipschitz architecture constraints. Bi-lipschitz and more specifically can improve OOD
detection by mitigating feature collapse (see fig. 8a) at the expense of degrading OOD generalization.

25

50

75

100

Ac
cu

ra
cy

MNIST

85.0

87.5

90.0

92.5

CIFAR10
NatPN ID NatPN OOD DUE ID DUE OOD

60

65

70

CIFAR100

0.0 0.1 0.5 1.0 2.0 4.0
0

50

100

B
ri

er
 S

co
re

0.0 0.1 0.5 1.0 2.0 4.0

10

15

20

0.0 0.1 0.5 1.0 2.0 4.0
40

50

60

Figure 7: Results OOD generalization and OOD detection results of DUMs with reconstruction
architecture constraints. Increasing the strength of the reconstruction factor λ improves the OOD
generalization only on the simpler MNIST/CMNIST datasets but fails for more complex datasets.

15



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

(a) Bi-Lipschitz

(b) Reconstruction

Figure 8: Regularization constraint toy dataset uncertainty boundaries with NatPN. The two
black dots represent the center of two different class of Gaussian data, sharing the same y-axis to
trigger the feature collapse phenomenon. The color represents the likelihood produced by the un-
certainty head. Each row is a different setting, e.g. bi1.0 is the bi-Lipschitz constraint with the
Lipschitz constant c = 1 and rec1.0 is the reconstruction term with λ = 1. Each column is a
different seed initialization. (top) Bi-Lipschitz experiment shows that the core encoder architec-
ture constrained with a larger Lipschitz constant in the last two rows behaves similar to the encoder
constrained with only the residual connection (second row) showing that relaxing the spectral nor-
malization constraint falls back to the residual connection, preventing the feature collapse. (bottom)
Reconstruction experiment shows that it does not help to prevent feature collapse by itself. The
core encoder architecture is not constrained with bi-Lipschitz.

16



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

(a) Bi-Lipschitz

(b) Reconstruction

Figure 9: Regularization constraint toy dataset feature collapse with NatPN. Similarly to (van
Amersfoort et al., 2021), we run the toy experiment where the first column represent two Gaussian
class of data, sharing the same y-axis center to trigger the feature collapse phenomenon, and a grid
of unrelated point to simulate the space distorsion (colors are based on the Gaussian’s generating dis-
tribution). Each row is a different setting, e.g. bi1.0 is the bi-Lipschitz constraint with the Lipschitz
constant c = 1 and rec1.0 is the reconstruction term with λ = 1. Each column is a different seed
initialization. Results are the same as 8a. Larger Lipschitz constant c reverts back to the residual
connection, and reconstruction regularization collapses the 2D dimension into one single dimension.

17



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

90

95

100

O
O

D
 P

re
d.

KMNIST

NatPN
DUE 90

95

100

CIFAR10

85

90

95

100
CMNIST

96

98

100

KMNIST OODom.

4 8 16 32 64
90

95

100

O
O

D
 E

pi
s.

4 8 16 32 64
90

95

100

4 8 16 32 64

85

90

95

100

4 8 16 32 64
96

98

100

(a) MNIST

70

80

90

O
O

D
 P

re
d.

SVHN

NatPN
DUE

60

65

70
STL10

60

70

80
CelebA

85

90

95

Camelyon OOD

97

98

99

100
SVHN OODom.

8 16 32 64 128
70

80

90

O
O

D
 E

pi
s.

8 16 32 64 128

60

65

70

8 16 32 64 128

60

70

80

8 16 32 64 128

85

90

95

8 16 32 64 128
97

98

99

100

(b) CIFAR10

50

60

70

80

O
O

D
 P

re
d.

SVHN

NatPN
DUE

50

60

70

80

STL10

20

30

40

50

CelebA

50

60

70

80

Camelyon OOD

97

98

99

100
SVHN OODom.

16 32 64 128 256
50

60

70

80

O
O

D
 E

pi
s.

16 32 64 128 256
50

60

70

80

16 32 64 128 256
20

30

40

50

16 32 64 128 256
50

60

70

80

16 32 64 128 256
97

98

99

100

(c) CIFAR100

60

80

100

O
O

D
 P

re
d.

SVHN

NatPN
DUE 60

80

100
STL10

60

80

100
CelebA

60

80

100
Camelyon OOD

85

90

95

100
SVHN OODom.

32 64 128 256 512

60

80

100

O
O

D
 E

pi
s.

32 64 128 256 512

60

80

100

32 64 128 256 512

60

80

100

32 64 128 256 512

60

80

100

32 64 128 256 512

85

90

95

100

(d) Camelyon ID

Figure 10: Latent dimension OOD detection. For each training dataset we show the uncertainty
estimation results on the corresponding OOD dataset. NatPN encounters numerical instabilities with
high latent dimension on Camelyon dataset, while DUE is less sensitive to the variation.

18



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

90

95

100

O
O

D
 P

re
d.

KMNIST

NatPN
DUE

90

95

100
CIFAR10

60

80

100
CMNIST

90

95

100
KMNIST OODom.

None Residual bi-Lip.
90

95

100

O
O

D
 E

pi
s.

None Residual bi-Lip.
90

95

100

None Residual bi-Lip.
90

95

100

None Residual bi-Lip.
90

95

100

(a) MNIST

60

80

O
O

D
 P

re
d.

SVHN

NatPN
DUE

50

60

70
STL10

50

60

70

80
CelebA

60

80

100
Camelyon OOD

90

95

100
SVHN OODom.

None Residual bi-Lip.
60

80

O
O

D
 E

pi
s.

None Residual bi-Lip.
50

60

70

None Residual bi-Lip.
50

60

70

80

None Residual bi-Lip.

60

80

100

None Residual bi-Lip.
90

95

100

(b) CIFAR10

60

80

O
O

D
 P

re
d.

SVHN

NatPN
DUE

60

70

80
STL10

20

40

60
CelebA

60

80

Camelyon OOD

50

100
SVHN OODom.

None Residual bi-Lip.

60

80

O
O

D
 E

pi
s.

None Residual bi-Lip.

60

70

80

None Residual bi-Lip.
20

40

60

None Residual bi-Lip.

60

80

None Residual bi-Lip.

50

100

(c) CIFAR100

50

75

100

O
O

D
 P

re
d.

SVHN

NatPN
DUE

50

75

100
STL10

50

75

100
CelebA

50

75

100
Camelyon OOD

80

90

100
SVHN OODom.

None Residual bi-Lip.

50

75

100

O
O

D
 E

pi
s.

None Residual bi-Lip.

50

75

100

None Residual bi-Lip.

50

75

100

None Residual bi-Lip.

50

75

100

None Residual bi-Lip.
80

90

100

(d) Camelyon ID

Figure 11: Bi-lipschitz OOD detection. For each training dataset we show the uncertainty estima-
tion results on the corresponding OOD dataset. Bi-Lipschitz improvements are not consistent across
different OOD datasets.

19



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

94

96

98

100

O
O

D
 P

re
d.

KMNIST

NatPN
DUE 94

96

98

100

CIFAR10

80

90

100
CMNIST

94

96

98

100

KMNIST OODom.

0.0 0.1 0.5 1.0 2.0 4.0

94

96

98

100

O
O

D
 E

pi
s.

0.0 0.1 0.5 1.0 2.0 4.0

94

96

98

100

0.0 0.1 0.5 1.0 2.0 4.0

80

90

100

0.0 0.1 0.5 1.0 2.0 4.0

94

96

98

100

(a) MNIST

85

90

95

O
O

D
 P

re
d.

SVHN
NatPN
DUE

60

65

70
STL10

60

70

80
CelebA

85

90

95

Camelyon OOD

85

90

95

100
SVHN OODom.

0.0 0.1 0.5 1.0 2.0 4.0

85

90

95

O
O

D
 E

pi
s.

0.0 0.1 0.5 1.0 2.0 4.0

60

65

70

0.0 0.1 0.5 1.0 2.0 4.0
60

70

80

0.0 0.1 0.5 1.0 2.0 4.0

85

90

95

0.0 0.1 0.5 1.0 2.0 4.0
85

90

95

100

(b) CIFAR10

70

80

90

O
O

D
 P

re
d.

SVHN

NatPN
DUE

40

60

80

STL10

20

40

60
CelebA

40

60

80

Camelyon OOD

85

90

95

100
SVHN OODom.

0.0 0.1 0.5 1.0 2.0 4.0

70

80

90

O
O

D
 E

pi
s.

0.0 0.1 0.5 1.0 2.0 4.0
40

60

80

0.0 0.1 0.5 1.0 2.0 4.0

20

40

60

0.0 0.1 0.5 1.0 2.0 4.0
40

60

80

0.0 0.1 0.5 1.0 2.0 4.0
85

90

95

100

(c) CIFAR100

Figure 12: Reconstruction regularization OOD detection. Increasing the weight coefficient of
the reconstruction loss term improved the OOD detection of NatPN in MNIST. However, we did not
observe improvements on more complex datasets such as CIFAR.

Figure 13: Reconstruction regularization CIFAR samples. (left) The original input (right) the
reconstructed input after NatPN’s joint training phase. The reconstruction discards detailed infor-
mation compared to the original input.

20



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Table 9: Encoder architecture OOD detection. For each training dataset we show the uncertainty
estimation results on the corresponding OOD dataset. We observe that new architectures (Efficient-
Net, Swin) have consistently better results. Interestingly, the transformer based model Swin, is not
able to detect out-of-domain data, which should be easy in principle.

Model OOD Data Architecture OOD Alea. (↑) OOD Epis. (↑) OOD Pred. (↑)

NatPN

SVHN

ResNet18 89.90 ± 1.22 78.14 ± 3.13 89.90 ± 1.22
ResNet50 89.34 ± 0.66 92.02 ± 0.49 89.34 ± 0.66
EfficientNet V2 S 88.65 ± 0.68 92.52 ± 0.60 88.65 ± 0.68
Swin T 87.73 ± 1.36 94.17 ± 0.74 87.73 ± 1.36

STL10

ResNet18 90.99 ± 0.37 83.90 ± 0.59 90.99 ± 0.37
ResNet50 85.46 ± 0.50 90.76 ± 0.31 85.46 ± 0.50
EfficientNet V2 S 88.68 ± 0.62 91.11 ± 0.47 88.68 ± 0.62
Swin T 85.44 ± 0.56 92.16 ± 0.40 85.44 ± 0.56

CelebA

ResNet18 66.46 ± 3.48 50.61 ± 2.14 66.46 ± 3.48
ResNet50 59.30 ± 3.77 64.80 ± 2.15 59.30 ± 3.77
EffNet V2 S 67.04 ± 1.74 66.29 ± 1.45 67.04 ± 1.74
Swin T 63.60 ± 2.16 72.80 ± 1.00 63.60 ± 2.16

Camelyon

ResNet18 90.09 ± 4.43 96.28 ± 1.06 90.09 ± 4.43
ResNet50 90.64 ± 2.47 97.82 ± 0.56 90.64 ± 2.47
EfficientNet V2 S 94.56 ± 0.79 97.42 ± 0.44 94.56 ± 0.79
Swin T 95.43 ± 1.47 98.71 ± 0.50 95.43 ± 1.47

SVHN OODom.

ResNet18 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
ResNet50 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
EfficientNet V2 S 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Swin T 97.37 ± 0.29 93.31 ± 1.42 97.37 ± 0.29

DUE

SVHN

ResNet18 - - 88.77 ± 0.28
ResNet50 - - 92.18 ± 0.11
EfficientNet V2 S - - 90.95 ± 0.53
Swin T - - 93.62 ± 0.39

STL10

ResNet18 - - 90.66 ± 0.48
ResNet50 - - 89.56 ± 0.53
EfficientNet V2 S - - 89.08 ± 0.39
Swin T - - 89.73 ± 0.36

CelebA

ResNet18 - - 64.75 ± 1.44
ResNet50 - - 72.19 ± 1.42
EffNet V2 S - - 72.28 ± 1.76
Swin T - - 69.37 ± 0.67

Camelyon

ResNet18 - - 96.01 ± 1.13
ResNet50 - - 97.28 ± 0.47
EfficientNet V2 S - - 94.82 ± 0.65
Swin T - - 99.33 ± 0.14

SVHN OODom.

ResNet18 - - 100.00 ± 0.00
ResNet50 - - 100.00 ± 0.00
EfficientNet V2 S - - 100.00 ± 0.00
Swin T - - 97.47 ± 0.22

0 1e-5 1e-4 1e-3

60

80

B
ri

er
 S

co
re

CIFAR100
+0% noise
+10% noise
+20% noise

0 1e-5 1e-4 1e-3
40

50

60

70

O
O

D
 E

pi
s.

SVHN

0 1e-5 1e-4 1e-3

50

55

60
STL10

0 1e-5 1e-4 1e-3

30

40

50

CelebA

0 1e-5 1e-4 1e-3

70

80

90
Camelyon OOD

0 1e-5 1e-4 1e-3
90

95

100

SVHN OODom.

50 100 500 1000
evidence prior

40

60

B
ri

er
 S

co
re

CIFAR100

+0% noise
+10% noise
+20% noise

50 100 500 1000
evidence prior

60

65

70

75

O
O

D
 E

pi
s.

SVHN

50 100 500 1000
evidence prior

55

60

STL10

50 100 500 1000
evidence prior

30

40

CelebA

50 100 500 1000
evidence prior

60

70

80

90

Camelyon OOD

50 100 500 1000
evidence prior

90

95

100

SVHN OODom.

Figure 14: Results of enforcing different prior in NatPN on CIFAR100 by changing the (top) en-
tropy regularization λ and the (bottom) evidence prior nprior. Different priors do not lead consistent
results improvements.

21


	Introduction
	Deterministic Uncertainty Methods
	Training for DUMs
	Architecture for DUMs
	Prior for DUMs
	Conclusion
	Appendix
	Deterministic Uncertainty Methods
	Dataset details
	Metric details
	Model details

	Training for DUMs Details
	Architecture for DUMs Details
	Prior for DUMs Details

