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Abstract

Probabilistic backpropagation (PBP, Hernández-Lobato and Adams, 2015) is
an approximate Bayesian inference method for deep neural networks, using a
message-passing framework. These messages—which correspond to distributions
arising as we propagate our input through a probabilistic neural network—are ap-
proximated as Gaussian. However, in practice, the exact distributions may be
highly non-Gaussian. In this paper, we propose a more realistic approximation
based on a spike-and-slab distribution. Unfortunately, in this case, better approxi-
mation of the messages does not translate to better downstream performance. We
present results comparing the two schemes and discuss why we do not see a benefit
from this spike-and-slab approach.

1 Introduction

Deep neural networks are flexible non-linear models common to domains with complicated data
relationships. However, despite having many unknown model parameters, many neural networks
do not attempt to represent model (epistemic) or data (aleatoric) uncertainty. Bayesian approaches
to neural networks could capture this uncertainty but are typically rendered intractable in closed-
form. MCMC-based methods (Neal, 1995; Cobb and Jalaian, 2021) offer asymptotic guarantees but
are typically slow to converge. Instead, it is typical to use approximate inference algorithms, such
as those based on Laplace approximations (MacKay, 1992; Daxberger et al., 2021) or variational
inference (Graves, 2011; Blundell et al., 2015).

Probabilistic backpropagation (PBP, Hernández-Lobato and Adams, 2015) is an example of an
approximation-based approach for Bayesian deep learning. Like many such approaches, it uses a
mean-field approximation to the posterior, which is inferred via a message-passing algorithm based
on assumed density filtering (Opper, 1999). The resulting algorithm is reminiscent of backpropa-
gation; however, rather than propagating a single function estimate through a neural network, PBP
propagates distributions representing our estimated posterior uncertainty. PBP approximates these
distributions, or “messages,” using a Gaussian, whose parameters are a known function of the means
and variances of the per-weight distributions, allowing us to update those weight parameters using
gradient information in a backwards pass.

In practice, the true messages can be highly non-Gaussian, since they have been propagated through
a ReLU or similar nonlinearity. Using a Gaussian approximation risks ignoring sparsity inherent
in the true message structure. In this paper, we show that the PBP algorithm can be modified to
use sparse messages, parameterized using a spike-and-slab distribution. Computational costs are not
significantly increased over Gaussian messages.
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Figure 1: Left, the true distribution obtained by applying a ReLU to a N(0, 1) random variable, with
a mixture of a truncated Gaussian and a “spike” (with its probability indicated with an overlayed
vertical bar) at X = 0. Center, the Gaussian density obtained in the PBP approximation. Right, the
spike-and-slab distribution obtained by our approximation (with the spike probability indicated with
an overlayed vertical bar).

Unfortunately, we discover what many before us have discovered in different contexts: Gaussian
approximations usually work pretty well. Closer investigation shows that, if we use bias terms in our
neural network (as is typical), any theoretical advantage of our spike-and-slab approach evaporates.
In the absence of a bias term, our approximation does differ from the standard PBP approach, and
at a per-message level does indeed provide better approximations to the true message. However,
this advantage does not translate into a significant difference in overall performance. While this is a
negative result, and while it remains possible that alternative approximations could yield improved
performance, our work indirectly highlights the fact that Gaussian approximations to non-Gaussian
distributions are often a good choice in practice.

2 Probabilistic backpropagation

We consider the setting of feed-forward neural networks (FFNNs) with ReLU activation σ(x) =
max(x, 0), such that

z(ℓ)(x) =σ
(
W(ℓ)

[
z(ℓ−1)(x); 1

]/√
nℓ−1 + 1

)
, ℓ = 1 : L− 1

ŷ = W(L)
[
z(L−1)(x); 1

]
/
√
nL−1 + 1 ,

(1)

with [a; b] indicating concatenation, nℓ indicating the number of nodes in layer ℓ, and z(0)(x) = x.
LetW = (W(ℓ))Lℓ=1 where W(ℓ) = (w

(ℓ)
ij )

nℓ−1+1
i=1

nℓ

j=1
be the set of all weights (which includes the

biases).1 We include a scaling factor of
√
nℓ−1 + 1 to make the scale of the input to each neuron

invariant to the size of the previous layer, following Hernández-Lobato and Adams (2015).

To make the model Bayesian, we place a spherical Gaussian prior on the weights, meaning the
z(ℓ)(x) and ŷ are now random, and we assume yi ∼ N(ŷi, γ

−1). Since the number of weights
can be large, and the ReLU nonlinearity removes the possibility of analytic tractability, posterior
inference can be computationally challenging.

Probabilistic backpropagation (PBP, Hernández-Lobato and Adams, 2015) is an approximate infer-
ence technique appropriate for this setting. PBP uses assumed density filtering (ADF, Opper, 1999)
to update a mean-field approximation to the true posterior,2

q(W) =
∏
ℓ

q(ℓ)(W(ℓ)) =
∏
i,j,ℓ

N(w
(ℓ)
ij |m

(ℓ)
ij , v

(ℓ)
ij ). (2)

1We adopt the convention throughout that x indicates a scalar; x a vector; X a matrix; and X a list of
matrices.

2We ignore here terms concerning the observation noise variance and the prior variance of the Gaussians.
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The mean and variance parameters of the weights (m(ℓ)
ij and v

(ℓ)
ij ) are updated by propagating uncer-

tainty through the network, that is, by evaluating the distributions over the representations z(ℓ)(x).
PBP approximates these distributions with Gaussian distributions, obtained through moment match-
ing. Leveraging some properties of Gaussian distributions (Minka, 2001), PBP is able to update the
parameters of the approximate posterior in an approach analogous to backpropagation. Finally, PBP
also incorporates an expectation propagation step to further refine the approximate posterior after
each full pass through the training data.

Several extensions to the PBP framework have provided improvements, such as including approxi-
mations appropriate for classification (Ghosh et al., 2016), incorporating minibatching (Benatan and
Pyzer-Knapp, 2018), and using non-diagonal Gaussians as the approximating distribution (Sun et al.,
2017). Similar approaches have been used in a variational inference context (Roth and Pernkopf,
2016; Wu et al., 2019; Dera et al., 2019; Haußmann et al., 2020) and in a hybrid Bayesian/maximum
likelihood context (Gast and Roth, 2018).

2.1 Limitations of a Gaussian approximation

PBP approximates the distribution of z(ℓ)(x)—i.e., the “messages” in the ADF algorithm—using
Gaussians. However, the ReLU nonlinearity in Equation 1 means that the true distributions can
be highly non-Gaussian. As a simple example, consider the distribution over the jth element of

the first-layer representation of an input x, z(1)j (x) = σ(w
(1)
j

⊤
[x; 1]). We are approximating the

posterior distributions over w(1)
ij using Gaussians, meaning that the distribution implied by w⊤

j [x; 1]

is also Gaussian. However, once this has passed through a ReLU, the distribution over z(1)j (x) is a
mixture of a Dirac delta distribution (or “spike”) at x = 0 and a Gaussian truncated to the domain
(0,∞). See Figure 1 for a demonstration.

3 Spike-and-slab probabilistic backpropagation

An exact implementation of ADF in the FFNN would send messages based on the true distribution
over the z(ℓ)(x), given the current approximating distribution q(W). We will refer to this true
distribution as q(z(ℓ))3. This is computationally infeasible: while we can calculate this distribution
for a single layer where the input is the observed x (as shown above), on later layers the inputs are
themselves the propagated distributions. PBP chooses to approximate these with diagonal Gaussian
distributions q̃PBP(z

(ℓ)), obtained via moment matching.

We propose using a more sophisticated approximation of the messages q(z(ℓ)). At the first layer, we
know that q(z(1)) is a spike-and-slab distribution with truncated Gaussian slab. We choose to model
the resulting sparsity directly using a spike-and-slab distribution with a (non-truncated) Gaussian
slab, such that for node i in layer ℓ, we have

q̃SSPBP(z
(ℓ)
i ) = (1− ρ̃

(ℓ)
i )δ0(z

(ℓ)
i ) + ρ̃

(ℓ)
i N(z

(ℓ)
i |m̃

(ℓ)
i , ṽ

(ℓ)
i ), (3)

with slab probability ρ̃
(ℓ)
i , slab mean m̃

(ℓ)
i , and slab variance ṽ(ℓ)i . We refer to the resulting algorithm

as Spike-and-Slab PBP (SSPBP).

3.1 Approximating messages using a spike-and-slab

We wish to approximate some distribution p, with a spike-and-slab distribution q of the form of
Equation 3. We can do so by minimizing the Kullback-Leibler divergence KL(p∥q), yielding the
following parameters (see Appendix A.1 for derivation):

ρ = PX∼p[X ̸= 0], m =
1

ρ
EX∼p[X], v =

1

ρ

(
VX∼p[X]− ρ(1− ρ)m2

)
.

Note that this is similar to the moment-matching setting of PBP: we first match the spike probability
(1− ρ), and then match the first and second moments.

3For notational conciseness, we hereafter write z(ℓ) in place of z(ℓ)(x)
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Table 1: Simulation study of how well SSPBP approximates the true distribution after a single layer,
reporting the MMD between a ground truth sample and approximations obtained using either PBP
or SSPBP, along with the MMD between two ground truth samples.

pX pW % Saturated Same PBP SSPBP

N(0, 1) N(0, 1) 49.86% 0.000028 0.066 0.020
N(1, 1) N(3, 1) 16.24% 0.000090 0.031 0.015
N(1, 1) N(−3, 1) 84.44% 0.000055 0.21 0.0038
N(3, 1) N(3, 1) 0.22% 0.00025 0.0043 0.0051
N(3, 1) N(−3, 1) 99.72% 0.00000058 0.017 0.00024

Consider the jth node of the ℓth layer of our FFNN. Following Hernández-Lobato and Adams
(2015), we augment the incoming message with a bias term, so that ρ̃(ℓ)nℓ+1 = 1, m̃(ℓ)

nℓ+1 = 1, and

ṽ
(ℓ)
nℓ+1 = 0. Let M(ℓ) = (m

(ℓ)
i )nℓ

i=1 and m
(ℓ)
i = (m

(ℓ)
ij )

nℓ−1+1
j=1 be the means of the approximate pos-

teriors q(w(ℓ)
ij ) of the weights of the FFNN, and let V(ℓ) = (v

(ℓ)
i )nℓ

i=1 and v
(ℓ)
i = (v

(ℓ)
ij )

nℓ−1+1
j=1 be the

corresponding variances (Equation 2). In the absence of a nonlinearity (e.g., for a final regression
layer), we approximate the message z

(ℓ)
j with a spike-and-slab distribution, with slab probability

ρ̃
(ℓ,linear)
j , slab mean m̃

(ℓ,linear)
j , and slab variance ṽ

(ℓ,linear)
j where

ρ̃
(ℓ,linear)
j ≡ ρ̃(ℓ,linear) = 1−

nℓ−1+1∏
i=1

(1− ρ̃
(ℓ−1)
i ), m̃

(ℓ,linear)
j =

m
(ℓ)
j

⊤ (
ρ̃(ℓ−1) ◦ m̃(ℓ−1)

)
ρ̃(ℓ,linear)√nℓ−1 + 1

,

(4)

ṽ
(ℓ,linear)
j =

ci
(nℓ−1 + 1) ρ̃(ℓ,linear) −

(
1− ρ̃(ℓ,linear)

)(
m̃

(ℓ,linear)
j

)2
where ◦ indicates the element-wise Hadamard product and

c =V(ℓ)
(
ρ̃(ℓ−1) ◦ m̃(ℓ−1) ◦ m̃(ℓ−1)

)
+
(
M(ℓ) ◦M(ℓ)

)(
ρ̃(ℓ−1) ◦ ṽ(ℓ−1)

)
+V(ℓ)

(
ρ̃(ℓ−1) ◦ ṽ(ℓ−1)

)
+
(
M(ℓ) ◦M(ℓ)

)(
ρ̃(ℓ−1) ◦

(
1− ρ̃(ℓ−1)

)
◦ m̃(ℓ−1) ◦ m̃(ℓ−1)

)
.

If we pass this through a ReLU, we have

ρ̃
(ℓ,ReLU)
j = ρ̃(ℓ,linear)Φ (αj) , m̃

(ℓ,ReLU)
j = m̃

(ℓ,linear)
j + γj

√
ṽ
(ℓ,linear)
j ,

ṽ
(ℓ,ReLU)
j =

(
1− γjαj − γ2

j

)
ṽ
(ℓ,linear)
j

with intermediate values αj = m̃
(ℓ,linear)
j /

√
ṽ
(ℓ,linear)
j and γj = ϕ (αj)/Φ (αj) , where ϕ and Φ are

the PDF and CDF of a standard Gaussian, respectively. Derivations are provided in Appendix A.

4 Empirical analysis

We begin by numerically validating our approximation before exploring how well it performs when
used in a Bayesian FFNN. Code can be found at the anonymous repository https://github.
com/SSPBP/SSPBPcode. All hyperparameters follow those used by Hernández-Lobato and Adams
(2015), unless otherwise stated.

4.1 Quality of the spike-and-slab approximation

To explore why the spike-and-slab approximation should yield a better representation of the propa-
gated probability distributions than a Gaussian, we performed a simulation study. Here, we explore
a ReLU transformation T = ReLU(XW ) applied to the product of two independent Gaussians
X and W . We apply the PBP and SSPBP approximations to determine how the two approaches
would approximate the resultant distribution, then we compare 10,000 samples of the approximate
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distributions to a ground truth sample by computing the maximum mean discrepancy (MMD) with a
squared exponential kernel K(x, y) = exp(−γ(x−y)2), setting γ = 1. The results are summarized
in Table 1. The first two columns show the parameters of the underlying distributions, and the third
column shows the percent of the distribution that is saturated to zero by the ReLU nonlinearity. The
fourth column shows the MMD between two size-10,000 samples from the true distribution, to give
an idea of the scale of the differences. Next, we see the MMD between the PBP approximation
and the true distribution (column 5) and the MMD between our SSPBP approximation and the true
distribution (column 6). We see from these results that, in cases where the true distribution has
non-trivial sparsity, samples from SSPBP more closely match the true distribution compared with
PBP, giving credence to the intuition that a spike-and-slab approximation should improve the PBP
framework.

4.2 Evaluation as part of a Bayesian FFNN

Table 2: Mean and standard error of average test set RMSE of PBP and SSPBP, on eight datasets.

1 Layer
50 Nodes

2 Layers
10 Nodes

Dataset PBP SSPBP PBP SSPBP
Boston Housing 3.554±0.179 3.566±0.198 3.097±0.147 2.997±0.165
Combined Cycle Power Plant 4.117±0.037 4.116±0.033 4.088±0.067 4.096±0.066
Concrete Compression Strength 5.616±0.125 5.662±0.105 6.031±0.161 5.921±0.158
Energy Efficiency 1.857±0.081 1.856±0.079 1.477±0.043 1.660±0.112
Kin8nm 0.098±0.001 0.100±0.001 0.111±0.004 0.109±0.002
Naval Propulsion 0.006±0.000 0.006±0.000 0.006±0.000 0.006±0.000
Wine Quality Red 0.655±0.003 0.654±0.003 0.653±0.012 0.652±0.008
Yacht Hydrodynamics 1.344±0.061 1.367±0.071 1.064±0.072 1.131±0.063

Since our spike-and-slab approximation mimics the sparsity inherent in the FFNN, we expected it
to achieve better performance. To evaluate this, we compared our approach to PBP, modifying the
existing official Theano (Theano Development Team, 2016) implementation, which was released un-
der a BSD 3-Clause “New" or “Revised" License.4 We applied several different model architectures
to eight regression datasets used in Hernández-Lobato and Adams (2015). We trained the models
using 40 training epochs (without early stopping), with an 80%-20% training-test split, repeating
the process five times for each dataset-model comparison (following the original PBP settings). We
report the mean and standard error of the average test set RMSE across those five repetitions in Ta-
ble 2. Running all experiments in Tables 2 and 3 took under 12 hours on an Intel i5 4 core 3.2 GHz
desktop, using CPU computation.

As Table 2 indicates, the performance is comparable across the two models. Disappointingly, there
is no significant difference between the two approaches.

A hint at why this is can be seen by considering the estimate of the spike probability in Equation 4.
Our approximation only captures spikes at zero. However, if our FFNN includes bias terms, this bias
will translate spikes at zero in z(ℓ−1) to non-zero locations in z(ℓ), meaning our approximation will
not capture them. This means all mass is placed on the slab, rendering our approximation identical
to modeling solely with a Gaussian as in the original PBP framework. We show this formally in
Appendix B. The variation in Table 2 is likely due to numerical instability, using different random
seeds, or other similar issues, not as a result of improving the internal approximations of the PBP
framework.

The algorithms do however differ if we do not include a bias term. In Table 3 we repeat our ex-
periments without a bias term. Unfortunately, despite the fact that we are now indeed comparing
different update rules, there remains no significant difference between the algorithms.

We hypothesise that this may be because the slab probabilities ρ̃(ℓ,linear) would tend toward one given
that the product in Equation 4 will tend toward zero in all but the most extreme cases. To test this,

4https://github.com/HIPS/Probabilistic-Backpropagation
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Table 3: Mean and standard error of average test set RMSE for the bias-free versions of PBP and
SSPBP, on eight datasets.
† Due to numerical issues, the trials for this model were repeated with a different random seed.

1 Layer
50 Nodes

2 Layers
10 Nodes

Dataset PBP SSPBP PBP SSPBP
Boston Housing 3.529±0.296 3.544±0.301 3.809±0.295 3.865±0.322
Combined Cycle Power Plant 4.300±0.054 4.295±0.052 4.190±0.017 4.188±0.023
Concrete Compression Strength 7.092±0.108 7.010±0.156 6.823±0.214 6.668±0.237
Energy Efficiency 1.788±0.038 1.789±0.039 1.699±0.041 1.617±0.019
Kin8nm 0.159±0.002 0.158±0.002 0.126±0.001 0.125±0.001†
Naval Propulsion 0.006±0.000 0.006±0.000 0.005±0.000 0.006±0.000
Wine Quality Red 0.621±0.013 0.618±0.013 0.635±0.011 0.633±0.014
Yacht Hydrodynamics 6.200±0.269 6.319±0.282 3.898±0.245 4.276±0.390

we compute ρ̃(ℓ,linear) for the linear layers in several architectures trained on the Boston dataset. See
Table 4 for results. Note that ρ̃(1,linear) is always one by construction, since the signal has not passed
through any nonlinearities. For later layers, even though the signal has passed through nonlinearities,
we see that the slab probability does tend towards one in practice, even for narrow networks.

Table 4: Mean and standard error of the average slab probability in linear layers, ρ̃(ℓ,linear), on test
set observations for various architectures on the Boston dataset. 30 trials were completed for each
choice of hidden layers.
† Some trials removed due to numerical instabilities.

Hidden Layers ρ̃(1,linear) ρ̃(2,linear) ρ̃(3,linear) Output ŷ

5 1.000± 0.000 – – 0.976± 0.007
50 1.000± 0.000 – – 1.000± 0.000

5× 5 1.000± 0.000 0.962± 0.007 – 0.968± 0.006†

50× 50 1.000± 0.000 1.000± 0.000 – 1.000± 0.000
5× 5× 5 1.000± 0.000 0.958± 0.008 0.970± 0.008† 0.971± 0.009†

50× 50× 50 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

5 Discussion

In this paper, we presented SSPBP, a spike-and-slab variant of probabilistic backpropagation. Ulti-
mately, we determine that, empirically and analytically, the use of a spike-and-slab approximation
does not improve performance, despite seeming to be a more intuitive approximation for the prob-
lem. While using a spike-and-slab approximate posterior distribution for model parameters could—
in theory—provide better results in a bias-free FFNN, our investigation of this setting casts doubt
on this intuition: the spike-and-slab approximation is able to model sparsity inherent to the ReLU
activation function but fails to produce better empirical results, likely due to the fact that, in practice,
the slab probability tends to saturate towards one. Possible future directions could include assess-
ing alternative approximations or incorporating spike-and-slab approximations in formulations of
approximate Bayesian inference like variational inference; however, it appears that a Gaussian ap-
proximation is hard to beat.
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Hernández-Lobato and Adams (2015).

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
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of GPUs, internal cluster, or cloud provider)? [Yes]
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A Approximating messages using a spike-and-slab distribution

We take the following for our approximating distribution q, that is, the spike and (non-central) slab:

q̃(z; ρ̃, m̃, ṽ) = (1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ).

We seek to minimize KL(p∥q̃) with respect to ρ̃, m̃, ṽ. Were q̃ a Gaussian, this would be solved
by moment matching m̃ = Ep[X] and ṽ = Vp[X] (Minka, 2001). Here, we derive the appropriate
values of ρ̃, m̃, ṽ. For simplicity, and since we make use of a mean-field approximation, we’ll focus
on a univariate version, similar to PBP’s approach:

min
q̃

KL(p∥q̃) ∝ −
∫
R
p(z) log(q̃(z))dz = −

∫
R
p(z) log ((1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)) dz.

We begin by giving values for m̃, ṽ and ρ̃ in terms of the mean, variance, and probability at zero of
the distribution being approximated.
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A.1 Approximating a distribution with known mean, variance and probability of zero

Slab mean parameter m̃ We begin by seeking to minimize KL(p∥q̃) with respect to the slab’s
mean parameter, m̃:

− d

dm̃

∫
R
p(z) log(q̃(z))dz = −

∫
R
p(z)

∂
∂m q̃(z; ρ̃, m̃, ṽ)

q̃(z; ρ, m̃, ṽ)
dz

= −
∫
R
p(z)

∂
∂m̃ ((1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ))

(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)
dz

= −
∫
R
p(z)

ρ̃N(z; m̃, ṽ)
(
z−m̃
ṽ

)
+ 0

(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)
dz

= −
∫
R
p(z)

ρ̃N(z; m̃, ṽ)
(
z−m̃
ṽ

)
+ (1− ρ̃)δ0(z)

(
z−m̃
ṽ

)
− (1− ρ̃)δ0(z)

(
z−m̃
ṽ

)
(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)

dz

= −
∫
R
p(z)

(
z − m̃

ṽ

)
dz +

∫
R
p(z)

(1− ρ̃)δ0(z)
(
z−m̃
ṽ

)
(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)

dz

= −Ep

[
Z − m̃

ṽ

]
+

∫
R
p(z)

(1− ρ̃)δ0(z)
(
z−m̃
ṽ

)
(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)

dz.

(5)

The integral in the final line of Equation 5 is nontrivial. We approximate this term by considering the
delta function as a limit of the uniform distribution ua(z) = Unif(z; [−1/2a, 1/2a]), such that as
a→∞, we recover the delta function at 0 δ0(z). Because ua is 0 outside the range [−1/2a, 1/2a],
we can restrict the domain of the integral:

I = lim
a→∞

∫
R
p(z)

(1− ρ̃)ua(z)

(1− ρ̃)ua(z) + ρN(z; m̃, ṽ)
f(z)dz

= lim
a→∞

∫ 1/2a

−1/2a

p(z)
(1− ρ̃)a

(1− ρ̃)a+ ρ̃N(z; m̃, ṽ)
f(z)dz.

Under the assumption that (1− ρ̃)a≫ ρN(z; m̃, ṽ) (as a→∞), we have

I ≈ lim
a→∞

∫ 1/2a

−1/2a

p(z)
(1− ρ̃)a

(1− ρ̃)a
f(z)dz = lim

ϵ→0+

∫ ϵ

−ϵ

p(z)f(z)dz.

Setting the derivative in Equation 5 to zero, we have

Ep[Z] ≈ m̃+ lim
ϵ→0+

∫ ϵ

−ϵ

p(z) (z − m̃) dz

= m̃− m̃ lim
ϵ→0+

∫ ϵ

−ϵ

p(z)dz + lim
ϵ→0+

∫ ϵ

−ϵ

p(z)zdz

= m̃− m̃Pp [Z = 0] + 0.

This yields our solution

m̃ =
Ep[Z]

1− Pp [Z = 0]
.
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Slab variance parameter ṽ For the variance parameter ṽ, we similarly obtain:

∂q̃(z; ρ̃, m̃, ṽ)

∂ṽ
= ρ̃

1√
2πṽ

exp

(
− (z − m̃)2

2ṽ

)(
(z − m̃)2 − ṽ

2ṽ2

)
= ρ̃N(z; m̃, ṽ)

(
(z − m̃)2 − ṽ

2ṽ2

)
0 = − d

dṽ

∫
R
p(z) log(q̃(z))dz = −

∫
R
p(z)

∂
∂ṽ q̃(z; ρ̃, m̃, ṽ)

q̃(z; ρ̃, m̃, ṽ)
dz

= −
∫
R
p(z)

ρ̃N(z; m̃, ṽ)
(

(z−m̃)2−ṽ
2ṽ2

)
(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)

dz

= −Ep

[
(Z − m̃)2 − ṽ

2ṽ2

]
+

∫
R
p(z)

(1− ρ̃)δ0(z)
(

(z−m̃)2−ṽ
2ṽ2

)
(1− ρ̃)δ0(z) + ρ̃N(z; m̃, ṽ)

dz

≈ −Ep

[
(Z − m̃)2 − ṽ

2ṽ2

]
+ lim

ϵ→0+

∫ ϵ

−ϵ

p(z)

(
(z − m̃)2 − ṽ

2ṽ2

)
dz.

Thus, we have

Ep[Z
2]− 2m̃Ep[Z] + m̃2 ≈ ṽ

(
1− lim

ϵ→0+

∫ ϵ

−ϵ

p(z)dz

)
+ lim

ϵ→0+

∫ ϵ

−ϵ

p(z)(z2 − 2zm̃+ m̃2)dz

= ṽ(1− Pp[Z = 0]) + m̃2Pp[Z = 0] + 0.

This yields

ṽ =
Ep[Z

2]− 2m̃Ep[Z] + m̃2(1− Pp[Z = 0])

1− Pp[Z = 0]

=
1

1− Pp[Z = 0]

(
Vp[Z]− Ep[Z]2Pp[Z = 0]

1− Pp[Z = 0]

)
.

Slab probability parameter ρ̃ Finally, for the mass of the slab ρ̃, we have

∂q̃(z; ρ̃, m̃, ṽ)

∂ρ̃
= N(z; m̃, ṽ)− δ0(z)

0 = − d

dρ̃

∫
R
p(z) log(q̃(z))dz = −

∫
R
p(z)

∂
∂ρ̃q(z; ρ̃, m̃, ṽ)

q̃(z; ρ̃, m̃, ṽ)
dz

= −
∫
R
p(z)

N(z; m̃, ṽ)− δ0(z)

ρ̃N(z; m̃, ṽ) + (1− ρ̃)δ0(z)
dz

= −
∫
R
p(z)

1

ρ̃

ρ̃N(z; m̃, ṽ)− ρ̃δ0(z)− δ0(z) + δ0(z)

ρ̃N(z; m̃, ṽ) + (1− ρ̃)δ0(z)
dz

= −1

ρ̃

∫
R
p(z)dz +

1

ρ̃

∫
R
p(z)

δ0(z)

ρ̃N(z; m̃, ṽ) + (1− ρ̃)δ0(z)
dz

≈ −1

ρ̃
+

1

ρ̃
lim

ϵ→0+

∫ ϵ

−ϵ

p(z)
1

1− ρ̃
dz

= −1

ρ̃
+

1

ρ̃(1− ρ̃)
Pp[Z = 0],

yielding the simple and intuitive result:

ρ̃ = 1− Pp[Z = 0].
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A.1.1 Connection to moment matching

As it turns out, minimizing KL(p∥q) for the spike-and-slab turns out to be equivalent to matching
the slab probability and then matching the first and second moments:

Pq̃[Z = 0] = 1− ρ̃

Eq̃[Z] = ρ̃m̃

Vq̃[Z] = Eq̃

[
Z2
]
− Eq̃[Z]2

= ρ̃(m̃2 + ṽ)− ρ̃2m̃2.

Substituting in the values of (ρ̃, m̃, ṽ) obtained above in the KL-minimization, we find that we yield
the highly intuitive result:

Pp[Z = 0] = Pq̃[Z = 0], Ep[Z] = Eq̃[Z], Vp[Z] = Vq̃[Z].

A.2 Message parameters following a linear layer

Above, we established the values of parameters (ρ̃, m̃, ṽ) in terms of properties of the distribution we
intend to approximate. We now shift our focus to deriving the specific values for the transformations
that occur within spike-and-slab PBP, namely a linear combination and a ReLU. We begin with the
linear combination z

(ℓ,linear)
j =

∑
i z

(ℓ−1)
i wij , seeking the values of Ep[z

(ℓ,linear
j ],Vp[z

(ℓ,linear
j ], and

Pp[z
(ℓ,linear
j = 0] under the assumption that

z
(ℓ−1)
i

ind∼ (1− ρ̃
(ℓ−1)
i )δ0 + ρ̃(ℓ−1)N(m̃(ℓ−1), ṽ(ℓ−1))

wij
ind∼ N(mij , vij).

From this, we can calculate the mean and variance

E
[
z
(ℓ,linear)
j

]
=
∑
i

(ρ̃
(ℓ−1)
i m̃

(ℓ)
i )mij

V
[
z(ℓ,linear)

]
=
∑
i

ρ̃
(ℓ−1)
i (m̃

(ℓ−1)
i )2vij + ρ̃

(ℓ−1)
i ṽ

(ℓ−1)
i m2

ij

+ ρ̃
(ℓ−1)
i ṽ

(ℓ−1)
i vij + ρ̃

(ℓ−1)
i (1− ρ̃

(ℓ−1)
i )(m̃

(ℓ−1)
i )2m2

ij .

Now, incorporating the rescaling transformation used by Hernández-Lobato and Adams (2015),
z(ℓ,linear) = W(ℓ)z(ℓ−1)/

√
nℓ−1 + 1 we have

E
[
z(ℓ,linear)

]
= M(ℓ)

(
ρ̃(ℓ−1) ◦ m̃(ℓ−1)

)
/
√
nℓ−1 + 1

V
[
z(ℓ,linear)

]
=
[
V(ℓ)

(
ρ̃(ℓ−1) ◦ m̃(ℓ−1) ◦ m̃(ℓ−1)

)
+
(
M(ℓ) ◦M(ℓ)

)(
ρ̃(ℓ−1) ◦ ṽ(ℓ−1)

)
+
(
M(ℓ) ◦M(ℓ)

)(
ρ̃(ℓ−1) ◦

(
1− ρ̃(ℓ−1)

)
◦ m̃(ℓ−1) ◦ m̃(ℓ−1)

)
+ V(ℓ)

(
ρ̃(ℓ−1) ◦ ṽ(ℓ−1)

)]/
(nℓ−1 + 1)

P
[
z(ℓ,linear) = 0

]
=
∏
i

(1− ρ̃
(ℓ−1)
i ).

Combining these moments with the general forms derived earlier, we have the following equations
(replacing Equations 13-14 of the original PBP method) for the distribution of linear layers in SSPBP
with parameters ρ̃(ℓ,linear), m̃(ℓ,linear), ṽ(ℓ,linear):
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ρ̃
(ℓ,linear)
j = 1−

∏
i

(1− ρ̃
(ℓ−1)
i )

ρ̃(ℓ,linear) ◦ m̃(ℓ,linear) =
M(ℓ(ρ̃(ℓ−1) ◦ m̃(ℓ−1))√

nℓ−1 + 1

ρ̃(ℓ,linear) ◦ ρ̃(ℓ,linear) ◦ ṽ(ℓ,linear) = ρ̃(ℓ,linear) ◦ V
[
z(ℓ,linear)

]
− (1− ρ̃(ℓ,linear))E

[
z(ℓ,linear)

]2
ρ̃(ℓ,linear) ◦ (nℓ−1 + 1)ṽ(ℓ,linear) =

V(ℓ)
(
ρ̃(ℓ−1) ◦ m̃(ℓ−1) ◦ m̃(ℓ−1)

)
+
(
V(ℓ) +M(ℓ) ◦M(ℓ)

)(
ρ̃(ℓ−1) ◦ ṽ(ℓ−1)

)
+
(
M(ℓ) ◦M(ℓ)

)(
ρ̃(ℓ−1) ◦

(
1− ρ̃(ℓ−1)

)
◦ m̃(ℓ−1) ◦ m̃(ℓ−1)

)
.

(6)

A.3 Message parameters following a linear layer plus ReLU activation

We now consider passing the messages from Equation 6 through a ReLU, to get the parameters
(ρ̃(ℓ,ReLU), m̃(ℓ,ReLU), ṽ(ℓ,ReLU)) of the resulting message.

To compute these parameters, it’s useful to employ a hierarchical model:

Ai ∼ (1− ρ̃
(ℓ,linear)
i )δ0 + ρ̃

(ℓ,linear)
i N(m̃(ℓ,linear), ṽ(ℓ,linear))

Ti ∼ Ber(ρ̃(ℓ,linear)
i )

Ai|Ti = 0 ∼ δ0

Ai|Ti = 1 ∼ N(m̃
(ℓ,linear)
i , ṽ

(ℓ,linear)
i )

Bi|Ai = a = ReLU(a) = max(a, 0),

implying

Bi ∼

1− ρ̃
(ℓ,linear)
i Φ

 m̃
(ℓ,linear)
i√
ṽ
(ℓ,linear)
i

)δ0

+ ρ̃
(ℓ,linear)
i Φ

 m̃
(ℓ,linear)
i√
ṽ
(ℓ,linear)
i

TN(0,∞)

(
m̃

(ℓ,linear)
i , ṽ

(ℓ,linear)
i

)

where TN indicates a truncated normal. Similarly, let’s now introduce a hierarchy for Bi, along with
a “dummy” variable Xi to make the notation below a little more straightforward:

Li ∼ Ber

ρ̃
(ℓ,linear)
i Φ

 m̃
(ℓ,linear)
i√
ṽ
(ℓ,linear)
i


Bi|Li = 0 ∼ δ0

Xi ∼ TN(0,∞)

(
m̃

(ℓ,linear)
i , ṽ

(ℓ,linear)
i

)
Bi|Li = 1 ∼ δXi

.

Thus, E[Xi],V[Xi], etc. correspond to the conditional expectation and variance E[Bi|Li =
1],V[Bi|Li = 1].
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We next compute the moments of (ρ̃(ℓ,ReLU), m̃(ℓ,ReLU), ṽ(ℓ,ReLU)) by the moment-matching we de-
rived above:

P[Bi = 0] =P[Li = 0] = 1− ρ̃
(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

)
E[Bi] =E [E[Bi|Li]] = P[Li = 0] · 0 + P[Li = 1]E[Xi]

=P[Li = 1]E[Xi] = ρ̃
(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

)
E[Xi]

V[Bi] =E[B2
i ]− E[Bi]

2 = P[Li = 0] · 0 + P[Li = 1]E[X2
i ]− (P[Li = 1]E[Xi])

2

=P[Li = 1]E[X2
i ]− P[Li = 1]2E[Xi]

2

=ρ̃
(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

)
E[X2]

−
(
ρ̃
(ℓ,linear)
i

)2
Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

)2

E[Xi]
2.

Using the spike-and-slab moment-matching results above, we obtain:

ρ̃
(ℓ,ReLU)
i = 1− P[Bi = 0] = 1−

(
1− ρ̃

(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

))
= ρΦ

(
m√
v

)

m̃
(ℓ,ReLU)
i =

E[Bi]

ρ̃
(ℓ,ReLU)
i

=

ρ̃
(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

)
E[Xi]

ρ̃
(ℓ,linear)
i Φ

(
m̃

(ℓ,linear)
i

/√
ṽ
(ℓ,linear)
i

) = E[Xi]

ṽ
(ℓ,ReLU)
i =

V[Bi]− ρ̃
(ℓ,ReLU)
i

(
1− ρ̃

(ℓ,ReLU)
i

)(
m̃

(ℓ,ReLU)
i

)2
ρ̃
(ℓ,ReLU)
i

= E[X2
i ]− E[Xi]

2 = V[Xi].

In other words, we match the probability mass of the spike and match the mean and variance in
our normal approximation to the mean and variance of the truncated normal! This yields our final
message parameters,

m̃
(ℓ,ReLU)
i = m̃

(ℓ,linear)
i + γi

√
ṽ
(ℓ,linear)
i

ṽ
(ℓ,ReLU)
i = ṽ

(ℓ,linear)
i

1− γi

γi +
m̃

(ℓ,linear)
i√
ṽ
(ℓ,linear)
i


ρ̃
(ℓ,ReLU)
i = ρ̃

(ℓ,linear)
i Φ

 m̃
(ℓ,linear)
i√
ṽ
(ℓ,linear)
i



γi =

ϕ

(
m̃

(ℓ,linear)
i√
ṽ
(ℓ,linear)
i

)

Φ

(
m̃

(ℓ,linear)
i√
ṽ
(ℓ,linear)
i

) .

The intermediate parameter γi can be replaced with a “robust” version as appropriate, following
(Hernández-Lobato and Adams, 2015).

A.4 Normalization Constant

The normalization constant Z of Hernández-Lobato and Adams (2015) in Equation 12 (and its
uses elsewhere in the automatic differentiation for the model parameters) is modified slightly in our
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approach. As final output parameters, we produce (ρ̃(L), m̃(L), ṽ(L)), along with the homoscedastic
noise estimate βγ/(αγ − 1) (unchanged from PBP). As such, the relevant replacement for Equation
12 of (Hernández-Lobato and Adams, 2015) is

Z ≈ (1− ρ̃(L))N(yn|0, βγ/(αγ − 1)) + ρ(L)N(yn|m̃(L), βγ/(αγ − 1) + ṽ(L)).

B In the presence of a bias term, PBP is numerically equivalent to SSPBP

Here, we show that after the linear combination step, the models produce the same resultant distri-
bution. Consider the following model for the output Y of a single node (for simplicity in notation)
with random K-dimensional input x, noting that this corresponds exactly to the first hidden layer’s
activation function and the second layer’s linear combination step5:

xi ∼ N(m̃i, ṽi), i = 1 : K

ti|xi = ReLU(xi), i = 1 : K

tK+1 ∼ δ1 = N(1, 0) ← the bias term
wi ∼ N(mi, vi), i = 1 : K + 1

y|t,w =
1√

K + 1
w⊤t.

Following Hernández-Lobato and Adams (2015), we also assume

αi =
m̃i√
ṽi

γi =
ϕ(αi)

Φ(αi)

v′i = m̃i + ṽiγi.

B.1 Parameters of the PBP message

Under standard PBP, we model the distribution of ti with a Gaussian with mean m
(t)
i and variance

v
(t)
i , where

m
(t)
i = Φ(αi)v

′
i, i = 1 : K, m

(t)
K+1 = 1,

v
(t)
i = (1− Φ(αi))m

(t)
i v′i +Φ(αi)vi(1− γi(γi + αi)), i = 1 : K,

= Φ(αi)(1− Φ(αi))(v
′
i)

2 +Φ(αi)vi(1− γi(γi + αi)), v
(t)
K+1 = 0.

We then approximate the distribution of y using a Gaussian with mean m(y) and variance v(y), where

m(y) =
1√

K + 1
m⊤m(t) =

1√
K + 1

(
mK+1 +

K∑
i=1

miΦ(αi)v
′
i

)
(K + 1)v(y) = (m ◦m+ v)

⊤
v(t) + v⊤(m(t) ◦m(t))

= vK+1 +

K∑
i=1

(m2
i + vi)(1− Φ(αi))Φ(αi)(v

′
i)

2

+ (m2
i + vi)Φ(αi)ṽi(1− γi(γi + αi)) + viΦ(αi)

2(v′i)
2.

(7)

5The factor 1/
√
K + 1 “keeps the scale of the input to each neuron independent of the number of incoming

connections.” (Hernández-Lobato and Adams, 2015)

14



Table 5: Mean and standard error of average test set RMSE of PBP and SSPBP, on eight datasets.

1 Layer
10 Nodes

1 Layer
100 Nodes

Dataset PBP SSPBP PBP SSPBP
Boston Housing 3.787±0.344 3.789±0.351 3.432±0.244 3.437±0.255
Combined Cycle Power Plant 4.057±0.046 4.068±0.042 4.157±0.025 4.159±0.024
Concrete Compression Strength 6.221±0.222 6.426±0.184 5.565±0.056 5.574±0.028
Energy Efficiency 2.100±0.082 2.086±0.077 1.879±0.063 1.898±0.069
Kin8nm 0.140±0.002 0.137±0.003 0.091±0.000 0.091±0.001
Naval Propulsion 0.009±0.000 0.009±0.000 0.004±0.000 0.004±0.000
Wine Quality Red 0.619±0.010 0.617±0.009 0.630±0.014 0.628±0.014
Yacht Hydrodynamics 1.769±0.197 1.747±0.177 1.220±0.057 1.176±0.054

B.2 Parameters of the SSPBP message

We repeat our analysis using spike-and-slab approximations, so the distribution of ti is parameter-
ized by (ρ

(t)
i ,m

(t)
i , v

(t)
i ), and the distribution of y is parameterized by (ρ(y),m(y), v(y)), such that

ρ
(t)
i = Φ(αi), i = 1 : K, ρ

(t)
K+1 = 1,

m
(t)
i = v′i, i = 1 : K, m

(t)
K+1 = 1,

v
(t)
i = ṽi(1− γi(γi + αi)), i = 1 : K v

(t)
K+1 = 0,

and

ρ(y) = 1−
K+1∏
i=1

(1− ρ
(t)
i ) = 1−

K∏
i=1

(1− Φ(αi))(1− 1) = 1

m(y) =
1√

K + 1

K+1∑
i=1

miρ
(t)
i m

(t)
i

=
1√

K + 1

(
mK+1 +

K∑
i=1

miΦ(αi)v
′
i

)
(K + 1)v(y) = −ρ(y)(1− ρ(y))(m(y))2 + v⊤(ρ(t) ◦m(t) ◦m(t))

+ (m ◦m+ v)⊤(ρ(t) ◦ v(t))

+ (m ◦m)⊤(ρ(t) ◦ (1− ρ(t)) ◦m(t) ◦m(t))

= vK+1 +

K∑
i=1

(m2
i + vi)(1− Φ(αi))Φ(αi)(v

′
i)

2

+ (m2
i + vi)Φ(αi)ṽi(1− γi(γi + αi)) + viΦ(αi)

2(v′i)
2.

(8)

Comparing Equations 7 and 8, we see the two methods are exactly equivalent after a linear combi-
nation step, with slab probability equal to 1 in the spike-and-slab variant. As such, any future hidden
layers will behave identically. In the regression setting of PBP, the final transformation is solely a
linear combination, so the final output is the same.

C Additional Empirical Results

We include here additional results for RMSE and log-likelihood of different model configurations.
Table 5 and Table 6 report the RMSE and log-likelihood for the standard version of PBP and SSPBP,
respectively. Similarly, Table 7 and Table 8 report the RMSE and log-likelihood of the “bias-free”
versions of PBP and SSPBP, respectively.

15



Table 6: Mean and standard error of the test set log-likelihood of PBP and SSPBP, on eight datasets.

1 Layer
10 Nodes

1 Layer
100 Nodes

Dataset PBP SSPBP PBP SSPBP
Boston Housing -2.810±0.140 -2.823±0.141 -2.727±0.106 -2.725±0.111
Combined Cycle Power Plant -2.821±0.010 -2.824±0.010 -2.844±0.006 -2.845±0.006
Concrete Compression Strength -3.253±0.039 -3.284±0.032 -3.136±0.011 -3.138±0.006
Energy Efficiency -2.179±0.053 -2.169±0.047 -2.056±0.034 -2.066±0.038
Kin8nm 0.549±0.017 0.567±0.021 0.968±0.003 0.975±0.005
Naval Propulsion 3.275±0.008 3.276±0.005 3.949±0.005 3.945±0.006
Wine Quality Red -0.941±0.017 -0.937±0.015 -0.959±0.027 -0.955±0.026
Yacht Hydrodynamics -2.022±0.083 -2.012±0.070 -1.751±0.017 -1.739±0.011

1 Layer
50 Nodes

2 Layers
10 Nodes

Dataset PBP SSPBP PBP SSPBP
Boston Housing -2.771±0.076 -2.787±0.087 -2.576±0.073 -2.535±0.076
Combined Cycle Power Plant -2.834±0.009 -2.834±0.008 -2.828±0.017 -2.830±0.016
Concrete Compression Strength -3.149±0.025 -3.157±0.022 -3.218±0.028 -3.201±0.029
Energy Efficiency -2.049±0.042 -2.047±0.041 -1.802±0.025 -1.878±0.047
Kin8nm 0.901±0.008 0.885±0.010 0.784±0.034 0.799±0.015
Naval Propulsion 3.725±0.006 3.717±0.007 3.713±0.019 3.686±0.005
Wine Quality Red -1.002±0.006 -1.001±0.006 -1.009±0.025 -1.003±0.016
Yacht Hydrodynamics -1.767±0.027 -1.775±0.031 -1.714±0.054 -1.749±0.032

Table 7: Mean and standard error of average test set RMSE of the bias-free versions of PBP and
SSPBP, on eight datasets.

1 Layer
10 Nodes

1 Layer
100 Nodes

Dataset PBP SSPBP PBP SSPBP
Boston Housing 4.120±0.104 4.061±0.149 3.279±0.146 3.260±0.124
Combined Cycle Power Plant 4.330±0.033 4.335±0.026 4.208±0.049 4.207±0.047
Concrete Compression Strength 8.240±0.081 8.242±0.102 6.726±0.190 6.718±0.183
Energy Efficiency 2.060±0.059 2.054±0.067 1.901±0.051 1.901±0.052
Kin8nm 0.165±0.001 0.165±0.001 0.156±0.002 0.156±0.002
Naval Propulsion 0.009±0.000 0.009±0.000 0.005±0.000 0.005±0.000
Wine Quality Red 0.642±0.003 0.636±0.004 0.637±0.008 0.635±0.007
Yacht Hydrodynamics 6.248±0.381 6.275±0.353 7.233±0.486 6.215±0.152
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Table 8: Mean and standard error of the test set log-likelihood of bias-free versions of PBP and
SSPBP, on eight datasets.
† Due to numerical issues, the five trials for this model were repeated with a different random seed.
‡ Due to numerical issues, we report results from seven trails out of ten that yielded finite values for
the test set log-likelihood.

1 Layer
10 Nodes

1 Layer
100 Nodes

Dataset PBP SSPBP PBP SSPBP
Boston Housing -2.912±0.051 -2.891±0.057 -2.597±0.048 -2.589±0.040
Combined Cycle Power Plant -2.885±0.008 -2.886±0.006 -2.857±0.012 -2.856±0.011
Concrete Compression Strength -3.551±0.015 -3.555±0.018 -3.327±0.029 -3.326±0.028
Energy Efficiency -2.151±0.033 -2.148±0.038 -2.067±0.026 -2.068±0.027
Kin8nm 0.382±0.005 0.395±0.003† 0.441±0.014 0.441±0.013
Naval Propulsion 3.251±0.008 3.239±0.008 3.885±0.006 3.895±0.012
Wine Quality Red -0.978±0.006 -0.969±0.007 -0.969±0.013 -0.965±0.013
Yacht Hydrodynamics -3.285±0.079 -3.291±0.076 -3.335±0.046 -3.213±0.027

1 Layer
50 Nodes

2 Layers
10 Nodes

Dataset PBP SSPBP PBP SSPBP
Boston Housing -2.699±0.105 -2.709±0.108 -2.944±0.191 -2.916±0.146
Combined Cycle Power Plant -2.879±0.013 -2.878±0.012 -2.852±0.004 -2.851±0.006
Concrete Compression Strength -3.385±0.019 -3.373±0.026 -3.343±0.034 -3.349±0.033‡

Energy Efficiency -2.011±0.017 -2.010±0.019 -1.902±0.018 -1.850±0.021
Kin8nm 0.421±0.013 0.424±0.012 0.655±0.009 0.662±0.005†

Naval Propulsion 3.673±0.006 3.658±0.006 3.772±0.029 3.703±0.021
Wine Quality Red -0.944±0.023 -0.939±0.022 -0.974±0.022 -0.986±0.025
Yacht Hydrodynamics -3.264±0.055 -3.290±0.059 -2.687±0.054 -2.730±0.068
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