
Tight Bounds for Maximum Weight Matroid
Independent Set and Matching in the Zero

Communication Model

Ilan Doron-Arad
Department of Computer Science

Technion
ilan.d.a.s.d@gmail.com

Abstract

Recent years have revealed an unprecedented demand for AI-based technology,
leading to a common setting where immense data is distributed across multiple
locations. This creates a communication bottleneck among the storage facilities,
often aiming to jointly solve tasks of small solution size k from input of astro-
nomically large size n. Motivated by federated and distributed machine learning
applications, we study two fundamental optimization problems, maximum weight
matroid independent set (MW-IS) and maximum weight matching (MWM), in a zero
communication computational model. In this model, the data is dispersed between
m servers. Without any communication, each server has to send a message to
a central coordinator which is required to compute an optimal solution for the
original (large) instance. The goal is to minimize the size of the maximum message
sent. For this natural restrictive model, we obtain deterministic algorithms that use
O(k)-data per server for MW-IS and O

(
k2

)
-data per server for MWM, where k is

the solution size (given to each server). We complement these results with tight
lower bounds – ruling out any asymptotic improvement even if randomization is
allowed. Our algorithms are simple and run in nearly linear time. Interestingly,
we show how our zero communication algorithms yield deterministic parallel al-
gorithms with running times O

(√
k · logn

)
and O

(
k4 · log n

)
for MW-IS and

MWM, respectively.

1 Introduction

Recent years have revealed an unprecedented demand for AI-based technology. Consequently, data
and computing resources are often distributed across multiple locations [61, 59, 42] either due to
difficulties of storing immense data in a single location [17] or privacy and security concerns [41].
Furthermore, communication among the storage facilities is often a bottleneck or prohibited.

This data storage shift has a significant effect on the relevant algorithmic model of computation.
Classic sequential algorithms, where the entire data is given to a single processor, are no longer
applicable to the most urgent algorithmic challenges we face today. In response, the algorithmic
community focuses on the core fundamental problems on new computational models. This include
distributed algorithms [44], parallel computing [54], online algorithms [2], dynamic and streaming
algorithms [49], and many more computational models.

Motivated by federated and distributed machine learning applications [59, 40, 42], this work focuses
on an ultra-restrictive model of computation, which allows zero communication between different
parties (aka, servers) holding parts of large data. Each server sends without any communication a
subset of its data to a central coordinator who is obligated to find an optimal solution for the original

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

instance. The goal is to minimize the amount of data sent. We often consider problems where the
solution size k is significantly smaller than the overall input size n. This model is a one-round
message-passing model described more formally below.

1.1 The Zero Communication Model

Before the definition of the model, we define the class of problems appropriate for the model.
We consider the general class of weighted subset selection problems such as weighted matroid
optimization and maximum weight matching. In a general subset selection problem P parameterized
by solution size, an instance is described as I = (E,w, k), where E is a set of elements, w : E → IR
is a weight function, and k ∈ IN is a cardinality constraint (upper bound) on the solution size; we
henceforth refer to k as the solution size with a slight abuse of notation. Moreover, there exists a set
F ⊆ 2E of feasible solutions, which are usually not given explicitly in the input but must be inferred
computationally. The goal is generally to find S ∈ F such that |S| ≤ k and

∑
e∈S w(e) is optimized

– either maximized or minimized. For the following definitions, fix some subset selection problem P
and an instance I = (E,w, k) of P .

In this model, the set E is partitioned E1, . . . , Em between m servers for some m ∈ IN and each
server also receives the parameter k. In a feasible selection of the given instance, each i ∈ {1, . . . ,m}
selects E′

i ⊆ Ei without any communication with any other server j ∈ {1, . . . ,m} \ {i}; then, server
i sends {(e, w(e))}e∈E′

i
(that is, an explicit encoding of the selected elements and their weights)

to a central coordinator, such that
⋃

i∈{1,...,m} E
′
i must contain an optimal solution for I: there is

S ⊆
⋃

i∈{1,...,m} E
′
i such that S is an optimal solution for the instance. The goal is to find a feasible

selection of I that minimizes the maximum message size per server: maxi∈{1,...,m} |E′
i|. For some

d ∈ IN , we refer to an algorithm in this model as a d-data algorithm if each server transmits at most
d element-weight pairs to the coordinator: d ≥ maxi∈{1,...,m} |E′

i|.1

An algorithm is a randomized (respectively, deterministic) d-data algorithm if it uses d-data and
yields a feasible selection with probability at least 1

2 (probability 1 and does not use any form of
randomness). The only form of randomness considered in the paper is on the feasibility (Monte
Carlo) and does not consider random algorithms with a random bound on the running time (Las
Vegas). We emphasize that despite the name, the zero communication model allows one-directional
communication between a server and the coordinator, but prohibits communication between any two
servers.

The above paragraph assumes an explicit data model, where each element and its weight are explicitly
communicated. However, this model can be easily generalized such that each server i sends some
encoded message from which the coordinator can decode {(e, w(e))}e∈E′

i
. Due to Shannon’s source

coding theorem [58], it holds that Ω (log |F|) bits are required to be sent for uniquely distinguishing
between all pairs of solutions in F , which implies that for exponential size solution set F the explicit
data encoding cannot be asymptotically improved under unique encoding. Moreover, the elements
may have large metadata (e.g., large weights) and their encoding size may fluctuate dramatically.
Therefore, we focus on simple explicit encoding of {(e, w(e))}e∈E′

i
for the messages and use the

well-defined number of elements sent rather than the size of the message.

As an example, consider the maximum weight matching (MWM) problem in the zero communication
model. Consider a graph G = (V,E) and a weight function on the edges w : E → IR. The edge set
E is partitioned between m servers E1, . . . , Em. Each server i ∈ {1, . . . ,m} sends a subset of the
given edges and their weights {(e, w(e))}e∈E′

i
to the coordinator, such that

⋃
i∈{1,...,m} E

′
i contains

a maximum weight matching of G with respect to w. Some of our results are tight bounds for the
number of edges required to be sent from each server in this model.

Motivation AI and ML applications use more than ever before data distributed across multiple
locations such as data centers [60], hospitals [35], or edge devices [45]. Task assignment problems
(or, matching) naturally appear in such a distributed setting: Each vertex represents an agent and
the algorithm aims to select an optimal assignment of agents to tasks, where the servers hold only
partial information on a subset of the agents. For example, in medical settings, patient data may be
partitioned across hospitals due to privacy or logistical constraints [56, 35]. Similar scenarios occur

1An alternative objective is to minimize the total communication, resulting with a similar model.

2

in recommendation systems and federated learning, where we aim to solve combinatorial problems
efficiently despite limited communication.

Another motivation for studying this model is its ability to derive parallel algorithms in a standard
computational model, as we demonstrate in this paper. Furthermore, the zero communication model
allows to distinguish between the difficulty of problems in a common distributed setting. Knowing
which problems exhibit this property can have practical implications and enable robust algorithms that
do not have to process large data on a single processor. Finally, the model generalizes well-studied
problems in the literature, such as one-direction communication, making it a natural extension of
prior work (see Section 1.3).

1.2 Our Results

Despite the plethora of research works on maximum weight matching and matroid independent set
in various models, some fundamental questions are still present. This paper studies the elementary
question of how much data from multiple servers needs to be delivered to solve a fundamental
problem optimally with zero communication between the servers. This is particularly interesting
when the solution size k is small – the optimal solution does not require most data in the input. Our
main results are tight bounds for these problems in the zero communication model and their direct
implications to parallel algorithms, giving bounds that depend on the solution size k. We begin with
formal definitions of the considered problems.

Maximum Weight Matroid Independent Set (MW-IS) Consider a finite ground set E and let
I ⊆ 2E be a non-empty set of subsets of E called the independent sets of E. The set system
M = (E, I) is a matroid if (i) for all A ∈ I and B ⊆ A it holds that B ∈ I; (ii) for any A,B ∈ I
where |A| > |B| there is e ∈ A \B such that B ∪ {e} ∈ I. In the MW-IS problem, given a matroid
(E, I) and a weight function w : E → IR on the elements, the goal is to find a maximum weight
independent set: S ∈ I such that

∑
e∈S w(e) is maximized. Additionally, this problem can be

considered in a parametric setting, where the input also consists of a bound k ∈ IN and the chosen IS
has to be of cardinality bounded by k. We refer to this problem as k-MW-IS. As this variant is more
general (using matroid truncation), our results are described for k-MW-IS and hold also for MW-IS.

Maximum Weight Matching (MWM) Let G = (V,E) be a graph, and let w : E → IR be a
weight function on the edges. The goal is to find a matching M (a set of pairwise disjoint edges) that
maximizes

∑
e∈M w(e). Similarly to MW-IS, a variant of this problem is k-MWM, where the input

also consists of a bound k ∈ IN on the cardinality of the maximum matching that can be selected.

Throughout the paper, k denotes the size of an optimal solution for a given problem (in most
cases, either MW-IS or MWM) and n = |E| denotes the input size. Let Õ, Ω̃ denote big-O,Ω
notations, respectively, suppressing logarithmic factors in n. Our main algorithmic results in the zero
communication model are given below. These algorithms are deterministic and run in nearly linear
time. In addition, these results hold even if the inputs to some of the servers overlap. Interestingly,
our algorithm for MW-IS does not require the servers to know the parameter k; on the other hand,
this parameter is necessary for our MWM algorithm (i.e., the result holds for k-MWM).
Theorem 1.1. There is a deterministic k-data algorithm for k-(MW-IS) and MW-IS. Moreover,
for each server i ∈ [m] the running time of server i is Õ(

√
|Ei|) parallel time, or Õ(|Ei|) non-

parallel time.

In a similar setting, we give a result for MWM as well.
Theorem 1.2. There is a deterministic O

(
k2

)
-data algorithm for k-MWM. Moreover, for each

server i ∈ [m] the running time of server i is Õ(|Ei|).

We complement the above algorithms with tight lower bounds. These lower bounds rule out any
qualitative improvement of our algorithms, even if randomization is allowed.
Theorem 1.3. There is no randomized o(k)-data algorithm for k-MW-IS.

We note that Theorem 1.3 holds for every n,m, k, c ∈ IN \ {0} such that n = c · k ·m and m = k,
where n is the number of elements, m is the number of servers, k is the solution size, and c is
an additional integer parameter. In particular, the above result holds for arbitrarily large n with

3

respect to k,m, and uses only two distinct weights. Moreover, for deterministic algorithms, the
bound rules out (k − 2)-data algorithms and is effectively tight. Finally, the result also applies to any
number of communication rounds with the coordinator and not necessarily one round of one-way
communication.

Similarly to MW-IS, We give a tight lower bound for k-MWM.
Theorem 1.4. For every k ∈ IN , there is no randomized o

(
k2

)
-data algorithm for k-MWM.

The above lower bound use weighted instances. We give an additional easy lower bound for
unweighted MWM instances, or, maximum cardinality matching (MCM)) instances.

Theorem 1.5. For every even k ≥ 2 there is no deterministic
(
k−1
2

)
-data algorithm for k-MCM.

The above algorithmic results in the zero communication model follow from the structural properties
of the given problem. Interestingly, these algorithms lead to simple deterministic parallel algorithms
for MW-IS and MWM, significantly strengthening the running time guarantee for small solution size
k. As in various previous works on the subject (e.g., [37, 48, 50, 28]) we assume that the weights
are poly-logarithmic in the size of the ground set: w(e) = polylog(n) for every e ∈ E. Dropping
this practical assumption would change the guarantee of our algorithms to linearly depend on the
maximum representation size in bits of any of the weights. We start with MW-IS, and give a sub-linear
parallel running time in the rank of the matroid (effectively equivalent to the parameter k using
matroid truncation).

Theorem 1.6. There is a deterministic parallel Õ(
√
k) time algorithm for k-MW-IS.

The above algorithm works for general matroids, unlike parallel efficient (RNC algorithms, see
Section 1.3) that can be applied only to linear matroids [37, 48, 50].

Theorem 1.7. There is a deterministic parallel Õ
(
k3

)
time algorithm for k–MWM.

We note that the above statement holds for general graphs, and the running time bound may be
improved for special cases of the problems, such as bipartite graphs. Using the above result as a
black-box, we obtain a parallel algorithm for MWM (without a cardinality constraint).

Theorem 1.8. There is a deterministic parallel Õ
(
k4

)
time algorithm for MWM.

A summary of our main results is given in Table 1.

Problem Zero Communication Parallel Time

Algorithm Lower Bound Algorithm

k-Max Weight Matroid IS k Ω(k) Õ(
√
k)

k-Max Weight Matching O
(
k2

)
Ω
(
k2

)
Õ
(
k3

)
Table 1: Our main results. In the table, k denotes the solution size. The zero communication
algorithms are deterministic and the lower bounds also rule out randomized algorithms.

1.3 Related Work

There has been extensive work on matching and matroid optimization in similar models to those
studied in this paper. However, the majority of these works focus on approximation algorithms. In the
one-round communication complexity model [29, 36], the input is partitioned between two players
Alice and Bob. Alice sends a single message to Bob, and Bob outputs an answer using his input
and the message received from Alice. Maximum matching in this model was first studied by Goel,
Kapralov, and Khanna [29], who designed an algorithm that achieves a 2

3 -approximation in bipartite
graphs using only O(n) communication and proved that any better than 2

3 -approximation algorithms
would require at least n1+Ω(1

log log n) communication complexity. This holds even on bipartite graphs
(see also [4]). Later, Lee and Singla [47] obtained a 3

5 -approximation algorithm for general graphs.

Assadi and Bernstein [3] obtained a 2/3-approximation for maximum matching in the one-round
communication complexity; they also obtained approximation algorithms for stochastic matching

4

[11, 6, 5] (finding a maximum matching in a random graph) and fault-tolerance [13, 8, 12] matching
(preserving an approximation guarantee even if any sufficiently small subset of edges is removed from
the graph), where all of their results use the edge-degree constrained sub-graph (EDCS) matching
construction originating in [10]. The EDCS matching construction has been generalized to matroid
intersection by Huang et al. [32], achieving roughly the same approximation ratio of

(
2
3 − ε

)
in the

one-round communication complexity model.

In the Message-Passing Model [16, 33, 53, 34], each server (or player) receives a part of the input
and communication is possible between all pairs of servers. After some communication between
the servers, the mutual goal is to send a message to a coordinator that computes some function of
the input while minimizing the total communication complexity. For simultaneous protocols (the
messages are sent simultaneously to the coordinator) Assadi et al. [7] obtained tight randomized
α-approximation for maximum matching for α ≤ 1√

m
with total communication of O(n ·m · α2)

and a deterministic protocol with total communication of O(n ·m · α), where n is the number of
vertices and m is the number of servers. For non-simultaneous setting, there is a tight Θ

(
α2 ·m · n

)
information-bits α-approximation for maximum matching [33]. We are not aware of any results for
matroid optimization in this model.

As mentioned above, there are many works on bounded or one-directional communication; some of
them can be seen as special cases or variants of the zero communication model. In addition, the idea
of providing smaller-yet-representative dataset, known as a coreset, is prevalent in machine learning
literature (e.g., [46, 31, 1, 22, 23, 52]). Under these lenses, our model can intuitively be viewed as
a distributed (communication free) construction of non-approximate variant of a coreset. However,
to the best of our knowledge, the zero communication model as defined above is introduced in this
work.

In a distinct line of research, maximum matching is well-studied in parallel algorithms. The main
class of parallel algorithms considered is Nick’s Class (NC) – polylog(n) parallel time using poly(n)
number of processors with unrestricted communication between them, where n denotes the input
size. There are randomized NC (RNC) algorithms for maximum cardinality matching and matroid
intersection on linear matroids by Lovász work [43] by reducing these problems to deciding if a
determinant of a symbolic matrix is equal to zero, which can be solved in NC time [15, 9]. A
few years later, RNC algorithms were obtained for finding actual solutions [37, 48, 50]. There are
also pseudo-deterministic NC algorithms [27, 28]; however, whether there exist deterministic NC
algorithms for maximum matching (or matroid intersection) remains one of the long-standing and
important questions in theoretical computer science.

1.4 Discussion

In this work, we provide tight bounds of Θ(k) and Θ
(
k2

)
on the data required per server to solve

k-MW-IS and k-MWM, respectively, in the zero communication model. In addition, we give
deterministic Õ

(√
k
)

and Õ
(
k3

)
time parallel algorithms for MW-IS and k-MWM, respectively.

Some implications and limitations of our work, and some open questions are listed below.

Matroid Intersection This work focuses on zero communication algorithms for MW-IS and MWM.
An interesting question that can be the subject of follow-up research is what is the minimum f(k)
for which there is an f(k)-data algorithm for matroid intersection, where k is the rank of one of the
given matroids. An f(k)-data algorithm for matroid intersection can be obtained for an exponential
function f relatively easily. It would be intriguing to solve this for a polynomial function f , or show
a lower bound ruling this out.

Parallel Algorithms In this work, we obtain deterministic parallel algorithms for MW-IS and
MWM of running time guarantee Õ

(√
k
)

and Õ
(
k4

)
, respectively. For k ≪ n, these algorithms

are faster than the classic RNC (i.e., randomized parallel) algorithms for the problems [37, 48, 50].
Moreover, our schemes handle general matroids rather than the special case of linear matroids as in
previous works. However, for k = Ω(nc) for some constant c our parallel algorithms are no longer
in NC. The most important open question here is whether a deterministic NC algorithm for MWM
or MW-IS (on linear matroids) exists, even for the unweighted versions of the problems. As this
question remains open for several decades, we believe that our bounds, parameterized by k, pave a

5

research path towards faster deterministic parallel algorithms for maximum matching (and matroids)
with stronger parametric bounds on the solution size k.

Approximation Algorithms All of our results apply to exact optimal versions of the considered
problems. That is, unlike the majority of the previous work in similar models of low or no commu-
nication [29, 36, 16, 33, 53, 34, 7], this paper does not consider approximation algorithms. While
there are results for zero communication on both matroids [32] and matching [3], most works focus
on two servers (i.e., Alice sends data to Bob), or allow some communication. It would be very
interesting to extend the state-of-the-art approximations for a general number m of servers with zero
communication. It would also be nice to obtain stronger lower bounds for such settings.

Parameterized (fixed-parameter tractable (FPT)) Algorithms Our bounds are parameterized by
k – the solution size of the given problem. One may wonder, at least superficially, whether the fact
that matching and matroids have such data-parameterized attributes in the zero communication model
implies some connection to fixed-parameter tractable (FPT) algorithms [20]. Stated alternatively,
it can be thought that the fact that Õ(poly(k))-data algorithms exist for MW-IS and MWM can be
attributed to the fact that these problems are efficiently solvable. However, as we show in Appendix F,
there are well-known problems that are (1) efficiently solvable and (2) have a small solution size
k ≪ n, yet do not have a d-data zero communication algorithm for d = o(n).

MWM vs. k-MWM Our zero communication algorithm focus on the cardinality constrained
version of MWM, namely, k-MWM. We note that without this restriction, there is only an Ω(n)-data
algorithm for MWM (consider a single server whose sub-graph is a star graph of Ω(n) edges, which
cannot determine which subset of edges to send, as any of these edges might belong to the optimal
solution depending on the input to the other servers). However, the cardinality constraint has also
practical justification.

For example, bipartite graphs with one side of the bipartition significantly larger than the other
appear in various applications. Consider a server with k processing slots and a given set of n≫ k
tasks, each task can be scheduled on a subset of the slot, determined by compatibility issues such
as memory communication bandwidth, or other performance or security reasons. This induces a
bipartite graph with k vertices on one side and n≫ k vertices on the other side, where the goal of
the server is to compute an MWM (the weight being the price a task is willing to pay to be scheduled
on a corresponding processor). Another example is allocating ads to (a few) advertisement slots.
Another variant of this problem is the well-studied partial optimal transport [24, 14]. We note that
our parallel MWM and k-MWM algorithms use a sequential k-MWM algorithm as a black box. A
feasible research direction is to strengthen our parallel bounds using a faster black-box k-MWM
algorithm for special cases of the problem, such as bipartite graphs. More details are given in the
appendix.

Noisy/faulty Server Inputs This paper studies the zero communication model, in which the input
to the servers is assumed to be intact. However, this model can be generalized to tackle noisy or
faulty server inputs. The noise can be either on (1) the actual element – whether it is given to the
server or not, (2) the feasibility – the server may not know exactly which subsets of elements are
feasible, and (3) the weights can be noisy. This of course, only makes the problem more difficult,
thus our lower bounds hold; it remains open if the algorithms given in the paper can be generalized to
tackle any of these scenarios. While the answer depends on the exact formulation of the noise model,
our bounds are unlikely to hold as is. It remains an interesting question for follow-up research to
rigorously define a variation of our model on faulty servers and give tight bounds for the discussed
problems (and more) in such a model.

Matroid Structure and Membership Oracles In zero communication algorithms, each server
must be able to compute independence on subsets of elements it received. Without this assumption,
it would be impossible to design a zero-communication algorithm that does not simply send all
elements. Most matroids considered in the literature, and those with the strongest applications,
are linear matroids (e.g., graphic matroids), which can be compactly defined and allow efficient
independence testing with relatively small memory. However, there are also non-linear matroids,
which may require exponential memory (in the number of elements of the ground set) to distinguish
correctly between independent sets and non-independent sets. These matroids appear less in practical

6

settings and will require that each server have larger memory. To make independence testing more
abstract, we assume that independence is computed via a membership oracle (see Section 2).

Organization In Section 2 we give some preliminary definitions and notations. In Sections 3 and 4
we give our zero communication algorithms for MW-IS and MWM, respectively. Then, Section 5
describes the implications of the above algorithms for parallel computation. Due to space constraints,
We give our lower bounds for zero communication algorithms and some of the remaining proofs in
the appendix.

2 Preliminaries

Basic Notations Let IN = {1, 2, . . .} be the set of natural numbers excluding zero. For any k ∈ IN
let [k] = {1, . . . , k} for short. In addition, for any set X , function f : X → IR, and finite S ⊆ X
let f(S) =

∑
e∈S f(e). With a slight abuse of notation, we occasionally use the same notation for a

function f and for a restriction of f to a subset of its domain.

Graph and Matching Notations Fix a graph G = (V,E) for the remaining of this section. In
general, all edges in this paper are undirected and with a slight abuse of notation, we use (u, v) to
denote the undirected edge {u, v} between vertices u, v ∈ V . We also assume that there are no
parallel edges throughout this paper. Let N(v) = {u ∈ V | (u, v) ∈ E} be the set of neighbors of
some v ∈ V . A matching in G is a subset of edges M ⊆ E such that for all v ∈ V it holds that v is an
endpoint of at most one edge in M ; that is, |{(u, v) ∈M | u ∈ V }| ≤ 1. Furthermore, M is a perfect
matching if every vertex appears exactly once as an endpoint of an edge in M . When the graph is
clear from the context, we use V (S) =

⋃
(u,v)∈S{u, v} as the vertex set of end-points of a subset of

edges S ⊆ E in the graph G. Given S ⊆ V define the induced graph G[S] = (S,E[S]) of G and S,
where E[S] = {(u, v) ∈ E | u, v ∈ S}. Finally, we use the standard notation G = (A,B,E) for a
bipartite graph, where A,B are sets of vertices and E ⊆ A×B.

Matroids LetM = (E, I) be a matroid. All matroids in this paper are assumed to be general
matroids whose set of elements is given in the input and for any S ⊆ E, determining whether S ∈ I
can be done in one query to a membership oracle that is assumed to take O(1) time and memory. We
note that this is the standard formalism of representing general matroids for algorithmic purposes
(see, e.g., [57, 51] for more details).

A basis of a matroid is an inclusion-wise maximal independent set of the matroid. The following
matroid operations remain matroids (see, e.g., [57]).

• Matroid Restriction: For any F ⊆ E define I∩F = {A ∈ I | A ⊆ F} andM∩ F =
(F, I∩F) as the F -restriction ofM.

• Contraction: For any F ∈ I define I/F = {A ⊆ E \ F | A ∪ F ∈ I} and define
M/F = (E \ F, I/F) as the F -contraction ofM.

• Truncation: For any q ∈ N define I≤q = {A ∈ I | |A| ≤ q} and (E, I≤q) as the
q-truncation ofM.

3 A Zero Communication Algorithm for MW-IS

In this section, we obtain a zero communication deterministic k-data algorithm for MW-IS. The
following is a standard structural lemma used to derive our result.
Lemma 3.1. LetM = (E, I) be a matroid of rank k, and let w : E → IR be a weight function. Let
m ∈ IN , let E1, . . . , Em be a partition of E, and let B1, . . . , Bm be maximum weight bases of the
matroidsM∩E1, . . . ,M∩Em, respectively. Then, there is a maximum weight basis B∗ ofM such
that B∗ ⊆

⋃
i∈[m] Bi.

We give a brief overview of the proof below. We consider a basis B∗ with the largest intersection with
the elements in

⋃
i∈[m] Bi. If there is some e ∈ B∗ \

⋃
i∈[m] Bi, we can show using some insights on

generalized exchange properties of matroids that there is some element e′ ∈
⋃

i∈[m] Bi with larger or
equal weight w.r.t. e that can be added to B∗ instead of e, implying a contradiction to the fact that

7

B∗ has a maximal intersection with
⋃

i∈[m] Bi. This generic line of proof has also been used in other
matroid and matching-related problems in approximation algorithms, including the author’s prior
work in a different setting [18, 19]. The full proof is given in the appendix.

We use the following result of [38] for obtaining our main result.
Theorem 3.2. [38] There is a deterministic parallel O(

√
n) algorithm for finding a maximum weight

basis of a matroid with n elements.

Thus, we obtain the following results. As our algorithm is based on simply computing a basis for
each server, the parameter k can be omitted from the input (that is, the following result holds for
MW-IS in addition to k-(MW-IS)).
Theorem 1.1. There is a deterministic k-data algorithm for k-(MW-IS) and MW-IS. Moreover,
for each server i ∈ [m] the running time of server i is Õ(

√
|Ei|) parallel time, or Õ(|Ei|) non-

parallel time.

Proof. Let I = (E,w, k) be an instance of MW-IS whose elements are distributed into m servers by
E1, . . . , Em. The proof follows by computing for each server i a maximum weight basis Bi for the
matroid restricted to the set of elements Ei given to server i and truncated with the value k. These
bases can be either computed using the standard greedy algorithm in time Õ(|Ei|) (for more details
on the greedy algorithm see, e.g., [57]), or using a parallel deterministic Õ(

√
|Ei|) time algorithm of

Karp et al. [38]. Since the optimum is of size k, by Lemma 3.1 it follows that there is an optimal
solution for I (i.e., a maximum weight basis of the original matroid truncated by k) in

⋃
i∈[m] Bi.

Thus, the above algorithm optimally solves the original instance and sends at most k elements from
each server. The proof follows.

4 A Zero Communication Algorithm for Maximum Weight Matching

In this section, we give a zero communication algorithm for k-MWM. Our approach is based on the
following auxiliary structures we call strong sets.
Definition 4.1. Let G = (V,E) be a graph, let w : E → IR be a weight function, and let k ∈ IN be
a parameter. A set of edges S ⊆ E is called a strong set of E,w, and k if for every e = (u, v) ∈ E
at least one of the following holds.

1. e ∈ S.

2. There is a matching M ⊆ S of G of cardinality 2 · k + 1 such that for every f ∈M it holds
that w(f) ≥ w(e).

3. There is x ∈ {u, v} and there are 2 · k + 1 distinct edges (x, v1), . . . , (x, v2·k+1) ∈ S such
that for all i ∈ [2 · k + 1] it holds that w ((x, vi)) ≥ w ((u, v)).

The following algorithm finds a strong set efficiently.
Lemma 4.2. There is an algorithm STRONG-SET that given a graph G = (V,E), a weight function
w : E → IR, and a parameter k ∈ IN returns in time O (|E| · log |E|) a strong set of E,w, k of
cardinality at most 10 · k2 + 1.2

For the entire proof of the theorem, fix a graph G = (V,E), a weight function w : E → IR, and a
parameter k ∈ IN and define the following algorithm STRONG-SET on the above input. Let n = |V |
and m = |E| (with a slight abuse of notation, recall that m is also used in this paper to denote the
number of servers; however, this is not considered in the current algorithm and its proof). For a subset
of edges S ⊆ E and v ∈ V let

N(S, v) = |{(x, y) ∈ S | x = v or y = v}|
be the number of neighbors of v in S. The algorithm iterates the edges in a non increasing order of
weights, and adds to the constructed strong set S the current edge (ui, vi) if both N(S, ui), N(S, vi)
are bounded by 2 · k. The algorithm is formally defined as follows.

2We note that if the maximum weight W = maxe∈E |w(e)| is large w.r.t. |E|, then the running time also
depends on w, as the running time follows from sorting an array of size |E|.

8

1. Let e1, . . . , em be the edges in E sorted in a non increasing order w.r.t. w
2. Initialize S ← ∅
3. For i = 1, . . . ,m do:

(a) Let ei = (ui, vi)

(b) If N(S, ui) ≤ 2 · k and N(S, vi) ≤ 2 · k then: S ← S ∪ {ei}
(c) If |S| ≥ 10 · k2 + 1 then: return S

4. return S

Intuition We give below some Intuition on Algorithm STRONG-SET (a formal proof is given in
the appendix). For the following, consider an execution of the algorithm on a set of edges E with
weight function w, such that the algorithm returns a subset S of edges. Consider some arbitrary edge
e = (u, v) ∈ E, and let us give the intuition why necessarily at least one property from (1), (2), or (3)
of Definition 4.1 holds for e. We consider several cases here. First, clearly if e ∈ S, then property (1)
trivially holds for e. Second, assume that (1) does not hold for e and we shall show why (2) or (3)
must hold. Since e is not added to S, by Step (b) of the algorithm we can consider two sub-cases to
conclude.

• N(S, u) > 2 · k or N(S,v) > 2 · k. From this case, (3) easily holds since S has at least
2 · k+1 neighbors of some x ∈ {u, v}, where all of these neighbors are with weight at least
w(e) by the sorted order of the edges.

• The complementary case, where N(S, u) ≤ 2 ·k and N(S, v) ≤ 2 ·k. Since e /∈ S, then the
algorithm terminated by the stopping condition of Step (c) and consequently |S| > 10 · k2.
By Step (b) of the algorithm, for each edge ei = (ui, vi) it holds that N(S, ui) ≤ 2 · k + 1
and N(S, vi) ≤ 2 · k + 1. Therefore, the edges in S induce a graph with over 10 · k2 edges
that has a maximum degree of 2 · k + 1. By a result of Han [30], in this induced graph there
exists a matching of a size of over 2 · k.

The following is a structural lemma for distributed MWM using strong sets, showing the power of
strong sets for zero communication algorithms.
Lemma 4.3. Let G = (V,E) be a graph, let w : E → IR be a weight function, and let k ∈ IN be
a parameter. Additionally, let m ∈ IN , and let E1, . . . , Em be a partition of E. For all i ∈ [m]
let Si be a strong set of Ei, w, k. Then, there is a k-maximum weight matching M∗ of G such that
M∗ ⊆

⋃
i∈[m] Si.

Intuition We give below some intuition for the above result and a formal proof is given in the
appendix. In the above lemma, we are given a strong set Si for each server i and need to prove that
the union of Si’s contains a k-MWM. Consider a k-MWM denoted by M∗ with the maximum size of
intersection with the union of Si’s. If M∗ is contained in this union – the central server can directly
compute M∗. Otherwise, there is an edge e ∈ M∗ that belongs to Ei for some server i, such that
e /∈ Si. By Definition 4.1 and as e /∈ Si, one of the following holds:

1. There is a matching M contained in Si of cardinality 2 ·k+1 such that every edge in M has
weight at least w(e). Thus, as M is sufficiently large and since M and M∗ are matchings,
there is e′ in M such that M ′ = M∗ ∪ {e′} is a matching (each endpoint of M∗ can appear
at most once as an endpoint of M and |M | > 2 · |M∗|). Note that w (M ′) ≥ w (M∗).

2. There is an endpoint x of e and there are 2 · k + 1 distinct edges adjacent to x:
(x, v1), ..., (x, v2·k+1), each of weight at least w(e). Since |M∗| ≤ k it has at most 2 · k
endpoints; therefore, one of the above 2 · k + 1 edges e′ = (x, vj) satisfies that vj is not
an endpoint of M∗. Thus, since w (e′) ≥ w(e) it holds that M ′ = M∗ \ {e} ∪ {e′} is a
matching satisfying w (M ′) ≥ w (M∗).

The above two cases yield a contradiction that M∗ is a k-MWM of maximum intersection with the
union of Si’s.

We can now give the main theorem of this section.
Theorem 1.2. There is a deterministic O

(
k2

)
-data algorithm for k-MWM. Moreover, for each

server i ∈ [m] the running time of server i is Õ(|Ei|).

9

Proof. Let I = (V,E,w, k) be an instance of MWM, where the edges are distributed into m servers
by E1, . . . , Em. The proof follows by computing for each server i a strong set of Ei, w, k Si using
Algorithm STRONG-SET. By Lemma 4.3, there is an optimal solution for I (i.e., a k-MWM) in⋃

i∈[m] Si. Thus, the above algorithm optimally solves the original instance and by Lemma 4.2 the
algorithm sends at most (10 · k2 +1) edges from each server using zero communication. The running
time guarantee of each server follows from Lemma 4.2.

5 Parallel Algorithms

In this section, we show that our zero communication schemes lead to fast parallel algorithms. The
results follow from the next theorem, whose proof is given in the appendix. Recall that for our parallel
algorithms that the weights are assumed to be poly-logarithmic in the input size n.
Theorem 5.1. Let P be a subset selection problem that has a zero communication f(k)-data
algorithm A in time Õ(g(|Ei|)) for each server i ∈ [m], for some monotonic polynomial functions
f, g, where k is the solution size. Then, there is an Õ (g (f(k))) time parallel algorithm that given an
instance of P returns a subset of the elements of size Õ(f(k)) that contain an optimal solution. The
algorithm is deterministic if A is deterministic.

We give below the pseudocode of the algorithm described in Theorem 5.1 and the full proof is given
in the appendix. Let I = (E,w, k) denote an instance of a subset selection problem P , where E is a
set of elements, w is a weight function, and k is the solution size. Define the following algorithm B
on instance I based on the existence of a zero communication algorithm A for P . Let n = |E|.

1. Let j ← 0, E0 ← E, n0 ← n

2. While nj

4·f(k) > 1:

(a) Let mj =
⌈

nj

4·f(k)

⌉
(b) Partition Ej into servers Ej

1, . . . , E
j
m where

∣∣∣Ej
i

∣∣∣ ≤ 4 · f(k) for all i ∈ [mj]

(c) Execute A on the instance Ij =
{
(Ej

i , w, k)
}
i∈[mj]

(d) Let Kj
i ⊆ Ej

i be the elements brought from server i to the central coordinator ∀i ∈ [mj]

(e) Update Ej+1 ←
⋃

i∈[mj]
Kj

i , nj+1 ←
∣∣Ej+1

∣∣, j ← j + 1

3. Return Ej

Intuitively, at each iteration of the algorithm, each server applies a filtering of the elements it receives:
Each server gets roughly 4 · f(k) elements and returns only f(k) elements (in parallel to the other
servers). Thus, in O(logn) such rounds, we obtain an O(f(k)) size instance. We note that the
number of servers mj used in each iteration decreases exponentially.

By Theorem 5.1, we have the following results for MW-IS and MWM.

Theorem 1.6. There is a deterministic parallel Õ(
√
k) time algorithm for k-MW-IS.

Proof. By Theorem 1.1, there is a deterministic zero communication k-data algorithm for maximum
weight independent set of a matroid in deterministic parallel time of Õ(

√
|Ei|) for each server i.

Assuming a membership oracle for the given matroid, sending each element to the central coordinator
takes Õ(1) bits as each element-weight pair in the ground set can be encoded in O(logn) bits
assuming pseudo-polynomial weights. Thus, sending k elements from each server can be done
using Õ(k) bits. Hence, by Theorem 5.1 there is a deterministic parallel Õ(

√
k) algorithm that

computes a subset of elements of size Õ(k) containing an optimal solution; on this subset, we can
apply Lemma 3.2 to get an overall Õ(

√
k) parallel time deterministic algorithm for MW-IS.

The proofs of Theorem 1.7 and Theorem 1.8 are given in the appendix.

10

References
[1] Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. Geometric approximation

via coresets. Combinatorial and computational geometry, 52(1):1–30, 2005.

[2] Susanne Albers. Online algorithms: a survey. Mathematical Programming, 97:3–26, 2003.

[3] Sepehr Assadi and Aaron Bernstein. Towards a unified theory of sparsification for matching
problems. arXiv preprint arXiv:1811.02009, 2018.

[4] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1723–1742. SIAM, 2017.

[5] Sepehr Assadi, Sanjeev Khanna, and Yang Li. The stochastic matching problem: Beating half
with a non-adaptive algorithm. In Proceedings of the 2017 ACM Conference on Economics and
Computation, pages 99–116, 2017.

[6] Sepehr Assadi, Sanjeev Khanna, and Yang Li. The stochastic matching problem with (very)
few queries. ACM Transactions on Economics and Computation (TEAC), 7(3):1–19, 2019.

[7] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings
in dynamic graph streams and the simultaneous communication model. In Proceedings of
the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 1345–1364.
SIAM, 2016.

[8] Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault-tolerant subgraph for single-
source reachability: General and optimal. SIAM Journal on Computing, 47(1):80–95, 2018.

[9] Stuart J Berkowitz. On computing the determinant in small parallel time using a small number
of processors. Information processing letters, 18(3):147–150, 1984.

[10] Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In Automata,
Languages, and Programming: 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I 42, pages 167–179. Springer, 2015.

[11] Avrim Blum, John P Dickerson, Nika Haghtalab, Ariel D Procaccia, Tuomas Sandholm, and
Ankit Sharma. Ignorance is almost bliss: Near-optimal stochastic matching with few queries. In
Proceedings of the Sixteenth ACM Conference on Economics and Computation, pages 325–342,
2015.

[12] Greg Bodwin, Michael Dinitz, Merav Parter, and Virginia Vassilevska Williams. Optimal
vertex fault tolerant spanners (for fixed stretch). In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1884–1900. SIAM, 2018.

[13] Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. Preserving
distances in very faulty graphs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland.

[14] Nicolas Bonneel and David Coeurjolly. Spot: sliced partial optimal transport. ACM Transactions
on Graphics (TOG), 38(4):1–13, 2019.

[15] Allan Borodin, Joachim von zur Gathem, and John Hopcroft. Fast parallel matrix and gcd
computations. In 23rd annual symposium on foundations of computer science (sfcs 1982), pages
65–71. IEEE, 1982.

[16] Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntanathan.
A tight bound for set disjointness in the message-passing model. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, pages 668–677. IEEE, 2013.

[17] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A distributed storage
system for structured data. ACM Transactions on Computer Systems (TOCS), 26(2):1–26, 2008.

11

[18] Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An eptas for budgeted matching and
budgeted matroid intersection via representative sets. In 50th International Colloquium on
Automata, Languages, and Programming (ICALP 2023), pages 49–1. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2023.

[19] Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An eptas for budgeted matroid independent
set. In Symposium on Simplicity in Algorithms (SOSA), pages 69–83. SIAM, 2023.

[20] Rod G Downey and Michael R Fellows. Fixed-parameter tractability and completeness i: Basic
results. SIAM Journal on computing, 24(4):873–921, 1995.

[21] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research of
the National Bureau of Standards B, 69(125-130):55–56, 1965.

[22] Dan Feldman. Core-sets: Updated survey. In Sampling techniques for supervised or unsuper-
vised tasks, pages 23–44. Springer, 2019.

[23] Dan Feldman, Amos Fiat, Haim Kaplan, and Kobbi Nissim. Private coresets. In Proceedings of
the forty-first annual ACM symposium on Theory of computing, pages 361–370, 2009.

[24] Alessio Figalli. The optimal partial transport problem. Archive for rational mechanics and
analysis, 195(2):533–560, 2010.

[25] Harold N Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms, pages
434–443, 1990.

[26] Harold N Gabow and Robert E Tarjan. Faster scaling algorithms for general graph matching
problems. Journal of the ACM (JACM), 38(4):815–853, 1991.

[27] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and their
cryptographic applications. In Electronic Colloquium on Computational Complexity (ECCC),
volume 18, pages 1–3, 2011.

[28] Sumanta Ghosh and Rohit Gurjar. Matroid intersection: A pseudo-deterministic parallel reduc-
tion from search to weighted-decision. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2021), pages 41–1. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2021.

[29] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms, pages 468–485. SIAM, 2012.

[30] Yijie Han. Matching for graphs of bounded degree. In International Workshop on Frontiers in
Algorithmics, pages 171–173. Springer, 2008.

[31] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 291–300,
2004.

[32] Chien-Chung Huang and François Sellier. Robust sparsification for matroid intersection with
applications. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2916–2940. SIAM, 2024.

[33] Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic, and Qin Zhang. Communication
complexity of approximate matching in distributed graphs. In 32nd International Symposium
on Theoretical Aspects of Computer Science (STACS 2015), pages 460–473. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2015.

[34] Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic, and Qin Zhang. Communication
complexity of approximate maximum matching in the message-passing model. Distributed
Computing, 33(6):515–531, 2020.

12

[35] Arthur Jochems, Timo M Deist, Johan Van Soest, Michael Eble, Paul Bulens, Philippe Coucke,
Wim Dries, Philippe Lambin, and Andre Dekker. Distributed learning: developing a predictive
model based on data from multiple hospitals without data leaving the hospital–a real life proof
of concept. Radiotherapy and Oncology, 121(3):459–467, 2016.

[36] Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of the
twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 1679–1697. SIAM,
2013.

[37] Richard M Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random
nc. In Proceedings of the seventeenth annual ACM symposium on Theory of computing, pages
22–32, 1985.

[38] Richard M Karp, Eli Upfal, and Avi Wigderson. The complexity of parallel search. Journal of
Computer and System Sciences, 36(2):225–253, 1988.

[39] Harold W Kuhn. Variants of the hungarian method for assignment problems. Naval research
logistics quarterly, 3(4):253–258, 1956.

[40] Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning.
Computers & Industrial Engineering, 149:106854, 2020.

[41] Yibin Li, Keke Gai, Longfei Qiu, Meikang Qiu, and Hui Zhao. Intelligent cryptography
approach for secure distributed big data storage in cloud computing. Information Sciences,
387:103–115, 2017.

[42] Ji Liu, Jizhou Huang, Yang Zhou, Xuhong Li, Shilei Ji, Haoyi Xiong, and Dejing Dou. From
distributed machine learning to federated learning: A survey. Knowledge and Information
Systems, 64(4):885–917, 2022.

[43] László Lovász. On determinants, matchings, and random algorithms. In FCT, volume 79, pages
565–574, 1979.

[44] Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

[45] Massimo Merenda, Carlo Porcaro, and Demetrio Iero. Edge machine learning for ai-enabled iot
devices: A review. Sensors, 20(9):2533, 2020.

[46] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pages 6950–6960.
PMLR, 2020.

[47] Batch-Arrival Model. Maximum matching in the online. In Integer Programming and Com-
binatorial Optimization: 19th International Conference, IPCO 2017, Waterloo, ON, Canada,
June 26-28, 2017, Proceedings, volume 10328, page 355. Springer, 2017.

[48] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix
inversion. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 345–354, 1987.

[49] Shanmugavelayutham Muthukrishnan et al. Data streams: Algorithms and applications. Foun-
dations and Trends® in Theoretical Computer Science, 1(2):117–236, 2005.

[50] Hariharan Narayanan, Huzur Saran, and Vijay V Vazirani. Randomized parallel algorithms for
matroid union and intersection, with applications to arborescences and edge-disjoint spanning
trees. SIAM Journal on Computing, 23(2):387–397, 1994.

[51] James G Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.

[52] Jeff M Phillips. Coresets and sketches. arXiv preprint arXiv:1601.00617, 2016.

[53] Jeff M Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. SIAM Journal on Computing, 45(1):174–196, 2016.

[54] Michael J Quinn. Parallel computing theory and practice. McGraw-Hill, Inc., 1994.

13

[55] Piotr Sankowski. Maximum weight bipartite matching in matrix multiplication time. Theoretical
Computer Science, 410(44):4480–4488, 2009.

[56] Monica Scannapieco, Ilya Figotin, Elisa Bertino, and Ahmed K Elmagarmid. Privacy preserving
schema and data matching. In Proceedings of the 2007 ACM SIGMOD international conference
on Management of data, pages 653–664, 2007.

[57] Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

[58] Claude E Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

[59] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and
Jan S Rellermeyer. A survey on distributed machine learning. Acm computing surveys (csur),
53(2):1–33, 2020.

[60] Lizhe Wang, Jie Tao, Rajiv Ranjan, Holger Marten, Achim Streit, Jingying Chen, and Dan Chen.
G-hadoop: Mapreduce across distributed data centers for data-intensive computing. Future
Generation Computer Systems, 29(3):739–750, 2013.

[61] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are correct as proven in the paper body and appendices.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations of the work are given in the discussion (see Section 1.4)

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

15

Justification: For every claim and non-trivial logical step a formal proof is given.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: I reviewed the NeurIPS Code of Ethics and truly believe this paper conforms
with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Applications of our algorithms are given in the introduction and can be
considered as (positive and negative) societal impacts and some limitations of the paper are
also considered in the discussion. However, this paper discusses theoretical algorithms and
does not have a direct broad societal impact out of the academic community.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Zero communication Algorithm for MW-IS

In this section, we give the proof of Lemma 3.1.
Lemma 3.1. LetM = (E, I) be a matroid of rank k, and let w : E → IR be a weight function. Let
m ∈ IN , let E1, . . . , Em be a partition of E, and let B1, . . . , Bm be maximum weight bases of the
matroidsM∩E1, . . . ,M∩Em, respectively. Then, there is a maximum weight basis B∗ ofM such
that B∗ ⊆

⋃
i∈[m] Bi.

Proof. Let B be the set of all maximum weight bases ofM. Note that B ̸= ∅ since every matroid has
at least one basis. For every B ∈ B, define p(B) =

∣∣∣B ∩ (⋃
i∈[m] Bi

)∣∣∣ to be the proximity of B. Let

B∗ = argmax
{
p(B)

∣∣ B ∈ B}
be a maximum weight basis ofM with maximum proximity and choose B∗ arbitrarily if there is
more than one maximum weight basis of maximum proximity. Since B ̸= ∅, it holds that B∗ is
well-defined. Assume towards a contradiction that p (B∗) < |B∗|; thus, there is e ∈ B∗ \

⋃
i∈[m] Bi.

Let i ∈ [m] be the unique index such that e ∈ Ei and let X = {e′ ∈ Bi | w (e′) ≥ w(e)}. We use
the following strong basis exchange property of general matroids; for more details see, e.g., [57, 51].

Claim A.1. Let A,B be two bases of a matroid T = (F,J). Then, for every a ∈ A \ B there is
b ∈ B \A such that (A \ {a}) ∪ {b} ∈ J and (B \ {b}) ∪ {a} ∈ J .

The next claim follows from repeated application of the exchange property of matroids. We give a
proof for completeness.

Claim A.2. Let B be a basis and let A be an independent set of a matroid T = (F,J). Then, there
is S ⊆ B \A such that A ∪ S is a basis of T .

Proof. We prove the claim by induction on t = |B| − |A|. For the base case, t = 0, that is, A is
a basis of T and the proof follows for S = ∅. Assume that for all independent sets A′ ∈ J with
|A′| > |A| there is S′ ⊆ B \A′ such that A′ ∪ S′ is a basis of T . Now, for the step of the induction
assume that |B| − |A| > 0 thus |B| > |A|. Since A,B ∈ J , by the exchange property of T there
is e ∈ B \ A such that A ∪ {e} ∈ J . Let A′ = A ∪ {e}; as |A′| > |A|, by the assumption of the
induction there is S′ ⊆ B \ A′ such that A′ ∪ S′ is a basis of T . Let S = S′ ∪ {e}. Note that
S ⊆ B \A and that A ∪ S is a basis of T , which gives the statement of the claim. ⌟

A cycle of a matroid T = (F,J) is C ⊆ F such that C /∈ J and for all C ′ ⊂ C it holds that C ′ ∈ J .
We use the following fundamental result on cycles in matroids. The reader is referred to, e.g., [57, 51]
for more details.

Claim A.3. Let T = (F,J) be a matroid, let A ∈ J , and let f ∈ F \ A such that A ∪ {f} /∈ J .
Then, there is exactly one cycle C ⊆ A ∪ {f} of T .

The following is a core claim in the analysis.

Claim A.4. X ∪ {e} /∈ I.

Proof. Assume towards a contradiction that X ∪{e} ∈ I and consider two cases. First, if Bi∪{e} ∈
I . Since e /∈ Bi and Bi∪{e} ⊆ Ei, this is immediately a contradiction since Bi is a basis ofM∩Ei

and cannot be extended. Second, assume that Bi ∪ {e} /∈ I; by the assumption, X ∪ {e} ∈ I. By
Claim A.3 there is exactly one cycle C ⊆ Bi∪{e} and since X∪{e} ∈ I we conclude that there exists
some element e′′ ∈ Bi \ (X ∪ {e}) that belong to the unique cycle C. Let B′

i = (Bi ∪ {e}) \ {e′′}.
Then, since e′′ belongs to the unique cycle C, it follows that B′

i ∈ I . Since e′′ ∈ Bi \X it holds that
w(e) > w (e′′) implying that

w (B′
i) = w (B∗) + w (e)− w (e′′) > w (Bi) .

Since |B′
i| = |Bi| (recall that e ∈ Ei \Bi) it follows that B′

i is a basis ofM∩ Ei (any independent
set of cardinality equals to the cardinality of some basis is also a basis [57]) with weight strictly larger
than the weight of Bi. This is a contradiction since Bi is a maximum weight basis ofM∩Ei. We
conclude that X ∪ {e} /∈ I. ⌟

22

Using the above claims, we can complete the proof of the lemma. Since Bi is a basis ofM∩ Ei,
it also follows that Bi ∈ I; thus, as X ⊆ Bi, using the hereditary property it follows that X ∈ I.
Then, as B∗ is a basis ofM, by Claim A.2 there is S ⊆ B∗ \X such that X ∪ S is a basis ofM.

Claim A.5. e ∈ B∗ \ (X ∪ S).

Proof. Recall that e /∈
⋃

i∈[m] Bi and in particular e /∈ X . In addition, assume towards a contradic-
tion that e ∈ S; thus, X ∪ {e} ⊆ X ∪ S. Since X ∪ S is a basis ofM it holds that X ∪ S ∈ I;
using the hereditary property it follows that X ∪ {e} ∈ I in contradiction to Claim A.4. Overall, we
conclude that e /∈ X ∪ S and the claim follows. ⌟

By Claim A.5 it holds that e ∈ B∗ \ (X ∪ S). Therefore, by Claim A.1 there is e′ ∈ (X ∪ S) \B∗

such that (B∗ ∪ {e′}) \ {e} ∈ I . Let B̃ = (B∗ ∪ {e′}) \ {e}. Since S ⊆ B∗ and e′ ∈ (X ∪ S) \B∗

it follows that e′ ∈ X . Therefore, w (e′) ≥ w(e) implying that

w
(
B̃
)
= w (B∗) + w (e′)− w(e) ≥ w (B∗) .

Since
∣∣∣B̃∣∣∣ = |B∗| we conclude that B̃ is also a maximum weight basis ofM, i.e., B̃ ∈ B. Since

e /∈
⋃

i′∈[m] Bi′ and e′ ∈ X , where X ⊆ Bi, it follows that p
(
B̃
)
> p (B∗). This is a contradiction

to the maximality of B∗ with respect to p and the proof follows.

B Zero communication Algorithm for MWM

In this section, we give the remaining proofs from Section 4. We start with the analysis of the
STRONG-SET algorithm.

B.1 Analysis of Algorithm Strong-Set

Lemma 4.2. There is an algorithm STRONG-SET that given a graph G = (V,E), a weight function
w : E → IR, and a parameter k ∈ IN returns in time O (|E| · log |E|) a strong set of E,w, k of
cardinality at most 10 · k2 + 1.3

Proof. We give the running time and correctness analysis of Algorithm STRONG-SET below.

Claim B.1. The running time of STRONG-SET is O(m · logm).

Proof. Sorting the edges takes O(m · logm) time. In addition, the algorithm makes one pass over
the sorted edges and in each iteration i ∈ [m] calculates N(S, ui), N(S, vi) and performs O(1)
additional operations. Clearly, we can compute N(S, v) for every v ∈ V in time O(1) per iteration.
We initialize N(S, v) = 0 for every v ∈ V ; Let i ∈ [m]. If the edge ei = (ui, vi) is added to S,
we update N(S, ui)← N(S, ui) + 1, N(S, vi)← N(S, vi) + 1, and otherwise, we do not need to
update any neighbor set. Thus, each iteration takes O(1) time and overall the running time of the
algorithm is O(m · logm) +O(m) = O(m · logm). ⌟

We prove the following invariant of the algorithm.

Claim B.2. For every v ∈ V it holds that N(S, v) ≤ 2 · k + 1 at any iteration.

Proof. The algorithm starts with S = ∅ and consequently N(S, v) = 0 for every v ∈ V in the first
iteration. For some i ∈ [m], assume that N(S, v) ≤ 2 · k+1 for every v ∈ V before iteration i of the
algorithm; we show that the above property still holds after iteration i. Consider the following cases.
Note that if the algorithm terminated before iteration i there is nothing to prove. Thus, assume that the
algorithm did reach iteration i. First, assume that N(S, ui) ≤ 2 · k and N(S, vi) ≤ 2 · k; therefore,
after iteration i it holds that N(S, ui) ≤ 2 · k+1N(S, vi) ≤ 2 · k+1 and for every x ∈ V \ {ui, vi}

3We note that if the maximum weight W = maxe∈E |w(e)| is large w.r.t. |E|, then the running time also
depends on w, as the running time follows from sorting an array of size |E|.

23

it holds that N(S, x) does not change in iteration i. Second, assume that N(S, ui) > 2 · k or
N(S, vi) > 2 · k. Thus, in this case, ei is not added to S, and S remains the same before and after
iteration i. It follows that N(S, v) ≤ 2 · k + 1 for every v ∈ V in both cases. ⌟

We also use the following result of Han [30].

Claim B.3. In every graph with M edges and maximum degree ∆ there is a matching of size 4·M
5·∆+3 .

We can now complete the proof, by showing that S, the set returned by the algorithm, is a strong
set. By Definition 4.1, let e′ = (u, v) ∈ E and consider the following cases. First, if e′ ∈ S, then
e′ satisfies the first property of Definition 4.1 and there is nothing to prove. Then, for the following
assume that e′ /∈ S. Therefore, one of the following holds.

Let i ∈ [m] such that ei = e′ (there is exactly one such iteration). Since ei /∈ S, then in iteration i of
the algorithm one of the following holds.

• The algorithm returns S before iteration i. Then, |S| ≥ 10 ·k2+1. In addition, by Claim B.2
the maximum degree in the induced graph G[V (S)] is at most 2 · k+1. Thus, by Claim B.3
there is a matching in S of cardinality at least

4 · |S|
5 · (2 · k + 1) + 3

≥ 4 · (10 · k2 + 1)

10 · k + 8
=

40 · k2 + 4

10 · k + 8
≥ 40 · k2

18 · k
=

40 · k
18

> 2 · k.

Since the size of a maximum matching in G[V (S)] is always an integer, the above implies
that there is a matching M in G[V (S)] of cardinality at least 2·k+1. Note that w(e) ≥ w(ei)
for every e ∈ S due to the non increasing order of weights of edges inserted to S. Therefore,
there is a matching M ⊆ S such that w(e) ≥ w(ei) for every e ∈ M , which satisfies the
second property of Definition 4.1.

• The algorithm reaches iteration i. Then, since ei /∈ S, we conclude that N(S, ui) ≥ 2 ·k+1
or N(S, vi) ≥ 2 · k + 1 during iteration i. Therefore, there is x ∈ {ui, vi} such that
N(S, x) ≥ 2 · k + 1. Note that w(e) ≥ w(ei) for every e ∈ S due to the non increasing
order of weights of the edges inserted to S. Thus, there are 2 · k + 1 distinct edges
(x, y1), . . . , (x, y2·k+1) ∈ S such that w((x, y)) ≥ w(ei) for every y ∈ {y1, . . . , y2·k+1}.
This satisfies the third property of Definition 4.1.

To conclude the proof, we show a second trivial invariant on the size of S.

Claim B.4. |S| ≤ 10 · k2 + 1 at the end of the algorithm.

Proof. The algorithm starts where S = ∅ and consequently |S| = 0 < 10 · k2 +1. For some i ∈ [m],
assume that before iteration i it holds that |S| < 10 ·k2+1; we show that either (i) the above property
either holds after iteration i or (ii) the algorithm terminates and |S| = 10 · k2 + 1. Consider the
following cases. Note that, if the algorithm terminated before iteration i assuming |S| < 10 · k2 + 1
before the iteration, there is nothing to prove. Thus, assume that the algorithm did not terminate
before iteration i. In iteration i, consider the following cases. First, ei /∈ S; then, the size of S did
not change and the claim follows. Second ei ∈ S; then, |S| increased by 1; therefore, either (i) S still
satisfies that |S| < 10 · k2 + 1 , or (ii), |S| = 10 · k2 + 1 which terminates the algorithm. In both
cases, the proof follows. ⌟

The above implies the proof of the lemma.

B.2 Structural Lemma for matching

Lemma 4.3. Let G = (V,E) be a graph, let w : E → IR be a weight function, and let k ∈ IN be
a parameter. Additionally, let m ∈ IN , and let E1, . . . , Em be a partition of E. For all i ∈ [m]
let Si be a strong set of Ei, w, k. Then, there is a k-maximum weight matching M∗ of G such that
M∗ ⊆

⋃
i∈[m] Si.

24

Proof. LetM be the set of all k-MWMs of G and w. Note thatM ̸= ∅ since every graph has at
least one matching: the empty set is in particular a k-matching with weight 0. For every M ∈ M
define p(M) =

∣∣∣M ∩ (⋃
i∈[m] Si

)∣∣∣ to be the proximity of M . Let

M∗ = argmax
{
p(B)

∣∣ B ∈M}
be a k-MWM with maximum proximity. Assume towards a contradiction that p (M∗) < |M∗|; thus,
there is e ∈M∗ \

⋃
i∈[m] Si. Let i ∈ [m] be the unique index such that e ∈ Ei and let e = (u, v) for

u, v ∈ V . We use the following claims.

Claim B.5. For every matchings A,B of G such that |A| > 2 · |B| there is a ∈ A \ B such that
B ∪ {a} is a matching of G.

Proof. Since B is a matching of G it holds that |V (B)| ≤ 2 · |B| < |A|. Thus, since each v ∈ V (A)
appears at most once as an endpoint of an edge in A, there is (x, y) ∈ A such that x, y /∈ V (B).
Thus, B ∪ {(x, y)} is a matching of G. ⌟

The next claim leads directly to the proof of the lemma.

Claim B.6. There is e∗ ∈ Si such that (M∗ \ {e}) ∪ {e∗} is a matching of G and w (e∗) ≥ w(e).

Proof. Since Si is a strong set of Ei, w, k and e ∈ Ei\Si, one of the following holds by Definition 4.1.

1. There is a matching M ⊆ Si of G of cardinality 2 · k + 1 such that for all f ∈M it holds
that w(f) ≥ w(e). Observe that |M | ≥ 2 · k + 1 and |M∗| ≤ k; thus, |M | > 2 · |M∗|
and note that both M,M∗ are matchings. Then, by Claim B.5 there is e∗ ∈ M such that
(M∗ \ {e}) ∪ {e∗} is a matching of G; by the definition of M , it holds that w (e∗) ≥ w(e).
Hence, e∗ implies the statement of the claim in this case.

2. There is x ∈ {u, v} and there are 2 · k + 1 distinct edges (x, v1), . . . , (x, v2·k+1) ∈ Si such
that for all i ∈ [2 · k + 1] it holds that w ((x, vi)) ≥ w ((u, v)). Since |M∗| ≤ k it holds
that |V (M∗)| ≤ 2 · k; therefore, as each v′ ∈ {v1, . . . , v2·k+1} can appear as an endpoint
of an edge in M∗ at most once, there is j ∈ [2 · k + 1] such that vj /∈ V (M∗). Thus,
(M∗ \ {e}) ∪ {(x, vj)} is a matching of G such that w ((x, vj)) ≥ w(e). Hence, the proof
follows with e∗ = (x, vj).

The above two cases give the statement of the claim. ⌟

By Claim B.6, let M̃ = (M∗ \ {e}) ∪ {e∗}, where e∗ ∈ Si such that there is e∗ ∈ Si satisfying that
M̃ is a matching of G and w (e∗) ≥ w(e). Thus, M̃ is a matching of G such that

w
(
M̃

)
= w (M∗) + w(e∗)− w(e) ≥ w (M∗) .

Hence, M∗ ∈ M. Since e∗ ∈
⋃

i∈[m] Si and e /∈
⋃

i∈[m] Si it follows that p
(
M̃

)
> p (M∗) in

contradiction to the maximality of p (M∗).

C Lower Bound for MW-IS

In the following sections, we give the proofs of our lower bounds. These bounds are information-
theoretic bounds on the number of elements required to be sent from each server in order to solve the
given problem optimally.
Theorem 1.3. There is no randomized o(k)-data algorithm for k-MW-IS.

Proof. Let any n,m, k, c ∈ IN \ {0} such that n = c · k ·m and m = k. As before, n will be the
number of elements, m the number of servers, k the solution size, and c is an additional parameter.
For any i ∈ [m], create the i-th server, a set of elements Ei = {ei1[ℓ], . . . , eik[ℓ] | ℓ ∈ [c]} and let
E =

⋃
i∈[m] Ei; note that |E| = n. Moreover, define Ej = {eij [ℓ] | i ∈ [m], ℓ ∈ [c]} for all i ∈ [m]

25

and j ∈ [k]. For every i, j ∈ [k] and ℓ ∈ [c] define the weight of eij [ℓ] as w
(
eij [ℓ]

)
= 1 + j

2·k2 ; let
Wj = w

(
eij [ℓ]

)
for simplicity. We use the next trivial claim.

Claim C.1. For all j1, j2 ∈ [k] such that j1 < j2 the following holds.

• k ·Wj1 < k ·Wj2 .

• k ·Wj1 > (k − 1) ·Wj2 .

Proof. Clearly, Wj1 = 1 + j1
2·k2 < 1 + j2

2·k2 = Wj2 ; thus, k ·Wj1 < k ·Wj2 . In addition,

k ·Wj1 = k + k · j1
2 · k2

≥ k = (k − 1) + 1 > (k − 1) +
k

2 · k
≥ (k − 1) +

j2
2 · k

= (k − 1) + (k − 1) · j2
2 · k · (k − 1)

≥ (k − 1) ·Wj2 .

The third inequality holds because j2 ∈ [k]. ⌟

Note that the above defines a family of MW-IS instances with a ground set E and weight function
w : E → IR that differ by distinct selections of the set of independent sets I ⊆ 2E (assuming fixed
n,m, and k). For any X ⊆ [k] define

IX =
{
S ⊆ E

∣∣∣ ∣∣S ∩ Ej
∣∣ ≤ k ∀j ∈ X and

∣∣S ∩ Ej
∣∣ ≤ k − 1 ∀j ∈ [k] \X

}
. (1)

Since E1, . . . , Ek is a partition of E, it follows that (E, IX) is a partition matroid, which is well
known to be a matroid (see, e.g., [57, 51]). For any X ⊆ [k], let ΦX be the MW-IS instance defined
by the matroid (E, IX), partition E1, . . . , Em into servers, and the weight function w : E → IR.

We prove the theorem below. For the sake of brevity, we provide a unified proof of the lower bound
for both deterministic and randomized algorithms. The necessary small modifications in the proof
required for randomized algorithms will appear in parentheses.

Assume towards a contradiction that there is a (randomized) d-data algorithm A for MW-IS for
d ≤ k − 2 (for d < k−2

2). For every j ∈ [k], let Sj =
{
S ⊆ Ej

∣∣ |S| = k
}

. By (1) and Claim C.1,
for every j ∈ [k] it holds that Sj is the set of all maximum weight (with respect to w) bases of
(E, IX) for all non-empty sets X ⊆ [k] such that j = argmaxj′∈X j′; that is, Sj is the set of optimal
solutions of all such instances ΦX .

Consider the MW-IS instance Φ{1}. Let Q ⊆ 2E be all sets queried (with probability at least 1
2) by

the membership oracle of the central coordinator during the execution of Algorithm A on instance
Φ{1}, and let E′ ⊆ E be the (random) collection of elements brought to the central coordinator in
this execution. Let

B = {j ∈ [k] | Q ∩ Sj ̸= ∅}
be all indices on which Algorithm A queried on instance Φ{1} at least one set in Sj (with probability
at least 1

2). Since A is a d-data algorithm for d ≤ k − 2 (for d < k−2
2), it follows that |E′| ≤ m · d

(for all realizations). Recall that E1, . . . , Ek are disjoint; thus, there can be at most d indices j ∈ [k]
such that Q∩ Sj ̸= ∅ (with probability at least 1

2). In other words, |B| ≤ d ≤ k − 2 (for randomized
algorithms: |B| ≤ 2 · d ≤ k − 2 since for each j ∈ B the expected number of elements taken to
the coordinator from Ej is at least k

2 and the overall number of elements is bounded by m · d on all
realizations). Thus, there is j∗ ∈ [k] \ 1 such that j∗ /∈ B. Observe that the output of the central
coordinator in the execution of Algorithm A on Φ{1} is determined by the set of elements E′ and the
results of the queries (and the random bits of the algorithm). By (1) and Claim C.1, it follows that A
returns a set in S1 (with probability at least 1

2). On the other hand, for the instance Φ{1,j∗} the set
of elements in the central coordinator is also E′ and the result of each query except for subsets in
Sj∗ is the same for the membership oracles of I{1} and I{1,j∗}. Therefore, since A does not query
sets in Sj∗ also on instance Φ{1,j∗} (with probability at least 1

2), Algorithm A has to return on this
instance the same output it returns on instance Φ{1} (with probability at least 1

2), which is in S1.
Since S1 ∩ Sj∗ = ∅, it follows that A does not return an optimal solution for instance Φ{1,j∗} (with
probability at least 1

2), in contradiction to the definition of A.

26

D Lower Bounds for MWM

We give below our two lower bounds for MWM. We start with the lower bound for unweighted
instances.

D.1 Lower Bound for Unweighted Instances

We remark that with a factor of 2 the following result can be adapted for randomized algorithms.

Theorem 1.5. For every even k ≥ 2 there is no deterministic
(
k−1
2

)
-data algorithm for k-MCM.

Proof. Let k ∈ IN such that k ≥ 2 and let V = [k] × {1} and U = [k] × {2} be disjoint sets of
vertices. Let σ : [k]→ [k] be a bijection. Define the bipartite graph Gσ = (V ∪ U,Eσ) where

Eσ =
{
((v, 1), (u, 2)) ∈ V × U

∣∣ v ≤ σ(u)
}
.

Let P 1
σ , . . . , P

m
σ be a partition of Eσ into servers such that for all v ∈ [m] it holds that

P v
σ = {((x, 1), (y, 2)) ∈ Eσ | x = v} .

For every bijection σ : [k]→ [k] define

Mσ =
{
((v, 1), (u, 2)) ∈ V × U

∣∣ v = σ(u)
}
. (2)

We show that Mσ is a maximum (cardinality) matching in Gσ .

Claim D.1. For every bijection σ : [k]→ [k] it holds that Mσ is a matching in Gσ of cardinality k.

Proof. We first show that Mσ ⊆ Eσ. For every ((v, 1), (u, 2)) ∈ V × U such that v = σ(u), in
particular it holds that v ≤ σ(u). This implies that ((v, 1), (u, 2)) ∈ Eσ which consequently means
that Mσ ⊆ Eσ. It remains to show that Mσ is a matching in Gσ of cardinality k. Since σ is a
bijection, for each v ∈ [k] there is exactly one u ∈ [k] such that v = σ(u), and for each u ∈ [k] there
is exactly one v ∈ [k] such that v = σ(u). Therefore, for each v ∈ [k] and u such that v = σ(u),
the vertices (v, 1), (u, 2) appear exactly once as endpoints in Mσ . Thus, Mσ is a matching in Gσ of
cardinality k ⌟

Claim D.2. Let σ : [k]→ [k] be a bijection and let F be a matching in Gσ such that |F | ≥ k. Then,
it holds that F = Mσ .

Proof. Consider two cases. First, |F | > k. Then, by the pigeonhole principle there is v ∈ V that
appears as an endpoint of at least two edges in F , implying that F is not a matching. Contradiction
Second, F = k and every (v, 1) ∈ V appears as exactly one endpoint of an edge in F . Since σ is
a bijection, the inverse function σ−1 : [k] → [k] is well-defined. We prove that for each v ∈ [k],
by backward induction on v, that it holds that ((v, 1), (σ−1(v), 2)) ∈ F ; since |F | = k, it directly
follows that F = Mσ. For the base case, assume that v = k. Then, as ((v, 1), (u, 2)) ∈ F for
some u ∈ [k] (recall that |F | = k), by the definition of Eσ it must hold that v ≤ σ(u); moreover,
σ(u) ∈ [k] since the range of σ is also [k], which implies that v ≥ σ(u). Hence, v = σ(u) implying
u = σ−1(v), and the base case follows. For the step of the induction, assume, for some v ∈ [k],
that for every v′ ∈ [k] \ [v] it holds that ((v, 1), (σ−1(v), 2)) ∈ F . Let ((v, 1), (u, 2)) ∈ F for some
u ∈ [k] (again, recall that |F | = k hence there is such u). By the definition of Eσ it holds that
v ≤ σ(u). Also, by the assumption of the induction, for every v′ ∈ [k] such that v′ > v it holds
that ((v, 1), (σ−1(v), 2)) ∈ F ; thus, σ(u) ∈ [k] \ {v′ ∈ [k] | v′ > v} = [v]. Therefore, v ≥ σ(u)
implying v = σ(u) as required. We conclude that F = Mσ . ⌟

Assume towards a contradiction that there is a
(
k−1
2

)
-data algorithm A for unweighted MWM with

zero communication. For every bijection σ : [k]→ [k] and v ∈ [m], let Ev
σ ⊆ P v

σ be the set of edges
brought by A to the central coordinator from server v on input Gσ; moreover, let E′

σ =
⋃

v∈[m] E
v
σ

be the overall set of edges brought to the central coordinator.

Let σ0 : [k]→ [k] be the identity function, where σ0(i) = i for all i ∈ [k].

Claim D.3. There are v∗ ∈ V and u∗ ∈ [k] such that ((v∗, 1), (u∗, 2)) ∈ Eσ0
\ E′

σ0
.

27

Proof. Since A is a (k−1
2)-data algorithm, observe that E′

σ0
≤ m · (k−1

2) = k2−k
2 . Moreover,

Eσ0
=

∣∣{((v, 1), (u, 2)) ∈ V × U
∣∣ v ≤ σ(u)

}∣∣ = ∑
v∈[k]

(k − v + 1) =
∑
v∈[k]

v =
k2 + k

2
.

The second equality holds since σ0 : [k] → [k] is a bijection; thus, for each v ∈ [k] there are
(k − v + 1) entries u ∈ [k] such that v ≤ σ0(u). By the above

Eσ0
=

k2 + k

2
>

k2

2
>

k2 − k

2
≥ E′

σ0

This gives the statement of the claim. ⌟

Let v∗ ∈ V and u∗ ∈ [k] such that ((v∗, 1), (u∗, 2)) ∈ Eσ0
\ E′

σ0
as promised by Claim D.3. Let

σ∗ : [k]→ [k] be the bijection defined for all i ∈ [k] as

σ∗(i) =


u∗, i = v∗

v∗, i = u∗

i, otherwise

Clearly, σ∗ is a one-to-one mapping (a bijection). By the definition of P v∗

σ∗ , P v∗

σ0
, recall that

((v∗, 1), (u∗, 2)) ∈ P v∗

σ∗ and ((v∗, 1), (u∗, 2)) ∈ P v∗

σ0
.

Claim D.4. Ev∗

σ∗ = Ev∗

σ0
.

Proof. Since A is a zero communication algorithm, Ev∗

σ∗ , Ev∗

σ0
depend only on the algorithm A, and

the edge sets of the servers P v∗

σ∗ , P v∗

σ0
, respectively. Observe that

P v∗

σ∗ = {((x, 1), (y, 2)) ∈ Eσ∗ | x = v∗}
= {((v∗, 1), (u, 2)) ∈ V × U | v∗ ≤ σ∗(u)}
= {((v∗, 1), (u, 2)) ∈ V × U | v∗ ≤ σ0(u)}
= {((x, 1), (y, 2)) ∈ Eσ0 | x = v∗}
= P v∗

σ0

⌟

The third equality holds since σ∗(u∗) = v∗, σ∗(v∗) = u∗ ≥ v∗ and for every x ∈ [k] \ {u∗, v∗} it
holds that σ∗(x) = σ0(x); thus, for every u ∈ [k] it holds that v∗ ≤ σ∗(u) if and only if v∗ ≤ σ0(u).
Since ((v∗, 1), (u∗, 2)) ∈ Eσ0

\ E′
σ0

, by Claim D.1 and Claim D.2, the only maximum cardinality
matching in Gσ∗ does not belong to 2Eσ0 , and also to 2Eσ∗ by Claim D.4. This is a contradiction that
A is an unweighted MWM algorithm with zero communication that in particular finds a maximum
matching in Gσ∗ .

D.2 Lower Bound for Weighted Instances

Theorem 1.4. For every k ∈ IN , there is no randomized o
(
k2

)
-data algorithm for k-MWM.

Proof. Let m ∈ IN be the number of servers and let k ∈ IN be the solution size parameter. Assume
towards a contradiction that there is a

(
k2

2 − 1
)

-data algorithm A that solves MWM with zero
communication. For every s ∈ [m], let Bs = (U, Vs, Es) be a complete bipartite graph with k
vertices on each bipartition; namely, let U = {u1, . . . , uk}, Vs = {vs1, . . . , vsk} be disjoint sets of
vertices of cardinality k and let Es = U × Vs. Let W ∈ IR>0 be the weight of all edges in Es. Fix
some s ∈ [m] and assume that server s received Es (with weight W for each edge) as an input, as
part of a D-MWM problem (note that the input to the remaining servers can be defined in various
ways resulting in different instances). Since A is an algorithm for MWM with zero communication,
it sends a random subset of edges Es ⊆ Es to the central coordinator, where Es depends only on
Es, W , and the random bits of the algorithm; that is, it is independent of the input to the remaining
servers.

28

Claim D.5. For every s ∈ [m] and e ∈ Es it holds that Pr (e ∈ Es) ≥ 1
2 .

Proof. Fix some s ∈ [m]. Assume towards a contradiction that there is e = (ui, v
s
j) ∈ Es such that

Pr (e ∈ Es) < 1
2 . Define bipartite graphs B1 = (U \ui, X,E1), Bs

2 = (Vs \vsj , Y, Es
2), where X =

{x1, . . . , xk}, Y = {y1, . . . , yk}, U, Vs are disjoint sets of vertices, E1 = {(uℓ, xℓ) | ℓ ∈ [k] \ {i},
and finally Es

2 = {(vsℓ , yℓ) | ℓ ∈ [k] \ {j}}. Let Vs = U ∪ Vs ∪X ∪ Y and Es = Es ∪ E1 ∪ Es
2 .

Let the weight of each edge in E1 ∪E2 be 2 ·W . Let Gs = (Vs, Es) be an MWM instance I , with
the distribution Es, E1 ∪ Es

2 into two servers, and an empty set is given as input for the remaining
m− 2 servers. Let Ms = E1 ∪Es

2 ∪ {(ui, v
s
j)}. Observe that each µ ∈ Vs appears as an endpoint

of exactly one edge in Ms; hence, Ms is a perfect matching in G. Moreover, E1 ∪ E2 ⊆ Ms, and
E1 ∪ Es

2 are the edges of strictly the highest weight in Es; therefore, Ms is the unique maximum
weight matching in Gs. Hence, as (ui, v

s
j) /∈ Es with probability at least 1

2 and e = (ui, vj) ∈M ,
the central coordinator cannot return an optimal solution for instance I with probability at least 1

2 .
We reach a contradiction that A is required to solve every MWM instance optimally with probability
at least 1

2 . ⌟

Let G = (V,E) be the graph where V = U ∪
⋃

s∈[m] V
s and E =

⋃
s∈[m] Es. Consider the MWM

instance with the graph G = (V,E) and partition E1, . . . , Em into the m servers, where the weight
of each edge in E is W . Call this MWM instance J . By Claim D.5, it follows that for every s ∈ [m]
and every e ∈ Es it holds that Pr (e ∈ Es) ≥ 1

2 . Therefore, overall the expected number of edges
sent to the coordinator on instance J using algorithm A is at least m·k2

2 . Note that the cardinality
of a maximum matching in G is at most k since every edge in E is connected to a vertex in U and
|U | = k. Thus, it follows that A is a k2

2 , in contradiction that A is assumed to be a
(

k2

2 − 1
)

-data
algorithm.

E Parallel Algorithms

We start with some definitions before giving the proof of Theorem 5.1. Recall that in a subset selection
problem we are given a set of elements E, a weight function w : E → IR and there is a set I ⊆ 2E

of feasible solutions, which is not necessarily given; the goal is to find S ∈ I of maximum/minimum
w(S). Clearly, maximum weight matching and matroid independent set of maximum weight are
natural subset selection problems. As before, k is used to denote the solution size. Assuming the
solution size is given in the input, we denote by I = (E,w, k) an instance of a subset selection
problem.
Theorem 5.1. Let P be a subset selection problem that has a zero communication f(k)-data
algorithm A in time Õ(g(|Ei|)) for each server i ∈ [m], for some monotonic polynomial functions
f, g, where k is the solution size. Then, there is an Õ (g (f(k))) time parallel algorithm that given an
instance of P returns a subset of the elements of size Õ(f(k)) that contain an optimal solution. The
algorithm is deterministic if A is deterministic.

Proof. Let P be a subset selection problem and let A be a zero communication f(k)-data algorithm
in time Õ (g (|Ei|)) for each server i, for some monotonic polynomial functions f, g, where k is the
solution size. Assume without the loss of generality that f(k), g(k) ≥ 1 and k ≥ 1. Let I = (E,w, k)
denote an instance of P , where E is a set of elements, w is a weight function, and k is the solution
size. Define the following algorithm B on instance I . Let n = |E|.

1. Let j ← 0, E0 ← E, n0 ← n

2. While nj

4·f(k) > 1:

(a) Let mj =
⌈

nj

4·f(k)

⌉
(b) Partition Ej into servers Ej

1, . . . , E
j
m where

∣∣∣Ej
i

∣∣∣ ≤ 4 · f(k) for all i ∈ [mj]

(c) Execute A on the instance Ij =
{
(Ej

i , w, k)
}
i∈[mj]

.

29

(d) Let Kj
i ⊆ Ej

i be the elements brought from server i to the central coordinator ∀i ∈ [mj]

(e) Update Ej+1 ←
⋃

i∈[mj]
Kj

i , nj+1 ←
∣∣Ej+1

∣∣, j ← j + 1

3. Return Ej .

Claim E.1. The running time of B on instance I is Õ(g(f(k))).

Proof. We show two things. First, the number of iterations of the while loop is bounded by O(logn);
that is, the value of j at the end of the algorithm satisfies j = O(logn). Second, each iterations runs
in parallel time of Õ(g(f(k))). Fix some iteration j of the while loop such that nj > 4. Observe that∣∣∣Kj

i

∣∣∣ ≤ f(k) since A is an f(k)-data algorithm; thus,

∣∣Ej+1
∣∣ =

∣∣∣∣∣∣
⋃

i∈[mj]

Kj
i

∣∣∣∣∣∣
≤

∑
i∈[mj]

∣∣∣Kj
i

∣∣∣
≤f(k) ·mj

=f(k) ·
⌈

nj

4 · f(k)

⌉
≤f(k) · nj

4 · f(k)
+ 1

<f(k) · nj

4 · f(k)
+

nj

4

=
nj

4
+

nj

4

=
nj

2

Thus, in every iteration j of the while loop besides the last iteration (only in the last iteration it may
hold that nj ≤ 4 ≤ 4 · f(k)), the number of elements decrease by at least half. We conclude that the
number of iterations is therefore bounded by O(logn). Moreover, in each iteration j we can partition
the elements into mj consecutive segments, each containing 4 · f(k) elements besides perhaps the
last segment which may contain a smaller number of elements. Therefore, by the definition of A the
running time of each iterations takes

max
i∈[mj]

Õ
(
g
(
Ej

i

))
= Õ(g(4 · f(k))) = Õ(g(f(k)))

The equalities above rely on f, g being monotonic polynomial. Thus, overall the running time is
bounded by Õ(g(f(k))). ⌟

Claim E.2. Algorithm B returns an optimal solution for I .

Proof. We prove an invariant of the algorithm, that is preserved in all iterations. The invariant is
that for every iteration j of the while loop of the algorithm, there is an optimal solution S of I such
that S ⊆ Ij . Before the first iteration, it holds that Ej = E and the invariant is trivially satisfied.
Assume that the invariant holds before iteration j; thus, there is an optimal solution S of I such that
S ⊆ Ej . Then, in iteration j we apply A on Ij ; since A is a zero communication algorithm for P it
follows that there is an optimal solution S ⊆ Ej+1 for Ij . Since there is an optimal solution for I
that is a subset of Ej , we conclude that an optimal solution for Ij is also an optimal solution for I .
Thus, there is S ⊆ Ej+1 that is an optimal solution for I . Overall, it follows that there is an optimal
solution that is a subset of the elements brought to the central coordinator. This implies thatA returns
a subset of elements containing an optimal solution for I in this last iteration and consequently B
returns a subset of elements containing an optimal solution for I as required. ⌟

The proof of the theorem follows from Claim E.1 and Claim E.2 since at the end of the algorithm it
holds that

∣∣Ej
∣∣ = O(f(k)).

30

We give below the proofs for our parallel algorithms for k-MWM and MWM. We will use the
following algorithm for k-MWM.

Lemma E.3. [25] There is a deterministic algorithm that solves k-MWM in time Õ (k · (|V |+ |E|)).

The algorithm used for the above lemma by Gabow [25] is a variation of the celebrated algorithm
of Edmonds [21] for MWM (a generalization of the Hungarian algorithm [39]). Specifically, this
algorithm is made of at most |E| searches – finding an augmenting path in the graph. Each path
augments by one the cardinality of the current matching, and is of maximum weight among all
matchings of the current cardinality. Thus, after k searches, the algorithm solves k-MWM. As
Gabow [25] constructs an implementation of a single search of this algorithm in time Õ (|V |+ |E|),
overall k searches give the running time given in the above lemma. We note that the running time of
the lemma may be improved using an adaptation of faster algorithms for special cases of MWM (e.g.,
smaller weights [26] or bipartite graphs [55, 39]). However, this requires an adaptation of such an
algorithm to k-MWM instead of MWM, which is not always applicable.

Theorem 1.7. There is a deterministic parallel Õ
(
k3

)
time algorithm for k–MWM.

Proof. By Theorem 1.2, there is a deterministic zero communication O
(
k2

)
-data algorithm for

maximum weight matching in a deterministic parallel time of Õ (|Ei|) for each server i. As each
edge and its weight can be encoded in Õ(1) bits, each server sends Õ

(
k2

)
bits overall. Thus, by

Theorem 5.1 (using the above, i.e., f(k) = O
(
k2

)
and g (|Ei|) = Õ (|Ei|)), there is a parallel

deterministic Õ (k) algorithm that returns a subset S of Õ
(
k2

)
edges containing an optimal solution.

Let G′ = (V ′, E′ = S) be the induced graph on these edges. Note that |E′| = |S| = Õ
(
k2

)
;

therefore, |V ′| ≤ |E′| = Õ
(
k2

)
. Then, using Lemma E.3, we can solve this residual k-MWM

instance in deterministic time Õ (k · (|V ′|+ |E′|)) = Õ
(
k ·

(
k2 + k2

))
= Õ

(
k3

)
.

We complete this section with our algorithm for MWM, which uses the above algorithm.

Theorem 1.8. There is a deterministic parallel Õ
(
k4

)
time algorithm for MWM.

Proof. In this proof, we use the algorithm given in Theorem 1.7 to solve MWM (rather than k-
MWM); that is, without the cardinality bound. The approach uses the above algorithm, denote it by
A, as a black box, using increasing values of k. Specifically, we run the following algorithm B based
on algorithm A (defined in Theorem 1.7) for k-MWM. Assume without the loss of generality that the
graph contains at least one edge with strictly positive weight (otherwise the problem is trivial).

1. Initialize k = 0

2. Update k ← k + 1

3. Execute A on the input graph with parameter k; let wk be the total weight of the solution

4. If wk ≤ maxq∈{⌊k/3⌋,...,k−1} wq:

(a) return the highest weight solution found over all iterations q = 1, . . . , k

5. else: Go to Step 2

Let k∗, opt be the minimum cardinality of an optimal solution for the given instance and such
an optimal solution, respectively. By the minimality of opt, all edges in opt have strictly pos-
itive weight. Then, during the execution of B, note that for every k < k∗ it holds that
wk > maxq∈{⌊k/3⌋,...,k−1} wq since there is an edge in opt with strictly positive weight that can be
added to the solution of iteration ⌊k/3⌋ (for every two matchings A,B, where |A| < 2 · |B| there is
an edge in B that can be added to A preserving the matching property, as each vertex is an endpoint
of at most one edge in a matching). Thus, the condition in Step 4 fails for every k < k∗; consequently,
during the execution of B, we execute A with cardinality k∗ in particular, which guarantees that B
returns an MWM.

31

It remains to bound the running time. Each iteration in the execution of algorithm A with cardinality
k takes Õ

(
k3

)
deterministic parallel time using Theorem 1.7. Hence, to conclude, we show that

the number of iterations of executing A is O (k∗); thus, as in all of these iterations it holds that
k = O (k∗) the proof follows. Let k′ be the value of k at the end of the algorithm, and it follows that
wk′ ≤ maxq∈{⌊k′/3⌋,...,k′−1} wq by the stopping condition of the algorithm. Note that for every k
such that ⌊k/3⌋ ≥ k∗ it holds that wk ≤ maxq∈{⌊k/3⌋,...,k−1} wq since opt is a MWM (andA returns
a k∗-MWM in iteration k∗, which has a weight equals to the optimal weight). Thus, k′ = O (k∗) as
required.

F Lower Bound for Shortest Paths

In this section, we show that there is no algorithm that solves the unweighted shortest path problem
even for paths of constant length without bringing the entire set of edges to the central coordinator.
Intuitively, this differentiates the parameterized zero communication algorithms from FPT algorithms,
using the same parameters, since shortest path can be solved in polynomial time and in particular has
an FPT algorithm parameterized by the solution size.
Theorem F.1. There is no d-data algorithm for distributed shortest path for any d = o(|Ei|), even
for paths of length O(1), where Ei is the set of edges of server i.

Proof. Assume towards a contradiction that there is a zero communication d-data algorithm A for
d < |E|, where Ei is the set of edges of server i. Consider the following instance. Let n ∈ IN be
a sufficiently large integer and let U = {u1, . . . , un}, V = {v1, . . . , vn}, W = {w1, . . . , wn} be
disjoint sets of vertices. Let EUV = {(ui, vi)}i∈[n] and EVW ⊆ {(vi, wi)}i∈[n] be sets of edges
between U, V and V,W , respectively. Let V = U ∪ V ∪W ∪ {s, t} where s, t /∈ U ∪ V ∪W
and let Let E = EUV ∪ EVW ∪ ({s} × U) ∪ ({W} × {t}). Consider a collection of shortest path
instances on 2 servers (and a central coordinator), where the edges are distributed between the server
by EUV ∪ ({s} × U) in server 1 and EVW ∪ (W × {t}) in server 2. Note that this is a collection
of instances since we did not describe EVW explicitly and only require EVW ⊆ {(vi, wi)}i∈[n].
Since d = o(|EUV |) and EUV = Ω(n) and as n is sufficiently large, there is (ui, vi) ∈ EUV not
brought to the central coordinator from Server 1 in an execution of A on the instance G = (V,E).
Since A is a one-round algorithm, (ui, vi) is independent of the set of edges in Server 2, in particular
on EVW . Now, consider the case where EVW = {(ui, vi)}. Then, in this case the only path in G
between the source s to the target t is (s, ui), (ui, vi), (vi, wi), (wi, t). However, since (ui, vi) is not
brought to the central coordinator by A the algorithm returns that there is no path between s and t,
in contradiction to the fact that A is an algorithm that requires to solve all shortest path instances
optimally. We conclude that such an algorithm A does not exist.

32

	Introduction
	The Zero Communication Model
	Our Results
	Related Work
	Discussion

	Preliminaries
	A Zero Communication Algorithm for MW-IS
	A Zero Communication Algorithm for Maximum Weight Matching
	Parallel Algorithms
	Zero communication Algorithm for MW-IS
	Zero communication Algorithm for MWM
	Analysis of Algorithm Strong-Set
	Structural Lemma for matching

	Lower Bound for MW-IS
	Lower Bounds for MWM
	Lower Bound for Unweighted Instances
	Lower Bound for Weighted Instances

	Parallel Algorithms
	Lower Bound for Shortest Paths

