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ABSTRACT

Click-through rate (CTR) prediction is crucial for recommendation systems and
online advertising, relying heavily on effective user behavior modeling. While ex-
isting methods separately refine long-term and short-term interest representations,
the fusion of these behaviors remains a critical yet understudied challenge due to
misaligned feature spaces, disjointed modeling, and noise propagation in short-term
interests. To address these limitations, we propose IFUSION, a diffusion-based
generative user interest fusion method, which reformulates interest fusion as a con-
ditional generation process. IFUSION leverages short-term interests as conditional
guidance and progressively integrates long-term representations through denoising,
eliminating reliance on linear fusion assumptions. Our framework introduces two
key components: (1) the Disentangled Classifier-Free Diffusion Guidance (DCFG)
Mechanism, which adaptively disentangles core preferences from transient fluctua-
tions, and (2) the Mixture AutoRegressive Denoising Network (MARN), which
enables joint interest modeling and fusion through autoregressive denoising. Exper-
iments demonstrate that iFusion outperforms baselines across public and industrial
datasets, as well as in online A/B tests, validating its effectiveness in robust CTR
prediction. This work establishes a new paradigm for generative user interests
fusion in CTR prediction.

1 INTRODUCTION

Dynamic interest fusion stands as a fundamental challenge in click-through rate (CTR) prediction in
recommendation systems and online advertising. At the core of this challenge lies the effective fusion
of heterogeneous behavioral signals across different temporal scales particularly the integration of
stable long-term preferences with volatile short-term interests.

The prevailing approach partitions user behaviors into long-term and short-term sequences (Chen
et al., 2019), modeling them separately before fusion. Despite advances in individual components (Pi
et al., 2020; Chang et al., 2023; Si et al., 2024; Hidasi et al., 2016; Xia et al., 2023), interest
fusion remains critically under-explored, particularly for handling non-stationary and contradictory
evolution patterns. Current fusion methods including concatenation (Zhou et al., 2018), attention
mechanisms (Vaswani et al., 2017; Li et al., 2019), and gating networks (Hochreiter & Schmidhuber,
1997; Lv et al., 2019) rely on linear assumptions that prove inadequate, suffering from three key
limitations: First, misaligned heterogeneous feature spaces arise from divergent feature selection
mechanisms. Deployment constraints often enforce distinct representations for long- and short-term
interest modeling. For instance, long-term behaviors are modeled using historical click logs, whereas
short-term behaviors leverage purchase interactions. This inherent heterogeneity creates non-linear
interactions between temporal scales that conventional linear fusion operators fail to capture, as they
presuppose feature space alignment. Second, the limitations of disjointed modeling in late-fusion
paradigms. Existing late-fusion methods (He et al., 2023) employ decoupled pipelines that isolate
behavior modeling from interest fusion, resulting in suboptimal inductive biases that hinder effective
cross-sequence integration. Third, perturbation-interest entanglement. Linear fusion lacks explicit
mechanisms to disentangle meaningful interest signals from stochastic fluctuations in short-term
behaviors, allowing noise to propagate unchecked and corrupt stable long-term representations.
Moreover, HSTU-based generative solutions (Zhai et al., 2024; Han et al., 2025) for ranking tasks
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Figure 1: Inherent limitations of current interest fusion methods

intensify reliance on the richness of sequential information by constructing user historical behaviors
into one unified fusion sequence. When behavioral data is sparse, this approach leads to inadequate
modeling performance due to its inherently discriminative nature in ranking tasks, which fails to
effectively infer and fuse interests from limited behavioral evidence.

To address these challenges, we introduce iFusion, a novel framework that reformulates interest
fusion as a conditional generation process rather than a deterministic fusion operation. Our approach
leverages diffusion models to gradually integrate long-term interest representations conditioned on
short-term behavioral guidance through a structured denoising process. This generative formulation
eliminates restrictive linear assumptions, enabling more flexible and robust interest modeling. The
iFusion framework incorporates two synergistic components: the Disentangled Classifier-Free
Guidance (DCFG) Mechanism, which explicitly separates core preference signals from transient
fluctuations during the guidance process, and the Mixture AutoRegressive Denoising Network
(MARN), which enables independent conditioning of multiple denoising pathways while captur-
ing fine-grained interest evolution. Together, these components provide a unified solution to the
fundamental challenges of interest fusion. Our main contributions are summarized as follows:

• Generative Reformulation of Interest Fusion: We propose a novel diffusion-based frame-
work for CTR prediction that treats interest fusion as a conditional generation process,
moving beyond traditional deterministic fusion paradigms.

• Joint Interest Modeling via MARN: Leveraging the proposed MARN, we simultaneously
model the fusion of long- and short-term interests while capturing fine-grained interest
evolution within short-term behavioral sequences.

• Disentangled Guidance with DCFG: By adopting the DCFG paradigm, we disentangle
supervision signals to explicitly quantify the contributions of core preference modeling and
transient behavioral fluctuations.

• Comprehensive Empirical Validation: We demonstrate the effectiveness of iFusion
through extensive experiments on public benchmarks, industrial datasets, and online A/B
tests, with CTR prediction serving as a key evaluation scenario.

2 RELATED WORK

2.1 DISCRIMINATIVE USER BEHAVIOR MODELING

User behavior modeling plays a pivotal role in capturing user preferences, with widespread applica-
tions in recommendation systems and online advertising (He et al., 2023). Early approaches primarily
relied on MLP architectures (Wang et al., 2015), later evolving to sequence-aware models such as
RNNs (Hidasi et al., 2015; Hidasi & Karatzoglou, 2018; Li et al., 2017; Quadrana et al., 2017) and
attention mechanisms (Vaswani et al., 2017; Zhou et al., 2018; 2019). Recent advances focus on
modeling long-term dependencies (Ren et al., 2019; Pi et al., 2019; 2020; Chen et al., 2021; Cao
et al., 2022), handling heterogeneous behavior types (Xia et al., 2021; 2020; Meng et al., 2020), and
integrating contextual side information (Li et al., 2020; Lei et al., 2021; Liu et al., 2021; Xie et al.,
2022).
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2.2 GENERATIVE MODELING METHODS

Generative models have prompted a paradigm shift in recommendation systems, transitioning from
discriminative to generative approaches (Wei et al., 2025; Guo et al., 2025; Zhou et al., 2025a;b; Zhai
et al., 2024; Han et al., 2025). In particular, diffusion models have gained significant traction in this
domain (Yang et al., 2023; Li et al., 2023; Du et al., 2023; Niu et al., 2024; Wang et al., 2024; 2023).
However, existing diffusion-based work primarily focuses on sequential recommendation tasks, with
limited exploration of generative paradigms for click-through rate prediction (Lai et al., 2025), which
requires effective modeling of dynamic user interest fusion, representing a key limitation in the
current literature.

3 PRELIMINARY

For each user, we consider two complementary behavioral sequences that capture different temporal
granularities of user interests. The long-term behavior sequence BL = {bL

1, b
L
2, . . . , b

L
M} represents

the user’s historical interaction patterns over an extended period, where M denotes the sequence
length. The short-term behavior sequence is organized into sessions BS = {S1, S2, . . . , SK}, where
each session Si = {bS

1, b
S
2, . . . , b

S
ni
} contains interactions within a confined temporal window, and

K is the total number of sessions. We employ two specialized encoders to extract meaningful
representations from these sequences. A long-term behavior encoder fL(·) that maps BL to a dense
representation hL ∈ RdL

. And a short-term session encoder fS(·) that processes each session Si

to generate session-level embeddings hS
i ∈ RdS

. Our objective is to learn a fusion function Fθ that
generates an enriched behavior representation:

hfusion = Fθ(h
L, {hS

i }Ki=1) (1)

where θ denotes learnable parameters. The fused representation hfusion should simultaneously preserve
long-term user preferences and capture short-term dynamic interests for improved CTR prediction.

We combine this objective with diffusion model and reformulate the interest fusion process into a
Markov chain with T diffusion steps. In the forward process, the long-term interest hL serves as the
initial state x0, and gradually adds Gaussian noise according to a variance schedule {βt}Tt=1:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (2)

We can directly sample xt at any time step t in closed form according to the notable property
mentioned in (Ho et al., 2020):

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (3)

where αt := 1− βt and ᾱt :=
∏t

s=1 αs. The signal-to-noise ratio SNR(t) = ᾱt/(1− ᾱt) decreases
monotonically with t, ensuring xT converges to standard Gaussian noise. The reverse process
operates as a denoising procedure that progressively refines the noisy long-term interest representation
x̂T

1 across T timesteps. Notably, we condition the denoising steps on the short-term interest signals
{hS

i }Ki=1. This ultimately generates an interest representation x̂0 that integrates long-term and
short-term interests. The reverse Markov chain is implemented by a neural network fθ, formulated
as:

pθ(x̂t−1|x̂t, {hS
i }Ki=1) = N

(
x̂t−1;µθ

(
x̂t, t, {hS

i }Ki=1

)
,Σθ(x̂t, t, {hS

i }Ki=1)
)
, (4)

where the mean function µθ integrates short-term interest guidance while the variance Σθ is typically
fixed as σ2

t I with σ2
t = βt or learned. Following (Ho et al., 2020), we implement the mean prediction

through noise reparameterization:

µθ(x̂t, t, {hS
i }Ki=1) =

1
√
αt

(
x̂t −

1− αt√
1− ᾱt

ϵθ(x̂t, t, {hS
i }Ki=1)

)
, (5)

where ϵθ serves as the guided noise predictor trained to estimate the injected noise at step t while being
conditioned on short-term interest signals. We utilize an alternative reparameterization approach that

1For simplicity, we set x̂T = xT
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Figure 2: The framework of our proposed method iFusion

predicts the generated interest representation x̂0 instead of estimating the additive noise ϵ as shown
in the equation 5:

µθ(x̂t, t, {hS
i }Ki=1) =

√
ᾱt−1fθ(x̂t, t, {hS

i }Ki=1) +

√
αt(1− ᾱt−1)√

1− ᾱt
ϵ, (6)

4 METHODOLOGY

Our proposed iFusion method effectively addresses the key challenges outlined in Section 1. As
illustrated in Figure 2, iFusion integrates multi-sequence user interests via a generative approach,
collaborating with discriminative modules to enhance downstream CTR prediction. It comprises two
core components: the DCFG mechanism, which provides robust guidance under perturbation for
interest fusion, and the MARN, facilitating blended guidance throughout the inverse velocity field
learning process.

4.1 DCFG: DISENTANGLED CLASSIFIER-FREE GUIDANCE FOR INTEREST FUSION

CTR prediction face a fundamental trade-off between signal fidelity and perturbation robustness
when modeling user behavior sequences. While conventional classifier-free guidance (CFG) (Ho
& Salimans, 2022) enables conditional generation, its uniform scaling approach proves suboptimal
for behavior modeling where signals exhibit multi-scale characteristics from stable preferences to
transient fluctuations.

Revisiting Classifier-Free Guidance. Given short-term session interest hS
i as guidance g, standard

CFG blends conditional and unconditional predictions with a single scaling factor γ:

f̂θ(xt, t, g) = fθ(xt, t) + γ(fθ(xt, t, g)− fθ(xt, t)) (7)
This formulation assumes homogeneous signal quality across behavioral contexts, an assumption
frequently violated in practice. The guidance based on interest representation has a lower signal-to-
noise ratio than the guidance used in traditional image generation tasks.

4
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Energy-Based Perspective on Interest Dynamics. Drawing from stochastic thermodynam-
ics (Seifert, 2012), we model user interest dynamics as particles in a composite potential field
V (xt|g) = V (xt|gcp) + V (xt|gtf ), where core preferences gcp create deep attractors and transient
fluctuations gtf generate shallow perturbations:

dxt = −[∇V (xt|gcp) +∇V (xt|gtf )]dt+
√
2DdWt (8)

This analogy motivates our dual-component decomposition through functional separation. We imple-
ment disentanglement through specialized architectures capturing complementary signal aspects:

hcp = AvgPool(Encoder(g)) (low-pass filtering, C-Filter) (9)
htf = Attention(Encoder(g)) (high-pass filtering, T-Filter) (10)

The core preference pathway employs strong regularization and global pooling for stability, while the
transient pathway uses attention mechanisms to capture variations.

Generalized Energy-Based Formulation. We formulate conditional generation as sampling from
an energy-based model with structurally distinct components:

p(xt|g) ∝ exp(−E(xt|g)) = exp(−[γcpEcp(xt|g) + γtfEtf (xt|g)]) (11)

Theorem 1 (Energy-Based Disentanglement of Guidance) Let E(xt|g) = γcpEcp(xt|g) +
γtfEtf (xt|g) be the total energy function, where Ecp and Etf are implemented through archi-
tecturally constrained networks with low-pass and high-pass characteristics respectively. Then the
conditional score function admits the exact decomposition:

∇xt
log p(xt|g) = γcp(−∇xt

Ecp) + γtf (−∇xt
Etf ) (12)

Furthermore, if the architectural constraints enforce that the Hessians ∇2
xt
Ecp and ∇2

xt
Etf have

approximately orthogonal dominant eigenspaces, then the guidance directions become functionally
disentangled:

⟨−∇xt
Ecp,−∇xt

Etf ⟩ ≤ ζ (13)
where ζ quantifies residual correlation. (Proof in Appendix K)

Theorem 1 provides the theoretical foundation for DCFG, demonstrating that architectural constraints
induce functional disentanglement without requiring strict conditional independence. Through
Fokker-Planck analysis of the Langevin system (Appendix D), we establish DCFG formulation
derived based on Bayes’ theorem in Appendix C:

f̂θ(xt, t, g) = fθ(xt, t) +
∑

j∈{cp,tf}

γj(fθ(xt, t, gj)− fθ(xt, t)) (14)

4.2 MARN: MIXTURE AUTO REGRESSIVE NETWORK

Current applications of diffusion models in recommendation predominantly rely on single-vector
guidance during the reverse process, typically implemented through non-autoregressive (NAR) archi-
tectures such as MLPs or Transformers. However, NAR methods might suffer from the inability to
capture fine-grained sequential dependencies due to their parallel generation nature, leading to poten-
tial inconsistency or suboptimal performance in tasks where require strict temporal coherence (Gu
et al., 2017; Kasai et al., 2020) or the guidance does not follow a completely linear relationship.
Additionally, they may lack interpretability in modeling step-by-step decision processes compared to
autoregressive alternatives (Stern et al., 2019). Inspired by the success of autoregressive (AR) model-
ing in sequential recommendation systems, we propose an autoregressive-based structure MARN for
the reverse process. Unlike parallel injection methods that concatenate session embeddings or use
pooling methods, MARN processes K short-term session interests sequentially through chain-rule
conditioning with the output for each session serving as noisy representation for the next session’s
generation. Compared with the NAR method, MARN has better representation learning ability, more
stable training and weight adaptation advantages, which are summarized in Theorem 2, detail proof
provided in Appendix E.

Theorem 2 (AR Superiority in Multi-Session Diffusion) Autoregressive (AR) injection strictly
dominates non-autoregressive (NAR) for multi-session diffusion with dependent sessions (∃i, j :

5
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I(si; sj) > 0), achieving: (1) tighter KL-bound DNAR
KL −DAR

KL ≥ 1
2

∑
(αk − 1

K )2−
∑

i<j I(si; sj);
(2) O(K) lower gradient variance Var(∇LAR) ≤ L2K−1Var(∇LNAR); and (3) adaptive weight-
ing αk ∝ exp(−∥∇skL∥/σt). NAR only competes when sessions are independent or under strict
latency constraints.

This theoretically-grounded approach proves particularly effective for modeling multi-guidance user
interest evolution, where the AR structure’s ability to decompose complex joint distributions into
conditional chains captures interest shifts more accurately than NAR’s mean-field approximation.
This advantage that grows superlinearly with session count K (Figure 4b).

4.3 IMPROVING EFFICIENCY

To meet the low-latency requirements of online CTR serving, we optimize the diffusion-based interest
fusion via consistency constraints. Traditional diffusion models suffer from slow inference due to
iterative denoising steps, which is prohibitive for real-time applications. We introduce a consistency
loss that enforces similarity between interest representations generated under different noise levels:

Lcons = Et1,t2∼p(t)

[
∥fθ(xt1 , t1)− fθ(xt2 , t2)∥2

]
(15)

This constraint enables high-quality generation with drastically fewer sampling steps by learning
noise-invariant representations. This makes diffusion models practical for industrial CTR systems
while preserving their expressive power.

4.4 THEORETICAL ANALYSIS UNDER ZERO-DATA SCENARIOS

We analyze the zero-data scenario through the lens of denoising diffusion theory. The key insight is
that diffusion models provide a principled mechanism for navigating the interest manifoldM even
with completely uninformative inputs.

Theorem 3 (Diffusion Manifold Consistency) Under mild smoothness assumptions on the interest
manifoldM, the diffusion process generates representations that remain close toM:

dM(z0, z
∗) ≤ C · E[∥ϵ− ϵθ(zt, t|zl, zs)∥] + ϵapprox (16)

Theorem 3 establishes that the learned score function guides the reverse diffusion process toward
semantically meaningful regions of the representation space. This geometric constraint ensures
robustness even when behavioral data is completely absent.

Theorem 4 (Zero-Data Denoising Optimality) When zl, zs are uninformative, the optimal denois-
ing strategy converges to sampling from population-level statistics:

ϵθ(zt, t) = Ez0∼pdata [ϵ|zt] (17)

This result demonstrates that our diffusion-based framework naturally falls back to reasonable
population-level priors in zero-data scenarios. Detailed derivations and experiment are provided in
Appendix M and N.

4.5 OVERALL TRAINING AND INFERENCE PROCESS

The overall training objective combines four loss components:
L = LCE︸︷︷︸

CTR prediction

+ λ1LEvol︸ ︷︷ ︸
evolutionary

+ λ2LDist︸ ︷︷ ︸
disentanglement

+ λ3Lcons︸ ︷︷ ︸
consistency

+β∥Θ∥2 (18)

whereLCE is the cross-entropy loss, LEvol =
1
N

∑N
i=1 Dcos(s

pred
i,k+1, s

true
i,k+1) captures interest evolution,

LDist = ∥g⊤
coregfluct∥22 enforces guidance disentanglement, and Lcons for improving efficiency. The

training protocol of iFusion is shown in Algorithm 1. During inference, we employ an iterative
denoising process starting from xT = hL. At each step t from T to 1, we compute:

xt−1 =

√
ᾱt−1βt

1− ᾱt
f̃θ(xt, {hS

i }Ki=1, t) +

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
β̃tz (19)

This formulation represents a single denoising step, which is applied iteratively until reaching the
final fused representation x0 for CTR prediction. The inference protocol of iFusion is show in
Algorithm 2.

6
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5 EXPERIMENTS

In this section, we present a comprehensive empirical evaluation of our proposed method. We mainly
answer the following research questions: RQ1: How does iFusion perform compared with other user
behavior modeling methods? RQ2: How do different components of iFusion benefit its performance?
RQ3: What is the impact of factors (e.g., sample steps) on iFusion’s performance? RQ4: How
efficient is iFusion inference?

5.1 EXPERIMENTAL SETTINGS

Datasets and Evalution Metrics. We conducted experiments on benchmark including Amazon Book
Dataset2, Taobao Dataset3 and Ali Ads Dataset4 which are widely used in user behavior modeling
research, as well as a real industrial dataset from a large e-commerce advertising platform. A detailed
description of the datasets can be found in Appendix G. We use AUC as the evaluation metric for
offline experiments. Furthermore, we adopt the relative improvement (RelaImpr) metric to evaluate
the performance difference between models (Zhou et al., 2018; Yan et al., 2014).

RelaImpr = (
AUC(model)− 0.5

AUC(base model)− 0.5
− 1)× 100% (20)

Baselines. We compare to mainstream user behavior modeling algorithms including Avg-Pooling
DNN, DIN (Zhou et al., 2018), DIEN (Zhou et al., 2019), SIM (Pi et al., 2020), ETA (Chen et al.,
2021), SDIM (Cao et al., 2022), TWIN (Chang et al., 2023), TWIN-V2 (Si et al., 2024), MTGR (Han
et al., 2025), DiffuRec (Li et al., 2023), DreamRec (Yang et al., 2023) and DiffuMIN (Lai et al.,
2025). Detailed descriptions of each baseline and implementation are provided in Appendix H.1. All
models were implemented using TensorFlow. For model training, we used Adam as the optimizer
and trained each model for a single epoch. More details can be found in Appendix H.2.

5.2 COMPARISON WITH BASELINES (RQ1)

We evaluate iFusion against state-of-the-art baselines in Table 1 and provide the statistical signif-
icance of our model’s improvement over the best baseline model. Notably, in CTR prediction
scenarios, even a 0.001 AUC gain is considered practically significant (Zhou et al., 2018; 2019).
Our experimental analysis reveals several key observations. First, both DIN and DIEN demonstrate
superior performance over the standard DNN, validating the importance of attention mechanisms in
modeling user behavior sequences. Furthermore, specialized architectures for long-term behavior
modeling exhibit enhanced capability in capturing extended user interest patterns. Methods like
MTGR achieve additional gains through direct modeling of complete user behavior chains. Notably,
existing diffusion-based approaches face limitations in their guidance mechanisms, struggling to
disentangle core user preferences from transient fluctuations during interest representation learning.
This entanglement issue hinders their performance in CTR prediction tasks. In contrast, iFusion
addresses this fundamental challenge through interest decoupling guidance and autoregressive de-
noising generation that progressively refines interest modeling. This principled approach yields
statistically significant improvements over all competitive baselines, demonstrating the effectiveness
of our proposed framework.

5.3 ABLATION STUDY (RQ2)

To systematically evaluate the contribution of each component in iFusion, we conduct comprehensive
ablation studies. The results, summarized in Figure 3, provide compelling evidence for our design
choices. In Figure 3a, our proposed DCFG demonstrates significant advantages over conventional
CFG approaches. By separating guidance signals for core preferences and transient fluctuations,
DCFG achieves more precise interest representation, as reflected in the consistent AUC improvements.
We observe that naively incorporating all guidance information leads to degraded performance in
interest fusion quality. This finding underscores the necessity of our carefully designed guidance

2http://jmcauley.ucsd.edu/data/amazon/
3https://tianchi.aliyun.com/dataset/649
4https://tianchi.aliyun.com/dataset/56
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Table 1: Performance comparison on four datasets. Best results are in bold. All results run over 3
times with std ≈ 1e-3

Method Amazon Taobao Ali Ads Industrial

AUC RelaImpr AUC RelaImpr AUC RelaImpr AUC RelaImpr

Traditional Methods
AvgPooling DNN 0.7689 0.00% 0.8539 0.00% 0.6352 0.00% 0.7512 0.00%
DIN 0.8162 +17.59% 0.8995 +12.88% 0.6422 +5.18% 0.7564 +2.07%
DIEN 0.8377 +25.69% 0.9222 +19.30% 0.6431 +5.84% 0.7611 +3.94%
SIM 0.8420 +27.18% 0.9268 +20.60% 0.6587 +17.38% 0.7625 +4.50%
ETA 0.8422 +27.26% 0.9272 +20.71% 0.6591 +17.68% 0.7625 +4.50%
SDIM 0.8426 +27.41% 0.9277 +20.85% 0.6596 +18.05% 0.7628 +4.62%
TWIN 0.8431 +27.59% 0.9288 +21.16% 0.6601 +18.42% 0.7630 +4.70%
TWIN-V2 0.8433 +27.67% 0.9289 +21.19% 0.6607 +18.86% 0.7634 +4.86%
MTGR 0.8440 +27.93% 0.9296 +21.39% 0.6615 +19.45% 0.7648 +5.41%

Diffusion-based Generative Methods
DiffuRecctr 0.8395 +26.26% 0.9258 +20.32% 0.6584 +17.16% 0.7607 +3.78%
DreamRecctr 0.8421 +27.22% 0.9286 +21.11% 0.6590 +17.60% 0.7619 +4.26%
DiffuMIN 0.8427 +27.45% 0.9288 +21.16% 0.6595 +17.97% 0.7623 +4.42%
iFusion (Ours) 0.8512 +30.61% 0.9347 +22.83% 0.6652 +22.19% 0.7685 +6.89%
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Figure 3: Ablation study on industrial dataset over 3 runs (std ≈ 1e-3).

modulation strategy in interest fusion task, which selectively integrates relevant signals while fil-
tering out noise. In Figure 3b, the introduction of MARN brings substantial gains, attributed to its
hierarchical processing of interest guidance across temporal sessions. Increasing the complexity of
MARN’s internal networks does not yield significant improvements, as we are fusing in interest space
rather than original sequence. It also suggest that the effectiveness stems from our interest-space
fusion paradigm rather than network capacity. As shown in Figure 3c, the consistency loss enables
remarkable acceleration in inference generation while maintaining performance. This demonstrates
the practical viability of iFusion for real-time industrial deployment.

5.4 HYPER-PARAMETER STUDY (RQ3)

We conduct a systematic analysis of iFusion’s sensitivity to key hyper parameters: noise scheduling
strategy, inference sampling steps, and the number of behavioral sessions. Our findings reveal
important insights into the model’s operational characteristics. Figure 4a demonstrates that under
consistency constraints, various noise schedules achieve peak performance with minimal sampling
steps. The cosine schedule emerges as optimal, achieving best AUC with just a single inference step.
Notably, performance degrades with increased sampling steps, likely due to error accumulation in
the iterative generation process. This observation validates our design choice for efficient few-step
inference. As shown in Figure 4b, the advantage of MARN’s autoregressive processing becomes
increasingly pronounced with more sessions, confirming our theoretical analysis in Appendix E.
This scalability demonstrates iFusion’s suitability for modeling complex interest fusion. Based on
our analysis, we adopt cosine noise scheduling with single-step inference as the default configura-
tion, achieving an optimal balance between performance and computational efficiency. Additional
hyperparameter studies are provided in Appendix I due to space constraints.
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Figure 4: Hyperparameter study on industrial dataset over 3 runs (std ≈ 1e-3)

5.5 EFFICIENCY ANALYSIS (RQ4)

We conduct a comprehensive efficiency evaluation of iFusion across both offline and online de-
ployment scenarios. The results demonstrate the practical viability of our approach for industrial
applications. In offline inference, by integrating our interest fusion module atop the optimal baseline
model, we observe only a marginal 0.3% increase in inference time cost. This negligible overhead
confirms the computational efficiency of our architectural design. In production environments, iFusion
introduces merely a 0.302% increase in TP99 latency compared to a highly-optimized industrial-
grade model. Such minimal performance impact is well within acceptable thresholds for large-scale
deployment. These efficiency metrics, coupled with the significant performance gains demonstrated
in previous sections, establish iFusion as an effective and practical solution for real-world CTR
prediction systems. Additional efficiency analyses, including training time convergence and memory
utilization patterns, are provided in Appendix J due to space constraints.

5.6 ONLINE A/B TESTS

We conducted large-scale online A/B tests over a 7-day period to evaluate iFusion’s real-world
performance in a production advertising system. The experiment involved hundreds of millions of
users, with iFusion demonstrating statistically significant improvements across key business metrics:
achieving a +2.44% gain in CTR (p_value < 0.001) and a +2.61% gain in eCPM (p_value <
0.001). These results confirm iFusion’s effectiveness in simultaneously enhancing user engagement
and platform monetization, while maintaining acceptable computational overhead as detailed in
Section 5.5.

6 CONCLUSIONS

We propose iFusion, a diffusion-based generative framework for interest fusion that overcomes key
limitations of existing methods: misaligned heterogeneous feature spaces, disjointed modeling in
late-fusion paradigms, and perturbation-interest entanglement. By reformulating interest fusion as a
conditional generation process, iFusion integrates long-term and short-term interest through decoupled
denoising without restrictive linear assumptions. The framework incorporates two novel components:
the MARN architecture, which jointly models interest evolution and fusion via autoregressive
dynamics, and the DCFG mechanism, which disentangles core preferences from transient fluctuations
to enhance robustness. Extensive evaluations in CTR prediction demonstrate the effectiveness of our
approach. This work advances user interest fusion under a diffusion paradigm, enabling fluctuation-
aware interest modeling. The framework is readily transferable to other behavioral interest fusion
tasks such as CVR and GMV prediction.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, we employed a large language model primarily for language polishing
and expression refinement. The LLM was used as an assistive tool to enhance the clarity, coherence,
and fluency of the writing

B NOTATIONS

Table 2: Notation Summary

Symbol Description

BL long-term behavior sequence
bL
i the i-th user’s long-term behavior
M number of long-term user behaviors
BS short-term behavior sequence
Si short-term behavior sequence
bS
i the i-th user’s short-term behavior session
K number of short-term user behaviors
fL(·) long-term behavior encoder
fS(·) short-term session encoder
hL long-term interest representation
hS
i short-term session interest representation

hfusion generated fused interest representation
Fθ user interest fusion function
T diffusion steps
βt variance schedule for diffusion model
xt the noisy representation at time step t
x̂t the noisy representation at time step t in the reverse process, for

simplicity, we define x̂T = xT
gcp core preference guidance
gtf transient fluctuation guidance
γj , j ∈ {cp, tf} hyper-parameter to control the strength of core preference guid-

ance and transient fluctuation guidance

C DERIVATION OF EQUATION 14 VIA BAYESIAN GRADIENT DECOMPOSITION

Starting from the joint conditional distribution:

p(xt | gcp, gtf ) =
p(gcp, gtf | xt)p(xt)

p(gcp, gtf )
(21)

⇒ log p(xt | gcp, gtf ) = log p(gcp, gtf | xt) + log p(xt) + const. (22)
Taking the gradient with respect to xt:

∇xt log p(xt | gcp, gtf ) = ∇xt log p(gcp, gtf | xt) +∇xt log p(xt) (23)
Under conditional independence:

∇xt log p(gcp, gtf | xt) =
∑

i∈{cp,tf}

∇xt log p(gi | xt) (24)

Reorganizing terms using the identity∇xt log p(gi | xt) = ∇xt log p(xt | gi)−∇xt log p(xt) yields
the final form:

∇xt log p(xt | gcp, gtf ) = (1− γcp − γtf )∇xt log p(xt) + γcp∇xt log p(xt | gcp) (25)
+γtf∇xt log p(xt | gtf ) (26)

Equivalent to:
∇xt log p(xt | gcp, gtf ) = ∇xt log p(xt) + γcp(∇xt log p(xt | gcp)−∇xt log p(xt)) (27)

+γtf (∇xt log p(xt | gtf )−∇xt log p(xt)) (28)
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D PROOF OF POTENTIAL DECOMPOSITION IN LANGEVIN DYNAMICS

D.1 PRELIMINARIES

Consider a 2D overdamped Langevin system with position r = (x, y):

γ
dr

dt
= −∇V (r) +

√
2γkBTη(t) (29)

where η(t) = (ηx(t), ηy(t)) is standard white noise satisfying:
⟨ηi(t)⟩ = 0

⟨ηi(t)ηj(t′)⟩ = δijδ(t− t′) (30)

Assumption 1 (Potential Separability) The potential V (x, y) admits the decomposition:
V (x, y) = Vx(x) + Vy(y) + ϵVxy(x, y) (31)

where ϵ = 0 for the exactly separable case.

D.2 EXACT DECOMPOSITION THEOREM

Theorem 5 (Dynamics Decoupling) For ϵ = 0 in Eq. equation 31, the system equation 29 decouples
exactly into:

γẋ = −∂xVx(x) +
√
2γkBTηx(t) (32)

γẏ = −∂yVy(y) +
√
2γkBTηy(t) (33)

Proof 1 The gradient operator acts on Eq. equation 31 as:

∇V =

(
∂xVx(x) + ϵ∂xVxy(x, y)
∂yVy(y) + ϵ∂yVxy(x, y)

)
(34)

For ϵ = 0, substituting into Eq. equation 29 yields immediate decoupling into Eq. equation 32 and
Eq. equation 33. The noise terms remain uncorrelated since:

⟨ηx(t)ηy(t′)⟩ = 0 ∀t, t′ (35)

D.3 PROBABILITY DENSITY FACTORIZATION

Lemma 1 (FP Equation Decomposition) The Fokker-Planck equation for Eq. equation 29 with
ϵ = 0:

∂P

∂t
= ∇ ·

[
1

γ
(∇V )P +D∇P

]
, D =

kBT

γ
(36)

admits separable solutions P (x, y, t) = Px(x, t)Py(y, t).

Proof 2 Substitute the separable ansatz into Eq. equation 36:
∂

∂t
(PxPy) =

1

γ

[
∂

∂x
(∂xVxPxPy) +

∂

∂y
(∂yVyPxPy)

]
+D

[
∂2

∂x2
(PxPy) +

∂2

∂y2
(PxPy)

]
(37)

Expanding derivatives and dividing through by PxPy:
1

Px

∂Px

∂t
+

1

Py

∂Py

∂t
=

1

γ

[
1

Px

∂

∂x
(∂xVxPx) +

1

Py

∂

∂y
(∂yVyPy)

]
+D

[
1

Px

∂2Px

∂x2
+

1

Py

∂2Py

∂y2

]
(38)

This separates into two independent equations:
∂Px

∂t
=

1

γ

∂

∂x
(∂xVxPx) +D

∂2Px

∂x2
(39)

∂Py

∂t
=

1

γ

∂

∂y
(∂yVyPy) +D

∂2Py

∂y2
(40)

confirming the solution’s separability.
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D.4 PERTURBATION ANALYSIS FOR WEAK COUPLING

For ϵ≪ 1, we can expand the solution as:

P (x, y, t) = P (0)
x (x, t)P (0)

y (y, t) + ϵP (1)(x, y, t) +O(ϵ2) (41)

where the superscript (0) denotes the separable solution. The first-order correction satisfies:

∂P (1)

∂t
= LxP

(1) + LyP
(1) +

1

γ
∇ · (P (0)

x P (0)
y ∇Vxy) (42)

with Li being the FP operators for each coordinate. This shows how non-separable terms introduce
coupling between directions.

E THEORETICAL ANALYSIS OF AR VS. NAR IN MULTI-GUIDANCE
INJECTION IN DIFFUSION REVERSE PROCESS

The core challenge lies in effectively integrating K short-term behavior sessions s1:K into the
diffusion reverse process. We analyze two fundamental approaches through three lenses: Modeling
Perspective. When sessions exhibit weak dependence (I(si; sj) ≤ ϵ), the autoregressive (AR)
injection’s chain rule decomposition achieves strictly lower approximation error. For any diffusion
step t:

Theorem 6 (Approximation Error Bound) The KL-divergence gap between AR and non-
autoregressive (NAR) injection satisfies:

DNAR
KL −DAR

KL ≥
1

2

K∑
k=1

(αk −
1

K
)2︸ ︷︷ ︸

Weight mismatch

−
∑
i<j

I(si; sj)︸ ︷︷ ︸
Correlation penalty

(43)

Proof 3 The AR model’s sequential processing preserves conditional dependencies through exact
probability chain rule:

pAR(xt−1|s1:K) =

K∏
k=1

p(xt−1|sk,xt, s1:k−1) (44)

whereas NAR’s concatenation forces mean-field approximation, introducing the weight mismatch
term. The correlation penalty emerges from Jensen’s inequality applied to the joint distribution.

Optimization Dynamics. The gradient behavior differs markedly due to injection architecture. AR’s
sequential nature induces implicit gradient averaging:

Theorem 7 (Gradient Variance Ratio) For L-Lipschitz denoising networks with session weights
αk:

Var(∇θLNAR)

Var(∇θLAR)
≥ K

L2
· ∥JNAR∥2F∑K

k=1 α
2
k

(45)

where J denotes the input Jacobian matrix.

Proof 4 AR’s variance scales as O(1/K) due to Central Limit Theorem effects in sequential pro-
cessing, while NAR’s variance grows with input dimension din:

VarNAR ∝ E[∥Concat(s1, ..., sK)∥2] ≈ K · din (46)

The ratio follows from direct variance computation and Lipschitz continuity.

Adaptive Weighting. AR models automatically learn noise-sensitive session weights without explicit
design:
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Proposition 1 (Implicit Attention) At noise level σt, AR’s effective weights satisfy:

αAR
k (t) ∝ exp

(
−E[∥∇skL∥]

σt

)
(47)

Proof 5 Through backpropagation, the gradient norms ∥∇skL∥ act as implicit importance scores.
Higher noise levels σt soften the weight distribution, matching the intuition that session relevance
becomes ambiguous in early diffusion steps.

Table 3: Practical Implications Summary

Property Interpretation
Lower KL-bound AR better preserves complex session interactions
Gradient stability AR’s SNR improves with more sessions (∝

√
K)

Dynamic weighting AR adapts to session relevance without architecture changes

The theoretical findings suggest AR injection is preferable when: (1) session correlations exist
(ϵ > 0), (2) model capacity permits sequential processing, and (3) gradient stability is critical. NAR
remains competitive when sessions are truly independent or computational latency dominates quality
concerns.

F PSEUDOCODE FOR IFUSION TRAINING AND INFERENCE

Algorithm 1 iFusion Training Protocol

Require: Training set D, core signal extractor g1, fluctuation extractor g2
Require: Dropout rates p1drop, p2drop Initialize all model parameters.

1: repeat
2: (hL,hS

1:K+1) ∼ D ▷ Get long-term and short-term behavior interests.
3: x0 = hL

4: t1, t2 ∼ U({1, . . . , T}) ▷ Sample diffusion step.
5: ϵ1, ϵ2 ∼ N (0, I) ▷ Sample Gaussian noise.
6: for each {t, ϵ} ∈ ({t1, ϵ1}, {t2, ϵ2}) do following step:
7: xt =

√
αtx0 +

√
1− αtϵ ▷ Forward process.

8: g1:Kcp , g1:Ktf = e1(h1:K), e2(h1:K) ▷ Disentangle guidance signals
9: mi ∼ Bern(1− pidrop) ▷ Perform unconditional training with probability pdrop

10: for mode in {evo, task} do
11: If mode = evo then idx = 1 : K else idx = 2 : K + 1 ▷ Select used sessions
12: ĝmode

cp = m1 · gidxcp + (1−m1) · ∅
13: ĝmode

tf = m2 · gidxtf + (1−m2) · ∅
14: f̂mode

θ =
γcp

γcp+γtf
fθ(xt, t, ĝ

mode
cp ) +

γtf

γcp+γtf
fθ(xt, t, ĝ

mode
tf ) ▷ Eq. equation 4

15: end for
16: L = LCE + λ1LEvol + λ2LDist + λ3Lcons ▷ Eq. equation 18
17: Update θ ← θ − η∇θL
18: until convergence
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Algorithm 2 iFusion Inference Protocol

Require: Trained model fθ, trained core signal extractor g1, trained fluctuation extractor g2
Require: long-term interest hL, short-term sessions hS

1:K
Ensure: generated interest x0

1: Initialize xT with long-term interest hL

2: g1:Kcp , g1:Ktf = e1(h
S
1:K), e2(h

S
1:K)

3: for t = T down to 1 do
4: z ∼ N (0, I) if t > 1 else z = 0
5: funcond = fθ(xt, t, ∅)
6: fcp = fθ(xt, t, (g1:Kcp ))

7: ftf = fθ(xt, t, (g1:Ktf ))

8: f̂ = funcond +
∑

j∈{cp,tf} γj(fj − funcond) ▷ Theorem 14

9: xt−1 =
√
ᾱt−1βt

1−ᾱt
f̂ +

√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
β̃tz

10: end for

G DETAILS OF DATASET

To better demonstrate our method’s capability in addressing the challenges presented in this paper, we
have made several deliberate and distinctive choices in constructing the dataset, particularly regarding
the public dataset. Below, we provide a detailed overview of the dataset.

Amazon Dataset (McAuley et al., 2015) is a commonly used benchmark in user behavior model-
ing (Zhou et al., 2018; 2019). It comprises product reviews and metadata from Amazon, specifically
utilizing the Books subset, which includes 75,053 users, 358,367 items, and 1,583 categories. In this
dataset, reviews are treated as interaction behaviors and are chronologically sorted per user, with a
maximum behavior sequence length of 100. Following common practices in related work, we split
the sequence into short-term and long-term sequential features, using the most recent 10 interactions
for short-term modeling and the preceding 90 for long-term representation.

Taobao Dataset contains approximately one million randomly sampled users, recording all their
interactions (e.g., clicks, purchases, add-to-cart, and likes) between November 25 and December 3,
2017. The dataset includes user IDs, item IDs, item category IDs, behavior types, and timestamps.
Following (Chen et al., 2021), we first sorted each user’s behaviors chronologically. Unlike previous
works that rely solely on click data, we intentionally incorporate all behavior types when constructing
the short-term behavior sequence. This design choice allows us to rigorously evaluate our method’s
capability in addressing the first challenge: misaligned heterogeneous feature spaces arising from
divergent feature selection mechanisms, as different behavior types naturally introduce variations
in feature distributions and semantics. For the short-term behavior sequence, we extracted the most
recent 16 behaviors. Meanwhile, the long-term behavior sequence was constructed directly from the
user’s most recent 256 behaviors.

Alibaba Ads Dataset is provided by Alibaba, which is a display advertising click-through rate
prediction dataset. It includes shopping behavior data from all users over a 22-day period and
includes comprehensive information on users, advertisements, and user behaviors.

Industrial Dataset is the traffic logs from the advertising system of a large e-commerce platform. 10
billion click-through logs in the first 32 days are used for training, and 0.5 million from the following
day for testing. We define the user’s click behavior from the past 180 days as the long-term behavior
sequence, while the interactions from the most recent 60 days form the short-term behavior sequence.
Notably, this short-term sequence represents a heterogeneous mixture of search queries, item
clicks, and purchase actions, which directly exemplifies the challenge of misaligned heterogeneous
feature spaces arising from divergent feature selection mechanisms as outlined in our introduction.
Furthermore, the short-term sequence is segmented into sessions based on predefined rules to better
capture temporal patterns and user intent transitions within these behaviorally diverse interactions.
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H DETAILS OF EXPERIMENT SETTINGS

H.1 DETAILS OF BASELINES AND IMPLEMENTATION

We compare to mainstream user behavior modeling algorithms including:

• Avg-Pooling DNN: All user behaviors are treated equally with the sum pooling operation.
• DIN: DIN introduces an attention mechanism to capture user interests by adaptively weight-

ing the historical behaviors based on their relevance to the target item.
• DIEN: DIEN models the dynamic evolution of user interests over time using a GRU-based

network with an auxiliary loss to enhance behavior representation learning.
• SIM: SIM extracts user interests with two cascaded search units: (i) General Search Unit

(GSU) acts as a general search from the raw and arbitrary long sequential behavior data, with
query information from candidate item, and gets a Sub user Behavior Sequence (SBS) which
is relevant to candidate item; (ii) Exact Search Unit (ESU) models the precise relationship
between candidate item and SBS.

• ETA: Compared with SIM, the most important improvement of ETA is the change of the
retrieval method in the GSU stage, which changes the simple category-based retrieval of
SIM to the retrieval based on Hamming distance after the item embedding is processed by
SimHash.

• SDIM: SDIM sums the embeddings of items with the same hash as the target item in the
user behavior sequence and normalizes them to obtain the user interest expression, further
reducing the time complexity to O (Lmlog (d)). B represents the number of candidate sets,
L represents the sequence length, d represents the item embedding dimension, K represents
the top K items selected, and m represents the number of different hash functions used in
SDIM.

• TWIN: TWIN is a two-stage interest network for lifelong user behavior modeling, in which
Consistency-Preserved GSU (CP-GSU) adopts the same target behavior correlation measure
as TA in ESU, making the two stages twins.

• TWIN V2: TWIN-V2 compresses lifecycle behaviors through clustering and discovers more
accurate and diverse user interests. In the offline phase, a hierarchical clustering method
groups items with similar characteristics in lifecycle behaviors into clusters. By limiting
the size of clusters, behavior sequences can be compressed to facilitate online reasoning in
GSU retrieval. Cluster-aware target attention extracts users’ long-term interests, resulting in
more accurate and diverse recommendations.

• MTGR: MTGR integrates the advanced DLRM and GRM modes, retaining the characteris-
tics of DLRM such as the Cross feature, while verifying the excellent performance of GRM
and proposing Group-Layer Norm and dynamic masking strategies.

• DiffuRec: DiffuRec is the first diffusion-based sequential recommendation model that
constructs dynamic item representations through controlled noise injection, enhancing
uncertainty modeling in user preference learning.

• DreamRec: DreamRec is a diffusion-based sequential recommendation method that learns
to generate target items by denoising with guidance from historical interactions using
classifier-free guidance mechanism, eliminating the need for negative sampling while
directly capturing user preferences. In our implementation, we use long-term behavior as
the starting point of the forward process and use the fusion representation of short-term
behaviors from multiple sessions as guidance.

• DiffuMIN: DiffuMIN is designed to model long-term user behavior and deeply explore the
user interest space. It uses a goal-oriented multi-interest extraction method that first performs
an orthogonal decomposition of the goal to obtain interest channels. It then decouples and
extracts multiple user interests by modeling the relationship between interest channels and
user behavior. A diffusion module guided by contextual interests and interest channels is
then employed. This module anchors the user’s personalized and goal-oriented interest
types, generating enhanced interests that are consistent with the user’s latent interest space,
further exploring the restricted interest space. Finally, contrastive learning is utilized to
ensure that the generated enhanced interests are consistent with the user’s true preferences.
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H.2 MORE DETAILS OF IFUSION IMPLEMENTATION

Our long-term encoder employs a double-layer transformer encoder-decoder, while the short-term en-
coder uses a single-layer transformer encoder to process each session independently. The transformer
configuration includes a hidden size of 64 and 4 attention heads. We use the Adam optimizer with a
learning rate of 0.001 and eps set to 1e-7, without gradient clipping. For Amazon dataset, short-term
sequences consist of the most recent 10 behaviors and long-term sequences the most recent 90. For
Taobao dataset, short-term sequences include 16 behaviors and long-term sequences 256. The batch
size is 512 on the industrial dataset, and 256 on both Taobao, Amazon and Ali Ads.

Figure 5 shows the online deployment of our generative interest fusion method, iFusion, in CTR
prediction for a real-world industrial advertising system. iFusion constructs training data based on
historical backflow logs to update the model. During online service, iFusion accepts inputs including
user static features, ad features, user behavior sequence features, and candidate ad information. It
outputs an estimated pCTR value, which is used for eCPM calculations in the downstream advertising
system.

Real-time 
Prediction 

Server

Computation 
Node Model

loglearner

Ad 1
Ad 2
Ad 3

…

User ID +

Ad Features

Users Demography 
Database

Users Behavior 
Features

Realtime user 
behavior event

⋯
long-term behaviors

⋯
short-term behaviors

Embedding Layer

Long Decoder

long-term interest

Session Encoder

⋯
short session interest
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forward 
start

reverse guidance

Final Layer

concat

other 
features

short-term interest

pCTR

Short Decoder

Energy Layer

Figure 5: Real-time online deployment diagram of iFusion

I ADDITIONAL HYPER-PARAMETER ANALYSIS FOR IFUSION

I.1 THE IMPACT OF DIFFERENT GUIDANCE STRENGTH

We conducted hyperparameter experiments on the DCFG guidance strength hyperparameter γ, with
candidate ranges for both γcp and γtf ranging from [0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0], for a
total of 25 combinations. Our results show that our method achieves the best results (AUC=0.7685)
when γcp is set to 2.0 and γtf is set to 1.0, leading us to conduct additional comparison and ablation
experiments based on this. We also found that when γcp is set to 1, meaning that no core interest

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

guidance is included, our method performs the worst among all settings, and this performance
increases with increasing γtf . Setting the γcp to γtf parameter ratio around 2.0 achieves relatively
optimal results.

J EFFICIENCY ANALYSIS OF IFUSION

We analyze the efficiency of our proposed method iFusion from both offline training and online
inference perspectives. Compared to our online base model, our diffusion-based approach incurs
a modest 0.97% increase in training time on A100 GPU due to its iterative denoising process. For
online serving, the step-wise generation introduces only a 0.302% latency increase while maintain-
ing real-time responsiveness. These computational overheads are well justified by the significant
improvements in recommendation quality, with significant AUC gain offline and CTR improvement
online. The marginal efficiency costs are practically negligible in production environments, making
our method highly feasible for real-world deployment. Training time and GPU memory utilization
are shown in Table 4.

Table 4: More Efficiency Information

base model iFusion(ours)
Train Memory (GB) 63.6 63.7
Training GPU utilization 79.50% 79.63%
Inference Memory (GB) 9.5 9.7
Inference GPU utilization 11.87% 12.12%

K PROOF OF THEOREM 1: ENERGY-BASED DISENTANGLEMENT

In this appendix, we provide a detailed proof of Theorem 1 from Section 4.1, which establishes the
theoretical foundation for our Disentangled Classifier-Free Guidance (DCFG) framework.

K.1 PRELIMINARIES

Recall that we model the conditional generation process using an energy-based formulation:

p(xt|g) ∝ exp(−E(xt|g)) = exp(−[γcpEcp(xt|g) + γtfEtf (xt|g)]) (48)

where Ecp and Etf are energy functions implemented through architecturally constrained networks.

The score function is defined as the gradient of the log-probability:

∇xt log p(xt|g) = −∇xtE(xt|g) (49)

K.2 PROOF OF SCORE DECOMPOSITION

From the definition of the total energy function:

E(xt|g) = γcpEcp(xt|g) + γtfEtf (xt|g) (50)
∇xtE(xt|g) = γcp∇xtEcp(xt|g) + γtf∇xtEtf (xt|g) (51)

Substituting into the score function definition:

∇xt
log p(xt|g) = −∇xt

E(xt|g) (52)
= − (γcp∇xt

Ecp(xt|g) + γtf∇xt
Etf (xt|g)) (53)

= γcp(−∇xtEcp(xt|g)) + γtf (−∇xtEtf (xt|g)) (54)

This completes the first part of the theorem, showing the exact decomposition of the conditional score
function.
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K.3 PROOF OF FUNCTIONAL DISENTANGLEMENT

We now prove that under appropriate architectural constraints, the guidance directions become
functionally disentangled.

Let vcp = −∇xtEcp and vtf = −∇xtEtf represent the guidance directions for core preferences
and transient fluctuations, respectively.

The inner product between these directions is:

⟨vcp,vtf ⟩ = v⊤
cpvtf (55)

We analyze the conditions under which this inner product is bounded by a small value ζ.

Consider the Taylor expansion of the energy functions around a point x0
t :

Ecp(xt) ≈ Ecp(x
0
t ) +∇Ecp(x

0
t )

⊤(xt − x0
t ) +

1

2
(xt − x0

t )
⊤Hcp(xt − x0

t ) (56)

Etf (xt) ≈ Etf (x
0
t ) +∇Etf (x

0
t )

⊤(xt − x0
t ) +

1

2
(xt − x0

t )
⊤Htf (xt − x0

t ) (57)

where Hcp and Htf are the Hessian matrices of Ecp and Etf , respectively.

The architectural constraints imposed on our networks ensure that:

1. Ecp has low-pass characteristics, meaning Hcp has dominant eigenvalues corresponding to
slow-varying directions in the input space.

2. Etf has high-pass characteristics, meaning Htf has dominant eigenvalues corresponding to
high-frequency directions in the input space.

Let {ucp
1 ,ucp

2 , . . . ,ucp
n } and {λcp

1 , λcp
2 , . . . , λcp

n } be the eigenvectors and eigenvalues of Hcp, respec-
tively. Similarly, let {utf

1 ,utf
2 , . . . ,utf

n } and {λtf
1 , λtf

2 , . . . , λtf
n } be the eigenvectors and eigenvalues

of Htf , respectively.

The architectural constraints ensure that the dominant eigenspaces of Hcp and Htf are approximately
orthogonal:

⟨ucp
i ,utf

j ⟩ ≈ 0 for i ≤ k, j ≤ l (58)

where k and l are the indices of the dominant eigenvalues for each Hessian.

Now, consider the gradients:

∇Ecp ≈ Hcp(xt − x0
t ) (59)

∇Etf ≈ Htf (xt − x0
t ) (60)

The inner product of the guidance directions is:

⟨vcp,vtf ⟩ = ⟨−∇Ecp,−∇Etf ⟩ (61)

≈ (xt − x0
t )

⊤H⊤
cpHtf (xt − x0

t ) (62)

Expanding (xt − x0
t ) in the eigenbases:

xt − x0
t =

n∑
i=1

aiu
cp
i =

n∑
j=1

bju
tf
j (63)

Then:

⟨vcp,vtf ⟩ ≈

(
n∑

i=1

aiu
cp
i

)⊤

H⊤
cpHtf

 n∑
j=1

bju
tf
j

 (64)

=

n∑
i=1

n∑
j=1

aibj(u
cp
i )⊤H⊤

cpHtfu
tf
j (65)
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Since Hcp and Htf are symmetric (for twice-differentiable energy functions), we have:

(ucp
i )⊤H⊤

cp = λcp
i (ucp

i )⊤ (66)

Htfu
tf
j = λtf

j utf
j (67)

Thus:

⟨vcp,vtf ⟩ ≈
n∑

i=1

n∑
j=1

aibjλ
cp
i λtf

j (ucp
i )⊤utf

j (68)

Due to the approximate orthogonality of the dominant eigenspaces, the terms (ucp
i )⊤utf

j are small
for the indices i, j where λcp

i and λtf
j are large. The remaining terms involve at least one small

eigenvalue, making the product λcp
i λtf

j small.

Therefore, there exists a bound ζ such that:

⟨vcp,vtf ⟩ ≤ ζ (69)

This proof demonstrates that through appropriate architectural constraints that shape the Hessian
matrices of the energy functions, we can ensure that the guidance directions become approximately
orthogonal. This functional disentanglement occurs without requiring strict conditional independence
between the behavioral components, making our approach more robust and practical for real-world
CTR prediction tasks. The value of ζ depends on the degree of orthogonality between the dominant
eigenspaces of Hcp and Htf , which in turn is controlled by the architectural choices (e.g., pooling vs.
attention) and regularization strategies employed in our framework.

L MORE DETAILS OF DCFG IMPLEMENTATION

Table 5: Key components of the DCFG framework implementation.

Component Implementation
Core Preference Encoder Average-Pooling + MLP (strong regularization)
Transient Fluctuation Encoder Attention + MLP (weak regularization)
Orthogonality Constraint Gradient cosine similarity minimization

M PROOFS OF ZERO-DATA THEOREM

M.1 PROOF OF THEOREM 3

We consider the diffusion process defined by the forward SDE dz = f(z, t)dt + g(t)dw and the
reverse SDE dz = [f(z, t)−g(t)2∇z log pt(z)]dt+g(t)dw̄. The score function∇z log pt(z) captures
the local geometry of the data distribution. On the manifoldM, the score function points toward
regions of high data density, effectively guiding the reverse process along the manifold. By the
manifold hypothesis, the data distribution pdata is concentrated onM, so the learned score function
satisfies:

∇z log pt(z) ≈ ProjTzM(∇z log pt(z))

where ProjTzM is the projection onto the tangent space.

The denoising process aims to recover z0 from noisy observation zt. The expected denoising error
can be bounded:

E[∥z0 − ẑ0∥2] ≤ C1 · E[∥∇z log pt(z)− fθ(z, t)∥2]
≤ C2 · E[∥ϵ− ϵθ(zt, t)∥2] + ϵapprox

where fθ is the learned score function. Since the true data lies onM, and the denoising process is
consistent:

dM(z0, z
∗) ≤ L · ∥z0 − z∗∥ ≤ L · (∥z0 − ẑ0∥+ ∥ẑ0 − z∗∥)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

.

In zero-data scenarios, the conditional information zl, zs is uninformative. The diffusion process falls
back to the unconditional score function∇z log pt(z), which still guides the generation toward the
interest manifoldM.

M.2 PROOF OF THEOREM 4

In the unconditional setting (zero behavioral data), the optimal denoising function minimizes:

L(θ) = Ez0,ϵ,t[∥ϵ− ϵθ(zt, t)∥2]

The solution to this optimization problem is given by:

ϵ∗θ(zt, t) = E[ϵ|zt] = Ez0∼pdata [ϵ|zt]

This follows from Tweedie’s formula and the Gaussian perturbation structure of the forward process:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ

Thus, in zero-data conditions, the denoising network learns to predict the expected noise given
the noisy input, effectively performing Bayesian estimation using population-level statistics. The
conditional case with uninformative zl, zs reduces to the unconditional setting.

N EXPERIMENT ON THE EFFECT OF IFUSION IN ZERO-DATA SCENARIOS

We evaluate iFusion’s robustness under two dimensions of user behavior sparsity: (1) absence of
historical long-term behavior, and (2) scarcity of recent interaction records.

For the first scenario, we simulate missing historical data by deliberately omitting long-term interest
representations during evaluation. Comparative analysis shows that iFusion’s generative interest
fusion module effectively compensates for the lack of long-term context, achieving an AUC gain of
approximately 0.003 compared to traditional discriminative methods. This demonstrates the model’s
ability to infer stable interest representations despite incomplete historical data.

For the second scenario, we systematically reduce the number of available sessions and pad the
corresponding interest representations. Traditional discriminative fusion methods exhibit significant
performance drops due to their reliance on complete recent interaction sequences. In contrast,
iFusion’s generative paradigm substantially mitigates this sensitivity through its sampling-based
generation process, which derives plausible interest points by leveraging the learned fused interest
distribution and available long-term interest patterns. This approach maintains robust performance
even with limited recent behavioral data.
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