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Abstract
Many multi-agent systems in practice are decen-
tralized and have dynamically varying dependen-
cies. There has been a lack of attempts in the lit-
erature to analyze these systems theoretically. In
this paper, we propose and theoretically analyze
a decentralized model with dynamically varying
dependencies called the Locally Interdependent
Multi-Agent MDP. This model can represent prob-
lems in many disparate domains such as coopera-
tive navigation, obstacle avoidance, and formation
control. Despite the intractability that general par-
tially observable multi-agent systems suffer from,
we propose three closed-form policies that are the-
oretically near-optimal in this setting and can be
scalable to compute and store. Consequentially,
we reveal a fundamental property of Locally Inter-
dependent Multi-Agent MDP’s that the partially
observable decentralized solution is exponentially
close to the fully observable solution with respect
to the visibility radius. We then discuss extensions
of our closed-form policies to further improve
tractability. We conclude by providing simula-
tions to investigate some long horizon behaviors
of our closed-form policies.

1. Introduction
Many important real-world multi-agent applications are de-
centralized and have local dynamic relationships between
agents. Examples cut across a broad spectrum of areas
including obstacle avoidance, cooperative navigation, for-
mation control. The decentralized nature of the problem
presents a key challenge because agents have limited ac-
cess to the state information of other agents. This may be
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introduced either artificially to improve scalability or by
physical constraints caused by communication limitations.
Another challenge is, that while each agent has their own
dynamics, they are interacting with the set of nearby agents
that are dynamically varying. The presence of such dynamic
interactions makes the decision problem for different agents
highly coupled and nontrivial.

With the recent successes in Reinforcement Learning (RL),
there has been an increasing desire to use this emerging
tool for these types of decentralized multi-agent systems
with locally dynamic agent interactions. However, most of
the work in this area is empirical ((Lowe et al., 2017; Han
et al., 2020; Batra et al., 2022; Long et al., 2018; Baldazo
et al., 2019; Zhou et al., 2019; Palanisamy, 2020; Aradi,
2020)). This is because it is non-trivial to create a model that
accurately represents the decentralized partial observability
and dynamic local dependencies of agents while producing
theoretically sound and relatively tractable solutions. In
addition to the empirical work, there has been a growing
literature on theoretical MARL, but none attempt to model
and solve the challenges brought by the decentralized partial
observability and local dynamic agent interactions (Qu et al.,
2022; 2020a;b; Lin et al., 2021; Kar et al., 2013; Zhang et al.,
2018; Suttle et al., 2020; Chen et al., 2021).

The discussions above naturally motivate the question:

Can we theoretically model and find near-optimal policies
for decentralized agents with dynamic local dependencies
in a scalable manner?

We answer this question affirmatively with our contributions
described below.

1.1. Contributions

For our first contribution, we propose a novel setting called
the Locally Interdependent Multi-Agent MDP. It is a coop-
erative setting that consists of multiple agents acting in a
common metric space. It models dynamic proximity-based
relationships that allow agents within a distance R to in-
fluence and depend on one another. Furthermore, agents
within proximity V are also permitted to communicate with
each other. As the location of the agents can dynamically
change, both the “dependence graph” and the “communica-
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tion graph” can be dynamic and time-varying.

As a second contribution, we provide near-optimal solutions
and establish a fundamental property of this setting. Specifi-
cally, we attempt to answer the following two questions:

1) Are there decentralized policies in this setting that per-
form well theoretically?

We provide three closed-form policy solutions we call the
Amalgam Policy, the Cutoff Policy, and the First Step Finite
Horizon Optimal Policy. The policies in our decentralized
framework have nearly the best possible theoretical perfor-
mance guarantees in this setting. This is shown by providing
an upper bound for the performance of each of policy we
construct (Theorem 3.1, Theorem 3.2, Theorem 3.3) and
matching them with a performance lower bound we also
construct (Theorem 3.4), up to constant factors.

2) How significantly does decentralized partial observability
impact the best possible performance?

As a corollary, we reveal that the performance of the optimal
policy in our partially observable decentralized framework
will approximate the optimal fully observable centralized
policy exponentially well with the increase in the visibil-
ity radius. This establishes a fundamental property of our
decentralized framework in Locally Interdependent Multi-
Agent MDP’s.

Lastly, we give insight into the practical uses and behavior
of our policies. We present some extensions of our solutions
that can further improve scalability, and provide simulations
of toy problems in obstacle avoidance, cooperative naviga-
tion, and formation control. They demonstrate the long term
behaviors of the policies and act as a proof of concept for
applications in more complex systems.

Together, these contributions constitute a novel framework
that has wide applicability and has closed-form solutions
with rigorous theoretical guarantees that are implementable
in practice.

1.2. Related Work

Our work is related to two bodies of literature.

Firstly, there exist many lines of empirical work that con-
sider a multi-agent setting with decentralized agents and
dynamic local dependencies. In fact, many resemblances
of our model show up in practical applications in prob-
lems such as cooperative navigation, obstacle avoidance,
and formation control (Han et al., 2020; Batra et al., 2022;
Lowe et al., 2017). Some examples are robot navigation
(Han et al., 2020; Long et al., 2018), autonomous driving
(Palanisamy, 2020; Aradi, 2020), UAV’s (Baldazo et al.,
2019; Batra et al., 2022), and USV’s (Zhou et al., 2019).
However, all of these works are empirical in nature and our

goal is to provide a theoretical framework for these types of
problems.

Secondly, our work is also related to the large body of the
theoretical MARL literature. This is a very broad area and
some representative works include V-learning (Bai et al.,
2020; Jin et al., 2021; Wang et al., 2023), mean-field RL
(Yang et al., 2018; Gu et al., 2021; Carmona et al., 2023),
and function approximation (Xie et al., 2020; Jin et al.,
2022; Huang et al., 2022). In this literature, the areas most
related to us are 1) the Dec-POMDP, 2) scalable RL, and 3)
decentralized RL.

1) Our setting is indeed a special case of the Dec-POMDP
(Oliehoek, 2012; Oliehoek et al., 2016). Unfortunately,
solving a general Dec-POMDP is NEXP-Complete. Similar
to our approach, there have been many attempts to con-
sider special cases of the Dec-POMDP to improve tractabil-
ity. However, as far as we know, these methods inherit
the hardness of the Dec-POMDP (Goldman & Zilberstein,
2004; Bernstein et al., 2002; Allen & Zilberstein, 2009),
cannot model the setting we consider, or are not theoreti-
cally analyzed. A close example to our setting in the par-
tially observable multi-agent literature is the Interaction
Driven Markov Game (IDMG) (Spaan & Melo, 2008; Melo
& Veloso, 2009) which has many related aspects to our
setting such as rewards decomposing into a single-agent
component and a multi-agent component, but the theory is
not well explored. Compared to the IDMG, we make some
additional assumptions, but we believe the key insight that
improves the theoretical quality of our solution is to allow
coordination between agents for several time steps prior to
reward dependence (see the Lemma 4.1). Another exam-
ple of a related setting is the Network Distributed POMDP
(Nair et al., 2005; Zhang & Lesser, 2011) which has some
resemblance of our setting such as transition independence
and group reward dependence. However, it assumes a fixed
reward grouping and independent observations, neither of
which holds in our setting. As far as we know, the literature
in this area is not able to solve problems in our setting in
a theoretically sound, tractable, and scalable manner. We
take a unique approach to circumvent the difficulties of ana-
lyzing general partial observability structures. Namely, we
propose reasonable closed-form solutions for a particular en-
vironment and observability structure and then theoretically
prove their effectiveness.

2) The scalable RL literature considers a setting very close to
ours (Qu et al., 2022; 2020a;b; Lin et al., 2021). It considers
decentralized agents with local dependencies much like our
setting, however, the dependence network between agents
is fixed or stochastic and the dependence is in terms of the
probability transitions. Our work has dynamic time-varying
dependence networks between agents and the dependence is
in terms of the rewards. Nevertheless, it can be considered
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an extension of works in this area and resemblances of
relevant concepts such as the exponential decay property
can be seen in this work.

3) The distributed RL literature considers multiple agents
connected through a possibly stochastic network (Kar et al.,
2013; Zhang et al., 2018; Suttle et al., 2020; Chen et al.,
2021). It differs in that the objective of the distributed
RL literature is to find the joint optimal policy for all the
agents by exchanging reward information with its neighbors.
In our case, agents will exchange state information with
other agents and act only according to that acquired state
information.

2. Preliminaries
2.1. Locally Interdependent Multi-Agent MDP

We consider a setting with a set of agents N = {1, ..., n}.
Each agent k is associated with a state xk from a common
metric space X with an associated distance metric d. This
state xk is the “location” of agent k. Further, each agent
k ∈ N will also have an internal state from a local state
space Yk. Thus the state for agent k can be represented as
sk = (xk, yk) ∈ Sk where xk ∈ X and yk ∈ Yk.

Given the distance metric d, agents j, k ∈ N at states sj =
(xj , yj) ∈ Sj , sk = (xk, yk) ∈ Sk are then associated with
a notion of distance. We overload notation and denote the
distance d between states as d(sj , sk) = d(xj , xk).

Each agent takes an action ak that lies in a local action space
Ak. Given sk(t), ak(t) at time t, agent k’s state transitions
according to a local transition function Pk, i.e. sk(t+ 1) ∼
Pk(·|sk(t), ak(t)). We assume agents will not travel more
than a distance of 1 at each step. That is, Pk(s

′
k|sk, ak) =

0 if d(sk, s
′
k) > 1. Since the distance of 1 is a unitless

distance dictated by the metric space, this simply reflects the
assumption that movement distance at each step is bounded.

Agents will cooperate and take actions to accumulate dis-
counted rewards that have independent and interdependent
components. Agents will obtain independent local rewards
according to a local reward function rj(sj , aj) at each step.
Furthermore, for other agents k within a distance of a de-
pendence constant R of agent j, an arbitrary reward of
rj,k(sj , aj , sk, ak) will be added. These rewards will then
be discounted by factor γ throughout the time steps.

This proximity-based reward function incentivizes each in-
dividual agent while providing rewards and penalties for
agents within its vicinity according to the distance metric
d. As agents move throughout the space, they will begin to
influence each other in a time-varying dynamic way. If we
assert rj,k(sj , aj , sk, ak) = 0 when d(sj , sk) > R, we can
compactly say rj(s, a) =

∑
k∈N rj,k(sj , aj , sk, ak) where

if j, k are equal, we say rj,j(sj , aj , sj , aj) = rj(sj , aj).

To summarize, we define the Locally Interdependent Multi-
Agent MDP to be M = (S,A, P, r,R, γ):

• S := S1 × ...× Sn

• A := A1 × ...×An

• P (s′|s, a) =
∏

k∈N Pk(s
′
k|sk, ak) where

Pk(s
′
k|sk, ak) = 0 if d(sk, s′k) > 1

• r(s, a) =
∑

j,k∈N rj,k(sj , aj , sk, ak) where
rj,k(sk, ak, sj , aj) = 0 when d(sj , sk) > R. j, k
may be equal.

For the subsequent sections, we denote r̃ = sups,a|r(s, a)|

We will also indicate a finite realizable trajectory in this
MDP to be a sequence of state actions (s(t), a(t)) for t ∈
{0, ..., T} that have the property P (s(t+1)|s(t), a(t)) > 0
for all t ∈ {0, ..., T − 1}. This is similarly defined for
infinite realizable trajectories.

2.2. Group Decentralized Policies

To introduce partial observability, we say two agents can
communicate with each other and take a coordinated action
if there is a path of adjacent agents each within a constant
distance V of each other with V > R. Formally, for s ∈ S,
the visibility partition on the agents N denoted as Z(s)
is defined by the equivalence relation such that for agents
j, k ∈ N , there is a sequence of agents n0, ..., nℓ such that
n0 = j, nℓ = k and d(ni, ni+1) ≤ V for i ∈ {0, ..., ℓ− 1}.
We say two agents within the same visibility partition can
then communicate with one another (see Figure 1).

Therefore our partially observable policy class of interest
ΠV contain policies π : S → ∆(A) that take the form
π(s) = (πz(sz) : z ∈ Z(s)) where agents within the same
visibility group z ∈ Z(s) act according to some coordinated
policy πz in Mz which is the associated Locally Interdepen-
dent Multi-Agent MDP defined on a subset of agents z ⊂ N
with the same Sj , Aj , Pj , rj,k for j, k ∈ z. In other words,
for z ∈ Z(s), πz will be a centralized policy based solely
on the states of agents in the communication group and can
thus be executed by our communication assumptions. We
call this the group decentralized policy class.

We will generalize this notation and define a concatenation
of policies. For a partition P (s) on N possibly depending
on s, and policies πp(sp) for p ∈ P (s), the concatenation
of policies is denoted as π(s) = (πp(sp) : p ∈ P (s)).

Throughout this paper, we also indicate a sample trajectory
τ = (s(t), a(t)) distributed from a policy π with starting
state s and starting action as a as τ ∼ π|s,a. If only the
starting state is conditioned, we use τ ∼ π|s.
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2.3. Scalability

Notice that the size of this group decentralized policy class
can be significantly smaller than all possible policies. To
illustrate, we first establish a Locally Interdependent Multi-
Agent MDP with kM agents, a finite |X |, finite |A1| with
|A1| = |Ai| for all i, and a trivial internal state space for
each agent. Now consider the policy class with policies of
the form π(s) = (πg(sg) : g ∈ G) for some fixed partition
G with M agents in each group. The space required to
store a group decentralized policy will be k|X |M |A1|M
elements as opposed to |X |kM |A1|kM elements, which is
a very dramatic difference numerically. Furthermore, the
space required to store a deterministic group decentralized
policy is reduced from |X |kM to k|X |M elements.

In the group decentralized policy class “G” changes dynam-
ically with the state so the numerical advantages are MDP
dependent. However, in practice, the improvements can be
quite substantial (see Appendix A.5 for an example). The
size reduction is reflected in the reduced space required to
store these policies as well as the reduced computation time
of some algorithms used to find them. We demonstrate this
with the algorithms used to find the Cutoff and First Step
Finite Horizon Optimal Policies, to be introduced later in
Section 3 and extensions in Section 5.

V

R

×
×

×

Figure 1. 3 agents moving in the space of X = R2 with standard
Euclidean distance. The bottom two agents potentially have an
interdependent reward since they are within distance R of one
another. Furthermore, every agent is within distance V of another
agent so all agents can communicate with each other. Notably, the
top and bottom agents may communicate even though they are not
within distance V of each other.

2.4. Objectives

In this setting, we formally would like to answer the follow-
ing questions that correspond to our objectives defined in
Section 1.1:

1) Are there decentralized policies in this setting that per-
form well theoretically?

Formally, we attempt to find group decentralized policies π

that maximize V π(s) = Eτ∼π|s

[∑∞
t=0 γ

tr(s(t), a(t))

]
.

Equivalently, if we denote π∗ to be the optimal policy for
all possible policies in the MDP and abbreviate V ∗ = V π∗

,
we attempt to find group decentralized policies π such that
|V ∗(s)−V π(s)| is small. This will establish concrete group
decentralized policy solutions for Locally Interdependent
Multi-Agent MDP’s.

2) How significantly does decentralized partial observability
impact the best possible performance?

Formally, we ask whether |V ∗(s) − maxπ∈ΠV V π(s)| is
small. This will answer whether the group decentralized
policy class is a viable alternative to the entire policy class
for optimization purposes.

In this paper, we will answer both of these questions simul-
taneously by providing three group decentralized policies
with tight bounds.

2.5. Properties

Recalling V > R, a consequence of the reward and visibility
structure is a buffer of time that agents can coordinate before
the dependence begins. A constant that will occur frequently
in this paper is c = ⌊V−R

2 ⌋ and it represents the number
of time steps that an agent from a visibility group cannot
interact with agents from other visibility groups. This is
more rigorously discussed in Lemma 4.1, the Dependence
Time Lemma.

Further, the positive gap between the visibility and depen-
dence constant can be used to create an equivalent repre-
sentation on the reward function. Firstly, for any g ⊂ N
define rg(sg, ag) =

∑
j,k∈g rj,k(sj , aj , sk, ak). Then since

rj,k(sj , aj , sk, ak) = 0 when d(sj , sk) ≥ V > R, we can
say r(s, a) =

∑
z∈Z(s) rz(sz, az). This equivalent decom-

position for the reward function will also be used regularly.

2.6. Applications

In terms of modeling tasks in the environment, we may
consider specific instances of the Locally Interdependent
Multi-Agent MDP. We describe examples of three specific
tasks below.

2.6.1. COOPERATIVE NAVIGATION

In cooperative navigation, agents need to navigate toward
a location without colliding with other agents, where two
agents collide if they enter into a physical “width” of each
other (Lowe et al., 2017). Cooperative navigation problems
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are important in areas that have vehicles moving in a phys-
ical environment such as in autonomous driving, UAV’s,
robot navigation etc.

To model this, we can set R to be the maximum width of
an agent and assign a large penalty when other agents enter
their width radius, or something more intricate depending
on the application. For each agent k, we may provide indi-
vidual incentives (such as for navigating to a location) by
properly designing rk(sk, ak). Thus agents are incentivized
to accumulate individual rewards rk(sk, ak) (for navigating
to a location) while avoiding penalties for colliding other
agents. Each agent may also have differing dynamics Pk

depending on the physical environment.

For a toy example of cooperative navigation using Locally
Interdependent Multi-Agent MDP’s see Appendix A.5.

2.6.2. OBSTACLE AVOIDANCE

In the setting established in the previous section, we may
also incorporate many types of dynamic obstacles by treat-
ing the obstacles as agents with trivial action spaces. For
example, an obstacle b ∈ N would have a trivial action
space Ab = {X} and dynamics s′b ∼ Pb(·|sb, X) that
model the movement of the obstacle. We may then penalize
other agents that are within R of agent b. For an example of
a static obstacle, see Appendix A.3.

In the above setting, the other agents do not know the po-
sition of obstacle b apriori, so the agents must adapt to it
dynamically. This is in contrast to integrating an obstacle
into the reward function by penalizing agents for approach-
ing a point x∗ ∈ X . In this case, all agents would know the
position of this obstacle at all times.

2.6.3. FORMATION CONTROL

In some applications, we would like agents to accomplish a
task such as cooperative navigation or obstacle avoidance
but prefer a specific formation, such as for drag reduction
and surveillance in UAV’s (Wang et al., 2007; Dong et al.,
2014).

By providing a more intricate structure on r, we may spec-
ify a preferred relative position to each agent. Suppose for
example that relative to agent 1 at position x1 ∈ X , we
would prefer if agent 2 and 3 are at positions x∗

2, x
∗
3 ∈ X

respectively where d(x1, x
∗
2) ≤ R and d(x1, x

∗
3) ≤ R. For

example, x∗
2, x∗

3 may form a specific angle or maintain a
specific distance with x1. Then for all possible internal
states for the three agents, we may take the associated states
s1, s

∗
2, s

∗
3, and set r(s1, a1, s∗2, a2) and r(s1, a1, s

∗
3, a3) to

be a positive quantity for any a1, a2, a3 to incentivize these
positions. In the case X is continuous (such as R2), these
can be small positive reward regions that lie in a radius R of
agent 1. This type of reward structure in the Locally Interde-

pendent Multi-Agent MDP can model complex formations
that prefer specific agent positions relative to each other.

For an implementation of a toy example see Appendix A.4.

3. Main Results
Here we settle the case of whether the group decentralized
policy class can perform well in the broadly applicable class
of Locally Interdependent Multi-Agent MDP’s. We answer
our objectives by first providing three closed-form stationary
group decentralized policies with associated upper bound
guarantees. Then, we provide a lower bound guarantee that
matches each upper bound up to constant factors. Lastly, as
a corollary, we find that the performance of group decen-
tralized policies improves exponentially with respect to the
visibility.

All theorems are proved in Appendix C.

3.1. Three Upper Bound Constructions

3.1.1. AMALGAM POLICY

With our motivation to find group decentralized policies
that perform well theoretically for general Locally Interde-
pendent Multi-Agent MDP’s, we introduce our first con-
struction, the Amalgam Policy λ. It is defined by taking
the optimal policy for each visibility group. It is named as
such because it is an amalgamation of local joint optimal
policies. Formally λ(s) = (π∗

z(sz) : ∀z ∈ Z(s)) where π∗
z

is the optimal policy for Mz the Locally Interdependent
Multi-Agent MDP defined for a subset of agents z. We show
that it satisfies the guarantee:
Theorem 3.1. |V ∗(s)− V λ(s)| ≤ 2

(1−γ)2 γ
c+1r̃.

Recalling the definition c = ⌊V−R
2 ⌋, this shows the quality

of the Amalgam Policy improves exponentially with the
increase of the visibility. Storing this policy will in general
require less space because it only requires storing π∗

z(sz) for
states sz with agents z in the same communication group.
Computing this policy can be fully scalable to compute
when group sizes do not exceed some constant L. A more
in-depth discussion is provided in Section 5. In the long
horizon, this policy performs well for many of our examples
described in Appendix A.

In addition to the Amalgam Policy, we now introduce two
more policies that approach the problem in unique ways and
have some differing properties.

3.1.2. CUTOFF POLICY

We now introduce the group decentralized Cutoff Policy
χ which has properties that take advantage of the setting
to improve scalability. We introduce a notion of the Cut-
off Multi-Agent MDP which modifies the communication
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structure for Locally Interdependent Multi-Agent MDP’s so
agents are not allowed to re-enter visibility groups (for more
details see Appendix B). The Cutoff Policy is the optimal
policy in the Cutoff Multi-Agent MDP converted for use
in the Locally Interdependent Multi-Agent MDP setting.
Formally, we define χ(s) = (πC

z ((sz, {z})) : ∀z ∈ Z(s)).

We prove the bound:

Theorem 3.2. |V ∗(s)− V χ(s)| ≤ 2−γ
(1−γ)2 γ

c+1r̃.

Again, this is a group decentralized policy so it benefits
from the reduced space required to store the policy. How-
ever, in contrast to the Amalgam Policy, the computational
scalability described in Section 2.3 is achieved with the
Cutoff Policy. It benefits from the partial observability be-
cause of the inherent properties of the Cutoff Multi-Agent
MDP. Namely, the exact Bellman Equations in the Cutoff
Multi-Agent MDP only require the computation of values
for states sz where all agents in z are in the same commu-
nication group (See Appendix B). This can significantly
improve the tractability, as the computational scalability
now reflects the size of the stored policy.

The policy can perform better than the Amalgam Policy in
the long horizon for examples with positive interdependent
rewards (see Appendix A.2).

3.1.3. FIRST STEP FINITE HORIZON OPTIMAL POLICY

The final policy is called the First Step Finite Horizon Opti-
mal Policy ϕ. As the name suggests, the policy will take the
first step in the discounted finite horizon optimal policy for
the Locally Interdependent Multi-Agent MDP. Formally, if
{π∗,0, π∗,1, ..., π∗,c} are the set of discounted finite horizon
optimal policies with horizon c, the policy is defined as
ϕ(s) = π∗,0(s). This is stationary and shown to be a group
decentralized policy by Corollary C.7. For this policy, we
prove:

Theorem 3.3. |V ∗(s)− V ϕ(s)| ≤ 2
1−γ γ

c+1r̃.

We also show that the First Step Finite Horizon Optimal
Policy can equivalently be computed on the Cutoff Multi-
Agent MDP with Theorem C.6. Therefore, we obtain the
same reduced computational and storage savings. However,
since this policy only considers a limited horizon, the long
horizon behavior can be inferior to the other two.

3.1.4. SUMMARY OF THE THREE POLICIES

These three group decentralized policies take different in-
tuitive approaches to perform well. Roughly, the Amal-
gam, Cutoff, and First Step Finite Horizon Optimal Poli-
cies convert the optimal policy π∗, optimal cutoff pol-
icy πC , and the optimal discounted finite horizon pol-
icy {π∗,0, π∗,1, ..., π∗,c}, respectively, into valid stationary
group decentralized policies.

All of these policies are more tractable to store and compute
than the optimal policy except for the Amalgam Policy
which can be modified using our discussions in Section 5 to
improve computational scalability.

Although they all satisfy a similar theoretical guarantee,
differences will show in varying long horizon behaviors that
are explored in Appendix A.

3.2. Lower Bound

Next, we present a construction for a lower bound on the
best possible group decentralized policy.

Theorem 3.4. There exists a Locally Interdependent Multi-
Agent MDP M(ℓ) such that for every visibility V =
2ℓ + 1, ℓ ∈ {0, 1, ...}, there exists s, a such that |V ∗(s) −
maxπ∈ΠV V π(s)| ≥ 1

2
γc+2

1−γ r̃.

The above lower bound matches our three prior results up
to constant factors and proves they nearly have the best
performance guarantee we can establish for general Locally
Interdependent Multi-Agent MDP’s.

3.3. Performance of Group Decentralized Policies

To conclude, notice all three upper bounds are also upper
bounds for |V ∗(s)−maxπ∈ΠV V π(s)|. Together with our
discussion above, we have proven a fundamental property
of group decentralized policies in Locally Interdependent
Multi-Agent MDP’s. Namely,

Corollary 3.5. |V ∗(s)−maxπ∈ΠV V π(s)| = O(γV).

We know this is the best asymptotic guarantee we may estab-
lish for general Locally Interdependent Multi-Agent MDP’s
because of our lower bound. This shows that the class of
group decentralized policies can indeed produce viable so-
lutions in Locally Interdependent Multi-Agent MDP’s.

4. Proof Summary
As mentioned previously, we would like to upper bound the
quantity |V ∗(s)− V π(s)| for the three group decentralized
policies in place of π. All three will use similar proof
techniques that are outlined here.

The proofs for each policy in Appendix C will be divided
into 3 steps. In the first step, we discuss the consequences of
the Dependence Time Lemma. In the second step, we will
use ideas from the first step to demonstrate the performance
of three naive versions of our closed-form group decentral-
ized policies. Lastly, we will use the Telescoping Lemma to
convert the guarantees from these naive policy candidates
into guarantees for our closed-form group decentralized
policies.
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4.1. Step 1: Dependence Time Lemma

In this step of the proofs, we will introduce various relevant
lemmas derived from the Dependence Time Lemma to be
used in later steps. We introduce the Dependence Time
Lemma here.

The lemma describes a fundamental property of visibil-
ity groups in Locally Interdependent Multi-Agent MDP’s.
Since V > R and agents move at most a distance of
1, a buffer of time c = ⌊V−R

2 ⌋ is created during which
an agent cannot interact with another agent from outside
its visibility group. That is, the interdependent rewards
r(sj(t), aj(t), sk(t), ak(t)) = 0 for agents j, k in different
initial visibility groups for up to c time steps. Formally, this
is stated in the following lemma.

Lemma 4.1. (Dependence Time Lemma) For any realizable
trajectory (s(t), a(t)) and time step T , we have

r(s(T+δ), a(T+δ)) =
∑

z∈Z(s(T ))

rz(sz(T+δ), az(T+δ))

for δ ∈ {0, ..., c}.

Proof. Consider two agents j, k ∈ N such that
d(sj(T ), sk(T )) > V . Firstly, using the definition
of the distance metric and the probability transition
function of the Locally Interdependent Multi-Agent
MDP, we may conclude d(sj(T ), sj(T + δ)) ≤∑δ−1

i=0 d(sj(T + i), sj(T + i + 1)) ≤ δ. Similarly
for agent k.

Further by applying the reverse triangle inequality
and substituting what we found, we have

d(sj(T + δ), sk(T + δ))

≥ d(sj(T ), sk(T ))− d(sj(T + δ), sj(T ))

− d(sk(T + δ), sk(T ))

> V − 2δ

≥ V − 2c

≥ V − 2

(
V −R

2

)
= R.

Now that we established d(sj(T + δ), sk(T + δ)) > R,
by the definition of the reward function for the Locally
Interdependent Multi-Agent MDP, rj,k(sj(T + δ), aj(T +
δ), sk(T + δ), ak(T + δ)) = 0 for agents j, k that have
d(sj(T ), sk(T )) > V . This implies r(s(T+δ), a(T+δ)) =∑

z∈Z(s(T )) rz(sz(T + δ), az(T + δ)).

4.2. Step 2: Performance of Naive Policies

With some consequences of the Dependence Time Lemma
in hand, this step of the proof will look to three naive policy
candidates that satisfy a guarantee similar to the one we are
after. They are naive because none of them are valid group
decentralized policies. We will attempt to convert these into
valid group decentralized policies afterward.

The proofs for all three following lemmas are provided in
Appendix C.

The first policy corresponds to a naive version of the Amal-
gam Policy. For any partition G on N , let π∗

G(s) =
(π∗

g(sg) : ∀g ∈ G). Then the policy is defined as π∗
Z(s∗)(s)

for some fixed s∗. Notice that this is not a group decentral-
ized policy and is not allowed in our setting because the
communication groups are fixed. Using lemmas derived in
step 1, we may derive the following lemma:
Lemma 4.2. |V ∗(s)− V π∗

Z(s)(s)| ≤ 2
(1−γ)γ

c+1r̃.

The second policy candidate is the optimal cutoff policy πC .
This policy viewed from the perspective of the Locally In-
terdependent Multi-Agent MDP is non-Markovian since the
policy uses information about the cutoff partition. However,
the following result still holds:

Lemma 4.3. |V ∗(s)− V πC
((s, Z(s)))| ≤ 1

(1−γ)γ
c+1r̃.

The last policy candidate is the discounted finite horizon
optimal policy with a horizon of c. It will turn out that a
consequence of the Dependence Time Lemma is that π∗,0

in {π∗,0, π∗,1, ..., π∗,c} is a group decentralized policy by
Corollary C.7. However, all together, the discounted finite
horizon optimal policy is not valid because the policy is
non-stationary. We show that the following relationship is
satisfied:
Lemma 4.4. |V ∗(s)− V ∗

0 (s)| ≤ 1
(1−γ)γ

c+1r̃.

where V ∗
0 is the optimal discounted finite horizon values up

to horizon c.

4.3. Step 3: Telescoping Lemma

Lastly, we will use the Telescoping Lemma introduced here
to help bridge the gap between our policy candidates and
their corresponding valid group decentralized policies. Intu-
itively, it says that if we can express the expected discounted
rewards within two stopping times as the expected differ-
ence between two discounted value functions, then we may
express the whole value function as an expectation of a
telescoping sum of these discounted value functions.

Below is the formal condition we would like to be held for
the lemma:
Condition 4.5. For a MDP, a given policy π, and a sequence
of stopping times 0 = T0 < T1 < ... , we have a family of

7
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value functions parameterized by the state {V s}, such that
the following inequality is satisfied:

Eτ∼π|s

[ Ti+1−1∑
t=Ti

γtr(s(t), a(t))

]
≥

Eτ∼π|s

[
γTiV s(Ti)(s(Ti))− γTi+1V s(Ti)(s(Ti+1))

]
.

It turns out that this condition is satisfied with equality
for the Amalgam policy using a change in the visibil-
ity groups as the stopping time and setting V s(Ti)(s) =

V π∗
Z(s(Ti))(s). The Cutoff Policy satisfies a very simi-

lar condition with equality by setting the stopping time
to when any agent enters another agents visibility and
V s(Ti)(s) = V πC

((s, Z(s))). The First Step Finite Hori-
zon Optimal policy will use every step as the stopping time
and V s(Ti)(s) = V ∗

0 (s). The condition does not hold with
equality in this case.

Below is the formal statement for the Telescoping Lemma.
Note that the inequality holds with equality when the condi-
tion Condition 4.5 is held with equality.

Lemma 4.6. (Telescoping Lemma) For any MDP,
suppose 0 = T0 < T1 < ... are stopping times
such that Condition 4.5 is satisfied. Then we have

V π(s) ≥ Eτ∼π|s

[
V s(s) −

∑∞
i=1 γ

Ti∆τ
i

]
where ∆τ

i =

V s(Ti−1)(s(Ti))− V s(Ti)(s(Ti)).

Proof. By definition and assumption, we may show

V π(s) = Eτ∼π|s

[ ∞∑
t=0

γtr(s(t), a(t))

]

=

∞∑
i=0

Eτ∼π|s

[ Ti+1−1∑
t=Ti

γtr(s(t), a(t))

]

≥ Eτ∼π|s

[ ∞∑
i=0

(
γTiV s(Ti)(s(Ti))

− γTi+1V s(Ti)(s(Ti+1))

)]
= Eτ∼π|s

[
V s(s)−

∞∑
i=1

γTi∆τ
i

]
.

Notice that in the case stopping times become infinite after
a certain time, γ∞ = 0, and the sum inside the expectation
will be finite.

By bounding the quantity ∆τ
i for all three policies, we may

use this lemma to effectively bound the difference between
the value functions of each naive policy candidate and its cor-
responding valid group decentralized policies. This paired
with our bound on the naive policy candidates will be suffi-
cient for producing our desired upper bounds.

5. Fully Scalable Extensions
We discussed in Section 2.3 that for our setting, the re-
stricted visibility can improve the computation and storage
requirements of these group decentralized policies. Here,
we present modifications of our policies that fully mitigate
the effect of the curse of dimensionality and are completely
scalable.

As is currently presented, when the visibility groups become
too large, the state and action space grow exponentially and
the group decentralized policies can still be intractable to
compute and store. The goal of the following extensions
is to effectively deal with the situation where group sizes
become too large.

5.1. Eliminating Large Groups

Depending on the specific Locally Interdependent Multi-
Agent MDP instance and the initial state we are interested
in, agents may be sparse in X when running our group de-
centralized policies. This may happen when agents within
R of each other are penalized and agents are incentivized to
pursue spread-out independent rewards. With this sparsity,
visibility group sizes may naturally not exceed some small
constant L when running our group decentralized policies.
Then, for our three policies, we would only need to com-
pute them for N = L agents. This can result in extreme
computational savings in practice. See Appendix A.5 for
a toy example of how we can tractably compute the exact
Amalgam Policy for many agents with a fixed initial state.

Since we are running the exact policy, our bounds in Sec-
tion 3 hold for this initial state while benefiting from the
scalability.

5.2. Reducing Visibility and Splitting Large Groups

Suppose that a group decentralized policy starting at a par-
ticular initial state, the sizes of visibility groups do exceed
L but the dependence groups (similar to visibility groups
but defined for radius R) do not exceed size L. This may
occur when V is much larger than R. Then, we may reduce
the complexity by artificially splitting the visibility groups
into smaller groups that do not exceed size L. For the best
possible split based on the visibility, we may reduce the vis-
ibility V just until the point VL (up to some precision) that
visibility group sizes do not exceed L. Essentially, reducing
the visibility makes the agents more “sparse”.

5.3. Approximations of Large Groups

Lastly, we may handle larger group sizes > L by using
empirical tools such as deep actor-critic methods (Lowe
et al., 2017). For the Amalgam Policy, we may use these
methods as intended to find an approximation for the optimal
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policy for these large groups of agents. For the Cutoff and
the First Step Finite Horizon Policies, empirical methods
may need to be modified using the Bellman Optimality
equations presented in Appendix B.

This method is unique in that it combines theoretical and
empirical methods. For the Amalgam Policy, in the case that
the group sizes are small ≤ L, the local optimal policies are
taken. When group sizes become large and finding the exact
optimal policy is difficult, we transition to our empirical
methods. This method provides very scalable solutions for
Locally Interdependent Multi-Agent MDP’s.

6. Conclusion and Future Works
We have formulated a broadly applicable theoretical frame-
work that models partially observable decentralized agents
with dynamic local dependencies. We illustrated this using
examples of applications such as cooperative navigation,
obstacle avoidance, and formation control. We found three
closed-form policy solutions (Amalgam Policy, Cutoff Pol-
icy, and First Step Finite Horizon Optimal Policy) which
satisfied theoretical upper bounds that were optimal up to
constant factors. We also discussed the improved scalability
in storing and computing these policies. Then, we gave
various extensions to further improve the scalability of these
policies. Lastly, we provided simulations and investigated
the long term behaviors of the policies.

Overall, we believe that the proof techniques utilized in
this paper may be used for applications beyond the Multi-
Agent MDP setting. For example, the Telescoping Lemma
as stated applies to general MDP’s and is not commonly
seen or used.

Empirically, the scalability, applicability, and long horizon
behaviors of the Amalgam and Cutoff Policies seem promis-
ing (see Appendix A) when considered with our extensions
described in Section 5. Some work however is required to
overcome limitations described in Appendix A.6.

An interesting follow-up work would be methods for per-
forming reinforcement learning in this context. We are also
interested to see whether we can extend this work to the
setting where agents only act based on agents within view
rather than forming communication groups.
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A. Long Horizon Simulations
Our theory demonstrates that asymptotically, increasing the
visibility of the Amalgam, Cutoff, and First Step Finite
Horizon Optimal Policies will improve their quality expo-
nentially. The First Step Finite Horizon Optimal Policy
achieves this by considering the first c iterations and ignor-
ing rewards beyond distance c. However, in practice, we
may be interested in the behavior of these policies far be-
yond c iterations for fixed visibility V and initial state, such
as when rewards are sparse and unavailable for many iter-
ations past c or when the visibility is small. Therefore, we
would like to study the non-trivial long horizon behaviors
of the Amalgam and Cutoff Policies.

For the above purpose, we will run toy grid-world simu-
lations for various settings which will serve as a proof of
concept for our policy constructions, demonstrate the appli-
cations of our Locally Interdependent Multi-Agent MDP
settings, and uncover some peculiarities of our policies in
the long horizon. We will then discuss various rollouts of
the policies starting from a specific initial state in the various
instances of the Locally Interdependent Multi-Agent MDP.

In the figures, red will represent the optimal policy, blue
will represent the Amalgam Policy, and green will represent
the Cutoff Policy. The initial starting points are denoted by
X’s and self-loops labeled with numbers describe how many
times agents stayed in that position. Spaces colored in green
represent locations where agents may obtain independent
rewards and red represents independent penalties.

All examples shown will have trivial internal states and
deterministic transitions.

A.1. Bullseye Problem

The purpose of the following example is to demonstrate
our theory described in the paper, provide an example of
cooperative navigation, and begin exploring the differences
between the Amalgam and the Cutoff Policies. The outcome
of the simulation is shown in Figure 2.

For this problem, we have a central reward of +100 that
agents obtain individually at the center of the bullseye shown
in green. Agents that reach the bullseye will not interact
with any other agents and will no longer obtain any other
rewards (formally, they are sent down a long chain of states
with no rewards). Furthermore, any agent that is within
a radius R = 20 of another agent is penalized with −500.
Also, agents that move away from the bullseye are penalized
with −2. The visibilities V are described beneath the figure
and the discount factor is γ = 0.9. We consider 2 agents
and put one of them 24 spaces on the left side of the bullseye
and the other 25 spaces on the right side. The optimal policy
is to wait for the closer agent to get close enough to the
bullseye and trail behind.
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We see that the Amalgam Policy with V = 25 takes a sub-
optimal policy that backtracks as it notices the other agent
approaching. As we increase the visibility, we find the
number of backtracks decreases, and the quality of the value
function improves very quickly.

We also see at the bottom, the Cutoff Policy does not per-
form well in this example. A common theme across these
simulations will be that the Cutoff Policy performs poorly
when the interdependent rewards are primarily penalties.
Note that this does not conflict with our theoretical upper
bounds and a more extensive discussion is given in Ap-
pendix A.6.

24
12

4

8
21× ×

24
7

14

321× ×
24

2
20

23× ×
24

20

25× ×
13 12

1

∞ ∞

× ×

Figure 2. Bullseye Problem: In red is the optimal policy with a
discounted sum of rewards of 8.85. The top three in blue are
Amalgam Policy rollouts with V = 25,V = 35, V = 45 top to
bottom. They have a total discounted reward of 6.74, 8.26, and
8.85 respectively. Therefore, |V ∗(s) − V λ(s)| is 2.11, 0.59, 0
respectively. In green is the Cutoff Policy with V = 25. It obtains
a discounted reward of −5.38. All reported discounted sum of
rewards are rounded to the second decimal place.

A.2. Aisle Walk Problem

The following example demonstrates that the Cutoff Policy
does indeed perform better than the Amalgam Policy for
certain examples. This example will have positive interde-
pendent rewards. The outcome of the simulation is shown
in Figure 3.

For this problem with 2 agents, with V = 2, an interdepen-
dent reward of 20 is given whenever the agents are within

R = 1 step of each other, so the agents are incentivized
to stick together. However, there is a tempting reward of
+120 on either side shown in green, that agents may split
apart and obtain on the sides of the central aisle. Agents
are required to move one step forward at each time step and
can only change the column they are in to move out of the
central aisle or return to the central aisle at specific points
shown in the figure. At the top of the figure, the agents are
stuck in those positions and left to interact interdependently
for the remainder of the iterations. The discount factor is
γ = 0.9. The optimal policy is then to split apart to obtain
independent rewards and rejoin again at the end of the aisle.

We see that, for this example, the Cutoff Policy performs
better than the Amalgam Policy. The Amalgam Policy is
tempted by the independent rewards and does not have the
mechanism to rejoin again because the other agent is out
of view. However, the Cutoff Policy takes this into account
and decides that staying in the aisle is the best option.

∞ ∞∞ ∞
∞∞

××
Figure 3. Aisle Walk Problem: In red is the optimal policy with a
discounted reward of 496.84, In blue is the Amalgam Policy with
a discounted reward of 234.40, and in green is the Cutoff Policy
with a discounted reward of 400. All reported discounted sum of
rewards are rounded to the second decimal place.

A.3. Highway Problem

This problem demonstrates obstacle avoidance in our set-
ting and provides another example of the Cutoff Policy
performing poorly when penalties are introduced in the in-
terdependent rewards. The outcome of the simulation is
shown in Figure 4.

Again with 2 agents, if any agent is within R = 3 of another,
the agent receives an interdependent penalty of −500. One
agent is fixed near the center and acts as an obstacle. The
visibility is V = 5.
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There is a primary reward at the top left of +100 shown
in green and agents that achieve the primary reward will
no longer obtain any other rewards. The agent that is not
fixed has the option of traveling around the obstacle agent
to obtain the primary reward or to use the “highway” at the
bottom left shown in red to transport there in 1 iteration but
incur a penalty of −25. Using the highway will thus result
in a less discounted primary reward. The discount factor is
γ = 0.98. The optimal strategy is to pay the price and take
the highway to the +100 reward because of the obstacle
agent that is in the way.

The Amalgam Policy has limited visibility and does not
initially see the obstacle. Thus, it attempts to maximize its
reward by avoiding the cost of the highway and taking the
long way around. Once it notices the obstacle, it avoids it
and eventually receives a greater discounted final reward
that is suboptimal.

The Cutoff Policy shown in Figure 5 once again becomes
confused once it notices the obstacle and performs poorly.
This is again due to the penalties introduced in the inter-
dependent rewards. A discussion of this phenomenon is
provided in Appendix A.6.

×

×

Figure 4. Highway Problem with Amalgam and Optimal Policy:
In red is the optimal policy with a discounted reward of 73.5 and
in blue is the Amalgam Policy with 70.93 rounded to the second
decimal place.

A.4. Lane Merging Problem

The purpose of this example is to provide an example of
formation control and to show a situation that both policies
find the optimal policy. The outcome of the simulation is
shown in Figure 6.

∞ ∞

×

×

Figure 5. Highway Problem with Cutoff Policy: In green is the
Cutoff Policy with an accumulated discounted reward of 0.

For this example, every agent can only move forward or stay
in its position. If an agent is within 1 distance of another
agent, it will incur a penalty of −500. However if the agent
are exactly R = 2 distance from another agent, it will
receive a reward of +10. Lastly, any agent in the rightmost
7 squares will receive a reward of +100 at every step. V = 4
and the discount factor is γ = 0.9. There are two agents
on each side of two lanes that merge in the center, one set
closer to the junction than the other. The optimal strategy is
then to allow the agents closer to the junction to pass and
then to follow in formation.

All policies for this example find the exact optimal policy.
Once the agents take a step forward, the agents all come
within view of each other and they can coordinate effec-
tively.

A.5. Bullseye Problem with Many Agents

This example demonstrates scalable cooperative navigation
with many agents. The outcome of the simulation is shown
in Figure 7.

For this example, we have two “bullseyes” similar to Ap-
pendix A.1. Agents that are at the center of a bullseye will
receive +100 reward and receive a penalty of −10 for mov-
ing away from either bullseye. Agents will also receive a
penalty of −500 if they are within R = 1 space of another
agent. V = 3 and the discount factor is γ = 0.9. Similar to
the Bullseye Problem, once an agent reaches the bullseye,
it will not incur any more rewards or penalties. Here we
consider an initial state with 8 agents. The optimal strategy
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Figure 6. Lane Merging Problem: The Amalgam, optimal, and
Cutoff Policies have the same trajectory with accumulated dis-
counted reward of 2514.11.

is intractable to compute on the machine this was computed
on.

For this particular initial state, group sizes of the Amalgam
Policy do not exceed 3 so the exact actions were found by
simply computing the Amalgam Policy for 3 agents. This
is an example of how our discussion in Section 5.1 can be
used in practice.

× 1
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Figure 7. Bullseye Problem with Many Agents: The paths taken by
the 8 agents with the Amalgam Policy. Only computation for 3
agents is required.

A.6. Discussion: Penalty Jittering

Intuitively the Cutoff Policy seems like it should perform
better than the Amalgam policy for many cases as in the
Aisle Walk Problem because the solution to the Cutoff Multi-
Agent MDP incorporates information about the visibility
dynamics. This is in comparison to the Amalgam Policy
which simply consists of local optimal policies patched

together.

But, as seen in the previous examples, if interdependent
rewards include heavy penalties, the Cutoff Policy may not
perform well. We call this phenomenon “penalty jittering”
as the interdependent penalties cause agents taking the pol-
icy to get stuck moving back and forth. This is a general
phenomenon that may occur for the Amalgam Policy as
well but is particularly an issue for the Cutoff Policy.

To illustrate the issue, consider a grid world in Figure 8.
Agents incur a large penalty (e.g. −500) when overlapping
with each other (R = 0). There is a large reward (e.g.
+100) for remaining in the leftmost state and a small reward
(e.g. +10) for remaining in the rightmost state. The optimal
strategy is for one agent to stay in the leftmost state and the
other agent to stay in the rightmost state. The visibility is
V = 1.

For this example, both the Amalgam and the Cutoff Policies
will fail to find the optimal policy. When the agent on the
right is in the rightmost state, the agent does not see the
agent on the left but is aware of the high reward leftmost
state so it moves to the center. When the agent on the right
is in the center and in the visibility of the left agent, both
policies will suggest the right agent to move to the smaller
reward rightmost state because the agent on the left already
occupies the leftmost state. The agent will move to the
rightmost state but will forget the existence of the other
agent and re-enter the center state for the same reason as
before. Therefore, the agent on the right will continue to
move back and forth.

In general, this is a larger issue for the Cutoff Policy, because
the “suggestion” made by the policy when the agents are
connected assumes that when agents are disconnected, they
will never reconnect (see Appendix B). That is, the initial
suggestion made by the policy for the agent to leave the
visibility group assumes the agent will be able to return to
the area and obtain a high independent reward without any
consequences. Therefore, the Cutoff Policy will tend to
prefer these types of situations.

For this example, when overlapping agents gain a positive
reward, the penalty jittering phenomenon will not be ob-
served because if the policy “suggests” for an agent to leave
the visibility, returning to the group will only seem less
attractive with the interdependent rewards removed.

We believe that this “forgetfulness” is a general issue for
group decentralized policies and overcoming this will be an
important part of using these policies in more complex sys-
tems. One potential way to overcome this is to incorporate
memory into group decentralized policies, which we leave
as a future direction.

Finally, we note that the penalty jittering does not conflict

14



Locally Interdependent Multi-Agent MDP

with our theoretical upper bounds, as the bounds are asymp-
totic in terms of visibility, whereas the penalty jittering
examples occur in this long horizon setting with a fixed
limited visibility.

× ×
∞

∞

∞

Figure 8. Example of Penalty Jittering.

B. The Cutoff Multi-Agent MDP setting
It will turn out that for any Locally Interdependent Multi-
Agent MDP, there will be an instance of a related setting we
call the Cutoff Multi-Agent MDP that has nice properties we
describe below. It is used in the construction of one of our
closed-form policies, the Cutoff Policy (See Theorem 3.2).

Intuitively, the Cutoff Multi-Agent MDP is a version of the
Locally Interdependent Multi-Agent MDP with an embed-
ded communication structure where agents do not interact
with one another once they disconnect. More specifically, if
two agents lie in different visibility partitions at any time,
the agents will lie in different visibility partitions for all
subsequent time steps (see Figure 9). We refer to this new
notion of a permanently disconnecting visibility partition as
the cutoff partition.

A1

A1

A1

A2

A2

A2

A1

A1

A1

A2

A2

A2

Figure 9. The diagram on the left represents our communication
structure in the Locally Interdependent Multi-Agent MDP. Agents
that leave each other’s visibility reconnect when re-entering each
other’s visibility. On the right is the Cutoff Multi-Agent MDP.
Agents that leave each other’s visibility are not able to reconnect
even when the agents re-enter each other’s visibility radii.

Formally for any realizable trajectory τ = (s(t), a(t)) in
a Locally Interdependent Multi-Agent MDP, we define the

cutoff partition at time T as Cτ (T ) =
⋂

0≤t′≤T Z(s(t′)).
Here, the intersection denotes an intersection of partitions
defined as P1 ∩ P2 = {p1 ∩ p2|p1 ∈ P1, p2 ∈ P2} \ {∅}
for partitions P1, P2. Observe that this partition only gets
finer in time similar to our intuition above.

Furthermore, in this setting, we will say that agents in dif-
ferent cutoff partitions do not incur interdependent rewards.

We can summarize these ideas with the complete definition
of the Cutoff Multi-Agent MDP. For the following definition
let B(N ) be the set of all partitions on N .

For any Locally Interdependent Multi-Agent MDP M =
(S,A, P, r, γ), we can define the Cutoff Multi-Agent MDP
as C = (SC ,AC , P C , rC , γ). Where:

• SC := {(s, C) : s ∈ S, C ∈ B(N )}

• AC := A

• P C((s′, Z(s′) ∩ C)|(s, C), a) = P (s′|s, a) and 0 oth-
erwise

• rC((s, C), a) =
∑

c∈C rc(sc, ac).

We will overload notation and say a policy π in the Lo-
cally Interdependent Multi-Agent MDP may be viewed
as a policy in the Cutoff Multi-Agent MDP by letting
π((s, C)) = π(s)

Consider the relationship between the distribution of the
trajectories with policy π in the associated Locally In-
terdependent Multi-Agent MDP and in the Cutoff Multi-
Agent MDP. We can compare realizable trajectories in
the Locally Interdependent Multi-Agent MDP of the form
τ = (s(t), a(t)) with s(0) = s, a(0) = a and realizable
trajectories in the Cutoff Multi-Agent MDP of the form
τ ′ = ((s(t), C ′(t)), a(t)) with C ′(0) = Z(s). Notice that
by the definition of P C , we have for any time step T and
state action pair s∗, a∗,

P

(
(s(T ), a(T )) = (s∗, a∗)

)
=

PC
(
((s(T ), C′(T )), a(T )) = ((s∗, Cτ (T )), a∗)

)
where Cτ (T ) is the Cutoff Partition for the Locally Interde-
pendent Multi-Agent MDP trajectory. Thus, these trajecto-
ries are equivalently distributed.

For ease of notation going forward, anytime a state is a
tuple consisting of a partition on the agents, it will refer to a
state in the Cutoff Multi-Agent MDP. We will also use Cg to
reference the related Cutoff Multi-Agent MDP for Mg . The
value function of Cg will be defined implicitly by passing
in the state for a subset of agents g ∈ N . For example,
with a policy πg, the value function at (sg, Cg) would be
V πg ((sg, Cg)). We will also denote the optimal policy for
Cg as πC

g .

15



Locally Interdependent Multi-Agent MDP

The permanent disconnections in this setting lead to a key
property for Cutoff Multi-Agent MDP’s. Namely, the value
function will decompose according to our agent partitions
for the Cutoff Multi-Agent MDP.

We may equivalently write,

V πg ((sg, Cg))

= Eτ∼πg|(sg,Cg)

[ ∞∑
t=0

γt
∑

c∈Cg(t)

rc(sc(t), ac(t))

]

= Eτ∼πg|(sg,Cg)

[ ∞∑
t=0

γt
∑
c∈Cg

rc(sc(t), ac(t))

]

=
∑
c∈Cg

Eτ∼πg|(sg,Cg)

[ ∞∑
t=0

γtrc(sc(t), ac(t))

]
=

∑
c∈Cg

V πc((sc, {c})).

The second equality is permitted because the partitions only
get finer with time.

This decomposition tells us that the value function for states
with the trivial partition (a partition with only a single group)
serve as the “atoms” for the Cutoff Multi-Agent MDP. That
is finding the value function for all states reduces to finding
the value function for states with the trivial partition.

Furthermore, we can substitute this decomposition
into the Bellman Consistency Equations to obtain:

V πg ((sg, {g})) = Eag∼πg(sg)

[
Qπg ((sg, {g}), ag)

]
where
Qπg ((sg, {g}), ag) = r((sg, {g}), ag)+

γEs′g∼P (·|sg,ag)

[∑
z∈Z(s′g)

V πz ((sz, {z}))
]

.

And in the case of the Bellman Optimality equations we
have:

V ∗((sg, {g})) = maxag Q
∗((sg, {g}), ag)

where
Q∗((sg, {g}), ag) = r((sg, {g}), ag)+

γEs′g∼P (·|sg,ag)

[∑
z∈Z(s′g)

V ∗((sz, {z}))
]

.

In other words, the process for deriving the values
for trivial partition states only requires values of other
trivial partition states. With this, we may safely ignore the
value function for states with a non-trivial partition for the
Cutoff Multi-Agent MDP.

In fact, for this paper, we will only be interested in values
of the form V ((s, Z(s))). Consequentially, we only need

to look at values of the form V ((sg, {g})) for a subset of
agents g ∈ N with g ∈ Z(s) for some state s. This means
our “atoms” are states sg that have every agent within dis-
tance V of some other agent, paired with the trivial partition.
Thus, we have savings in this partially observable setting
by only having to compute a smaller table of values corre-
sponding to the states of agents within the same visibility
group.

By definition, these savings will show up exactly in the
computation of the Cutoff Policy described in Section 3.1.2.

C. Proofs
Recall from the proof summary in Section 4, there will be
three steps for proving each upper bound.

• Step 1) Consequences of the Dependence Time Lemma

• Step 2) Bounding performance of naive policies

• Step 3) Use Telescoping Lemma to bound performance
of final policy.

We cover these 3 steps for each closed-form policy. Then,
we conclude by presenting the construction and proof for
the lower bound.

For the remainder of this section, for a fixed parti-
tion G, define:

V π
G (s′) = Eτ∼π|s′

[∑∞
t=0

∑
g∈G γtrg(sg(t), ag(t))

]
.

We will also denote for any partition on N , E(P ) =
{(j, k)|j, k ∈ p, p ∈ P} to be pairs of agents within the
same partition. Similarly, Ec(P ) = N × N \ E(P ) are
pairs of agents in different partitions.

C.1. The Amalgam Policy

Recall the definition of the Amalgam Policy λ(s) =
(π∗

z(sz) : ∀z ∈ Z(s)).

C.1.1. STEP 1)

Using the Dependence Time Lemma, we may derive the
following lemma. Intuitively, it is the effect that the De-
pendence Time Lemma has on the Q-values for Locally
Interdependent Multi-Agent MDP’s.
Lemma C.1. For any policy π, any realizable
trajectory (s(t), a(t)) , and δ ∈ {0, ..., c}, let
T ≥ δ be an arbitrary time step. We have
|V π(s(T ))− V π

Z(s(T−δ))(s(T ))| ≤
γc+1−δ

1−γ r̃.

Proof. Recall, in our notation τ ∼ π|s,a refers to the ran-
dom trajectory (s(t), a(t)) generated by the MDP starting
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with s(0) = s, a(0) = a.

Notice that if we are given a new trajectory realization
(s′(t′), a′(t′)) with s′(0) = s(T ), the concatenated trajec-
tory defined as (s(t′′), a(t′′)) for t′′ ∈ {0, ..., T − 1} and
(s′(t′′−T ), a′(t′′−T )) for t′′ ∈ {T, T +1, ...} is also a re-
alizable trajectory. Furthermore, we may apply Dependence
Time Lemma on this trajectory at time step T − δ to prove
that r(s′(t′), a′(t′)) =

∑
z∈Z(s(T−δ)) rz(s

′
z(t

′), a′z(t
′)) for

t′ ∈ {0, ..., c−δ}. Using this decomposition, we can obtain:

V
π
(s(T ))

= Eτ∼π|s(T )

[ ∞∑
t′=0

γ
t′ ∑

j,k∈N
rj,k(s

′
j(t

′
), a

′
j(t

′
), s

′
k(t

′
), a

′
k(t

′
))

]

= Eτ∼π|s(T )

[ c−δ∑
t′=0

γ
t′ ∑

z∈Z(s(T−δ))

rz(s
′
z(t

′
), a

′
z(t

′
))

+

∞∑
t′=c+1−δ

γ
t′ ∑

j,k∈N
rj,k(s

′
i(t

′
), a

′
j(t

′
), s

′
k(t

′
), a

′
k(t

′
))

]

= Eτ∼π|s(T )

[ ∞∑
t′=0

γ
t′ ∑

z∈Z(s(T−δ))

rz(s
′
z(t

′
), a

′
z(t

′
))

+

∞∑
t′=c+1−δ

γ
t′ ∑

(j,k)∈Ec(Z(s(T−δ)))

rj,k(s
′
j(t

′
), a

′
j(t

′
), s

′
k(t

′
), a

′
k(t

′
))

]
:= V

π
Z(s(T−δ))(s(T )) + ξ.

For the third equality, recall that by our notation,
Ec(Z(s(T − δ))) denotes tuples of two agents j, k that
do not lie in the same partitions of Z(s(T − δ)). In this
step, we have completed the infinite sum in the first term by
regrouping the rj,k terms.

Which concludes the proof since ξ ∈ [−γc+1−δ

1−γ r̃, γc+1−δ

1−γ r̃].

C.1.2. STEP 2)

Recall the definition of the naive policy candidate
π∗
Z(s∗)(s) = (π∗

g(sg) : ∀g ∈ Z(s∗)) for some fixed s∗.

Proof for Lemma 4.2. With the lemma from step 1 in
hand, we are ready to prove the bound on the naive policy
candidate.

Proof. Notice that because π∗
Z(s) takes the local optimal

policies, the expected discounted sum of rewards accumu-
lated by the agents in this group is optimal. Therefore, for
any z ∈ Z(s),

Eτ∼π∗
Z(s)

|s

[∑∞
t=0 γ

trz(sz(t), az(t))

]
≥

Eτ∼π∗|s

[∑∞
t=0 γ

trz(sz(t), az(t))

]
.

This implies V ∗
Z(s)(s)− V

π∗
Z(s)

Z(s) (s) ≤ 0.

Using this relationship between the value functions
and applying Lemma C.1 twice with δ = 0,

V ∗(s)− V π∗
Z(s)(s)

≤ V ∗
Z(s)(s)− V

π∗
Z(s)

Z(s) (s) +
2

(1− γ)
γc+1r̃

≤ 2

(1− γ)
γc+1r̃.

C.1.3. STEP 3)

We start with an auxiliary lemma before proving Theo-
rem 3.1.
Lemma C.2. For realizable trajectories in a Locally In-
terdependent Multi-Agent MDP, define a sequence of stop-
ping times with T0 = 0 and Ti the time step t for which
Z(s(t)) ̸= Z(s(t−1)) for the i-th time. Then Condition 4.5
holds for the Amalgam Policy λ with V π∗

Z(s) as the family
of value functions.

Proof. For this proof, given a realizable trajectory τ =
(s(t), a(t)), we let τT be (s(t), a(t)) with t ∈ {T, ...∞}.
τT will be (s(t), a(t)) for t ∈ {0, ...T − 1} appended with
s(T ). Lastly, τT2

T1
is (s(t), a(t)) for t ∈ {T1, ..., T2 − 1}

appended with s(T2).

To begin the proof, we show the following equivalence.

Eτ∼λ|s

[ Ti+1−1∑
t=Ti

γtr(s(t), a(t))

]

= EτTi∼λ|s

[
Eτ∼λ|s

[ Ti+1−1∑
t=Ti

γtr(s(t), a(t))

∣∣∣∣τTi

]]

= EτTi∼λ|s

[
EτTi

∼λ|s

[ Ti+1−1∑
t=Ti

γtr(s(t), a(t))

∣∣∣∣τTi

]]

= Es(Ti)∼λ|s

[
EτTi

∼λ|s

[ Ti+1−1∑
t=Ti

γtr(s(t), a(t))

∣∣∣∣s(Ti)

]]
.

The second equality eliminates unnecessary random vari-
ables that don’t appear in the expectation and the third equal-
ity evokes the strong Markov property of Markov Chains.

Now notice that by the definition of our stopping times, for
all t′ ∈ {Ti, ..., Ti+1−1} we have Z(s(Ti)) = Z(s(t′)) and
therefore π∗

Z(s(Ti))
= π∗

Z(s(t′)). In other words, between
these two stopping times, the policy π∗

Z(s(Ti))
is taken.

To continue this pattern, we define a virtual trajectory
τ ′Ti

= (s′(t), a′(t)) defined only for t ∈ {Ti, Ti + 1, ...} as
τ
Ti+1

Ti
concatenated with an instance the realizable trajectory

(svirt(t), avirt(t)) ∼ π∗
Z(s(Ti))

|s(Ti+1). Formally, we define

the virtual trajectory τ
Ti+1

Ti
to consist of

s
′
(t), a

′
(t) =

{
s(t), a(t) t ∈ {Ti, ..., Ti+1 − 1}
svirt(t − Ti+1), a

virt(t − Ti+1) t ∈ {Ti+1, ...}.
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We now have completed the trajectory that takes π∗
Z(s(Ti))

at
each step to generate τ ′Ti

. By construction, it is equivalently
distributed to π∗

Z(s(Ti))
|s(Ti) starting at time step Ti.

Returning to our proof, we may substitute our virtual trajec-
tory into what we found earlier, to get

Es(Ti)∼λ|s

[
Eτ′

Ti

[∑Ti+1−1

t=Ti
γtr(s′(t), a′(t))

∣∣∣∣s(Ti)

]]
which is equivalent to

Es(Ti)∼λ|s

[
γTiV

π∗
Z(s(Ti)) (s(Ti))

]
−

Es(Ti)∼λ|s

[
Eτ′

Ti

[∑∞
t=Ti+1

γtr(s′(t), a′(t))

∣∣∣∣s(Ti)

]]
.

We simplify the second term using similar techniques as
above to obtain:

Es(Ti)∼λ|s

[
Eτ′

Ti

[ ∞∑
t=Ti+1

γ
t
r(s

′
(t), a

′
(t))

∣∣∣∣s(Ti)

]]

= E
τ
Ti+1
Ti

∼λ|s

[
Eτ′

Ti

[ ∞∑
t=Ti+1

γ
t
r(s

′
(t), a

′
(t))

∣∣∣∣τTi+1
Ti

]]

= E
τ
Ti+1
Ti

∼λ|s

[
Eτ′

Ti+1

[ ∞∑
t=Ti+1

γ
t
r(s

′
(t), a

′
(t))

∣∣∣∣τTi+1
Ti

]]

= Es(Ti+1)∼λ|s

[
Eτ′

Ti+1

[ ∞∑
t=Ti+1

γ
t
r(s

′
(t), a

′
(t))

∣∣∣∣s(Ti+1)

]]

= Es(Ti+1)∼λ|s

[
γ
Ti+1V

π∗
Z(s(Ti)) (s(Ti+1))

]
.

The first equality conditions on additional variables. Similar
to before, the second equality eliminates variables that do
not appear in the expectation and the third equality evokes
the strong Markov property.

Substituting this into what we found above, we achieve

Eτ∼λ|s

[ Ti+1−1∑
t=Ti

γtr(s(t), a(t))

]
=

Eτ∼λ|s

[
γTiV

π∗
Z(Ti)(s(Ti))− γTi+1V

π∗
Z(s(Ti))(s(Ti+1))

]
which is exactly Condition 4.5.

Proof of Theorem 3.1. With the above preparations, we are
now ready to prove Theorem 3.1.

Proof. For any partition G on N , let π∗
G(s) = (π∗

g(sg) :
∀g ∈ G).

Let T0 = 0 and Ti be the time step t for which
Z(s(t)) ̸= Z(s(t− 1)) for the i-th time. By definition, for
all t′ ∈ {Ti, ..., Ti+1 − 1} we have Z(s(Ti)) = Z(s(t′))
and therefore π∗

Z(s(Ti))
= π∗

Z(s(t′)).

From Lemma C.2, we know Condition 4.5 is satisfied and
we may use the Telescoping Lemma.

We have

V λ(s) ≥ Eτ∼π|s

[
V π∗

Z(s)(s)−
∑∞

i=1 γ
Ti∆τ

i

]
and we may bound

∆τ
i = V

π∗
Z(s(Ti−1))(s(Ti))− V π∗

Z(s(Ti))(s(Ti))

≤ V ∗(s(Ti))− V π∗
Z(s(Ti))(s(Ti))

≤ V ∗
Z(s(Ti))

(s(Ti))− V
π∗
Z(s(Ti))

Z(s(Ti))
(s(Ti)) +

2

(1− γ)
γc+1r̃

≤ 2

(1− γ)
γc+1r̃.

Where the inequality in the penultimate step is by Lemma
C.1 with δ = 0 applied twice. The last step is because

V ∗
Z(s(Ti))

(s(Ti)) − V
π∗
Z(s(Ti))

Z(s(Ti))
(s(Ti)) ≤ 0, using the same

reasoning as in Lemma 4.2.

Plugging in our upper bound for ∆τ
i into our result

from the Telescoping Lemma, we get
V λ(s) ≥ V π∗

Z(s)(s)− 2
(1−γ)2 γ

c+2r̃.

Therefore, using Lemma 4.2 we obtain

V ∗(s)− V λ(s)

≤ V ∗(s)− V π∗
Z(s)(s) +

2

(1− γ)2
γc+2r̃

≤ 2

(1− γ)
γc+1r̃ +

2

(1− γ)2
γc+2r̃

=
2

(1− γ)2
γc+1r̃.

C.2. The Cutoff Policy

Recall the definition of the Cutoff Policy χ(s) =
(πC

z ((sz, {z})) : ∀z ∈ Z(s)). This is equivalent to say-
ing χ(s) = πC((s, Z(s))) by the following equality:

πC((s, Z(s))) = argmaxaQ
∗((s, Z(s)), a)

= argmaxa

∑
z∈Z(s)

Q∗((sz, {z}), az)

=

(
argmaxaz

Q∗((sz, {z}), az) : ∀z ∈ Z(s)

)
= (πC

z ((sz, {z})) : ∀z ∈ Z(s)).

The decomposition in the second equality can be shown
similarly to the value decomposition shown in Appendix B.

We will also overload notation for this section and say a
policy π in the Locally Interdependent Multi-Agent MDP
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may be viewed as a policy in the Cutoff Multi-Agent MDP
by letting π((s, C)) = π(s).

C.2.1. STEP 1)

We begin by using the Dependence Time Lemma to establish
a relationship between policies in the Cutoff Multi-Agent
MDP and the Locally Interdependent Multi-Agent MDP.
Lemma C.3. For any policy π in the Lo-
cally Interdependent Multi-Agent MDP, we have
|V π(s)− V π((s, Z(s)))| ≤ γc+1

1−γ r̃.

Proof. Recall our notation Ec(P ) for a partition P are all
tuples (j, k) such that agents j, k do not lie in the same
partitions.

A consequence of the Dependence Time Lemma
in the Locally Interdependent Multi-Agent MDP
setting is that, for any realizable trajectory τ ,
with t ∈ {0, ...c} and δ0 ∈ {0, ..., t} we have
r(s(t), a(t)) =

∑
z∈Z(s(δ0))

rz(sz(t), az(t)).

With this decomposition, we know that for every δ0 spec-
ified above, we have rj,k(sj(t), aj(t), sk(t), ak(t)) = 0
for (j, k) ∈ Ec(Z(s(δ0))). In otherwords,
rj,k(sj(t), aj(t), sk(t), ak(t)) = 0 for (j, k) ∈
Ec(∩δ0≤tZ(s(δ0))) using our notation for the inter-
section of partitions. The quantity ∩δ0≤tZ(s(δ0)) is exactly
Cτ (t) by definition, so we may make the decomposition
r(s(t), a(t)) =

∑
z∈Cτ (t) rz(sz(t), az(t)).

Therefore,

V π(s) = Eτ∼π|s

[ ∞∑
t=0

γt
∑

j,k∈N

rj,k(sj(t), aj(t), sk(t), ak(t))

]

= Eτ∼π|s

[ c∑
t=0

γt
∑

z∈Cτ (t)

rz(sz(t), az(t))

+

∞∑
t=c+1

γt
∑

j,k∈N

rj,k(si(t), aj(t), sk(t), ak(t))

]

= Eτ∼π|s

[ ∞∑
t=0

γt
∑

z∈Cτ (t)

rz(sz(t), az(t))

+

∞∑
t=c+1

γt
∑

(j,k)∈Ec(Cτ (t))

rj,k(sj(t), aj(t), sk(t), ak(t))

]
:= V π((s, Z(s))) + ξ.

This concludes the proof since ξ ∈ [−γc+1

1−γ r̃,
γc+1

1−γ r̃].

The following is the corresponding lemma to Lemma C.1
in the Cutoff Setting. It also can be viewed as the effect

the Dependence Time Lemma has on the Q-values for the
Cutoff MDP.

Lemma C.4. Let (s(t), a(t)) be any realizable trajectory
in the Locally Interdependent Multi-Agent MDP, π be any
policy in the Cutoff Multi-Agent MDP, and δ ∈ {0, ..., c}.
Further, let T ≥ δ is an arbitrary time step. We have
|V π((s(T ), Z(s(T ))))− V π

Z(s(T−δ))((s(T ), Z(s(T ))))| ≤
γc+1−δ

1−γ r̃.

Proof. Notice that the realizable trajectory in the statement
is in the Locally Interdependent Multi-Agent MDP, and
therefore, we may use the Dependence Time Lemma. Simi-
lar to what is shown in Lemma C.1, we consider a new trajec-
tory realization (s′(t′), a′(t′)) with s′(0) = s(T ). For t′ ∈
{0, ...c−δ} we know rj,k(sj(t

′), aj(t
′), sk(t

′), ak(t
′)) = 0

for (j, k) ∈ Ec(Z(s(T − δ))). By the definition of rC ,
we also have rj,k(sj(t

′), aj(t
′), sk(t

′), ak(t
′)) = 0 for

the tuples (j, k) in Ec(Cτ (t′)). Put together, this gives
us the following decomposition rC((s(t′), C(t′)), a(t′)) =∑

z∈Cτ (t′)∩Z(s(T−δ)) rz(sz(t
′), az(t

′)) on the reward func-
tion.
Using this equality, we have

V
π
((s(T ), Z(s(T ))))

= Eτ∼π|s(T )

[ ∞∑
t′=0

γ
t′ ∑

z∈Cτ (t′)

rz(sz(t
′
), az(t

′
))

]

= Eτ∼π|s(T )

[ c−δ∑
t′=0

γ
t′ ∑

z∈Cτ (t′)∩Z(s(T−δ))

rz(sz(t
′
), az(t

′
))

+

∞∑
t′=c+1−δ

γ
t′ ∑

z∈Cτ (t′)

rz(sz(t
′
), az(t

′
))

]

= Eτ∼π|s(T )

[ ∞∑
t′=0

γ
t′ ∑

z∈Cτ (t′)∩Z(s(T−δ))

rz(sz(t
′
), az(t

′
))

+

∞∑
t′=c+1−δ

γ
t′ ∑

(j,k)∈E(Cτ (t′))∩
Ec(Z(s(T−δ)))

rj,k(sj(t
′
), aj(t

′
), sk(t

′
), ak(t

′
))

]

:= V
π
Z(s(T−δ))((s(T ), Z(s(T )))) + ξ.

The reasoning in most of the steps is similar to Lemma C.1.
In the penultimate step, E(Cτ (t′)) ∩Ec(Z(s(T − δ))) ex-
presses the tuples of agents (j, k) such that j, k are in differ-
ent partitions of Z(s(T − δ)) but are in the same partition
in Cτ (t′).

This concludes the proof since ξ ∈ [−γc+1−δ

1−γ r̃, γc+1−δ

1−γ r̃].

C.2.2. STEP 2)

Proof of Lemma 4.3. We will next prove the naive policy
candidate bound.
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Proof. Using Lemma C.3, we can show

V ∗(s)−V πC
((s, Z(s)))

≤ V ∗(s)− V π∗
((s, Z(s)))

≤ 1

(1− γ)
γc+1r̃.

C.2.3. STEP 3)

We say that for partitions P1 and P2 on N , partition P1

is finer than a partition P2, P1 ⊂ P2 if for all p1 ∈ P1,
there exists p2 ∈ P2 such that p1 ⊂ p2. Then, we have the
following:
Lemma C.5. For realizable trajectories in a Locally In-
terdependent Multi-Agent MDP, define a sequence of stop-
ping times with T0 = 0 and Ti the time step t for which
Z(s(t)) ̸⊂ Z(s(t− 1)) for the i-th time. Then we have,

Eτ∼χ|s

[ Ti+1−1∑
t=Ti

γ
t
r(s(t), a(t))

]
= Eτ∼χ|s

[
γ
TiV

πC
((s(Ti), Z(s(Ti))))

]

− Eτ∼χ|s

[
γ
Ti+1V

πC
((s(Ti+1),

⋂
Ti≤t′≤Ti+1

Z(s(t
′
))))

]

Proof. The proof is omitted as it is very similar to
Lemma C.2.

Proof of Theorem 3.2. Finally, with all the previous results
in hand, we may prove the main result.

Proof. Let T0 = 0 and Ti be the time step t for which
Z(s(t)) ̸⊂ Z(s(t − 1)) for the i-th time. By definition,
for all t′ ∈ {Ti, ..., Ti+1 − 1} the visibility partitions only
become finer.

We use Lemma C.5, and a minor variation of the Telescop-
ing Lemma (proof very similar to Lemma 4.6) to obtain:

V χ(s) ≥ Eτ∼χ|s

[
V πC

((s, Z(s)))−
∑∞

i=1 γ
Ti∆τ

i

]
where we have

∆τ
i = V πC

((s(Ti),
⋂

Ti−1≤t′≤Ti

Z(s(t′))))

− V πC
((s(Ti), Z(s(Ti))))

= V πC
((s(Ti), Z(s(Ti − 1) ∩ Z(s(Ti))))

− V πC
((s(Ti), Z(s(Ti))))

= V πC
Z(s(Ti−1))((s(Ti), Z(s(Ti))))

− V πC
((s(Ti), Z(s(Ti))))

≤ 1

(1− γ)
γcr̃,

where the inequality in the last step is by Lemma C.4 with
δ = 1.

Plugging in our upper bound for ∆τ
i into our result from

above, we get
V χ(s) ≥ V πC

((s, Z(s)))− 1
(1−γ)2 γ

c+1r̃.

Therefore, by using Lemma 4.3 we find

V ∗(s)− V χ(s)

≤ V ∗(s)− V πC
((s, Z(s))) +

1

(1− γ)2
γc+1r̃

≤ 1

(1− γ)
γc+1r̃ +

1

(1− γ)2
γc+1r̃

=
2− γ

(1− γ)2
γc+1r̃,

and this concludes the proof.

C.3. The First Step Finite Horizon Optimal Policy

Recall the definition of the First Step Finite Horizon Optimal
Policy. If π∗

finite = {π∗,0, π∗,1, ..., π∗,c} are the set of
discounted finite horizon optimal policies with horizon c,
then ϕ(s) = π∗,0(s).

For the purposes of this section, τ ct ∼ π∗
finite

∣∣
s

will denote
a realizable trajectory defined between time steps t and c
distributed according to a roll out starting at s(t) = s using
the non-stationary policy π∗,t′(s(t′)) for t′ ∈ {t, ..., c} to
generate actions. τ ct ∼ π∗

finite

∣∣
s,a

is defined similarly and
will condition on s(t) = s and a(t) = a.

C.3.1. STEP 1)

First, we will show that the First Step Finite Horizon Opti-
mal Policy for a Locally Interdependent Multi-Agent MDP
can equivalently be computed on the Cutoff Multi-Agent
MDP.

Let V ∗
h , Q∗

h be the values for the discounted finite horizon
optimal reward for a Locally Interdependent Multi-Agent
MDP with horizon c. Similarly V C

h , QC
h will represent the

optimal discounted finite horizon values with horizon c in
the Cutoff Multi-Agent MDP. Then we have the following
lemma:

Theorem C.6. Q∗
0(s, a) = QC

0 ((s, Z(s)), a) for any s, a.

Proof. Recall from the proof of Lemma C.3, we have
for any realizable trajectory τ ′ = (s′(t′), a′(t′)) in a Lo-
cally Interdependent Multi-Agent MDP, r(s′(t′), a′(t′)) =∑

z∈Cτ′ (t′) rz(s
′
z(t

′), a′z(t
′)) for t′ ∈ {0, ..., c}.

For h ∈ {0, ..., c} let τh0 be any realizable trajectory.
In the following, we will append an instance of τ ch ∼
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πC
finite

∣∣
(s(h),Cτ (h)),a(h)

from h + 1 onwards and call this
realizable trajectory τ . We find,

QC
h((s(h), C

τ (h)), a(h))

= E
τc
h
∼πC

finite

∣∣
(s(h),Cτ (h)),a(h)

[ c∑
t=h

γt
∑

z∈Cτ (t)

rz(sz(t), az(t))

]

= E
τc
h
∼πC

finite

∣∣
(s(h),Cτ (h)),a(h)

[ c∑
t=h

γtr(s(t), a(t)))

]
= r(s, a)+

γEs′∼P (·|s,a)

[
max
a′

QC
h+1((s

′, Cτ (h) ∩ Z(s′)), a′)

]
.

This is nearly identical to the Bellman Equations for the
Discounted Finite Horizon Locally Interdependent Multi-
Agent MDP problem.

In fact, we have QC
h((s(h), C

τ (h)), a(h)) =
Q∗

h(s(h), a(h)) inductively since QC
c = Q∗

c = 0.
Therefore, Q∗

0(s, a) = QC
0 ((s, Z(s)), a).

Next, we use Theorem C.6 to prove that the discounted finite
horizon optimal policy is a group-decentralized policy.

Corollary C.7. The discounted finite horizon joint optimal
policy π∗,0 for M is a group decentralized policy.

Proof. Using Theorem C.6 and a decomposition similar to
the Cutoff Multi-Agent MDP value decomposition shown in
Appendix B we can show that π∗,0 is group decentralized:

π∗,0(s) = argmaxaQ
∗
0(s, a)

= argmaxaQ
C
0 ((s, Z(s)), a)

= argmaxa
∑

z∈Z(s)

QC
0 ((sz, {z}), az)

=

(
argmaxaz

QC
0 ((sz, {z}), az) : ∀z ∈ Z(s)

)
.

C.3.2. STEP 2)

Proof of Lemma 4.4. We are now ready to prove the bound
on the naive policy candidate.

Proof. Using the definition of the discounted finite horizon
optimal policy, we find

V ∗(s)− V ∗
0 (s)

≤ Eτ∼π∗|s

[ ∞∑
t=0

γtr(s(t), a(t))

]

− E
τc
0∼π∗

finite

∣∣
s

[
c∑

t=0

γtr(s(t), a(t))

]

≤ Eτ∼π∗|s

[ ∞∑
t=c+1

γtr(s(t), a(t))

]
≤ 1

(1− γ)
γc+1r̃.

The second inequality holds because the optimal discounted
finite horizon reward will have a larger expected discounted
sum of rewards in the first c iterations.

C.3.3. STEP 3)

Lemma C.8. For the First Step Finite Horizon Optimal
Policy ϕ and and i ∈ {0, 1, ...}
Eτ∼ϕ|s

[
γir(s(i), a(i))

]
≥

Eτ∼ϕ|s

[
γiV ∗

0 (s(i))− γi+1V ∗
0 (s(i+ 1))

]
− γi+c+1r̃.

Proof. Recall our notation from Lemma C.2 for τT , τT and
τT2

T1
. It will be used again in this Lemma.

To achieve Condition 4.5 with our specific stopping time and

policy, we must bound Eτ∼ϕ|s

[
γir(s(i), a(i))

]
for each i.

Similar to Lemma C.2 we will apply the law of total expec-
tation, eliminate random variables, and apply the Markov
property to obtain the equivalence,

Eτ∼ϕ|s

[
γir(s(i), a(i))

]
= Eτ i∼ϕ|s

[
Eτ∼ϕ|s

[
γir(s(i), a(i))

∣∣∣∣τ i]]
= Eτ i∼ϕ|s

[
Eτi∼ϕ|s

[
γir(s(i), a(i))

∣∣∣∣τ i]]
= Es(i)∼ϕ|s

[
Eτi∼ϕ|s

[
γir(s(i), a(i))

∣∣∣∣s(i)]].
Again as in to Lemma C.2, we will construct a virtual tra-
jectory. Here, we will define (s′(t), a′(t)) to be τ ′i+c+1

i

for t ∈ {i, ..., i+ c+ 1} by starting with s(i), a(i) and ap-
pending an instance of the trajectory (svirt(t′), avirt(t′)) =
(τvirt)c1 ∼ π∗

finite|s(i+1) starting at time step 1 . Further, we
will append what we call a ghost sample of svirt(c), avirt(c).
This is a state s′′ ∼ P (·|svirt(c), avirt(c)) and an arbitrary
action a′′.
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In other words,

s
′
(t), a

′
(t) =


s(i), a(i) t = i

svirt(t − i), avirt(t − i) t ∈ {i + 1, ..., i + c}
s′′, a′′ t = i + c + 1.

We use this new realizable trajectory in place of τi by adding
and subtracting the rest of the trajectory to obtain,

Es(i)∼ϕ|s

[
Eτi∼ϕ|s

[
γ
i
r(s(i), a(i))

∣∣∣∣s(i)]]

= Es(i)∼ϕ|s

[
E
τ
′i+c+1
i

[ i+c+1∑
t=i

γ
t
r(s

′
(t), a

′
(t))

∣∣∣∣s(i)]]

− Es(i)∼ϕ|s

[
E
τ
′i+c+1
i

[ i+c+1∑
t=i+1

γ
t
r(s

′
(t), a

′
(t))

∣∣∣∣s(i)]].

We can bound the first quantity by bounding the ghost sam-
ple and recognizing that the trajectory leading up to that
sample is distributed according to π∗

finite|s(i) as follows

Es(i)∼ϕ|s

[
E
τ ′i+c+1
i

[ i+c+1∑
t=i

γtr(s′(t), a′(t))

∣∣∣∣s(i)]]

≥ Es(i)∼ϕ|s

[
E
τ ′i+c
i

[ i+c∑
t=i

γtr(s′(t), a′(t))

∣∣∣∣s(i)]]− γi+c+1r̃

= Es(i)∼ϕ|s

[
γiV ∗

0 (s(i))

]
− γi+c+1r̃.

In the second quantity, notice that the inner expectation is
over τ ′i+c+1

i is a realizable trajectory under a non-stationary
policy. Therefore, we may upper bound the discounted sum
of rewards under this trajectory for c iterations with the
discounted finite horizon optimal expected reward. Using
steps similar to before,

Es(i)∼ϕ|s

[
E
τ ′i+c+1
i

[ i+c+1∑
t=i+1

γtr(s′(t), a′(t))

∣∣∣∣s(i)]]

= E
τi+1
i ∼ϕ|s

[
E
τ ′i+c+1
i

[ i+c+1∑
t=i+1

γtr(s′(t), a′(t))

∣∣∣∣τ i+1
i

]]

= E
τi+1
i ∼ϕ|s

[
E
τ ′i+c+1
i+1

[ i+c+1∑
t=i+1

γtr(s′(t), a′(t))

∣∣∣∣τ i+1
i

]]

= Es(i+1)∼ϕ|s

[
E
τ ′i+c+1
i+1

[ i+c+1∑
t=i+1

γtr(s′(t), a′(t))

∣∣∣∣s(i+ 1)

]]

≤ Es(i+1)∼ϕ|s

[
γi+1V ∗

0 (s(i+ 1))

]
.

Substituting these two bounds into our original equation,

Eτ∼ϕ|s

[
γir(s(i), a(i))

]
≥

Eτ∼ϕ|s

[
γiV ∗

0 (s(i))− γi+1V ∗
0 (s(i+ 1))

]
− γi+c+1r̃

as desired.

Proof of Theorem 3.3. With all the previous preparations,
we are now ready to prove the main result.

Proof. Let Ti = i. Using Lemma C.8, we have
Eτ∼ϕ|s

[
γir(s(i), a(i))

]
≥ Eτ∼ϕ|s

[
γiV ∗

0 (s(i))− γi+1V ∗
0 (s(i+ 1))

]
− γi+c+1r̃

and therefore,
Eτ∼ϕ|s

[
γi(r(s(i), a(i)) + γc+1r̃)

]
≥ Eτ∼ϕ|s

[
γiV ∗

0 (s(i))− γi+1V ∗
0 (s(i+ 1))

]
.

Intuitively, we can think about this as Condition 4.5 applied
to an MDP with all rewards adjusted by +γc+1r̃.

Using the Telescoping Lemma, we have

V ϕ(s) = (V ϕ(s) +

∞∑
t=c+1

γtr̃)− 1

1− γ
γc+1r̃

≥ Eτ∼ϕ|s

[
V ∗
0 (s)−

∞∑
i=1

γTi∆τ
i

]
− 1

1− γ
γc+1r̃

= V ∗
0 (s)−

1

1− γ
γc+1r̃,

where the last equality holds because ∆τ
i =

V ∗
0 (s(i))− V ∗

0 (s(i)) = 0

Therefore, we may substitute our result from the
Telescoping Lemma to obtain

V ∗(s)− V ϕ(s)

≤ V ∗(s)− V ∗
0 (s) +

1

1− γ
γc+1r̃

≤ 2

1− γ
γc+1r̃.

where Lemma 4.4 is used in the last inequality.

C.4. Lower Bound

Proof of Theorem 3.4. We conclude by providing the
construction for the lower bound here.

Proof. The construction is a completely deterministic MDP
with 2 agents and the only non-trivial action can be taken
at S3 shown in Figure 10. The MDP consists of no rewards
and will only suffer penalty −r̃ if agents overlap (R = 0).
Notice that states S5, S6 transition to each other determinis-
tically.

Here, c = ℓ because V = 2ℓ + 1 implies c = ⌊V−R
2 ⌋ =

⌊ℓ+ 1
2⌋ = ℓ. When agents are at state S1, S3, the optimal

action is for the S3 agent to take a1 so they do not collide.
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S1 S2

S3

S3

S5

S3

S3

S3S4

S6

. . .

a0

a1

. . .

ℓ ℓ

Figure 10. Lower Bound Construction Mℓ

Similarly, when agents are at S2, S3, the optimal is for the
agent at S3 to take action a0.

Denote the trivial action as X and p0 = P (π(S3) = a0).
Notice,

|V ((S1, S3))| = |p0Q((S1, S3), (X, a0))|

= p0
γℓ+1

1− γ
r̃ = p0

γc+1

1− γ
r̃ ≥ p0

γc+2

1− γ
r̃

and

|V ((S2, S3))| = |(1− p0)Q((S2, S3), (X, a1))|

= (1− p0)
γℓ+2

1− γ
r̃ = (1− p0)

γc+2

1− γ
r̃.

Since V ∗((S1, S3)) = V ∗((S2, S3)) = 0,
either |V ∗((S1, S3)) − V ((S1, S3))| ≥ 1

2
γc+2

1−γ r̃ or

|V ∗((S2, S3))− V ((S2, S3))| ≥ 1
2
γc+2

1−γ r̃ must be true.
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