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ABSTRACT

In real world domains, graphs often have natural hierarchies. However, data-
driven graph generation is yet to effectively respect and exploit such structures.
We propose a novel approach that recursively generates community structures at
multiple resolutions, with the generated structures conforming to training data dis-
tribution at each level of the hierarchy. While the generation of a community at
one level takes place sequentially, lower-level sub-structures of the community
can be handled in parallel. This significantly improves the speed of both genera-
tion and learning, resulting in O(log n) generative rounds. Our method is further
supported by an expressive probability distribution for intermediate and leaf levels
of this hierarchical model. Our method achieves the state of the art performance
in graph generation in both accuracy and efficiency on many datasets.

1 INTRODUCTION

As powerful algebraic structures for representing relations, graphs are ubiquitously relevant and
useful. Data-driven approaches to graph generation is both challenging and widely applicable (Dai
et al., 2020). Document generation is a classical case in point (Blei et al.). For telecommunications
R&D, generation of realistic and representative data network topologies is highly desirable (Onat
& Stojmenovic, 2007). For recommender systems, the generation of graphs has received much
attention (He et al., 2021) cite Yingxue team’s work). In computer vision and virtual reality, the
generation of scene graphs, e.g. for household arrangement (Manolis Savva et al., 2019; Ramakr-
ishnan et al., 2021), is a key enabling technology (zhu). For autonomous driving R&D, generation
of interactive scenarios is highly useful for simulation platforms such as CARLA (Dosovitskiy et al.,
2017) and SMARTS (zho).

There are natural hierarchies in all the domains mentioned above: sections, paragraphs, sentences,
and words of a document, communities in user-item graphs, areas in a room in an apartment,
columns of cars and groups of pedestrians on a city block, etc. On the one hand, higher level rela-
tions, such as close two groups of pedestrians are, reflect high-level community structures. On the
other hand, low-level relations and distributions, such as how dense a group of pedestrians is, also
affect higher-level relations and alter structural boundaries, such as how likely the pedestrian groups
are to mingle into each other. Realistic graph generation models must respect both the within-level
distributions and the cross-level distributions governing hierarchical interaction. While hiearchical,
multi-resolution generative models were developed for specific data types such as voice Oord et al.
(2016) and molecular motifs Jin et al. (2020), these methods rely on domain-specific priors not true
of general graphs. To the best of our knowledge, there exists no generation models suitable for
generic graphs that are both learned from data and handle the interacting semantic hierarchy.

We propose to fill in this gap by capturing community structures with the cross-level hierarchical
interactions. In our model, a node’s representation at each level is not only a function of its com-
munity but also depends on its corresponding super-node at the higher level. This both captures
the hierarchical relations and allows the generation process at the lower level to be independent of
specific ordering of the super-nodes. This means that our proposed method has a high degree of
scalability through parallelism. It enables a recursive tree-structured multi-level decomposition that
improves over the row-by-row decomposition of GRAN (Liao et al., 2019) and allows the overall
generation process for a graph of n nodes to be O(log n) instead of the O(n) of GRAN.
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Figure 1: Hierarchical A sample hierarchical graph with 3 levels
is shown in (a), communities are shown in different colors and the
weight of a node and the weight of an edge in a higher level, rep-
resent the sum of the in-community connections in the correspond-
ing community and the total weight cross-community (bipartite),
respectively, in the lower level. The matrix shows its correspond-
ing adjacency matrix where each of these sub-graphs corresponds
to a block in the adjacency matrix, partition graphs are in shown
different colors and bipartites are colored in gray.

Figure 2: Decomposition
of multinomial distribution
as a recursive stick-breaking

process where at each iter-
ation, first a fraction of the
remaining weights rm is al-
located to m-th row (m-th
node in the sub-graph) and
then this fraction vm is dis-
tributed among that row of
lower triangular adjacency
matrix, Â.

In sum, we propose a novel graph generation method in which (1) community structures of generic

graphs are encoded from training data and respected in generation and (2) parallelization is maxi-

mized through structural recursion, enabling significantly more efficient implementation in practice.
Additionally, as will be explained below, (3) the generation of each new edge could utilize infor-
mation about the entire graph through its relationship to a parent graph, (4) sensitivity to initial
random permutation is minimized, and (5) generation of graphs with integer-valued edge weights is
supported.

2 PROBLEM FORMULATION

A graph G = (V, E) is defined as a set of nodes or vertices V and edges E with sizes n = |V | and
m = |E| and adjacency matrix A⇡ for the node ordering ⇡. A graph can be decomposed to partition

graphs (a.k.a. community or cluster) and bipartite graphs that are composed of the cross link of two
partition graphs. Each partition graph in level l, pg
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we. Bipartite adjacency matrix AXY specifies

cross links between partition X and Y , |E(bp
l
ij)|. This is how an abstract network is created in the

higher level Gl�1.

A hierarchical graph (hyper-graph) HG is defined by the set of graphs in all levels of abstractions ,
HG := {GL,GL�1, ...,G0}, where leaf level Gl is the final graph that is being generated and root
graph G0 is a single node graph. An HG is visualized in figure 1. This hierarchical tree struc-
ture helps modeling the short and long interactions among nodes, and also the flow of information
between them, in multiple level of abstraction which is a key aspect of our generative model.

Community detection Different community detection algorithms has been proposed that try to
find communities that have the most of the links within communities and a few cross communities
or cluster nodes with similar features. Following our problem definition, we are interested in graph
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topology-based coarsening algorithms. We use the well established Louvain algorithm (Blondel
et al., 2008) that offers a fast converging heuristic algorithm for community detection and results in
hierarchical communities with high modularity (a measure for overall quality of the partitioning of
a graph into communities). Other community detection algorithms such as clustering technique that
leverages the Laplacian spectrum to find strongly connected communities (Bruna et al., 2013) and
min-cut are left for future consideration.

3 HIERARCHICAL MULTI-RESOLUTION GRAPH GENERATION

The goal is to generate a multi-resolution representation for a graph in a coarse-to-fine approach.
Given a higher level graph, the graph at one level below can be specified by a conditional probability,
and this may repeat until the leaf level is reached. We capture this intuition with the theorem below.

Theorem 1 Given a graph G and an ordering ⇡, assuming there is a deterministic function that

provides the corresponding high-level graphs in a hierarchical order as {GL,GL�1, ...,G0}, then:

p(G = GL,⇡) = p({GL,GL�1, ...,G0},⇡)
= p(GL,⇡ | {GL�1, ...,G0}) p(GL�1,⇡ | {GL�2, ...,G0}) ... p(G1,⇡ | G0) p(G0)

=
LY

l=0

p(Gl,⇡ | Gl�1)⇥ p(G0) (1)

GRAPH GENERATION ACCORDING TO PARTITION

Now, the conditional of graph at level l, p(Gl | Gl�1), can be factorized according to its sub-structures
of partition graphs and bipartite graphs:

p(Gl | Gl�1) = p({pg
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Accordingly, the log-likelihood of Gl can be factorized as the log-likelihood of its sub-structures:
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Here, we assume that the partition graphs pg
l
i are independent given the the parent graph Gl�1, and

also the bipartite graphs bp
l
ij are independent given the the parent graph Gl�1 and their correspond-

ing pair of parts (pg
l
i, pg

l
j). Therefore, given the graph at a higher level, generation of the graph

at the next lower level is reduced to generation of part and bipartite sub-graphs. As illustrated in
figure 1 each of these sub-graphs corresponds to a block in the adjacency matrix, so the proposed
hierarchical MRG generates adjacency blocks in parallel and constitutes the final matrix topology.

Moreover, given the conditional independence of these parts, generation of the next lower level can
be performed in parallel. Thus, in our proposed method, the generation decisions of the cross edges
of each bipartite bp

l
ij may occur all at once given that its corresponding pair of parts (pg

l
i, pg

l
j)

are already generated. On the other hand, similar to GRAN (Graph Recurrent Attention Network)
proposed by Liao et al. (2019), generation of each partition graph is still performed one at a time;
in other words, the lower triangle of adjacency matrix Âl

i is completed row-by-row. This process
continues until the desirable number of edges is reached. Similar to the link prediction problem in
graphs, the decision function can be formulated in terms of the candidate edge representation defined
as �h(< a, b >) := ha � hb, which is why node representations are required in this process.

For node representation, we follow GRAN (Liao et al., 2019) to first obtain initial feature of the
nodes and then compute node representation hi using GNN with attentive messages model. We
simply define it as hi = GNNl(Gin; �l) that is a GNN parameterized by set of parameters �l. We
choose only R = 1, for one round of message passing in our model.
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PROBABILITY DISTRIBUTION OF CANDIDATE EDGES

The edges in a hierarchical graph has non-negative integer weights where wl�1
ii and wl�1

ij are the
sum of all the edges in partition graph pg

l
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l
ij . Therefore, the probability of
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l
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l
ij , can be modeled as a multinomial distribution
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P
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Likewise, for each partition graph, the probability distribution of the set of all candidate edges can
be modeled by multinomial distribution but as the partition graph generation happens in a node-by-
node sequential manner we need to specify the probability distribution accordingly.

Lemma 1 A random vector w 2 ZE
+ with multinomial distribution can be recursively decomposed

to a sequence of binomial distributions:

Mu(w1, ...,wE | w, [✓1, ..., ✓E ]) =
EY

e=1

Bi(we | w �
X

i<e
wi, ✓̂e), (5)

✓̂e =
✓e

1�
P

i<e ✓i

This decomposition is a stick-breaking process where ✓̂e is the fraction of the remaining probabilities

we take away every time and allocate to the e-th component (Linderman et al., 2015).

The above lemma allows the generation of a partition graph to be implemented recursively as
a sequence of edge-by-edge generation that is analogous to GraphRNN (You et al., 2018) with
O(|Vpg|2). However, as stated above, our goal is to generate the graph node-by-node but predict the
edges in a group-wise manner. For that we need the following theorem.

Theorem 2 For a random vector w 2 ZE
+ with multinomial distribution Mu(w | w,✓), we split it

into M disjoint groups w = [u1, ...,uM ] where um 2 ZEm
+ ,

PM
m=1 Em = E, and we define

sum of all weights in m-th group by a random variable vm :=
PEm

e=1 um,e and also we split the

probability vector as ✓ = [✓1, ...,✓M ]. Then the multinomial distribution can be modeled as a

chain of binomials and multinomials

Mu(w = [u1, ...,uM ]| w,✓ = [✓1, ...,✓M ]) =
MY

m=1

Bi(vm | w �
X

i<m

vi, ⌘vm) Mu(um | vm,✓um),

(6)

⌘vm =
1T ✓m

1�
P

i<m 1T ✓i
, ✓um =

✓m
1T ✓m

where, the probability of binomial, ⌘vm , is the fraction of the remaining probability mass that is

allocated to vm, the sum of all weights in the m-th group, and the probability vector ✓um is the nor-

malized multinomial probabilities of each element in its own group. Intuitively, this decomposition

of multinomial distribution can be viewed as a recursive stick-breaking process where at each step,

first a fraction of the remaining probability mass is allocated to a group and then this fraction is

distributed among that group’s members.

Proof: Refer to appendix A for the proof. ⌅

Therefore, at step m of generating the partition graph, we characterize the generative probability
of the group of candidate edges E(pg

l
i,m) corresponding to node vm(pg

l
i), i.e. the m-th row of the
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lower triangle of adjacency matrix Âl
i, by the product of a binomial and a multinomial distribution.

This process is illustrated figure 2. We further extend the generative probability to a mixture model
to increase model expressiveness:

p(um := E(pg
l
i,m)) =
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Where, MLPl
✓u
() acts at edge level and results in K ⇥ |E(pg

l
i,m)| dimensional output, while

graph level representations, obtained by an add pooling aggregation function, are fed into
{MLP⌘

l
v(), MLPl

�()} that output K dimensional arrays. All of the MLP models, we have used
two hidden layer with ReLU activation functions.

For bipartite graph bp
l
ij , we employ the mixture of multinomial distribution (4) to characterize the

generative probability:
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In order to encode the global structure of the graph while generating a local component, we use
the node representation of parent node hPa(pg

l
i)

, the node that represent the pg
l
i at the parent level,

for each partition graph pg
l
i and the edge representation of parent edge �hPa(bp

l
ij)

, the edge that

represent the bp
l
ij at the parent level, for each bipartite graph bp

l
ij . Such extra information is con-

catenated to the candidate edge representation to provide richer edge state that captures long range
interactions.

As in our experiments the graphs have binary edges weights, we use multi-hot activation function
defined as

multihot(z)i =
sigmoid(zi)PK
j=1 sigmoid(zj)

instead of the standard softmax function to obtain the probability of multinomials in the leaf level of
the model. We also run experiments with the mixture of Bernoulli for the last layer using sigmoid
activation for the output.

Remark Training and generation of the proposed hierarchical model is highly parallelizable and
require O(c log n) sequential steps where c the size of largest graph parts.

Remark: In comparison, GRAN can generate the graph topology in a block-wise fashion with fixed
block size where the nodes are split into blocks according to an ordering and intra-block connections
are not modeled separately. Moreover, the performance of GRAN degrades with increasing the block
size since two ajcanent nodes are not necessary sharing similar properties, but the proposed method
first generates the block of each community of nodes that has strong relations to each other and then
connect the blocks.

Remark The graph generation process is reduced to generation of multiple small partitions and is
performed sequentially across the levels, therefore, given an ordering for the parent level, the graph
generation depends only on the permutation of the node within the components rather than the node
ordering of the entire graph. In other words, the proposed method is invariant to big portion of the
possible node permutations and the set of distinctive adjacency matrices. Therefore, it is significantly
less sensitive to node ordering compared to the available models.
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4 RELATED WORK

Graph generative models has been studied extensively. Classical methods from Erdos & Rényi
(1960) and Barabási & Albert (1999) are based on random graph theory that can only capture a set
of hand engineered graph statistics. Leskovec et al. (2010) proposed a scalable generative model
based on the Kronecker product of matrices that can learn some graph properties such as degree dis-
tribution, but is very limited in modeling the underlying distributions. These models fail to capture
important graph properties such as community structure in large family of graphs.

With recent progress in GNN (graph neural networks), several deep neural network models have
been introduced (De Cao & Kipf, 2018; Simonovsky & Komodakis, 2018; Kipf & Welling, 2016;
Ma et al., 2018; Liu et al., 2019) that are base on variational autoencoders (Kingma & Welling,
2013), But these methods are weak in capturing the complex dependencies in graph structures and
thus quality of graph generation degrades as graphs become moderate or large in size.

Auto-regressive deep architectures, on the other hand, model graph generation as a sequential de-
cision making process. Li et al. (2018) proposed generative model based on GNN but it has high
complexity of O(mn2). GraphRNN (You et al., 2018) models graph generation with a two-stage
RNN architecture, with the first RNN generating new nodes and the second generating links of the
new nodes. It thus has to traverses all elements of the adjacency matrix in a predefined order, re-
sulting in O(n2) and not scalable to large graphs. On the other hand, GRAN (Liao et al., 2019)
uses graph attention networks and improves the complexity by generating the adjacency matrix in a
row-by-row fashion, i.e. generating all the edges between the new node and existing graph in one
step, resulting in O(n) recursive computation. In an attempt to improve the scalability of generative
models for graph, Dai et al. (2020) proposed an algorithm for sparse graphs that reduce the training
complexity to O(log n) while its generation time is increased to O((n +m) log n) complexity and
its recursive generation process does not incorporate community structure of the graph.

In explicitly dealing with hierarchical structures, Jin et al. (2020) proposed a generation method for
molecular graphs that recursively selects motifs, the basic building blocks, from a set and predicts the
attachment of that motif to emerging molecule.This model require prior domain-specific knowledge
and relies on molecule-specific graph motifs. Moreover, graphs are abstracted in only two levels and
component generation cannot be performed in parallel. A hierarchical normalizing flow model for
molecular graphs is proposed in De Cao & Kipf (2018) that generates new molecules from a single
node by recursively dividing every node into two nodes. Merging and splitting of pair of nodes in
this model is based on the the node’s neighborhood so it does not include the diverse community
structure of the graphs and hence its hierarchical generation is structurally limited.

Overall, our method belongs to the GNN family. As explained in Section 3, it extends GRAN (Liao
et al., 2019) with a general treatment, supported by expressive distributions, of the hierarchical
structures so far only exploited in an ad hoc (Jin et al., 2020) or limited De Cao & Kipf (2018) way.

5 EXPERIMENTS

In the empirical studies, we compare the proposed method against some well-established baselines
on two synthetics datasets and three real-world datasets.

Datasets First, we generated relaxed Caveman graph RCG which starts with 7  l < 25 cliques
of size 15  k < 25. Edges are then randomly rewired with probability p = 1/l to link different
cliques. We also generated planted partition graph PPG. This model partitions a graph with n nodes
in 20  l < 30 groups with 15  k < 25 nodes each. Nodes of the same group are linked with a
probability pin = .75, and nodes of different groups are linked with probability pout = 10/(kl2).
Both of these datasets are generated with NETWORKX Python package.

The real-world datasets are (1) Protein dataset which contains 918 protein graphs, each of which has
100 to 500 nodes for amino acids and has edges for amino acid pairs closer than 6 Angstroms (Dob-
son & Doig, 2003), (2) Ego dataset which contains 757 3-hop ego networks with 50 to 300 nodes
extracted from the CiteSeer dataset, with nodes representing documents and edges representing ci-
tation relationships (Sen et al., 2008), and (3) Point Cloud with 41 simulated 3D point clouds of
household objects (denoted as FirstMM-DB) with on average over 1k nodes and maximum of over
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Table 1: In this table MMD of graph Deg.: degree distributions, Clus.: clustering coefficient , Orbit: 4-node
orbits, and the Spec.:spectra of the graph Laplacian. For all the metrics, the smaller the better. Given Inf :=
(|V |max, |V |avg, |E|max, |E|avg), InfProtein ⇡ (500, 258, 1575, 646), InfEgo ⇡ (399, 144, 1062, 332),
Inf3D�point�cloud ⇡ (5037, 1377, 10886, 3k), InfPPG ⇡ (696, 477, 7484, 4.37k), InfRCG ⇡
(576, 261, 6624, 2.2k).

Protein 3D Point Cloud Ego PPG RCG
Deg. Clus. Orbit Spec. Deg. Clus. Orbit Spec. Deg. Clus. Orbit Spec. Deg. Clus. Orbit Spec. Deg. Clus. Orbit Spec.

Erdos-Renyi 5.64e�2 1 1.54 9.13e�2 0.31 1.22 1.27 4.26e�2 0.16 0.94 0.85 0.18 0.283 1.04 0.194 0.201 0.17 0.8 0.12 0.2
GraphVAE* 0.48 7.14e�2 0.74 0.11 - - - -
GraphRNN-S 4.02e�2 4.79e�2 0.23 0.21 - - - -
GraphRNN 1.06e�2 0.14 0.88 1.88e�2 - - - -
GRAN 1.98e�3 4.86e�2 0.13 5.13e�3 1.75e�2 0.51 0.21 7.45e�3 3.2e�2 0.17 2.6e�2 4.6e�2 0.0567 0.23 0.282 0.0171 0.075 0.0134 0.0995 0.057
MRG-B 8.9e�3 7.85e�2 0.0108 0.0102 0.129 0.345 0.059 0.0089 4.1e�3 0.062 1.8e�2 1.42e�2 0.00479 0.0879 0.048 0.00185 0.0145 1.29e�2 0.0275 0.00715
MRG 0.00649 0.224 0.0578 0.0131 0.207 0.806 0.0275 0.0224 1.78e�2 0.224 1.16e�2 2.07e�2 1.51e�1 0.368 0.00775 0.0193 0.0445 0.026 0.0115 0.0576

5k nodes for the points and with edges connecting the k-nearest neighbors in Euclidean distance in
3D space (Neumann et al., 2013).

The Louvain algorithm is applied on all of these dataset, which results in hierarchical graphs of
depth L = 2 for the synthetic datasets, while for the real-world graphs it produces at least 3 levels
so we spliced out the intermediate levels so that all have equal depth of L = 3.1 In using each
of these five datasets, we follow the protocol in Liao et al. (2019) to randomly create a 80%-20%
training-testing split, with 20% of the training data reserved as the validation set.

Experimental setup: To provide a fair comparison, we closely follow the experimental setup of
You et al. (2018) and Liao et al. (2019). We compare the graph generation quality of the proposed
model against Erdos-Renyi (Erdos & Rényi, 1960), GraphVAE (Simonovsky & Komodakis, 2018),
GraphRNN & GraphRNN-S (You et al., 2018), and GRAN Liao et al. (2019). The results of the
baselines are grabbed from Liao et al. (2019) for the real-world graphs and the setting and we
retrained GRAN for synthetic datasets. GraphVAE model had a 3-layer GCN encoder, 2 hidden
layers decoder MLP decoder with all hidden dimensions are set to 128 for all experiments. For
GraphRNN and GraphRNN-S, the best settings reported in the original paper were used. GRAN
enjoyed 7 layers of GNNs, with Block size and stride are both set to 1 and hidden dimensions are
set to 128 for {Ego, RCG} 256 for {Point Cloud} and 512 for {Protein, PPG}. The number of
Bernoulli mixtures is set to 20 for GRAN and MRG.

In the proposed model, each level has its own GNN and output models, which are indexed by the
level index of our model definition in section 3. MRG and MRG-B denote the proposed multi-
resolution model respective with mixture of multinomial distribution and with mixture of Bernouli
distribution at the leaf level. We use the same GNN articteture as GRAN but we choose smaller
hidden dimensions, 64 for {Ego, RCG, Point Cloud}, and 128 for {Protein, PPG}. Adam optimizer
Kingma & Ba (2014) with learning rate of 5e-4 was used and for the generation evaluation the best
model is chosen based on the maximum mean discrepancy MMD score between validation set and
generated graphs.

For evaluation of generation, we follow the approach in Liao et al. (2019) and measure the MMD
over 4 graph statistics: (1) degree distributions, (2) clustering coefficient distributions, (3) the num-
ber of occurrence of all orbits with 4 nodes, and (4) the spectra of the graphs by computing the
eigenvalues of the normalized graph Laplacian. The first 3 metrics characterize local graph statistics
while the spectra represents global structure.2

The quality of generated graphs measured by MMD of the 4 graph statistics on the test set is reported
in Table 1 and some graphs sampled from the model distribution are presented in Figure 5. More
generated graphs sampled with hierarchical graph structure are presented in appendix A.

1The proposed architecture can be trained on HGs with uneven heights by adding empty graphs at the root
levels of those HGs with lower height so that they are not sampled during the training.

2MMD depends on Gaussian kernels with the first Wassertein distance. We follow Liao et al. (2019) in using
total variation (TV) distance, which is consistent with Wasserstein distance, to speeds up the evaluation. New
evaluation metrics for comparing graph sets are (O’Bray et al., 2021; Thompson et al., 2022) but we choose to
comply with the experimental setup in GRAN.
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Figure 3: Sample graphs generated by different models.

Table 2: Comparison of models with different number of levels and shared parameters.
Ego

Deg. Clus. Orbit Spec.
MRG-B 4.1e�3 0.062 1.8e�2 1.42e�2

MRG-B 2-level 4.73e�3 5.43e�2 1.41e�2 1.9e�2

MRG-B shared 1.87e�2 0.368 3.20e�2 3.16e�2

5.1 ABLATION STUDIES

In this section we perform two ablation studies to evaluate more compact form of the MRG. First, we
asses the performance MRG with fewer levels by splicing out the middle level of Ego dataset so that
their HGs have 2 levels after root (L = 2). We can see from the results in table 2 that the generation
quality of the models drops slightly once we decrease the number of levels which, therefore it shows
that having more number of hierarchical levels improves the expressiveness of the model.

Moreover, we train the MRG with shared parameters across levels so that all levels use similar GNN
and output models. The comparison in Table 2 show that using individual models for each level
offers better results which can be explained by the that graph at different levels have have different
characteristics such as graph sparsity.

6 CONCLUSION

We proposed a novel data-drive generative model for generic hierarchical graphs. This model does
not rely on domain-specific priors and can be used widely. Our method also supports maximally
parallelized implementations with O(log n) complexity for a graph with n nodes, insofar as the
graph is amendable to balanced recursive tree decomposition. We demonstrated the effectiveness
and efficiency of our method on 2 synthetic and 3 real datasets. While the Louvain algorithm we
depend on for community detection is rule-based, still the proposed method is proven to be effective.

For future work, developing a fully end-to-end algorithm for encoding and decoding with joint
learning of community structures, instead of depending on an external algorithm for community de-
tection, will be both challenging and desirable. Moreover, both for the current method using various
community-detection algorithms and for the future end-to-end solution, validation on datasets that
are orders of magnitude bigger that what we used in this work that introduces the new method will
be an informative and worthy undertaking.
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