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Abstract

Multispectral optoacoustic tomography requires image feedback in real-time to locate and
identify relevant tissue structures during clinical interventions. Backprojection methods are
commonly used for optoacoustic image reconstruction in real-time but only afford imprecise
images due to oversimplified modelling assumptions. Herein, we present a deep learning
framework, termed DeepMB, that infers optoacoustic images with state-of-the-art quality
in 31 ms per image.
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1. Introduction

Multispectral optoacoustic tomography (MSOT) can non-invasively detect optical contrast
in living tissue with high spatial resolution and centimeter-scale penetration depth. Sim-
ilar to ultrasound imaging, clinical use of MSOT requires image feedback in real-time to
locate and identify relevant tissue structures. Backprojection methods (Xu and Wang,
2005) can reconstruct optoacoustic images in real-time but only deliver imprecise images
due to oversimplified modelling assumptions. On the other hand, iterative model-based
reconstruction (Chowdhury et al., 2020, 2021) delivers state-of-the-art optoacoustic image
quality. However, the required computational effort and the iterative approach of the al-
gorithm prevent it from being used for real-time imaging. Deep learning enables faster
image reconstruction using deep neural network models that support efficient and GPU-
accelerated inference, however the lack of experimental ground truth training data can lead
to reduced image quality for in vivo data (Kim et al., 2020; Hauptmann and Cox, 2020;
Gröhl et al., 2021).
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Herein, we show that learning a well-posed reconstruction operator facilitates accurate
generalization from synthesized training data to experimental test data. We present a deep
learning framework, termed DeepMB, that infers optoacoustic images with quality nearly-
indistinguishable from state-of-the-art model-based reconstructions at speeds enabling live
imaging (31 ms per image). DeepMB facilitates accurate model-based reconstruction for
arbitrary experimental input data through training on optoacoustic signals synthesized from
real-world images, while using as ground truth for the first time the optoacoustic images
generated by model-based reconstruction of the corresponding signals.

2. Methods

Figure 1 illustrates the training and evaluation process of DeepMB. Input sinograms for net-
work training were obtained by utilizing general-feature images (Everingham et al., 2009)
as initial pressure distributions and simulating thereof the signals recorded by the acoustic
transducers with an accurate physical model of the scanner (Fig. 1a). In vivo sinograms for
evaluating the performance of the trained network were acquired by scanning six partici-
pants at up to eight anatomical locations each (Fig. 1b). Ground truth images for both the
synthetic training sinograms and the in vivo test sinograms were generated using model-
based reconstruction (Fig. 1c). The deep neural network used for DeepMB consists of a
delay operation, followed by trainable (U-net-like) convolutional layers (Fig. 1d). The net-
work was trained end-to-end on synthesized input sinograms and corresponding model-based
reference images for 300 epochs using stochastic gradient descent.

Figure 1: Training and evaluation process of DeepMB.
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3. Results

DeepMB infers optoacoustic images in 31 ms per sample using a recent graphics processing
unit (NVIDIA GeForce RTX 3090). The performance of DeepMB was evaluated using
4814 in vivo sinograms that were acquired with a modern clinical optoacoustic scanner
(MSOT Acuity Echo, iThera Medical GmbH, Munich, Germany). Figure 2 shows the
optoacoustic images from model-based, DeepMB, and backprojection reconstruction for a
scan of a human carotid. DeepMB images are systematically nearly-indistinguishable from
model-based references. In contrast, backprojection images suffer from reduced spatial
resolution and physically-nonsensical negative initial pressure values.

Figure 2: Optoacoustic images from model-based, DeepMB and backprojection reconstruc-
tion for a scan of human carotid at 800 nm.

Table 1 summarizes a quantitative comparison of model-based, DeepMB, and back-
projection images. The obtained metrics confirm that the image quality of DeepMB is
comparable to model-based reconstruction and superior to backprojection reconstruction.

Table 1: Quantitative evaluation of the image quality for all 4814 in vivo sinograms from
the test dataset (mean value, [25th and 75th percentiles]).

Reference method Our method Traditional method
Model-based DeepMB Backprojection

Data residual norm (↓) 0.139 [0.068, 0.180] 0.156 [0.092, 0.189] 0.369 [0.294, 0.428]
Mean square error (↓) n/a 9.45 [0.56, 2.41] 84.98 [24.97, 85.20]
Structural similarity (↑) n/a 0.98 [0.98, 0.99] 0.73 [0.68, 0.79]

4. Conclusion

DeepMB can enable state-of-the-art MSOT imaging in clinical applications that require
real-time image feedback. The source code of DeepMB is available on GitHub1, and further
details are described in our arXiv preprint (Dehner et al., 2022). We are currently working
on integrating DeepMB into the hardware of a next-generation MSOT scanner.

1. https://github.com/juestellab/deepmb
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