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Abstract

Although there exist instance-dependent regret
bounds for linear Markov decision processes
(MDPs) and low-rank bandits, extensions to low-
rank MDPs remain unexplored. In this work, we
close this gap and provide regret bounds for
low-rank MDPs in an instance-dependent setting.
Specifically, we introduce an algorithm, called
UNISREP-UCB, which utilizes a constrained op-
timization objective to learn features with good
spectral properties. Furthermore, we demonstrate
that our algorithm enjoys constant regret if the
minimal sub-optimality gap and the occupancy dis-
tribution of the optimal policy are well-defined and
known. To the best of our knowledge, these are the
first instance-dependent regret results for low-rank
MDPs.

1 INTRODUCTION

The design of algorithms for RL problems involving large
state spaces has been of great interest in recent years. As
traditional tabular methods are intractable in this setting,
algorithms that use function approximation to generalize
across states have gained substantial attention. In particular,
non-linear function approximation has demonstrated strong
empirical successes [He et al., 2024, Zhang et al., 2022]
with provably efficient algorithms emerging [Agarwal et al.,
2020, Uehara et al., 2022, Modi et al., 2024].

Furthermore, in many RL applications, there is a common
expectation that a good RL algorithm will eventually gain
enough information to identify optimal behavior in finite
time [Zhang et al., 2024]. In that regard, a key question is
under which assumptions this expectation can be confirmed
theoretically.

Recently, Jin et al. [2020] have shown that sample-efficient

learning in large state-action spaces is possible in linear
Markov decision processes (MDPs), where the transition op-
erator P admits a low-rank decomposition P(s′|s, a) =
⟨ϕ(s, a), µ(s′)⟩ into (known) features ϕ and (unknown)
signed measures µ. In this setting, Papini et al. [2021a]
showed that features that fulfill a spectral property called
UniSOFT (see Definition 3.2) are necessary and sufficient
for constant instance-dependent regret, i.e., the regret does
not scale with the number of iterations.

Similarly, in contextual linear bandits (CLB), where the
reward function is linear in the features ϕ, Papini et al.
[2021b] showed that a diversity condition called HLS [Hao
et al., 2020], is necessary and sufficient for constant instance-
dependent regret. Tirinzoni et al. [2022] were able to provide
an algorithm that achieves constant instance-dependent re-
gret for CLBs, even when the true features ϕ are unknown
and must be learned over some (known) finite function class.

To the best of our knowledge, there exists neither an
instance-dependent result nor an algorithm that achieves
constant regret for low-rank MDPs [Agarwal et al., 2020];
that is, linear MDPs with unknown features ϕ.

In this work, we study low-rank MDPs and aim to close this
gap by addressing the following research question.

Can we achieve constant instance-dependent regret in
low-rank MDPs?

As we shall see, we can answer this question positively.
In particular, we provide an instance-dependent analysis
of our proposed algorithm UNISREP-UCB, which is an
augmented version of the recently proposed REP-UCB
algorithm [Uehara et al., 2022] that serves as the basis for
many other works [Zhang et al., 2022a, Agarwal et al., 2023,
Zhao et al., 2024] on low-rank MDPs. In our analysis, we
leverage the insights of Cheng et al. [2023], who designed
a UCB-style bonus term that serves as a trajectory-wise
uncertainty measure. In particular, we show that the bonus
term serves as an almost optimistic estimate of the average
sub-optimality gaps. This allows us to perform an instance-
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dependent regret analysis, similar to Papini et al. [2021a],
employing UniSOFT feature maps. More specifically, we
contribute the following:

• We provide an algorithm called UNISREP-UCB (Al-
gorithm 1) that, for T large enough, achieves Õ(

√
T )

expected regret (Theorem 4.2) provided that the min-
imal sub-optimality gap (Definition 3.3) and the min-
imal optimal occupancy (Definition 3.4) are well-
defined and we have access to an expressive enough
function space (Assumption 4.1);

• We design a termination criterion that allows
UNISREP-UCB to achieve constant regret (Theorem
4.3), provided that the minimal sub-optimality gap and
the minimal optimal occupancy are known;

• We demonstrate that the existence of UniSOFT rep-
resentations is fully characterized by the RL instance
(Lemma 5.1). In particular, we show that in low-rank
MDPs, feature space coverage is equivalent to state
space coverage—a result which can be of interest on
its own.

2 RELATED WORK

Linear MDPs Jin et al. [2020] proposed the first sample-
efficient algorithm for linear MDPs without assuming access
to a generative model or other restrictive assumptions on
the transition operator. Their algorithm LSVI-UCB com-
bines classical LSVI with UCB-style bonuses and achieves
Õ(

√
T ) worst-case regret. Later, He et al. [2021] pro-

vided the first instance-dependent regret analysis for linear
MDPs, achieving a logarithmic O(∆−1

min log(T )) instance-
dependent regret bound. Using features that satisfy a diver-
sity condition, called UniSOFT (Definition 3.2), Papini et al.
[2021a] showed that LSVI-UCB enjoys constant instance-
dependent regret. In addition, they demonstrate that the
UniSOFT property is necessary for constant expected re-
gret, reinforcing the importance of good features. Using a
similar diversity condition, in bilinear MDPs, Zhang et al.
[2023] provided an algorithm that enjoys constant instance-
dependent regret. However, both methods do not scale to
large function classes or misspecified representations. Re-
cently, Zhang et al. [2024] were able to provide an algorithm
that achieves constant regret without prior assumption on
the features. Remarkably, their result holds even if features
have low point-wise misspecification w.r.t. the minimal sub-
optimality gap.

Low-Rank MDPs In the much more challenging low-rank
MDP setting, the seminal work of Agarwal et al. [2020] pro-
vided the first reward-free oracle-efficient algorithm called
FLAMBE. They proposed learning representations using
maximum likelihood estimation (MLE) and showed that
their explore-then-commit style algorithm achieves polyno-
mial sample complexity when provided with an MLE oracle.

By interleaving representation learning, exploration, and ex-
ploitation, Uehara et al. [2022] provided an algorithm called
REP-UCB that improves the sample complexity bound of
FLAMBE in every relevant variable under the same MLE
oracle assumptions. In particular, they employ an UCB-style
bonus term, which provides optimism at the initial state dis-
tribution. Recently, Cheng et al. [2023] showed that this
bonus term can also serve as a trajectory-wise uncertainty
measure. They leverage this insight to design a value func-
tion that encourages exploration in the state-action space
where the uncertainty in the model estimation error is large
and subsequently, provide an improved sample complexity
bound. Finally, Zhao et al. [2024] provided the first regret
bound for low-rank MDPs, employing a double exploration
strategy. However, to the best of our knowledge, in contrast
to linear MDPs, there exists no instance-dependent regret
bound for low-rank MDPs. Furthermore, under which condi-
tions, constant regret is achievable is still an open problem.

Contextual Linear Bandits In contextual linear bandits
(CLB), Papini et al. [2021b] showed that a diversity condi-
tion called HLS [Hao et al., 2020], similar to the UniSOFT
property, is necessary and sufficient for constant instance-
dependent regret. Relaxing the assumption of exact feature
maps, Tirinzoni et al. [2022] provided an algorithm which
achieves constant regret, introducing a constrained opti-
mization objective which encourages the HLS property and
enforces the representations to be exact.

3 PRELIMINARIES

Notation We denote the set of probability distributions
on a measurable set A by ∆(A). Furthermore, let U(A)
represent the uniform distribution over some finite set A and
let Ber(p) denote the Bernoulli distribution with success rate
p ∈ [0, 1]. Additionally, [N ] := {1, ..., N} for any integer
N . Finally, ≲ denotes inequalities up to absolute constants
and Õ(·) hides absolute constants and poly-log terms.

We consider a finite-horizon episodic MDP described by
the tuple M = (S,A,P⋆, r⋆, H, d1), where S is the state
space, A is the finite action space, P⋆ = {P⋆

h}h∈[H] where
P⋆
h : S × A → ∆(S) is the transition operator (unknown)

at time step h ∈ [H], r⋆ = {r⋆h}h∈[H] where r⋆h : S ×
A → [0, 1] is the deterministic reward function (known) at
time step h ∈ [H], d1 ∈ ∆(S) the initial state distribution
(known) and H is the episode length. We assume the reward
function to be normalized, i.e.,

∑H
h=1 sups,a r

⋆
h(s, a) ≤ 1.

The agent interacts with MDP M in episodes. In particular,
in each episode t ∈ N, the agent starts in some initial state
s1 ∼ d1, for each time step h ∈ [H] observes a state sh,
chooses some action ah ∈ A, receives a reward r⋆h(sh, ah)
and transitions to a new state sh+1 ∼ P⋆

h(·|sh, ah). The
interaction process in each episode ends at time step H + 1.



By Π = {π = {πh}h∈[H] | ∀h ∈ [H] : πh : S → A}
we denote the policy space in which the elements are
(deterministic1) decision rules that map states to actions
for any time step h. We define the state value function
V π
P,r;h(s) = E[

∑H
i=h ri(si, ai)|sh = s,P, π] to represent

the expected total reward of policy π under P and r starting
in state s at time step h. To simplify notation, we define the
function PhV

π
P,r,h+1(s, a) = Es′∼Ph(·|s,a)[V

π
P,r,h+1(s

′)],
where Ph should be viewed as an operator on functions
f : S → R with f 7→ Phf .

We define the Q-function as Qπ
P,r;h(s, a) = rh(s, a) +

PhV
π
P,r;h+1(s, a) and let V π,d1

P,r;1 = Es∼d1
[V π

P,r;1(s)], given
some initial state distribution d1. The state-action occu-
pancy distribution dπP;h(s, a) denotes the probability of
visiting state s at time step h and performing action a in
model P with policy π. By abuse of notation, let dπP;h(s) =∑

a∈A dπP;h(s, a) denote the state-occupancy distribution at
time step h. We can sample a state s from dπP;h by executing
π for h− 1 steps starting from state s1 ∼ d1.

The agent’s goal is to learn an optimal policy π⋆ ∈
argmaxπ∈Π V π,d1

P⋆,r⋆,1, which maximizes the expected to-
tal reward under P⋆, r⋆ and d1. We evaluate the efficiency
of an agent by the (expected) regret

E[R(T )] = E[
T∑

t=1

V π⋆,d1

P⋆,r⋆,1 − V πt,d1

P⋆,r⋆,1], (1)

which measures the expected cumulative performance loss
up to episode T ∈ N. Note that the expectation in Equa-
tion 1 is taken w.r.t. any extra randomness induced by the
algorithm.

Finally, we denote the sub-optimality gap of taking action
a in state s at time step h as ∆h(s, a) = V π⋆

P⋆,r⋆;h(s) −
Qπ⋆

P⋆,r⋆;h(s, a), which measures the loss in value of any
sub-optimal action a.

3.1 STRUCTURAL ASSUMPTIONS

In this work, we are interested in MDPs with large, pos-
sibly infinite state spaces and hence require some form of
structural assumptions such that efficient learning is pos-
sible. In particular, we assume that P⋆ admits a low-rank
decomposition.

Definition 3.1. (Low-rank MDP [Agarwal et al., 2020]) An
MDP M is low-rank or equivalently has low-rank structure
with rank d ∈ N if for every h ∈ [H] there exist two embed-
ding functions ϕ⋆

h : S × A → Rd and µ⋆
h : S → Rd such

that

∀(s, a, s′) ∈ S ×A×S : P⋆
h(s

′|s, a) = ⟨ϕ⋆
h(s, a), µ

⋆
h(s

′)⟩,
1We require that our planning procedure outputs (w.l.o.g.)

a deterministic policy to ensure that the representation learning
oracle converges (see Appendix B).

where, for normalization, ∥ϕ⋆
h(s, a)∥2 ≤ 1 and

∥
∫
S µ⋆

h(s)g(s)ds∥2 ≤
√
d∥g∥∞, for any function g : S →

R, (s, a, h) ∈ S ×A× [H].

As the embedding functions ϕ⋆
h and µ⋆

h are assumed to be un-
known, we consider the representation learning problem of
finding good representations for state-action pairs and states
over (known) finite function spaces Φ = Φ1 × ... × ΦH

and Ψ = Ψ1 × ... × ΨH where, for each h ∈ [H],
Φh ⊆ {ϕh : S × A → Rd} and Ψh ⊆ {µh : S → Rd}.
For notational brevity, we denote ϕ⋆ = {ϕ⋆

h}h∈[H] and
µ⋆ = {µ⋆

h}h∈[H]. To ensure tractability of this representa-
tion learning problem, we assume realizability of the func-
tion spaces [Agarwal et al., 2020, Uehara et al., 2022, Modi
et al., 2024].

Assumption 3.1. (Realizability) For all (s, a, h) ∈
S × A × [H], and any (ϕh, µh) ∈ Φh × Ψh,
we have that ∥ϕh(s, a)∥2 ≤ 1, for any function
g : S → R, ∥

∫
S µh(s)g(s)ds∥2 ≤

√
d∥g∥∞ and∫

S⟨ϕh(s, a), µh(s
′)⟩ds′ = 1. Additionally, there exist (un-

known) non-empty subsets Φ⋆ ⊆ Φ and Ψ⋆ ⊆ Ψ such
that any (ϕ⋆, µ⋆) ∈ Φ⋆ × Ψ⋆ fulfills the low-rank MDP
Definition 3.1.

Note that any tuple (ϕ, µ) ∈ Φ × Ψ naturally induces a
distribution over the state space in each time step and, in
particular, a transition operator P ≡ ⟨ϕ, µ⟩.

3.2 GOOD REPRESENTATIONS AND
INSTANCE-DEPENDENT PROPERTIES

In favor of clarity, the main results are presented under the
assumption of a unique optimal policy. In Section F we
show how this assumption can be dropped. Let us denote
Π⋆ as the set of all optimal (deterministic) policies.

Assumption 3.2. (Unique optimal policy) There exists a
unique optimal (deterministic) policy; that is, |Π⋆| = 1.

We consider a feature mapping ϕ ∈ Φ as good if it maps the
set of state-action pairs reachable by the optimal policy to a
set of vectors that span the whole feature space. In particular,
good representations are non-redundant and UniSOFT.

Definition 3.2. (UniSOFT Representation [Papini et al.,
2021a]) A feature mapping ϕ ∈ Φ is called UniSOFT (Uni-
versally Spanning Optimal FeaTures) if for all h ∈ [H],

span{ϕh(s, a)|∀(s, a) : ∃π ∈ Π : dπP⋆;h(s, a) > 0}

= span{ϕh(s, π
⋆(s))|∀s : dπ

⋆

P⋆;h(s) > 0}

holds. In particular, a UniSOFT feature mapping ϕ is non-
redundant if λ⋆(ϕ) > 0 holds, where

λ⋆(ϕ) := min
h∈[H]

λmin(E(s,a)∼dπ⋆

P⋆,h
[ϕh(s, a)ϕh(s, a)

T ])

and λmin(·) returns the minimal eigenvalue.



Intuitively, non-redundant UniSOFT features allow an algo-
rithm to efficiently explore the whole feature space by behav-
ing optimally in the environment. How efficiently the feature
space can be explored is dependent on λ⋆(·), which, as we
will see, will play a major role in the regret bounds provided
in the next chapter. Furthermore, we will say that a transition
operator P admits a non-redundant UniSOFT representa-
tion, whenever there exists a representation ⟨ϕ, µ⟩ ≡ P such
that ϕ is UniSOFT and non-redundant.

We introduce two additional assumptions that will allow
us to take advantage of good representations and perform
an instance-dependent regret analysis. A very natural mea-
sure of hardness is the minimal sub-optimality gap, which
captures the difficulty in detecting sub-optimal actions.

Assumption 3.3. (Well-defined minimal sub-optimality gap)
The quantity

∆min := min
s∈S,a∈A,h∈[H]:∆h(s,a)>0

∆h(s, a)

is well-defined.

Finally, we assume that the minimal optimal occupancy
exists. Intuitively, we ensure that when playing an optimal
decision policy, we will eventually visit all states reachable
by this policy.

Assumption 3.4. (Well-defined minimal optimal occupancy)
The quantity

d⋆min = min
s∈S,a∈A,h∈[H],π⋆∈Π⋆:dπ⋆

P⋆,h
(s,a)>0

dπ
⋆

P⋆,h(s, a)

is well-defined.

Note that both assumptions are trivially satisfied whenever
S and A are finite.

4 INSTANCE-DEPENDENT REGRET
BOUNDS

This section provides an algorithm, called UNISREP-UCB
(Upper Confidence Driven Universally Spanning Represen-
tation Learning, Algorithm 1), that achieves sub-linear ex-
pected regret under an additional simplifying assumption
that guarantees the selection of good representations. Fur-
thermore, we demonstrate that by introducing a carefully
chosen termination criterion to UNISREP-UCB, resulting
in the algorithm UNISREP-UCB + (Algorithm 1 with mod-
ifications shown in blue), we can identify optimal behavior
with high probability whenever the minimal sub-optimality
gap and the minimal optimal occupancy are known.

Algorithm 1 UNISREP-UCB (+)
Input: Function spaces {Φh}Hh=1, {Ψh}Hh=1, Parameters
λt, α̂t, ξt decreasing, T
Output: πt

1: Initialize: D0,h=∅, D′
0,h=∅, π0,h ≡ U(A), ∀h ∈ [H]

2: for t = 1, ..., T do
// Interact with the MDP and collect transition data

3: et ∼ Ber(1− ξt−1)
4: for h = 1, ...,H do
5: sh−1 ∼ d

πt−1

P⋆;h−1

6: if et = 1 then
7: ah−1 = πt−1,h−1(sh−1), sh ∼ P ⋆

h−1

8: ah = πt−1,h(sh), sh+1 ∼ P ⋆
h

9: else
10: ah−1 ∼ U(A), sh ∼ P ⋆

h−1,
11: ah ∼ U(A), sh+1 ∼ P ⋆

h

12: end if
13: Dt,h−1 = Dt−1,h−1 ∪ {(sh−1, ah−1)}
14: D′

t,h = D′
t−1,h ∪ {(sh, ah, sh+1)}

15: end for
// Learn representations & set bonus

16: for h = 1, ...,H do
17: ϕ̂t,h = argminϕ∈ΦMLE

h (D′
t,h)

Lunisoft(ϕ,Dt,h)

18: Σ̂t,h =
∑

(s,a)∈Dt,h
ϕ̂t,h(s, a)ϕ̂t,h(s, a)

T

19: +λtI
20: b̂t,h(s, a) =

21: min{α̂t

√
ϕ̂t,h(s, a)T Σ̂

−1
t,hϕ̂t,h(s, a), 1}

22: P̂t,h(s
′|s, a) = ⟨ϕ̂t,h(s, a), µ̂t,h(s

′)⟩
23: end for

// Update (deterministic) policy
24: πt = argmaxπ∈Π V π,d1

P̂t,b̂t+r⋆,1

// Check for optimality
25: πb

t = argmaxπ∈Π V π,d1

P̂t,b̂t,1

26: ct = 10H2(V
πb
t ,d1

P̂t,b̂t,1
+
√

|A|
ξt

ζt)

27: if ct < ∆mind
⋆
min then

28: return πt

29: end if
30: end for
31: return πt

4.1 ALGORITHM

On a high level, UNISREP-UCB is a finite-horizon adap-
tion of the REP-UCB algorithm proposed by Uehara et al.
[2022]. However, unlike the REP-UCB algorithm, we em-
ploy a double exploration scheme to enable a regret bound,
as proposed by Zhao et al. [2024] and augment the repre-
sentation learning objective to encourage feature maps with
good spectral properties.

Exploration (Lines 3-15) For each time step h, the algo-
rithm samples the state-occupancy distribution d

πt−1

P⋆,h−1 and



continues based on the result of a Bernoulli experiment with
a success rate of 1−ξt. If successful, the algorithm explores
with the behavior policy πt−1, and otherwise it explores
by taking actions uniformly at random. This mechanism is
key for enabling a regret bound, as otherwise the algorithm
would explore uniformly at random in each episode and
time step, preventing sub-linear regret. After time step h+1
the algorithm rolls-out to time step H according to πt−1.
Note that we only require the algorithm to interact with the
environment in full trajectories due to a technicality when
bounding the regret. Qualitatively, the algorithm does not
change by resetting after h+ 1 time steps. Finally, we col-
lect the transitions of the time steps h− 1 and h in separate
datasets.

Representation Learning (Lines 16-23) Similarly to Tir-
inzoni et al. [2022], we employ a constrained optimization
objective (Line 17), to learn features that have good spec-
tral properties and approximate the transition operator well
enough. We define the following objective functions:

LMLE(ϕh, µh,D) =
∑

(s,a,s′)∈D

log(⟨ϕh(s, a), µh(s
′)⟩ (2)

LUniSOFT(ϕh,D) = −λmin

 ∑
(s,a)∈D

ϕh(s, a)ϕh(s, a)
T


(3)

Then, the set of representations that are the maximum like-
lihood solution of fitting the transition operator over some
dataset D, are defined as follows:

ΦMLE
h (D) ={ϕ ∈ Φh : max

µ∈Ψh

LMLE(ϕ, µ,D)

= max
(ϕ′,µ′)∈Φh×Ψh

LMLE(ϕ′, µ′,D)}

Similarly to previous work on low-rank MDPs [Agarwal
et al., 2020, Uehara et al., 2022, Cheng et al., 2023], as a
computational abstraction, we assume access to an optimiza-
tion oracle.

Definition 4.1. (Optimization Oracle) Consider the function
class Φ×Ψ and datasets D and D′ consisting of (s, a) tuples
and (s, a, s′) triples, respectively. Then, the optimization
oracle returns for any h ∈ [H],

arg min
ϕ∈ΦMLE

h (D′)
LUniSOFT(ϕ,D).

Note that although the oracle is computationally intractable,
it can be reasonably well approximated in practice [Tirinzoni
et al., 2022, Zhang et al., 2022]. After employing the oracle,
we use the learned features to define an UCB-style bonus
term and the estimated transition operator.

Planning (Line 24) We find an optimal (deterministic)
policy for the bonus-augmented reward function in the es-
timated environment. Here, we assume access to a plan-
ning procedure that returns, for any given reward function
r and transition operator P = ⟨ϕ, µ⟩, an optimal (deter-
ministic) policy argmaxπ∈Π V π,d1

P,r,1. We note that planning
in a known linear MDP can be performed efficiently, for
example, with LSVI-UCB [Jin et al., 2020].

4.2 ANALYSIS

In the following lemma, we provide a baseline worst-case
regret bound for UNISREP-UCB, which does not utilize
UniSOFT features. We denote the regret incurred by algo-
rithm 1 as R̃, which differs from the regret incurred by
behavior polices {πt}Tt=1 denoted as R.

Lemma 4.1 (Expected Regret without UniSOFT). Let ξt =
t−1/4. Suppose Assumption 3.1 (realizability) holds. Then,
for any T ∈ N, UNISREP-UCB (Algorithm 1) satisfies

E[R̃(T )] = Õ
(
H3d2|A|T 3/4

)
.

Our general strategy for improving the baseline regret given
above is to show that there exists an episode after which
UNISREP-UCB only selects good representations. Then,
these good representations provide more efficient explo-
ration, and we gain an improvement in learning efficiency.
Hence, our regret bounds will only improve on the base-
line regret result if we run the algorithm for long enough.
Furthermore, establishing sub-linear regret without leverag-
ing good representations is important for guaranteeing the
selection of good representations at a later stage.

Nevertheless, to select good representations, we must ensure
their existence. In that spirit, we introduce representations
that approximately represent the ground-truth transition op-
erator over the support of the occupancy distribution induced
by the optimal policy.

Definition 4.2. (α⋆-Approximate Representation) A rep-
resentation (ϕ, µ) ∈ Φ × Ψ, with induced model P , is
α⋆-approximate at level α if for all h ∈ [H],

E(s,a)∼dπ⋆

P⋆,h
[∥Ph(·|s, a)− P⋆

h(·|s, a)∥TV] ≤ α.

Remark 4.1. The set of α⋆-approximate representations
Φα ×Ψα ⊆ Φ×Ψ is non-empty for any α ≥ 0, whenever
the realizability assumption 3.1 holds.

Interestingly, we can show that the optimization oracle (Def-
inition 4.1) converges uniformly over the occupancy distri-
bution of the optimal policy (Lemma B.1), provided that the
distribution is well-defined, that is, Assumption 3.4 (mini-
mal optimal occupancy) holds. The following assumption
exploits this convergence and ensures that we are guaran-
teed to find a good representation. In Section 5 we elaborate
on how reasonable this assumption is.



Assumption 4.1. (α⋆-Expressive Function Space) For all
α⋆-approximate representations (ϕ, µ) ∈ Φα ×Ψα, there
exists a representation (ϕ̃, µ̃) ∈ Φ×Ψ that is non-redundant
and UniSOFT, such that the induced models P and P̃ agree
on all (s, a) ∈ S ×A.

We can show that the UniSOFT loss in Equation 3 eventually
eliminates all redundant and all non-UniSOFT feature maps
(Lemma B.4). Intuitively, if the exploration probabilities
ξt are decreasing and the regret of the behavior policies is
sub-linear, the collected transitions will eventually mostly
be drawn from the optimal occupancy distribution. Then
only good features minimize the UniSOFT loss, which are
guaranteed to exist by the expressiveness assumption above.

Whenever the function space already consists of representa-
tions that have low model error on the optimal occupancy
distribution, we can provide a purely gap-dependent regret
bound.

Theorem 4.1 (Gap-dependent regret with UniSOFT). Let
ξt = t−1/3 and α = 1. Suppose assumptions 3.1 (realizabil-
ity), 3.3 (minimal sub-optimality gap), 4.1 (α⋆-expressive
function space) and 3.2 (unique optimal policy) hold. Then
for any T ∈ N, there exists a constant τgood, such that
UNISREP-UCB (Algorithm 1) satisfies the following:

E[R̃(T )] = Õ(H3d2|A|(τgood ∧ T )5/6

+
1

λ⋆
max

H4d|A|1/2T 2/3)

where τgood = Õ
(

H12d12|A|6
(∆minλ⋆

max)
6

)
and λ⋆

max =

minα maxϕ∈Φα λ⋆(ϕ).

On a high level, τgood captures the number of episodes
UNISREP-UCB needs to eliminate all non-good representa-
tions. Hence, the theorem tells us that after some number of
"warm-up" episodes τgood, during which we incur expected
regret according to the parameter-adjusted baseline result
(Lemma 4.1), we gain an increase in learning efficiency
provided by the properties of good representations. The du-
ration of the warm-up and the gain in learning efficiency
depend on the "goodness" of the available representations,
captured by λ⋆. Notable is the worse dependence on the
horizon.

If we additionally assume that the minimal optimal occu-
pancy is well-defined (Assumption 3.4), we can show that
the behavior policies are eventually optimal. In particular,
we show that the bonus term serves as an almost optimistic
estimate of expected sub-optimality gaps (Lemma C.3).
Hence, if we are guaranteed to select good representations
in each iteration (Lemma B.4), the bonus term decreases
uniformly over the state-action space, leading to optimal
behavior. However, since we bound sub-optimality gaps in
expectation, we require d⋆min to be well-defined, in order to

determine the optimality of any policy (Lemma D.1). We
get the following improved result.

Theorem 4.2 (Expected regret with UniSOFT). Let α >
0, γ ∈ (2, 4] and ξt = t−1/γ . Suppose assumptions 3.1
(realizability), 3.2 (unique optimal policy), 3.3 (minimal
sub-optimality gap), 3.4 (minimal optimal occupancy) and
4.1 (α⋆-expressive function space) hold. Then for any T ∈
N, there exists a constant τ⋆ such that UNISREP-UCB
(Algorithm 1) satisfies

E[R̃(T )] = Õ
(
H3d2|A|(τ⋆ ∧ T )1/2+1/γ +HT

γ−1
γ

)
,

where τ⋆ = Õ

((
H2d2|A|

αλ⋆
max(∆mind⋆

min)
2

) 2γ
γ−2

)
.

In contrast to τgood, τ⋆ additionally captures the number of
episodes UNISREP-UCB needs to fully explore the feature
space and subsequently identify the optimal policy. How-
ever, our algorithm still explores uniformly with positive
probability, preventing constant regret. We also incur de-
pendence in α and d⋆min, capturing the difficulty of selecting
α⋆-approximate representations.

Interestingly, if we assume that the quantities ∆min and
d⋆min are known2, we can design a termination criterion,
which stops the algorithm whenever the behavior policy is
optimal. UNISREP-UCB + extends UNISREP-UCB by
an evaluation phase (Lines 25-29) in which we measure
the uncertainty in the learned model, through the value of
the bonus term. If this uncertainty is below ∆mind

⋆
min, we

stop the algorithm and return the optimal policy with high
probability.

Theorem 4.3 (Constant Regret). Let α > 0, δ ∈ (0, 1) and
ξt = t−1/4. Suppose that the quantities ∆min and d⋆min are
known. Then, under the same assumptions as in Theorem
4.2, with probability at least 1 − 2δ, UNISREP-UCB +
(Algorithm 1) satisfies the following:

R̃(T ) ≤ T ∧ τ⋆,

where3 τ⋆ = Õ
(

H8d8|A|4
(αλ⋆

max)
4(∆mind⋆

min)
8

)
.

4.3 TECHNICAL CHALLENGES

The main technical challenge to providing instance-
dependent regret lies in controlling the expected sub-
optimality gaps. In Lemma C.5, we demonstrate that the
expected gaps can be controlled w.r.t. the value of the bonus
under policy πb. Unfortunately, this is not the policy that
interacts with the environment, and hence the elliptical po-
tential lemma does not work here. Importantly, UniSOFT

2Extensions to lower bounds on ∆min and d⋆min are straightfor-
ward.

3Õ hides a constant of order 264.



features uniformly decrease the confidence intervals, which
allows us to proceed with our analysis. As such, the role of
representation learning and, in particular, that of UniSOFT
features is central for our instance-dependent bounds.

5 MORE ON GOOD REPRESENTATIONS

Note that within this section, we assume finiteness of the
state space (|S| < ∞) and that the transition operator has
rank d̃ for all time steps, that is, rank(P⋆

h) = d̃ for all
h ∈ [H]. Furthermore, we denote by X ⋆

h := {(s, a) ∈ S ×
A|dπ⋆

P⋆,h(s, a) > 0} the set of state-action pairs reachable
by the optimal policy at time step h ∈ [H]. The following
lemma provides a condition that is necessary and sufficient
for the existence of non-redundant UniSOFT representations
in low-rank MDPs.

Lemma 5.1 (Existence of good representations). Let d ≥ d̃.
Then, the following statements are equivalent:

(1) span{P⋆
h(·|s, a)|(s, a) ∈ X ⋆

h} = Rd̃ and |X ⋆
h | ≥ d,

(2) there exists a non-redundant UniSOFT representation
⟨ϕ̃h, µ̃h⟩Rd = P⋆

h.

Remark 5.1. Note that the result is agnostic to the choice
of policy. This implies that in low-rank MDPs feature space
coverage is equivalent to state space coverage.

Remark 5.2. In section E, we provide a similar result for the
existence of (possibly redundant) UniSOFT features. This
implies, given that UniSOFT feature maps are necessary
for constant expected regret in MDPs with linear rewards
[Papini et al., 2021a], that to achieve constant expected
regret in linear MDPs or low-rank MDPs with unknown
rewards, the optimal policy must visit all states reachable
by any policy with positive probability.

Importantly, we see that the existence of good features ϕ is
fully characterized by the ground-truth transition operator.
That is, assuming the existence of non-redundant UniSOFT
features, implicitly assumes that the optimal policy explores
the whole reachable state space (Corollary E.1).

Nevertheless, if P⋆ admits a non-redundant UniSOFT rep-
resentation, good α⋆-approximate representations are abun-
dant. The following lemma supports the α⋆-expressiveness
assumption (Assumption 4.1).

Lemma 5.2. Assume that Assumption 3.4 (minimal opti-
mal occupancy) holds and that P⋆ admits a non-redundant
UniSOFT representation. Then, there exists an ϵ > 0 such
that for any d ≥ d̃ the following holds: Let α̃ < α ≤ ϵ be ar-
bitrary. There exist infinitely more α⋆-approximate represen-
tations than α̃⋆-approximate representations ⟨ϕ, µ⟩Rd ≡ P̂
that are UniSOFT and non-redundant.

Remark 5.3. On a high level, ϵ is upper bounded by the
degree of linear independence between the (unknown) tran-
sition vectors of the optimal actions.

6 DISCUSSION

6.1 COMPARISON WITH THE LITERATURE

In this subsection, we compare the constant regret result
of Theorem 4.3 with related results from the literature. In
Table 1 we provide an overview of algorithms achieving
constant regret in different learning settings and compare
their critical episodes; that is, the episode after which, with
high probability, the respective algorithm does not incur
additional regret.

LSVI-LEADER [Papini et al., 2021a] In the linear MDP
setting, the LSVI-LEADER algorithm proposed by Papini
et al. [2021a] assumes access to a set of realizable repre-
sentations containing one UniSOFT representation, and that
the unique optimal policy assumption 3.2 holds. However,
their algorithm does not scale to large function spaces, as it
learns a different representation for each state-action pair.

In comparison, UNISREP-UCB + can deal with large func-
tion spaces and misspecified representations. Additionally,
we show how to generalize our regret bounds beyond the
unique optimal policy assumption. However, we assume
access to an optimization oracle, positive minimal optimal
occupancy and known instance-dependent quantities.

In Table 1 we can see that, in contrast to LSVI-LEADER,
the critical episode of UNISREP-UCB + depends on the
size of the action space, which seems to be unavoidable in
low-rank MDPs [Zhao et al., 2024]. We additionally incur
a dependence on d⋆min, which stems from bounding average
sub-optimality gaps and on α as we must select representa-
tions with low model error. The overall smaller polynomial
dependence for LSVI-LEADER follows from the overall
tighter regret bound available for linear MDPs.

BanditSRL [Tirinzoni et al., 2022] In contextual linear
bandits (CLB) the feature map ϕ must only linearly repre-
sent the reward function. Similarly to our work, BanditSRL
learns a non-redundant representation with good spectral
properties over a known finite function space. They do not
rely on any oracle assumptions, as estimating the reward
function can be done efficiently by minimizing the MSE.
However, they rely on a restrictive misspecification assump-
tion that allows them to eliminate all point-wise misspecified
representations. In particular, they assume that the following
quantity is well-defined:

ϵmin := min
ϕ∈Φ\Φ⋆

min
θ:∥θ∥≤1

min
π:S→A

Es∼d1
[(⟨ϕ(s, π(s)), θ⟩ − r⋆(s, π(s))2] > 0.

Although estimating the reward function is conceptually
different, we emphasize that our algorithm can deal with
misspecified representations without making additional as-
sumptions on the level of misspecification.



Table 1: Comparison of critical episodes; for ease of comparison, constants that refer to eigenvalue sizes are summarized
with λ⋆.

Algorithm Setting Features ϕ Critical Episode

LEADER [Papini et al., 2021b] CLB Known Õ(( d
λ⋆∆min

)2)

BanditSRL [Tirinzoni et al., 2022] CLB Unknown Õ( d2

(λ⋆∆min)2ϵmin
)

LSVI-LEADER [Papini et al., 2021a] Linear MDP Known Õ(max{d3H4

(λ⋆)2 ,
d2H4

∆2
min(λ

⋆)3
})

UNISREP-UCB + (this work) Low-rank MDP Unknown Õ( H12d8|A|4
(∆mind⋆

min)
8(αλ⋆)4 )

Constant Regret with Misspecified Representations In-
terestingly, as far as we know, there exists no algorithm
for linear MDPs that can identify optimal behavior, when
features are only required to have small misspecification
error on average. In fact, only very recently, Agarwal et al.
[2023] provided the first sublinear regret result in this set-
ting. On the other hand, Zhang et al. [2024] provided an
algorithm that achieves constant instance-dependent regret
for linear-MDPs with features that have low point-wise mis-
specification w.r.t. the minimal sub-optimality gap.

6.2 LIMITATIONS

Redundant Features Following a similar analysis as in
Papini et al. [2021a], our regret bounds would also hold
for redundant UniSOFT feature maps, provided that we
are guaranteed to select them. In order to learn possibly
redundant UniSOFT feature maps, Tirinzoni et al. [2022]
provided the following loss function:

min
(s,a)∈D

ϕ(s, a)T

 ∑
(s′,a′)∈D

ϕ(s′, a′)ϕ(s′, a′)T

ϕ(s, a).

However, this loss function selects UniSOFT feature maps
only if all state-action pairs are visited in finite time; other-
wise, we cannot ensure that the features of optimal actions
span the observable feature space.

Low-Rank Assumption The set of MDPs that admit a
low-rank representation with small rank d w.r.t. |S| is in-
herently limited. In particular, Lee and Oh [2024] showed
that the feature dimension is lower bounded by ⌊ |S|

U ⌋, where
U := max(s,a)∈S×A |{s′ ∈ S : P(s′|s, a) > 0}| is the
maximum number of directly reachable states. An imme-
diate consequence is that, in deterministic environments,
d = |S| holds. We refer to Section 4 in Lee and Oh [2024]
for a more thorough discussion.

Minimal Optimal Occupancy In contrast to existing
work on constant regret for linear MDPS [Papini et al.,
2021a, Zhang et al., 2023, 2024], our bound has an addi-

tional dependence in d⋆min. This dependence is caused by con-
trolling expected sub-optimality gaps. A point-wise uncer-
tainty quantification is generally not possible since the MLE
objective is unbounded and we cannot use any standard uni-
form convergence techniques. Nevertheless, d⋆min ≈ λ⋆ is
generally a reasonable approximation, where quantities sim-
ilar to λ⋆ appear in many existing works (e.g., see Table 1)
that leverage representations with good spectral properties.

The inherently undesirable trade-off between d⋆min and d is
interesting to note here. We seek highly random transitions
to hope for a small rank d, but deterministic transitions for
a large value d⋆min.

Computation Computationally, Algorithm 1 suffers from
limitations similar to those of other existing works on low-
rank MDPs. In particular, the optimization oracle cannot be
efficiently solved accurately, as there is no practical mecha-
nism to guarantee the normalization conditions for ϕ and µ
[Zhang et al., 2022]. This, in particular, makes the constraint
optimization objective in algorithm line 17 intractable. How-
ever, the MLE objective can be approximated with noise
contrastive estimation (NCE) [Zhang et al., 2022], with the
UniSOFT loss added as a regularization term.

7 CONCLUSION & FUTURE WORK

In this work, we studied low-rank MDPs characterized
by the instance-dependent properties ∆min (minimal sub-
optimality gap) and d⋆min (minimal optimal occupancy). We
proposed to extend the existing REP-UCB algorithm with
a double exploration strategy and a constrained optimiza-
tion objective, and showed that this novel algorithm can
leverage good representations for more efficient exploration.
Additionally, we demonstrated that our algorithm enjoys
constant regret in low-rank MDPs and provided a condition
that is sufficient and necessary for the existence of good
representations.

An interesting direction for future work is the design of com-
putationally efficient variants of our proposed algorithms
and to test them on deep RL benchmarks. Furthermore, it



would be interesting to understand whether UniSOFT fea-
tures are necessary for instance-dependent regret.
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Here we provide the omitted proofs of the main paper. In particular, Section A provides the proof for the baseline result in
Theorem 4.1, in Section B we show how we guarantee the selection of good representations and in Section C and Section D
we show how good representations can be leveraged to obtain an improved regret bound (Theorem 4.1) and constant regret
(Theorem 4.3), respectively. Finally, in Section E we discuss the existence of good representations, in Section F we show
how our results can be extended for multiple optimal policies and Section G provides auxiliary results.

We begin by introducing notation and good events. Let us denote

π̃t,h(a|s) = ξt−1 ·
1

|A|
+ (1− ξt−1) · πt−1,h(a|s)

as the roll-out policy in episode t, which, with probability ξt, explores by taking an action uniformly at random and
otherwise, selects an action according to the behavior policy πt−1,h from the previous episode. Importantly, we assume that
the sequence (ξt)

T
t=1 is decreasing. Note that policy π̃t,h collects the transitions stored in the datasets of algorithm 1 and

only interacts with the environment after sampling a state from d
πt−1

P⋆,h−1. Further, we denote the average roll-out policy as

π̄t,h(a|s) =
1

t

t−1∑
i=0

(
ξi ·

1

|A|
+ (1− ξi) · πi,h(a|s)

)
,

We define the mixture occupancy distributions

ρt,h(s) =
1

t

t−1∑
i=0

dπi

P⋆,h(s),

γt,h(s, a) =
1

t

t−1∑
i=0

dπi

P⋆,h(s, a),

ρt,h(s, a) = ρt,h(s)π̄t,h(a|s),

the next-state marginal distribution and next-state mixture occupancy distribution

ρ′t,h(s
′) =

∑
(s,a)∈S×A

ρt,h−1(s, a)P⋆
h(s

′|s, a), and

ρ′t,h(s, a) = ρ′t,h(s)π̄t,h(a|s),
respectively. Denote the total variation distance between the estimated model and the true model as

ft,h(s, a) := ∥P̂h,t(·|s, a)− P⋆
h(·|s, a)∥TV.

Additionally, let

Σρt,ϕ = tE(s,a)∼ρt
[ϕ(s, a)ϕ(s, a)T ] + λtI,
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where λt = c1d log(4tH|Φ|/δ), c1 is a constant and ρt ∈ ∆(S × A) is an episode dependent distribution over the
state-action space. Further we define the following two good events:

E1(δ) = {∀t ∈ N, h ∈ [H], s ∈ S, a ∈ A : E(s,a)∼ρ′
t,h

[ft,h(s, a)
2] ≤ ζt}

E2(δ) = {∀t ∈ N, h ∈ [H], s ∈ S, a ∈ A :

1

5
∥ϕ̂t,h(s, a)∥Σ−1

ρt,h,ϕ̂t,h

≤ ∥ϕ̂t,h(s, a)∥Σ̂−1
t,h

≤ 3∥ϕ̂t,h(s, a)∥Σ−1

ρt,h,ϕ̂t,h

},

where ζt =
2 log(4t|Φ||Ψ|H/δ)

t . Finally, let E(δ) := E1(δ/2) ∩ E2(δ/2). The good event E guarantees the convergence of the
MLE oracle [Uehara et al., 2022] and the concentration of the bonus term.

Lemma .1. Fix δ ∈ (0, 1). Suppose Assumption 3.1 (realizability) holds and we run algorithm 1. Then, with probability at
least 1− δ, the event E(δ) occurs.

Proof. By Lemma G.6, with probability at least 1− δ/2, event E1(δ/2) occurs. Furthermore, by Lemma 11 in Uehara et al.
[2022], with probability at least 1− δ/2, event E2(δ/2) occurs. Taking an union bound concludes the proof.

A SUB-LINEAR PSEUDO-REGRET WITHOUT GOOD REPRESENTATIONS

In this section, we show that the behavior policies of algorithm 1 achieve anytime sub-linear regret without exploiting the
UniSOFT property. On a high level, this ensures that the algorithm plays optimal actions often enough, such that the MLE
constrained oracle eventually selects UniSOFT features, which we leverage in subsequent sections to improve upon the
baseline result. We note that the analysis in this section is purely based on known results and provided for completeness.

We start by providing two important results, first introduced by Uehara et al. [2022], which we will use to link the bonus
of the learned features to the elliptical potential function of the true features. This allows us to track the progress of our
algorithm through the standard elliptical potential lemma G.4.

Lemma A.1. (One-step back inequality in the true model) Consider a set of functions {gh}Hh=1 that satisfies gh : S×A → R
such that ∥gh∥∞ ≤ B for all h ∈ [H]. Then, for all t ∈ N, h > 1 and any π,

E(s,a)∼dπ
P⋆,h

[gh(s, a)]

≤ E(s,a)∼dπ
P⋆,h−1

[∥ϕ⋆
h−1(s, a)∥Σ−1

γt,h−1,ϕ⋆
h−1

]

√
t
|A|
ξt

E(s,a)∼ρt,h
[gh(s, a)2] +B2λtd

Proof. For h = 2, ...,H we have,

E(s,a)∼dπ
P⋆,h

[gh(s, a)]

= E(s̃,ã)∼dπ
P⋆,h−1

,s∼P⋆
h−1(·|s̃,ã),a∼πh(·|s)[gh(s, a)]

= E(s̃,ã)∼dπ
P⋆,h−1

[⟨ϕ⋆
h−1(s̃, ã),

∑
(s,a)∈S×A

µ⋆
h−1(s)πh(a|s)gh(s, a)⟩]

(i)

≤ E(s̃,ã)∼dπ
P⋆,h−1

[∥ϕ⋆
h−1(s̃, ã)∥Σ−1

γt,h−1,ϕ⋆
h−1

∥
∑

(s,a)∈S×A

µ⋆
h−1(s)πh(a|s)gh(s, a)∥Σγt,h−1,ϕ⋆

h−1
],

where (i) follows from the symmetry of the regularized covariance matrix and an application of the Cauchy-Schwarz



inequality. Further we have for h = 2, ...,H ,

∥
∑

(s,a)∈S×A

µ⋆
h−1(s)πh(a|s)gh(s, a)∥2Σγt,h−1,ϕ⋆

h−1

(i)

≤ tE(s̃,ã)∼γt,h−1
[(

∑
(s,a)∈S×A

⟨ϕ⋆
h−1(s̃, ã), µ

⋆
h−1(s)⟩πh(a|s)gh(s, a))2] +B2λtd

= tE(s̃,ã)∼γt,h−1
[Es∼P⋆

h−1(·|s̃,ã),a∼πh(·|s)[gh(s, a)]
2] +B2λtd

≤ tEs∼ρt,h,a∼πh(·|s)[gh(s, a)
2] +B2λtd

(ii)

≤ tmax
s,a

ρt,h(s)πh(a|s)
ρt,h(s)π̄t,h(a|s)

E(s,a)∼ρt,h
[gh(s, a)

2] +B2λtd

≤ t
1

1
t

∑t−1
i=0(ξi ·

1
|A| )

E(s,a)∼ρt,h
[gh(s, a)

2] +B2λtd

(iii)

≤ t
|A|
ξt

E(s,a)∼ρt,h
[gh(s, a)

2] +B2λtd,

where, (i) is by assumptions ∥gh(s, a)∥∞ ≤ B and ∥
∫
S µ⋆(s)h(s)p(s)∥2 ≤

√
d for any h : S → [0, 1] (realizability,

Assumption 3.1), (ii) is by importance sampling and (iii) follows from ξt being decreasing.

Lemma A.2. (One-step back inequality in the learned model) Consider a set of functions {gh}Hh=1 that satisfies gh :
S ×A → R such that ∥gh∥∞ ≤ B for all h ∈ [H]. Then, given that the event E occurs, for all t ∈ N, h > 1 and any π,

E(s,a)∼dπ
P̂t,h

[gh(s, a)]

≤ E(s,a)∼dπ
P̂t,h−1

[∥ϕ̂t,h−1(s, a)∥Σ−1

ρt,h−1,ϕ̂t,h−1

]

√
2t
|A|
ξt

E(s,a)∼ρ′
t,h

[gh(s, a)2] +B2λtd+ 2t
|A|
ξt

B2ζt

Proof. Let t ∈ N be arbitrary. For all h = 2, ...,H we have,

E(s,a)∼dπ
P̂t,h

[gh(s, a)]

= E(s̃,ã)∼dπ
P̂t,h−1

,s∼P̂t,h−1(·|s̃,ã),a∼πh(·|s)[gh(s, a)]

= E(s̃,ã)∼dπ
P̂t,h−1

[⟨ϕ̂t,h−1(s̃, ã),
∑

(s,a)∈S×A

µ̂t,h−1(s)πh(a|s)gh(s, a)⟩]

(i)

≤ E(s̃,ã)∼dπ
P̂t,h−1

[∥ϕ̂t,h−1(s̃, ã)∥Σ−1

ρt,h−1,ϕ̂t,h−1

∥
∑

(s,a)∈S×A

µ̂t,h−1(s)πh(a|s)gh(s, a)∥Σρt,h−1,ϕ̂t,h−1
],

where (i) follows from the symmetry of the covariance matrix and an application of the Cauchy-Schwarz inequality. Further
we have for all h = 2, ...,H ,

∥
∑

(s,a)∈S×A

µ̂t,h−1(s)πh(a|s)gh(s, a)∥2Σρt,h−1,ϕ̂t,h−1

(i)

≤ tE(s̃,ã)∼ρt,h−1
[(

∑
(s,a)∈S×A

⟨ϕ̂t,h−1(s̃, ã), µ̂t,h−1(s)⟩πh(a|s)gh(s, a))2] +B2λtd

= tE(s̃,ã)∼ρt,h−1
[Es∼P̂t,h−1(·|s̃,ã),a∼πh(·|s)[gh(s, a)]

2] +B2λtd

(ii)

≤ 2tE(s̃,ã)∼ρt,h−1
[Es∼P⋆

h−1(·|s̃,ã),a∼πh(·|s)[gh(s, a)]
2] +B2λtd+ 2tB2ζt

≤ 2tEs∼ρ′
t,h,a∼πh(·|s)[gh(s, a)

2] +B2λtd+ 2t
|A|
ξt−1

B2ζt

(iii)

≤ 2t
|A|
ξt−1

E(s,a)∼ρ′
t,h

[gh(s, a)
2] +B2λtd+ 2t

|A|
ξt−1

B2ζt,



where, (i) is by assumptions ∥gh(s, a)∥∞ ≤ B and ∥
∫
S µ̂(s)h(s)p(s)∥2 ≤

√
d for any h : S → [0, 1] (realizability,

Assumption 3.1), (ii) follows from (a + b)2 ≤ 2a2 + 2b2, importance sampling and the event E and (iii) is again by
importance sampling.

The following lemma exploits the one-step back inequalities to relate the bonus and the estimation error to elliptical potential
functions. The formulation of the statement is inspired by Lemma 3 of Cheng et al. [2023].

Lemma A.3. (Bonus relations) Given that the event E occurs, for all t ∈ N, h > 1 and any π,

E(s,a)∼dπ
P̂t,h

[ft,h(s, a)] ≤ αtE(s,a)∼dπ
P̂t,h−1

[∥ϕ̂t,h−1(s, a)∥Σ−1

ρt,h−1,ϕ̂t,h−1

],

E(s,a)∼dπ
P⋆,h

[ft,h(s, a)] ≤ αtE(s,a)∼dπ
P⋆,h−1

[∥ϕ⋆
h−1(s, a)∥Σ−1

ρt,h−1,ϕ⋆
h−1

],

E(s,a)∼dπ
P⋆,h

[b̂t,h(s, a)] ≤ βtE(s,a)∼dπ
P⋆,h−1

[∥ϕ⋆
h−1(s, a)∥Σ−1

γt,h−1,ϕ⋆
h−1

],

where αt =
√
4tζt

|A|
ξt

+ λtd and βt =
√

|A|
ξt

40α2
td+ λtd. In particular, for h=1,

Es∼d1,a∼π1(·|s)[ft,1(s, a)] ≤

√
|A|
ξt

ζt, Es∼d1,a∼π1(·|s)[b̂t,1(s, a)] ≤ 15αt

√
d|A|
tξt

.

Proof. Let t ∈ N be arbitrary. For all h > 1 we have,

E(s,a)∼dπ
P̂t,h

[ft,h(s, a)]

(i)

≤ E(s,a)∼dπ
P̂t,h−1

[∥ϕ̂t,h−1(s, a)∥Σ−1

ρt,h−1,ϕ̂t,h−1

]

√
2t
|A|
ξt

E(s,a)∼ρ′
t,h

[ft,h(s, a)2] + λtd+ 2t
|A|
ξt

ζt

(ii)

≤ αtE(s,a)∼dπ
P̂t,h−1

[∥ϕ̂t,h−1(s, a)∥Σ−1

ρt,h−1,ϕ̂t,h−1

],

where (i) is by Lemma A.2 and ∥ft,h∥∞ ≤ 1 and (ii) follows from the event E . Similarly, for all h > 1,

E(s,a)∼dπ
P⋆
t ,h

[ft,h(s, a)]

(i)

≤ E(s,a)∼dπ
P⋆,h−1

[∥ϕ⋆
h−1(s, a)∥Σ−1

ρt,h−1,ϕ⋆
h−1

]

√
2t
|A|
ξt

E(s,a)∼ρ′
t,h

[ft,h(s, a)2] + λtd

(ii)

≤ αtE(s,a)∼dπ
P⋆,h−1

[∥ϕ⋆
h−1(s, a)∥Σ−1

ρt,h−1,ϕ⋆
h−1

],

where (i) is by Lemma A.1 and ∥ft,h∥∞ ≤ 1 and (ii) follows from the event E . For h = 1 we have,

Es∼d1,a∼π1(·|s)[ft,1(s, a)]
(i)

≤

√
|A|
ξt

E(s,a)∼ρt,1
[ft,1(s, a)2] ≤

√
|A|
ξt

ζt,

where (i) is by importance sampling and Jensen’s inequality. We can bound the bonus by,

E(s,a)∼dπ
P⋆
t ,h

[b̂t,h(s, a)]

≤ E(s,a)∼dπ
P⋆,h−1

[∥ϕ⋆
h−1(s, a)∥Σ−1

γt,h−1,ϕ⋆
h−1

]

√
t
|A|
ξt

E(s,a)∼ρt,h
[b̂t,h(s, a)2] + λtd,



which follows from Lemma A.1 and ∥b̂t,h∥∞ ≤ 1. Further,

tE(s,a)∼ρt,h
[b̂t,h(s, a)

2]

≤ tE(s,a)∼ρt,h
[α̂2

t ∥ϕ̂t,h(s, a)∥2Σ̂−1
t,h

]

(i)

≤ tE(s,a)∼ρt,h
[9α̂2

t ∥ϕ̂t,h(s, a)∥2Σ−1

ρt,h,ϕ̂t,h

]

= 9α̂2
t tTr

(
E(s,a)∼ρt,h

[ϕ̂t,h(s, a)ϕ̂t,h(s, a)
T ](tE(s,a)∼ρt,h

[ϕ̂t,h(s, a)ϕ̂t,h(s, a)
T ] + λtI)

−1
)

(ii)

≤ 9α̂2
td,

where (i) follows from the event E and (ii) follows from Lemma G.3. Therefore,

E(s,a)∼dπ
P⋆
t ,h

[b̂t,h(s, a)]

≤ E(s,a)∼dπ
P⋆,h−1

[∥ϕ⋆
h−1(s, a)∥Σ−1

γt,h−1,ϕ⋆
h−1

]

√
|A|
ξt

9α̂2
td+ λtd.

Finally, for h = 1,

Es∼d1,a∼π1(·|s)[b̂t,1(s, a)]
(i)

≤ 3α̂t

√
|A|
ξt

E(s,a)∼ρt,1
[∥ϕ̂t,1(s, a)∥2Σ−1

ρt,1,ϕ̂t,1

]

(ii)

≤ 15αt

√
d|A|
tξt

,

where (i) follows from the event E , importance sampling and Jensen’s inequality and (ii) follows from Lemma G.3.

The next result shows that the optimal value w.r.t. the bonus-augmented reward function in the estimated environment
provides an almost optimistic estimate of the true value achieved by any optimal policy.

Lemma A.4. (Almost Optimism at the Initial Distribution) Given that the event E occurs, for all t ∈ N,

V π⋆,d1

P⋆,r⋆,1 − V π⋆,d1

P̂,r⋆+b̂t,1
≤

√
|A|
ξt

ζt

Proof. Let t ∈ N be arbitrary.

V π⋆,d1

P⋆,r⋆,1 − V π⋆,d1

P̂,r⋆+b̂t,1

(i)
=

H∑
h=1

E(s,a)∼dπ⋆

P̂t,h

[(P⋆
h − P̂t,h)V

π⋆

P⋆,r⋆,h+1(s, a)− b̂t,h(s, a)]

(ii)

≤
H∑

h=1

E(s,a)∼dπ⋆

P̂t,h

[ft,h(s, a)−min{1, α̂t

5
∥ϕ̂t,h(s, a)∥Σ−1

ρt,h,ϕ̂t,h

}]

(iii)

≤

√
|A|
ξt

ζt +

H−1∑
h=1

E(s,a)∼dπ⋆

P̂t,h

[min{1, αt∥ϕ̂t,h(s, a)∥Σ−1

ρt,h,ϕ̂t,h

}]

−
H∑

h=1

E(s,a)∼dπ⋆

P̂t,h

[min{1, αt∥ϕ̂t,h(s, a)∥Σ−1

ρt,h,ϕ̂t,h

}]

≤

√
|A|
ξt

ζt,

where (i) follows from Lemma G.1, (ii) follows from the event E and ∥V π
P⋆,r⋆∥∞ ≤ 1 and (iii) follows from Lemma A.3

and ∥ft,h∥∞ ≤ 1.



We are now ready to show that algorithm 1 achieves sub-linear pseudo-regret; that is, the regret of the behavior polices is
sub-linear. However, the actual regret of algorithm 1 might not be, as we explore uniformly at random in each episode with
positive probability.

Lemma A.5. (Sub-linear pseudo-regret without UniSOFT representations) Given that event E occurs for all T ∈ N,

R(T ) ≲ H2d2|A|
√
T log2(4TH|Φ||Ψ|/δ)

ξT
≲ Õ(

√
T

ξT
).

Proof. Let T ∈ N be arbitrary. Then, for all episodes t ≤ T we have,

V π⋆,d1

P⋆,r⋆,1 − V πt,d1

P⋆,r⋆,1

= V π⋆,d1

P̂t,b̂t+r⋆,1
− V πt,d1

P⋆,r⋆,1 + V π⋆,d1

P⋆,r⋆,1 − V π⋆,d1

P̂t,b̂t+r⋆,1

(i)

≤ V πt,d1

P̂t,b̂t+r⋆,1
− V πt,d1

P⋆,r⋆,1 +

√
|A|
ξt

ζt

(ii)
=

H∑
h=1

E(s,a)∼d
πt
P⋆,h

[b̂t,h(s, a) + (P̂t,h − P⋆
h)V

πt

P̂t,r⋆+b̂t,h+1
(s, a)] +

√
|A|
ξt

ζt

(iii)

≤ 2H

H∑
h=1

E(s,a)∼d
πt
P⋆,h

[b̂t,h(s, a) + ft,h(s, a)] +

√
|A|
ξt

ζt,

where (i) is by Lemma A.4, (ii) follows from Lemma G.1 and (iii) follows from ∥V π
P,r⋆+b̂

∥∞ ≤ 2H . Then, by Lemma
A.3,

H∑
h=1

E(s,a)∼d
πt
P⋆,h

[b̂t,h(s, a) + ft,h(s, a)]

≤

√
ζt|A|
ξt

+ 15αt

√
d|A|
tξt

+ αt

H−1∑
h=1

E(s,a)∼d
πt
P⋆,h

[∥ϕ⋆
h(s, a)∥Σ−1

ρt,h,ϕ⋆
h

]

+ βt

H−1∑
h=1

E(s,a)∼d
πt
P⋆,h

[∥ϕ⋆
h(s, a)∥Σ−1

γt,h,ϕ⋆
h

].

Further, for all h ∈ [H],

T∑
t=1

E(s,a)∼d
πt
P⋆,h

[∥ϕ⋆
h(s, a)∥Σ−1

γt,h,ϕ⋆
h

]
(i)

≤

√√√√T

T∑
t=1

E(s,a)∼d
πt
P⋆,h

[∥ϕ⋆
h(s, a)∥2Σ−1

γt,h,ϕ⋆
h

]

=

√√√√T

T∑
t=1

tr(E(s,a)∼d
πt
P⋆,h

[ϕ⋆
h(s, a)ϕ

⋆
h(s, a)

T ]Σ−1
γt,h,ϕ⋆

h
)

(ii)

≤
√
Td log(1 +

T

dλ1
)

where (i) follows from the Cauchy-Schwarz inequality and Jensen’s inequality and (ii) follows from Lemma G.4 by noting
that, Σ−1

γt,h,ϕ
− λtI = tEγt,h

[ϕϕT ] =
∑t

i=1 Ed
πi
P⋆,h

[ϕϕT ] and that λt is increasing. Similarly, for all h ∈ [H],

T∑
t=1

E(s,a)∼d
πt
P⋆,h

[∥ϕ⋆
h(s, a)∥Σ−1

ρt,h,ϕ⋆
h

]
(i)

≤

√√√√T
|A|
ξT

T∑
t=1

Es∼d
πt
P⋆,h

,a∼U(A)[∥ϕ⋆
h(s, a)∥2Σ−1

ρt,h,ϕ⋆
h

]

(ii)

≤

√
T
|A|
ξT

d log(1 +
T

dλ1
),



where (i) follows from the Cauchy-Schwarz inequality, Jensen’s inequality, importance Sampling and ξt being decreasing
and (ii) follows from Lemma G.4. Finally,

T∑
t=1

V π⋆,d1

P⋆,r⋆,1 − V πt,d1

P⋆,r⋆,1

≤ 8H

√
ζTT 2|A|

ξT
+ 30HαT

√
Td|A|
ξT

+ 2H2αT

√
T
|A|
ξT

d log(1 +
T

dλ1
)

+ 2H2βT

√
Td log(1 +

T

dλ1
)

≲ H2d2|A|
√
T log2(4HT |Φ||Ψ|/δ)

ξT

We proceed by providing an expected regret bound. Let Eξ and Eδ denote expectations w.r.t. the exploration probabilities
and some good event E(δ), respectively. Additionally, note that we sample from dπt

P⋆,h for each time step and hence produce
H trajectories per episode. Then, the expected regret of algorithm 1 can be upper bounded as follows:

Lemma 4.1 (Expected Regret without UniSOFT). Let ξt = t−1/4. Suppose Assumption 3.1 (realizability) holds. Then, for
any T ∈ N, UNISREP-UCB (Algorithm 1) satisfies

E[R̃(T )] = Õ
(
H3d2|A|T 3/4

)
.

Proof. Let T be given and fixed. Choose δ = T−1. Recall that Algorithm 1 explores for H time steps, for each h ∈ [H]
and episode t, by rolling into time step h − 1 with policy πt−1, taking actions according to π̃t,h−1 and π̃t,h and finally,
rolling out to time step H with policy πt−1. Let us denote Ṽ d1

t,h as the cumulative expected reward obtained by Algorithm 1
in episode t and time step h. Then,

Eδ,ξ[R̃(T )]

= Eδ,ξ[

T∑
t=1

H∑
h=1

(V π⋆,d1

P⋆,r⋆,1 − Ṽ d1

t,h)]

≤ Eδ,ξ[

T∑
t=1

H∑
h=1

1{et = 1}1{E(δ)}(V π⋆,d1

P⋆,r⋆,1 − Ṽ d1

t,h)] + Eδ,ξ[

T∑
t=1

H∑
h=1

1{et = 0}(V π⋆,d1

P⋆,r⋆,1 − Ṽ d1

t,h)]

+ Eδ,ξ[

T∑
t=1

H∑
h=1

1{Ec(δ)}(V π⋆,d1

P⋆,r⋆,1 − Ṽ d1

t,h)]

(i)

≤ Eδ,ξ[

T∑
t=1

H∑
h=1

1{et = 1}1{E(δ)}(V π⋆,d1

P⋆,r⋆,1 − Ṽ d1

t,h)] + Eδ,ξ[

T∑
t=1

H∑
h=1

1{et = 0}+ 1{Ec(δ)}]

(ii)

≤ Eδ,ξ[

T∑
t=1

H∑
h=1

1{et = 1}1{E(δ)}(V π⋆,d1

P⋆,r⋆,1 − V
πt−1,d1

P⋆,r⋆,1 ] +H(Tδ +

T∑
t=1

ξt)}

≤ HEδ,ξ[

T∑
t=1

1{E(δ)}(V π⋆,d1

P⋆,r⋆,1 − V
πt−1,d1

P⋆,r⋆,1 ] +H(1 +

T∑
t=1

t−1/4)}

(iii)

≤ H Eδ,ξ[

T∑
t=1

1{E(δ)}(V π⋆,d1

P⋆,r⋆,1 − V πt,d1

P⋆,r⋆,1]︸ ︷︷ ︸
(A)

+HT 3/4 + 2H}

where (i) follows from the optimality of π⋆ and ∥V π
P,r⋆∥∞ ≤ 1, (ii) follows from π̃t and πt−1 agreeing on the event et = 1

and Lemma .1 and (iii) follows from an index shift and ∥V π
P,r⋆∥∞ ≤ 1. Finally, we can leverage the pseudo-regret result of



Lemma A.5 to bound term (A),

(A) = Eδ,ξ[

T∑
t=1

1{E(δ)}(V π⋆,d1

P⋆,r⋆,1 − V πt,d1

P⋆,r⋆,1]

≲ H2d2|A|
√
T log2(4TH|Φ||Ψ|/δ)

ξT

≲ H2d2|A|T 3/4 log2(4TH|Φ||Ψ|),

and hence, conclude the proof.

B SELECTING GOOD REPRESENTATIONS

In this section, we show how the expressiveness assumption 4.1 and the constrained optimization objective (Algorithm 1,
Line 17) play together to guarantee the selection of good representations. The analysis builds on the sub-linear regret result
for the behavior policies (Lemma A.5) provided in the previous section.

Selecting α⋆-approximate representations We start by introducing an important result provided by Huang et al. [2022],
which states that the average occupancy distribution induced by any sequence of deterministic policies that achieve low
regret eventually provides a good approximation of the occupancy distribution of the optimal policy (assuming the optimal
policy is unique).

Let us denote Π⋆ as the set of all optimal (deterministic) policies and Π⋆
h(s) as the set of all optimal actions in state s ∈ S

and time step h ∈ [H]. Then, we construct π̃⋆
t := {π̃⋆

t,h}h∈[H], where for each h ∈ [H],

π̃⋆
t,h(s) =

{
πt,h(s) if πt,h(s) ∈ Π⋆

h(s)

Select(Π⋆
h(s)) otherwise

,

where Select is a function which returns a fixed element of some set and πt is the behavior policy of algorithm 1 at episode
t ∈ N. We define the mixture occupancy distribution of our constructed optimal policies π̃⋆

t as

γ̃⋆
t,h(s, a) =

1

t

t−1∑
i=0

d
π̃⋆
i

P⋆,h(s, a).

Note that γ̃⋆
t,h ≡ dπ

⋆

P⋆,h whenever there exists a unique optimal policy (Assumption 3.2).

Theorem B.1. ([Huang et al., 2022], Theorem 4.7) Suppose that we run algorithm 1. Then, for all h ∈ [H] and (s, a) ∈
S ×A,

t∑
i=1

dπi

P⋆,h(s, a) ≥
t∑

i=1

d
π̃⋆
i

P⋆,h(s, a)−
1

∆min

(
t∑

i=1

V
π̃⋆
i ,d1

P⋆,r⋆,1 − V πi,d1

P⋆,r⋆,1

)
.

Corollary B.1. Suppose that we run algorithm 1 and assumption 3.3 (minimal sub-optimality gap) hold. Then, Theorem B.1
implies, for all h ∈ [H], t ∈ N and (s, a) ∈ S ×A,

γ̃⋆
t,h(s, a) ≤ γt,h(s, a) +

R(t)

t∆min
.

We can leverage the above corollary to show that, whenever there exists a unique optimal policy, the MLE oracle converges
uniformly on the optimal occupancy distribution, provided that the distribution is well defined for all states. Subsequently,
for any given α, there must exist an episode after which algorithm 1 will only select representations that are α⋆-approximate.

Lemma B.1. (Selecting α⋆-representations) Fix any α > 0. Assume there exists an increasing sub-linear function g such
that R(t) ≤ g(t) for all t ∈ N. Suppose we run algorithm 1 and assumptions 3.2 (unique optimal policy), 3.4 (minimal
optimal occupancy) and 3.3 (minimal sub-optimality gap) hold. Then, given that the event E occurs, there exists an episode
τα, such that for all t ≥ τα and h ∈ [H], the learned feature maps ϕ̂t,h are α⋆-approximate, where

τα := min{t|t > 1

α

(
g(t)

∆mind⋆min
+

|A|
ξt

√
2t log(4t|Φ||Ψ|H/δ)

)
}.



Proof. Let t ∈ N be arbitrary. Then, for all h ∈ [H],

E(s,a)∼dπ⋆

P⋆,h
[ft,h(s, a)] =

∑
(s,a)∈S×A

dπ
⋆

P⋆,h(s, a)ft,h(s, a)

(i)

≤
∑

(s,a):dπ⋆

P⋆,h
(s,a)>0

(γt,h(s, a) +
R(t)

t∆min
)ft,h(s, a)

(ii)

≤ E(s,a)∼γt,h
[ft,h(s, a)] +

g(t)

t∆min

∑
(s,a):dπ⋆

P⋆,h
(s,a)>0

dπ
⋆

P⋆,h(s, a)

d⋆min

(iii)

≤

√
|A|2
ξ2t

E(s,a)∼ρ′
t,h

[ft,h(s, a)2] +
g(t)

t∆mind⋆min

(iv)

≤ |A|
ξt

√
ζt +

g(t)

t∆mind⋆min
,

where (i) is by Corollary B.1, (ii) follows from ∥ft,h∥∞ ≤ 1, (iii) is by importance sampling and Jensen’s inequality and
(iv) follows from the event E . Since g is sub-linear, the above quantity decreases with t. Solving for t yields the result.

Selecting non-redundant UniSOFT representations Although we can now be sure to select α⋆-approximate represen-
tations, we still need to ensure that the UniSOFT loss in equation 3 will lead to Algorithm 1 actually selecting UniSOFT
representations. Hence, we want to relate the eigenvalues of the expected covariance matrix of the optimal policy, which tells
us if a feature map is UniSOFT, to the eigenvalues of the sample covariance matrix, which are captured by the UniSOFT
loss in equation 3. We define the following good events:

F1(δ) := {∀t ∈ N, h ∈ [H], ϕ ∈ |Φ| :

Σt,h ≽ tΣ⋆
t,h + λtI − 2I

t∑
i=1

ξi−1 −∆−1
ming(t)I − 18I

√
t log(6tdH|Φ|/δ)}

F2(δ) := {∀t ∈ N, h ∈ [H], ϕ ∈ |Φ| :

Σt,h ≼ tΣ⋆
t,h + λtI + 2I

t∑
i=1

ξi−1 +∆−1
ming(t)I + 18I

√
t log(6tdH|Φ|/δ)},

where Σ⋆
t,h = E(s,a)∼γ̃⋆

t,h
[ϕ(s, a)ϕ(s, a)T ], Σt,h =

∑
(s,a)∈Dt,h

ϕh(s, a)ϕh(s, a)
T and g is any increasing function such

that R(t) ≤ g(t) for all t ∈ N. In addition, define F(δ) := F1(δ/2) ∩ F2(δ/2).

Lemma B.2. (Eigenvalue bounds) Assume that there exists an increasing sub-linear function g such that R(t) ≤ g(t) for all
t ∈ N. Assume that we run Algorithm 1 and that assumption 3.3 (minimal sub-optimality gap) holds. Then, with probability
at least 1− δ, the event F(δ) occurs.

Proof. Recall that algorithm 1 produces for each time step h ∈ [H], one trajectory τh, in any episode t. Furthermore, for
each trajectory τh, we only use the transition at the time step h to construct the empirical covariance matrix Σ̂t,h.

Upper bound: Let τ (t,h) denote the trajectory produced by rolling in with the behavior policy πt−1 and then taking action
according to π̃t,h in episode t ∈ N for time step h ∈ [H]. Additionally, (sτh, a

τ
h) denotes a state-action pair at time step

h ∈ [H] of trajectory τ . We define the set of trajectories of length h ∈ [H] under which the (deterministic) behavior policy
in some episode t ∈ N is optimal:

Γ⋆
h,t = {τ ∈ Γh : πt−1,i(s

τ
i ) = π̃⋆

t−1,i(s
τ
i ) for i = 1, ..., h},

where Γh denotes the set of trajectories of length h ∈ [H]. The distribution over trajectories induced by any (deterministic)
policy π is given by

ρπh = d1(s1)1[a1 = π1(s1)]P⋆
1 (s2|a1, s1)...P⋆

h−1(sh|ah−1, sh−1)1[ah = πh(sh)].



Additionally, for any (deterministic) policy π, we denote

ρπ,ξh = d1(s1)1[a1 = π1(s1)]P⋆
1 (s2|a1, s1)...P⋆

h−1(sh|ah−1, sh−1)π̃h,ξ(ah|sh),

where π̃h,ξ(ah|sh) = 1[e=0]
|A| + 1[e = 1]1[ah = πh(sh)] and e ∼ Ber(1 − ξ), as the trajectory distribution induced by

algorithm 1. Finally, we denote τ
(t,h)
1:h as the trajectory τ (t,h) cut off at time step h ∈ [H]. Then,

Σh,t − λtI =

t∑
i=1

ϕ(sτ
(i,h+1)

h , aτ
(i,h+1)

h )ϕ(sτ
(i,h+1)

h , aτ
(i,h+1)

h )T

≼
t∑

i=1

1[ei = 1]1[τ
(i,h+1)
1:h ∈ Γ⋆

h,i]ϕ(s
τ(i,h+1)

h , aτ
(i,h+1)

h )ϕ(sτ
(i,h+1)

h , aτ
(i,h+1)

h )T︸ ︷︷ ︸
(A)

+

t∑
i=1

1[τ
(i,h+1)
1:h /∈ Γ⋆

h,i]ϕ(s
τ(i,h+1)

h , aτ
(i,h+1)

h )ϕ(sτ
(i,h+1)

h , aτ
(i,h+1)

h )T︸ ︷︷ ︸
(B)

+

t∑
i=1

1[ei = 0]ϕ(sτ
(i,h+1)

h , aτ
(i,h+1)

h )ϕ(sτ
(i,h+1)

h , aτ
(i,h+1)

h )T︸ ︷︷ ︸
(C)

Then, with probability of at least 1− δ/6, for all t ∈ N and all h ∈ [H] and ϕ ∈ Φ,

(A) =

t∑
i=1

1[ei = 1]1[τ
(i,h+1)
1:h ∈ Γ⋆

h,i]ϕ(s
τ(i,h+1)

h , aτ
(i,h+1)

h )ϕ(sτ
(i,h+1)

h , aτ
(i,h+1)

h )T

=

t∑
i=1

1[ei = 1]1[τ
(i,h+1)
1:h ∈ Γ⋆

h,i]ϕ(s
τ(i,h+1)

h , π̃⋆
t−1,h(s

τ(i,h+1)

h ))ϕ(sτ
(i,h+1)

h , π̃⋆
t−1,h(s

τ(i,h+1)

h ))T

=

t∑
i=1

E
τ∼ρ

πi−1,ξi−1
h

[1[e = 1]1[τ ∈ Γ⋆
h,i]ϕ(s

τ
h, π̃

⋆
t−1,h(s

τ
h))ϕ(s

τ
h, π̃

⋆
t−1,h(s

τ
h))

T ]

+

t∑
i=1

1[ei = 1]1[τ
(i,h+1)
1:h ∈ Γ⋆

h,i]ϕ(s
τ(i,h+1)

h , π̃⋆
t−1,h(s

τ(i,h+1)

h ))ϕ(sτ
(i,h+1)

h , π̃⋆
t−1,h(s

τ(i,h+1)

h ))T

−
t∑

i=1

E
τ∼ρ

πi−i,ξi−1
h

[1[e = 1]1[τ ∈ Γ⋆
h,i]ϕ(s

τ
h, π̃

⋆
t−1,h(s

τ
h))ϕ(s

τ
h, π̃

⋆
t−1,h(s

τ
h))

T ]

(i)

≼
t∑

i=1

E
τ∼ρ

πi−1,ξi−1
h

[1[e = 1]1[τ ∈ Γ⋆
h,i]ϕ(s

τ
h, π̃

⋆
t−1,h(s

τ
h))ϕ(s

τ
h, π̃

⋆
t−1,h(s

τ
h))

T ]︸ ︷︷ ︸
(A1)

+8I
√
t log(6tdH|Φ|/δ),

where (i) follows from ∥ϕh∥2 ≤ 1 and Proposition G.1 in combination with a union bound over all episodes t ∈ N, time
steps h ∈ [H] and feature maps ϕ ∈ Φ. Further,

(A1) =

t∑
i=1

E
τ∼ρ

πi−1,ξi−1
h

[1[e = 1]1[τ ∈ Γ⋆
h,i]ϕ(s

τ
h, π̃

⋆
t−1,h(s

τ
h))ϕ(s

τ
h, π̃

⋆
t−1,h(s

τ
h))

T ]

(i)
=

t∑
i=1

E
τ∼ρ

πi−1
h

[1[τ ∈ Γ⋆
h,i]ϕ(s

τ
h, π̃

⋆
t−1,h(s

τ
h))ϕ(s

τ
h, π̃

⋆
t−1,h(s

τ
h))

T ]

(ii)

≼
t∑

i=1

E
τ∼ρ

π̃⋆
i−1

h

[ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

T ]

(iii)
= tE(s,a)∼γ̃⋆

t,h
[ϕ(s, a)ϕ(s, a)T ],



where (i) follows from ρπ,ξh and ρπh agreeing on the event e = 1 and (ii) follows from the occupancy distributions dπ̃
⋆
t

P⋆,h

and dπt

P⋆,h agreeing on Γ⋆
h,t and for (iii) recall that γ̃⋆

t,h(s, a) =
1
t

∑t−1
i=o d

π̃⋆
t

P⋆,h(s, a). Similarly, with probability of at least
1− δ/6, for all t ∈ N and all h ∈ [H], ϕ ∈ Φ,

(B) =

t∑
i=1

1[τ
(i,h+1)
1:h /∈ Γ⋆

h,i]ϕ(s
τ(i,h+1)

h , aτ
(i,h+1)

h )ϕ(sτ
(i,h+1)

h , aτ
(i,h+1)

h )T

(i)

≼
t∑

i=1

E
τ∼ρ

πi−1,ξi−1
h

[1[τ /∈ Γ⋆
h,i]ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

T ] + 8I
√
t log(6tdH|Φ|/δ)

(ii)

≼ I

t∑
i=1

E
τ∼ρ

πi−1,ξi−1
h

[1[τ /∈ Γ⋆
h,i]]︸ ︷︷ ︸

(B1)

+8I
√
t log(6tdH|Φ|/δ),

where (i) follows, similarly to before, from Proposition G.1 in combination with an union bound and (ii) is by ∥ϕh∥2 ≤ 1.
Further,

(B1) = I

t∑
i=1

E
τ∼ρ

πi−1,ξi−1
h

[1[τ /∈ Γ⋆
h,i]]

= I

t∑
i=1

E
τ∼ρ

πi−1,ξi−1
h

[1[e = 1]1[τ /∈ Γ⋆
h,i]] + E

τ∼ρ
πi−1,ξi−1
h

[1[e = 0]1[τ /∈ Γ⋆
h,i]]

(i)

≼ I

t∑
i=1

E
τ∼ρ

πi−1
h

[1[τ /∈ Γ⋆
h,i]] + I

t∑
i=1

Ee∼Ber(1−ξi−1)[1[e = 0]]

(ii)

≼ I

t∑
i=1

H∑
h=1

E
(s,a)∼d

πi−1
P⋆,h

[1[a /∈ Π⋆
h(s)]] + I

t∑
i=1

ξi−1

≼ I

t∑
i=1

H∑
h=1

E
(s,a)∼d

πi−1
P⋆,h

[1[∆h(s, a) ≥ ∆min]] + I

t∑
i=1

ξi−1

≼ I
1

∆min

t∑
i=1

H∑
h=1

E
(s,a)∼d

πi−1
P⋆,h

[∆h(s, a)] + I

t∑
i=1

ξi−1

(iii)
=

R(t)

∆min
I + I

t∑
i=1

ξi−1,

where (i) follows from ρπ,ξh and ρπh agreeing on the event e = 1, (ii) follows from the definition of π̃⋆
t,h and (iii) follows

from Lemma G.2. Finally, with probability at least 1− δ/6, for all t ∈ N and h ∈ [H],

(C) =

t∑
i=1

1[ei = 0]ϕh(s
τ(i,h+1)

h , aτ
(i,h+1)

h )ϕh(s
τ(i,h+1)

h , aτ
(i,h+1)

h )T

(i)

≼ I

t∑
i=1

1[ei = 0]

(ii)

≼ I(

t∑
i=1

Ee∼Ber(1−ξi−1)[1[e = 0]] +
√
t log(6tH/δ))

≼ I

t∑
i=1

ξi−1 +
√
t log(6tH/δ),

where (i) follows from ∥ϕh∥2 ≤ 1 and (ii) is by Hoeffding’s inequality with a union bound over episodes and time steps.



Lower bound: The lower bound is easily derived by similar arguments. With probability at least 1− δ/2, for all t ∈ N, and
all ϕ ∈ Φ, h ∈ [H]:

Σh,t − λtI ≽ (A)

≽ (A1)− 8I
√
t log(6tdH|Φ|/δ)

≽ tE(s,a)∼γ̃⋆
t,h

[ϕ(s, a)ϕ(s, a)T ]− (B)− (C)− 8I
√
t log(6tdH|Φ|/δ).

We conclude the proof by performing an union bound over the results for the lower and upper bound.

By the lower bound of the previous result, we immediately obtain the following:

Lemma B.3. Consider a feature map ϕ ∈ Φ that is non-redundant. Assume there exists an increasing sub-linear function g
such that R(t) ≤ g(t) for all t ∈ N. Suppose assumptions 3.2 (unique optimal policy) and 3.3 (minimal sub-optimality gap)
holds. Then, given that the event F occurs, there exists a constant τinv such that, for all t ≥ τinv, h ∈ [H] and (s, a) ∈ S×A,

∥ϕh(s, a)∥Σ−1
t,h

≤ (tλmin(Σ
⋆
t,h) + λt − 2

t∑
i=1

ξi−1 −∆−1
ming(t)− 18

√
t log(6tdH|Φ|/δ))−1/2.

Proof. Let τinv be large enough so that

tλmin(Σ
⋆
t,h) + λt > 2

t∑
i=1

ξi−1 +∆−1
ming(t) + 18

√
t log(6tdH|Φ|/δ)

holds. Then, for all t ≥ τinv, h ∈ [H] and (s, a) ∈ S ×A

∥ϕh(s, a)∥Σ̂−1
t,h

= (ϕh(s, a)
T Σ̂−1

t,hϕh(s, a))
1/2

(i)

≤ (λmin(Σ̂
−1
t,h)ϕh(s, a)

Tϕh(s, a))
1/2

≤ λmin(Σ̂t,h)
−1/2,

where (i) follows from the symmetry of the covariance matrix. We conclude the proof by substituting Σ̂t,h with the lower
bound provided by the event F1.

Note that λmin(Σ
⋆
t,h) > 0 holds whenever there exists a unique optimal policy and the feature map is UniSOFT. The final

lemma of this section shows that algorithm 1 is guaranteed to eventually select only good representations.

Lemma B.4. (Selecting non-redundant UniSOFT representation) Fix any α > 0. Assume that there exists an increasing
sublinear function g such that R(t) ≤ g(t) for all t ∈ N. Suppose we run algorithm 1 and assumptions 3.2 (unique optimal
policy), 4.1 (expressiveness) and 3.3 (minimal sub-optimality gap) hold. Additionally, if α < 1, suppose that assumption
3.4 (minimal optimal occupancy) holds. Then, given that events E(δ) and F(δ) occur, there exists an episode τunisoft ≥ τα
such that for all subsequent episodes t ≥ τunisoft and time steps h ∈ [H], the learned feature maps ϕ̂t,h are UniSOFT and
non-redundant, where

τunisoft := min{t|t >

(
2

λ⋆
α

(∆−1
minR(t) + 2

t∑
i=1

ξi−1 + 18
√
t log(6tdH|Φ|/δ)) ∨ τα

)
}.

Proof. Note that, by Lemma B.1, given that E occurs, there exists an episode τα such that for all t ≥ τα and h ∈ [H], the
learned features ϕ̂t,h are α⋆-approximate.

Let Φunisoft ⊆ Φ denote the set that contains only non-redundant UniSOFT feature mappings. By Lemma B.2, given that the
event F occurs, for all t ∈ N, h ∈ [H], ϕ ∈ Φ \ Φunisoft and ϕunisoft ∈ Φunisoft,

λmin(Σt,h(ϕ
unisoft)− λtI) ≥ tλ⋆(ϕ)− 2

t∑
i=1

ξi−1 −∆−1
ming(t)− 18

√
t log(6tdH|Φ|/δ),

λmin(Σt,h(ϕ)− λtI) ≤ 2

t∑
i=1

ξi−1 +∆−1
ming(t) + 18

√
t log(6tdH|Φ|/δ),



where Σt,h(ϕ) =
∑

(s,a)∈Dt,h
ϕh(s, a)ϕh(s, a)

T . Let us denote Φα ×Ψα ⊆ Φ×Ψ as the set of α⋆-approximate represen-
tations. Additionally, denote

Φunisoft
α ×Ψunisoft

α = (Φα ×Ψα) ∩
(
Φunisoft ×Ψ

)
,

as the set containing all α⋆-approximate representations such that the feature map is non-redundant and UniSOFT, which
is non-empty by assumption 4.1. A non-redundant UniSOFT representation ϕunisoft is selected in episode t ≥ τα if for all
α̃ ≤ α,

max
ϕunisoft∈Φunisoft

α̃

λmin(Σt,h(ϕ
unisoft)− λtI) > max

ϕ∈Φα̃\Φunisoft
α̃

λmin(Σt,h(ϕ)− λtI),

or equivalently,

tλ⋆
α(ϕ

unisoft) > 2(2

t∑
i=1

ξi−1 +∆−1
ming(t) + 18

√
t log(6tdH|Φ|/δ)),

where λ⋆
α := minα̃≤α maxϕunisoft∈Φunisoft

α̃
λ⋆(ϕunisoft).

C IMPROVED PSEUDO-REGRET WITH GOOD REPRESENTATIONS

In this section, we show how we can use good representations to improve the pseudo-regret result A.5 provided in Section A.
Subsequently, we can provide an improved expected regret result.

On a high level, we show that the bonus terms provide an almost optimistic estimate for the expected sub-optimality gaps
incurred by the behavior policies of algorithm 1. We can then exploit the UniSOFT property of the good representations that
we are guaranteed to select, as shown in the previous section, to show uniformly decreasing confidence intervals. Let us start
by providing two results that are adapted from Cheng et al. [2023], which show that the bonus term can be used to provide a
trajectory-wise uncertainty measure for the model estimation error over the occupancy distribution of the behavior policies.

Lemma C.1. (Value difference of transition operators) For all t ∈ N, any policy π, state s ∈ S, time step h ∈ [H] and set
of reward function {rh}Hh=1 such that rh : S ×A → [0, 1] and

∑H
h=1 rh ≤ 1,

|V π
P⋆,r,h(s)− V π

P̂t,r,h
(s)| ≤ V π

P,ft,h(s),

where P ∈ {P̂t,P⋆}.

Proof. We give a proof by induction. For h = H + 1 and any s ∈ S, we have |V π
P⋆,r,H+1(s) − V π

P̂t,r,H+1
(s)| =

0 = V π
P,ft,H+1 for P ∈ {P̂t,P⋆}. Suppose the induction hypothesis, |V π

P⋆,r,h+1(s) − V π
P̂t,r,h+1

(s)| ≤ V π
P,ft,h+1(s) for

P ∈ {P̂t,P⋆} and any s ∈ S. Then, for any h ∈ [H] and s ∈ S,

|V π
P⋆,r,h(s)− V π

P̂t,r,h
(s)|

≤ Ea∼π(·|s)[|Qπ
P⋆,r,h(s, a)−Qπ

P̂t,r,h
(s, a)|]

= Ea∼π(·|s)[|P⋆
hV

π
P⋆,r,h+1(s, a)− P̂t,hV

π
P̂t,r,h+1

(s, a)|] =: (A).

Then, the first claim (P = P̂t) follows from:

(A) = Ea∼π(·|s)[|P̂t,h(V
π
P⋆,r,h+1 − V π

P̂t,r,h+1
)(s, a) + (P⋆

h − P̂t,h)V
π
P⋆,r,h+1(s, a)|]

(i)

≤ Ea∼π(·|s)[P̂t,hV
π
P̂t,ft,h+1

(s, a) + ft,h(s, a)]

= V π
P̂t,ft,h

(s),

where (i) follows from the induction hypothesis and ∥V π
P,r,h∥∞ ≤ 1. The second claim (P = P⋆) follows from:

(A) = Ea∼π(·|s)[|P⋆
h(V

π
P⋆,r,h+1 − V π

P̂t,r,h+1
)(s, a) + (P⋆

h − P̂t,h)V
π
P̂t,r,h+1

(s, a)|]
(i)

≤ Ea∼π(·|s)[P⋆
hV

π
P⋆,ft,h+1(s, a) + ft,h(s, a)]

= V π
P⋆,ft,h(s),

where (i) follows from the induction hypothesis and ∥V π
P,r,h∥∞ ≤ 1.



Lemma C.2. (Uncertainty bounded model estimation error) Given that the event E occurs, we have for all t ∈ N and any
policy π,

V π,d1

P⋆,ft,1
≤ 2H

√
|A|
ξt

ζt + 2HV π,d1

P̂t,b̂t,1
, and

V π,d1

P̂t,ft,1
≤

√
|A|
ξt

ζt + V π,d1

P̂t,b̂t,1
.

Proof. For all h > 1,

E(s,a)∼dπ
P̂t;h

[ft,h(s, a)]
(i)

≤ E(s,a)∼dπ
P̂t;h−1

[min{1, αt∥ϕ̂t,h−1(s, a)∥Σ−1

ρt,h−1,ϕ̂t,h−1

}]

(ii)

≤ E(s,a)∼dπ
P̂t;h−1

[b̂t,h−1(s, a)],

where (i) is by Lemma A.3 and ∥ft,h∥∞ ≤ 1 and (ii) follows from the event E . Additionally, by Lemma A.3, we have,

E(s,a)∼dπ
P̂t;1

[ft,1(s, a)] ≤

√
|A|
ξt

ζt,

which gives the second claim. Additionally,

V π,d1

P⋆,ft,1
≤ V π,d1

P̂t,ft,1
+H| 1

H
V π,d1

P⋆,ft,1
− 1

H
V π,d1

P̂t,ft,1
|

(i)

≤ V π,d1

P̂t,ft,1
+HV π,d1

P̂t,ft,1

(ii)

≤ 2H

√
|A|
ξt

ζt + 2HV π,d1

P̂t,b̂t,1
,

where (i) is by Lemma C.1 and (ii) follows from the second claim.

Next, we introduce an optimism result similar to that of Lemma A.4, which holds locally on the state-occupancy distribution
of the behavior policies.

Lemma C.3. (Almost Local Optimism) Given that the event E occurs, for all t ∈ N and h ∈ [H],

Es∼d
πt
P⋆,h

[V π⋆

P⋆,r⋆,h(s)− V π⋆

P̂t,r⋆+b̂t,h
(s)] ≤ 2H

√
|A|
ξt

ζt + 2HV
πb
t ,d1

P̂t,b̂t,1
,

where πb
t = argmaxπ∈Π V π,d1

P̂t,b̂t,1
.

Proof. We have for all h ∈ [H]:

Es∼d
πt
P⋆,h

[V π⋆

P⋆,r⋆,h(s)− V π⋆

P̂t,r⋆+b̂t,h
(s)] ≤ Es∼d

πt
P⋆,h

[V π⋆

P⋆,r⋆,h(s)− V π⋆

P̂t,r⋆,h
(s)]

≤ Es∼d
πt
P⋆,h

[|V π⋆

P⋆,r⋆,h(s)− V π⋆

P̂t,r⋆,h
(s)|]

(i)

≤ Es∼d
πt
P⋆,h

[V π⋆

P⋆,ft,h(s)] =: (A),

where (i) follows from Lemma C.1. Now, let f (h:)
t,i (s, a) = ft,i(s, a)1{i ≥ h} and π

(h:)⋆

t,i (a|s) = πt(a|s)1{i < h} +
π⋆(a|s)1{i ≥ h} for any h ∈ [H]. Then,

(A) = V
π
(h:)⋆

t ,d1

P⋆,f
(h:)
t ,1

(i)

≤ V
π
(h:)⋆

t ,d1

P⋆,ft,1

(ii)

≤ 2H

√
|A|
ξt

ζt + 2HV
π
(h:)⋆

t ,d1

P̂t,b̂t,1
,

where (i) follows from ft,h ≥ 0 being non-negative for all h and t and (ii) follows from Lemma C.2. Now, the claim
follows by the definition of πb

t .



We continue by providing a local simulation lemma.

Lemma C.4. For all t ∈ N and h ∈ [H], we have

Es∼d
πt
P⋆,h

[V πt

P̂t,r⋆+bt,h,h
(s)− V πt

P⋆,r⋆,h(s)] ≤ 2HV πt,d1

P⋆,b̂t+ft,1

Proof. We have,

Es∼d
πt
P⋆,h

[V πt

P̂t,r⋆+b̂t,h
(s)− V πt

P⋆,r⋆,h(s)]

= E(s,a)∼d
πt
P⋆,h

[Qπt

P̂t,r⋆+bt,h,h
(s, a)−Qπt

P⋆,r⋆,h(s, a)]

≤ E(s,a)∼d
πt
P⋆,h

[b̂h,t(s, a)] + |E(s,a)∼d
πt
P⋆,h

[(P̂t,h − P⋆
h)V

πt

P̂t,r⋆+b̂t,h+1
(s, a)]|

+ E(s,a)∼d
πt
P⋆,h

[P⋆
h(V

πt

P̂t,r⋆+b̂t,h+1
− V πt

P⋆,r⋆,h+1)(s, a)]

(i)

≤ E(s,a)∼d
πt
P⋆,h

[b̂t,h(s, a)] + 2HE(s,a)∼d
πt
P⋆,h

[ft,h(s, a)]

+ Es∼d
πt
P⋆,h+1

[V πt

P̂t,r⋆+b̂t,h+1
(s)− V πt

P⋆,r⋆,h+1(s)],

where (i) follows from ∥V π
P,r⋆+b̂t

∥∞ ≤ 2H . Unraveling the recursion gives the result.

The previous four lemmata combined are enough to show that the bonus terms provide an almost optimistic estimate of the
expected sub-optimality gaps incurred by the behavior policies of algorithm 1.

Lemma C.5. (Sub-optimality gap to bonus) Given that the event E occurs, we have for all t ∈ N and h ∈ [H],

E(s,a)∼d
πt
P⋆,h

[∆h(s, a)] ≤ 10H2(

√
|A|
ξt

ζt + V
πb
t ,d1

P̂t,b̂t,1
),

where πb
t = argmaxπ∈Π V π,d1

P̂t,b̂t,1
.

Proof. We have for all h ∈ [H] and t ∈ N:

E(s,a)∼d
πt
P⋆,h

[∆h(s, a)]

(i)

≤ Es∼d
πt
P⋆,h

[V π⋆

P⋆,r⋆,h(s)− V πt

P⋆,r⋆,h(s)]

(ii)

≤ Es∼d
πt
P⋆,h

[V πt

P̂t,r⋆+b̂t,h
(s)− V πt

P⋆,r⋆,h(s) + V π⋆

P⋆,r⋆,h(s)− V π⋆

P̂t,r⋆+b̂t,h
(s)]

(iii)

≤ 2HV πt,d1

P⋆,b̂t,1
+ 2HV πt,d1

P⋆,ft,1
+ Es∼d

πt
P⋆,h

[V π⋆

P⋆,r⋆,h(s)− V π⋆

P̂t,r⋆+b̂t,h
(s)]

(iv)

≤ 2H V πt,d1

P⋆,b̂t,1︸ ︷︷ ︸
=:(A)

+2H V πt,d1

P⋆,ft,1︸ ︷︷ ︸
=:(B)

+2H

√
|A|
ξt

ζt + 2HV
πb
t ,d1

P̂t,b̂t,1
,

where (i) follows from the optimality of π⋆, (ii) by the optimality of πt, (iii) follows from the local simulation Lemma C.4
and (iv) follows from the local optimism Lemma C.3. Further,

(A) = V πt,d1

P⋆,b̂t,1

≤ V πt,d1

P̂t,b̂t,1
+H| 1

H
V πt,d1

P⋆,b̂t,1
− 1

H
V πt,d1

P̂t,b̂t,1
|

(i)

≤ V πt,d1

P̂t,b̂t,1
+HV πt,d1

P̂t,ft,1

(ii)

≤ V πt,d1

P̂t,b̂t,1
+H(

√
|A|
ξt

ζt + V πt,d1

P̂t,b̂t,1
)

(iii)

≤ 2HV
πb
t ,d1

P̂t,b̂t,1
+H

√
|A|
ξt

ζt,



where (i) follows from Lemma C.1, (ii) follows from Lemma C.2 and (iii) by the optimality of πb
t . Similarly,

(B) = V πt,d1

P⋆,ft,1

(i)

≤ 2H(

√
|A|
ξt

ζt + V πt,d1

P̂t,b̂t,1
)

(ii)

≤ 2H(

√
|A|
ξt

ζt + V
πb
t ,d1

P̂t,b̂t,1
),

where (i) follows from Lemma C.2 and (ii) follows from the optimality of πb
t . Finally, we get:

E(s,a)∼d
πt
P⋆,h

[∆h(s, a)] ≤ 10H2(

√
|A|
ξt

ζt + V
πb
t ,d1

P̂t,b̂t,1
)

We can now leverage the fact that we eventually select only good representations, which leads to the following improved
pseudo-regret bound.

Lemma C.6. (Sub-linear pseudo-regret with UniSOFT representations) Let ξt = t−1/3 and α > 0. Suppose assumptions
3.1 (realizability), 3.2 (unique optimal policy), 3.3 (minimal sub-optimality gap) and 4.1 (α⋆-expressive function space)
hold. Additionally, if α < 1, suppose that assumption 3.4 (minimal optimal occupancy) holds. Then, given that events E(δ)
and F(δ) occur, there exists a constant τ , such that for all T ≥ τ , the behavior policies {πt}t≥1 learned by algorithm 1,
enjoy sub-linear regret:

R(T ) ≲

√
τ

ξτ
+

1

λ⋆
max

H3d|A|1/2T 2/3 log(4T |Φ||Ψ|H/δ) ≲ Õ(T 2/3)

Proof. Let τ := {τunisoft ∨ τinv}. Let t ≥ τ be arbitrary. Then, since the event E occurs by assumption, by Lemma C.5, we
can bound the expected sub-optimality gaps for all h ∈ [H],

E(s,a)∼d
πt
P⋆,h

[∆h(s, a)] ≤ 10H2(

√
|A|
ξt

ζt + V
πb
t ,d1

P̂t,b̂t,1
) := (A).

Further, according to Lemma A.5, in the event E , R(t) ≤ g(t) = Õ(
√
tξ−1

t ) with α̂t = Õ(ξ
−1/2
t ). We note that if α = 1,

then all representations are α⋆-approximate and hence we do not require assumption 3.4 (minimal optimal occupancy) to
guarantee their selection in Lemma B.1. By Lemma B.4 and the events F and E , for all h ∈ [H], the learned feature maps
ϕ̂t,h are non-redundant and UniSOFT. Then, by Lemma B.3 and the event F ,

V
πb
t ,d1

P̂t,b̂t,1
≤ α̂t

H∑
h=1

E
(s,a)∼d

πb
t

P̂t,h

[∥ϕ̂t,h(s, a)∥Σ̂−1
t,h

]

≤ α̂tH

(λ⋆
maxt+ λt −

∑t
i=1 ξi−1 − g(t)∆−1

min − 18
√
t log(6tdH|Φ|/δ))1/2

≤ Õ(
t1/6

t1/2
) = Õ(t−1/3).

Since t was chosen arbitrarily, we get, for all T ≥ τ :

R(T ) =

τ∑
t=1

(V π⋆,d1

P⋆,r⋆,1 − V πt,d1

P⋆,r⋆,1) +

T∑
t=τ

H∑
h=1

E(s,a)∼d
πt
P⋆,h

[∆(s, a)]

(i)

≲ Õ(

√
τ

ξτ
) +

1

λ⋆
max

H3d|A|1/2T 2/3 log(4T |Φ||Ψ|H/δ),

where (i) follows from the pseudo-regret bound without UniSOFT representations given in Lemma A.5.



Theorem C.1 (Instance-dependent regret with UniSOFT representations, Theorem 4.1). Let ξt = t−1/3 and α ∈ (0, 1].
Suppose assumptions 3.1 (realizability), 3.3 (minimal sub-optimality gap), 4.1 (α⋆-expressive function space) and 3.2
(unique optimal policy) hold. Additionally, if α < 1, suppose that assumption 3.4 (minimal optimal occupancy) holds. Then
for any T ∈ N, UniSREP-UCB (Algorithm 1) satisfies the following:

E[R̃(T )] = Õ

(
H3d2|A|(τ good ∧ T )5/6 +

1

λ⋆
max

H4d|A|1/2T 2/3

)
,

where

τgood ≲ {κ6
3 · log

12(κ3 · κ2) ∨ κ6
1 · log

12(κ1 · κ2)}

≲
H12d12|A|6

(∆min{αd⋆min ∧ λ⋆
max})6

· log12(TH3d3/2|A||Φ||Ψ|),

with κ1 = H2d2|A|
α∆mind⋆

min
, κ2 = TH|Φ||Ψ|, κ3 = H2d2|A|

λ⋆
max∆min

and λ⋆
max = minα̃≤α maxϕ∈Φunisoft

α̃
λ⋆(ϕ).

Proof. Let τgood := {τunisoft ∨ τinv} and T ≥ τgood be given and fixed. Choose δ = T−1. Recall that Algorithm 1 explores
for H time steps, for each h ∈ [H] and episode t, by rolling into time step h− 1 with policy πt−1, taking actions according
to π̃t,h−1 and π̃t,h and finally, rolling out to time step H with policy πt−1. Let us denote Ṽ d1

t,h as the cumulative expected
reward obtained by Algorithm 1 in episode t and time step h. Then,

Eδ,ξ[R̃(T )]

= Eδ,ξ[

T∑
t=1

H∑
h=1

(V π⋆,d1

P⋆,r⋆,1 − Ṽt,h)]

≤ Eδ,ξ[

T∑
t=1

H∑
h=1

1{et = 1}1{E(δ)}1{F(δ)}(V π⋆,d1

P⋆,r⋆,1 − Ṽt,h)]

+ Eδ,ξ[

T∑
t=1

H∑
h=1

1{et = 0}(V π⋆,d1

P⋆,r⋆,1 − Ṽt,h)] + Eδ,ξ[

T∑
t=1

H∑
h=1

1{Ec(δ)}(V π⋆,d1

P⋆,r⋆,1 − Ṽt,h)]

+ Eδ,ξ[

T∑
t=1

H∑
h=1

1{Fc(δ)}(V π⋆,d1

P⋆,r⋆,1 − Ṽt,h)]

(i)

≤ Eδ,ξ[

T∑
t=1

H∑
h=1

1{et = 1}1{E(δ)}1{F(δ)}(V π⋆,d1

P⋆,r⋆,1 − Ṽt,h)]

+ Eδ,ξ[

T∑
t=1

H∑
h=1

1{et = 0}+ 1{Ec(δ)}+ 1{Fc(δ)}]

(ii)

≤ Eδ,ξ[

T∑
t=1

H∑
h=1

1{et = 1}1{E(δ)}1{F(δ)}(V π⋆,d1

P⋆,r⋆,1 − V
πt−1,d1

P⋆,r⋆,1 ] +H(2Tδ +

T∑
t=1

ξt)}

≤ HEδ,ξ[

T∑
t=1

1{E(δ)}1{F(δ)}(V π⋆,d1

P⋆,r⋆,1 − V
πt−1,d1

P⋆,r⋆,1 ] +H(2 +

T∑
t=1

t−1/3)}

(iii)

≤ H Eδ,ξ[

T∑
t=1

1{E(δ)}1{F(δ)}(V π⋆,d1

P⋆,r⋆,1 − V πt,d1

P⋆,r⋆,1]︸ ︷︷ ︸
(A)

+
3

2
HT 2/3 + 3H},

where (i) follows from ∥V π
P,r⋆∥∞ ≤ 1, (ii) follows from π̃t and πt−1 agreeing on the event et = 1, Lemma .1 and Lemma

B.3 and (iii) follows from an index shift and ∥V π
P,r⋆∥∞ ≤ 1. Now, we can leverage the pseudo-regret result of Lemma C.6



to bound term (A),

(A) = Eδ,ξ[

T∑
t=1

1{E(δ)}1{F(δ)}(V π⋆,d1

P⋆,r⋆,1 − V πt,d1

P⋆,r⋆,1]

≲
√
τgood

ξτgood

+
1

λ⋆
max

H3d|A|1/2T 2/3 log(4T |Φ||Ψ|H/δ)

≲ τ
5/6
good + Õ(T 2/3).

Substituting τgood with the sufficient condition in Lemma D.3 with γ = 3 and using T ≳ a logn(ab) as a sufficient condition
for T ≥ a logn(bT ), concludes the proof.

D CONSTANT PSEUDO-REGRET WITH GOOD REPRESENTATIONS

In this section, we provide a constant pseudo-regret result that translates the uniform convergence of the confidence intervals
to the expected sub-optimality gaps. We start by providing a sufficient condition that makes a deterministic policy optimal.

Lemma D.1. Let π be any deterministic policy. Whenever,

E(s,a)∼dπ
P⋆,h

[∆h(s, a)] < d⋆min∆min

holds for all h ∈ [H] simultaneously, there exists an optimal policy π̃⋆ ∈ Π⋆, such that, for all h ∈ [H],

dπ̃
⋆

P⋆,h ≡ dπP⋆,h.

Proof. We give a proof by induction. For h = 1 we have,

E(s,a)∼dπ
P⋆,1

[∆1(s, a)] = Es∼d1
[∆1(s, π1(s))]

=
∑
s∈S

d1(s)∆1(s, π1(s))

≥ d⋆min

∑
s:d1(s)>0

∆1(s, π1(s))

Hence, for all s ∈ S such that d1(s) > 0,

∆1(s, π1(s)) < ∆min,

and therefore, π1(s) ∈ Π⋆
1(s) for all s ∈ S such that d1(s) > 0. Equivalently, there exits a policy π̃⋆ ∈ Π⋆ such that,

dπ̃
⋆

P⋆,1 ≡ dπP⋆,1.

Suppose the induction hypothesis that for any time step h ∈ [H] there exists an optimal policy π̃⋆ ∈ Π⋆ such that,
dπ̃

⋆

P⋆,h ≡ dπP⋆,h holds. Then, for an arbitrary h ∈ [H],

E(s,a)∼dπ
P⋆,h+1

[∆h+1(s, a)]
(i)
= Es∼dπ̃⋆

P⋆,h+1
[∆h+1(s, πh+1(s))]

=
∑
s∈S

dπ̃
⋆

P⋆,h+1(s)∆h+1(s, πh+1(s))

≥ d⋆min

∑
s:dπ⋆

P⋆,h+1
(s)

∆h+1(s, πh+1(s)),

where (i) follows from the induction hypothesis. Therefore, for all s ∈ S such that dπ̃
⋆

P⋆,h+1(s) > 0, we have πh+1(s) ∈
Π⋆

h+1(s).



Lemma D.2. (Constant pseudo-regret with UniSOFT representations) Let α ∈ (0, 1], γ ∈ (2,∞) and ξt = t−1/γ .
Suppose assumptions 3.1 (realizability), 3.2 (unique optimal policy), 3.3 (minimal sub-optimality gap), 3.4 (minimal optimal
occupancy) and 4.1 (α⋆-expressive function space) hold. Then, given that events E(δ) and F(δ) occur, there exists a constant
τ⋆, after which the behavior policies {πt}t≥1 learned by algorithm 1, incur no additional regret and hence, for all T ∈ N:

R(T ) ≲ R(τ⋆) = O(1)

Proof. Let t be arbitrary and large enough. Then, since the event E occurs by assumption, by Lemma C.5, we can bound the
expected sub-optimality gaps for all h ∈ [H],

E(s,a)∼d
πt
P⋆,h

[∆h(s, a)] ≤ 10H2(

√
|A|
ξt

ζt + V
πb
t ,d1

P̂t,b̂t,1
) := (A).

Further, according to Lemma A.5, in the event E , R(t) ≤ g(t) = Õ(
√
tξ−1

t ) = O(t
2+γ
2γ ) with α̂t = Õ(ξ

−1/2
t ) = Õ(t

1
2γ ).

By Lemma B.4 and the events F and E , for all h ∈ [H], the learned feature maps ϕ̂t,h are non-redundant and UniSOFT.
Then, by Lemma B.3, γ > 2 and the event F ,

V
πb
t ,d1

P̂t,b̂t,1
≤ α̂t

H∑
h=1

E
(s,a)∼d

πb
t

P̂t,h

[∥ϕ̂t,h(s, a)∥Σ̂−1
t,h

]

≤ α̂tH

(λ⋆
maxt+ λt −

∑t
i=1 ξi−1 − g(t)∆−1

min − 18
√
t log(6tdH|Φ|/δ))1/2

≤ Õ(
t

1
2γ

t1/2
) = Õ(t−

1
2 (1−

1
γ )) −−−→

t→∞
0,

Additionally, we have √
|A|
ξt

ζt = Õ(t−
1
2 (1−

1
γ )) −−−→

t→∞
0

Hence, there must exist an episode τ⋆ such that

E(s,a)∼d
πt
P⋆,h

[∆h(s, a)] < ∆mind
⋆
min

for all t ≥ τ⋆. Then by Lemma D.1, we get:

R(T ) ≤
∞∑
t=1

H∑
h=1

E(s,a)∼d
πt
P⋆,h

[∆(s, a)]

≤
τ⋆∑
t=1

H∑
h=1

E(s,a)∼d
πt
P⋆,h

[∆(s, a)] = R(τ⋆) = O(1).

Theorem 4.2 (Expected regret with UniSOFT). Let α > 0, γ ∈ (2, 4] and ξt = t−1/γ . Suppose assumptions 3.1
(realizability), 3.2 (unique optimal policy), 3.3 (minimal sub-optimality gap), 3.4 (minimal optimal occupancy) and 4.1
(α⋆-expressive function space) hold. Then for any T ∈ N, there exists a constant τ⋆ such that UNISREP-UCB (Algorithm
1) satisfies

E[R̃(T )] = Õ
(
H3d2|A|(τ⋆ ∧ T )1/2+1/γ +HT

γ−1
γ

)
,

where τ⋆ = Õ

((
H2d2|A|

αλ⋆
max(∆mind⋆

min)
2

) 2γ
γ−2

)
.



Proof. Let T be given and fixed. Choose δ = 1
T . Then

Eδ,ξ[R̃(T )]

(i)

≤ HEδ,ξ[

T∑
t=1

1{E(δ)}1{F(δ)}(V π⋆,d1

P⋆,r⋆,1 − V
πt−1,d1

P⋆,r⋆,1 ] +H(2Tδ +

T∑
t=1

ξt)}

(ii)

≲ H(τ⋆)1/2+1/γ +H

T∑
t=1

t−1/γ + 2H

≲ H(τ⋆)1/2+1/γ +HT
γ−1
γ + 4H + 2H

where the details of (i) can be found in the proof of Theorem 4.1, (ii) follows from the constant pseudo-regret result of
Lemma D.2. We conclude the proof by substituting τ⋆ with the sufficient condition provided in Lemma D.3 and using
T ≳ a logn(ab) as a sufficient condition for T ≥ a logn(bT ).

Lemma D.3. (Critical episodes) Let α ∈ (0, 1], γ ∈ (2, 4] and ξt = t−1/γ . Suppose assumptions 3.1 (realizability), 3.2
(unique optimal policy), 3.3 (minimal sub-optimality gap), 3.4 (minimal optimal occupancy) and 4.1 (α⋆-expressive function
space) hold. Suppose that we run algorithm 1. Then, given that events E(δ) and F(δ) occur:

(1) all non-α⋆-approximate representations are eliminated after at most

τα ≲ κm
1 · log2m(κ1 · κ2)

(2) all redundant and non-UniSOFT representations are eliminated after at most

τgood ≲ {κm
3 · log2m(κ3 · κ2) ∨ τα}

(3) the behavior policy πt is optimal after at most

τ⋆ ≲ {κm′

4 · logm
′
(κ4 · κ2) ∨ τgood}

episodes, where κ1 = H2d2|A|
α∆mind⋆

min
, κ2 = H|Φ||Ψ|/δ, κ3 = H2d2|A|

λ⋆
max∆min

, κ4 = H6d2|A|
(∆mind⋆

min)
2λ⋆

max
, m = 2γ

γ−2 and m′ = γ
γ−1 .

Proof. By Lemma A.5, for all t ∈ N,

R(t) ≤ c3H
2d2|A|

√
t log2(4tH|Φ||Ψ|/δ)

ξt
,

α̂t =

√
4tζt

|A|
ξt

+ λtd,

where c3 is some universal constant. In the following, we will use t ≥ 3a log(ab) as a sufficient condition for t ≥ a log(bt)
with reasonable values for a and b and t > 0. See Lemma 20 in Papini et al. [2021a] for details. In particular, by substituting
t with u = a

1
n t

1
mn , we get that for any n ≥ 1 and m ≥ 1:

t > (mn)nam(3 log(ab))mn ⇒ t
1
m > a logn(bt). (4)

We divide the analysis in four parts, where in each part we derive a sufficient condition for τ⋆.
Part 1. τ⋆ must satisfy the α⋆-selection criteria in Lemma B.1.

t >
1

α
(

R(t)

∆mind⋆min
+

|A|
ξt

√
2t log(4tH|Φ||Ψ|/δ))

t >
1

α
(
c3H

2d2|A|t(1/2+1/γ) log2(4tH|Φ||Ψ|)
∆mind⋆min

+ |A|t(1/2+1/γ)
√
2 log(4t|Φ||Ψ|H/δ))

t > t
γ+2
2γ · c32

H2d2|A|
α∆mind⋆min︸ ︷︷ ︸

κ1

· log2(t · 4H|Φ||Ψ|/δ︸ ︷︷ ︸
κ2

)

t
(i)
> (2m)2(2c3κ1)

m32m log2m(κ1 · 4κ2) := κ̄1,



where (i) follows from the condition 4 with m = 2γ
γ−2 . We gain statement (1), by taking τα = κ̄1.

Part 2. τ⋆ must satisfy the UniSOFT-selection criteria in Lemma B.4.

t >
2

λ⋆
max

(∆−1
minR(t) + 2

t∑
i=1

ξi−1 + 18
√

t log(6tdH|Φ|/δ))

t >
2

λ⋆
max

(
c3H

2d2|A|t1/2+1/γ log2(4tH|Φ||Ψ|)
∆min

+ 2
γ

γ − 1
t1−1/γ + 18

√
t log(6tdH|Φ|/δ))

t
(i)
> t

2+γ
2γ · c322

H2d2|A|
λ⋆

max∆min︸ ︷︷ ︸
κ3

· log2(t · 6 dH|Φ||Ψ|/δ︸ ︷︷ ︸
κ2

)

t
(ii)
> (2m)2(22c3κ3)

m32m log2m(κ3 · 6κ2) := κ̄2,

where (i) follows from γ ≤ 4 and (ii) follows from the condition 4 with m = 2γ
γ−2 .

Part 3. τ⋆ must satisfy the invertibility condition from Lemma B.3.

t >
R(t)∆−1

min + 2
∑t

i=1 ξi−1 + 18
√

t log(6tdH|Φ|/δ)
λ⋆

max
,

Note that the condition is fulfilled if t ≥ κ̄2. By taking, τgood := max{κ̄1, κ̄2}, we gain statement (2).

Part 4. First note we can upper bound,

α̂t = 5

√
4tζt

|A|
ξt

+ λtd

= 5

√
8 log(4|Φ||Ψ|Ht/δ)

|A|
ξt

+ c1d2 log(4tH|Φ|/δ)

≤ 5

√
8c1d2|A|t

1
γ log(4|Φ||Ψ|Ht/δ)

≤ 5dt
1
2γ

√
8|A|c1 log(4|Φ||Ψ|Ht/δ).

For now we assume that t ≥ κ̄2. Then,

∆mind
⋆
min > 20H2(

α̂tH

(λ⋆
maxt+ λt − 2

∑t
i=1 ξi−1 −R(t)∆−1

min − 18
√
t log(6tdH|Φ|/δ))1/2

+

√
|A|
ξt

ζt)

∆mind
⋆
min

(i)
> 20H2(

α̂tH

( 32λ
⋆
maxt)

1/2
+

√
2|A|t

1
γ −1 log(4t|Φ||Ψ|H/δ))

∆mind
⋆
min > t−

1
2 (1−

1
γ ) · 150

√
c1

H3d|A|1/2

(λ⋆
max)

1/2
·
√
log(t · 4|Φ||Ψ|H/δ),

where (i) follows from t ≥ κ̄1. After rearranging, we get:

t
1
2 (1−

1
γ ) > 150

√
c1

H3d|A|1/2

∆mind⋆min(λ
⋆
max)

1/2
· log1/2(t · 4|Φ||Ψ|H/δ)

t(1−
1
γ ) > 1502c1

H6d2|A|
(∆mind⋆min)

2λ⋆
max︸ ︷︷ ︸

κ4

· log(t · 4 |Φ||Ψ|H/δ︸ ︷︷ ︸
κ2

)

t
(i)
> m4502m(c1κ4)

m logm(κ4 · 4κ2) := κ̄3



where (i) follows from condition 4 with m = γ
γ−1 . Finally, by taking

τ⋆ = max{κ̄1, κ̄2, κ̄3}

we conclude.

Theorem 4.3 (Constant Regret). Let α > 0, δ ∈ (0, 1) and ξt = t−1/4. Suppose that the quantities ∆min and d⋆min are
known. Then, under the same assumptions as in Theorem 4.2, with probability at least 1−2δ, UNISREP-UCB + (Algorithm
1) satisfies the following:

R̃(T ) ≤ T ∧ τ⋆,

where1 τ⋆ = Õ
(

H8d8|A|4
(αλ⋆

max)
4(∆mind⋆

min)
8

)
.

Proof. We know, by the proof of Lemma C.6, that given that the events E and F hold, there exists an episode τ⋆ such that,
for all t ≥ τ⋆ and h ∈ [H],

E(s,a)∼d
πt
P⋆,h

[∆h(s, a)] ≤ 10H2(

√
|A|
ξt

ζt + V
πb
t ,d1

P⋆,b̂t,1
) (5)

< ∆mind
⋆
min. (6)

In particular, we know from Lemma D.1, that any deterministic policy satisfying the chain of inequalities above is optimal.
Furthermore, the event E(δ) ∩ F(δ) holds with probability 1− 2δ by Lemma .1 and Lemma B.2. Hence, with probability at
least 1− 2δ, algorithm 1 returns an optimal policy after at most τ⋆ episodes.

E EXISTENCE OF GOOD REPRESENTATIONS

Note that within this section, we assume finiteness of the state space (|S| < ∞) and that the transition operator has rank d̃
for all time steps, that is, rank(P⋆

h) = d̃ for all h ∈ [H]. Recall that we denote X ⋆
h := {(s, a) ∈ S ×A|dπ⋆

P⋆,h(s, a) > 0} as
the set of state-action pairs reachable by the optimal policy at time step h ∈ [H]. Similarly, we define Xh := {(s, a)|∃π :
dπP⋆,h(s, a) > 0} as the set of state-action pairs reachable by any policy at time step h ∈ [H]. In the following, we provide
the proofs for section 5.

Let us start by constructing a full rank factorization of P⋆
h. Note that P⋆

h has rank d̃ by assumption and hence we can select
d̃ columns of P⋆

h such that they form a basis for the column space of P⋆
h. We collect them in a matrix Φ ∈ R|S||A|×d̃,

placing them in the same order as they appear in P⋆
h. Now each column of P⋆

h can be expressed as a linear combination
of the columns of Φ and we identify the row Φsa,· with the feature ϕ(s, a). We denote Ψ ∈ Rd̃×|S| as the matrix uniquely
determined by the coefficients in the linear combinations such that P⋆

h = ΦΨ and identify the column Ψ.,s with µ(s). Then,

Lemma E.1. Let d ≥ d̃. Then, the following statements are equivalent:

(1) span{P⋆
h(·|s, a)|(s, a) ∈ X ⋆

h} = span({P⋆
h(·|s, a)|(s, a) ∈ Xh})

(2) there exists a UniSOFT representation ⟨ϕ̃h, µ̃h⟩Rd = P⋆
h.

Proof. (1) ⇒ (2). By construction, span({ϕ(s, a)|(s, a) ∈ X ⋆
h )} = span({ϕ(s, a)|(s, a) ∈ Xh}). After extending Φ and Ψ

with d− d̃ columns and rows of zero vectors, respectively, we see that ΦΨ is a UniSOFT representation of P⋆
h.

(2) ⇒ (1). Let Φ̃Ψ̃ be a UniSOFT representation. Then, we easily observe that,

span({P⋆
h(·|s, a)|(s, a) ∈ X ⋆

h}) = span({ϕ̃(s, a)T Ψ̃|(s, a) ∈ X ⋆
h})

(i)
= span({ϕ̃(s, a)T Ψ̃|(s, a) ∈ Xh})
= span({P⋆

h(·|s, a)|(s, a) ∈ Xh}),

where (i) follows from the UniSOFT property of Φ̃.

1Õ hides a constant of order 264.



Lemma E.2 (Existence of good representations, Lemma 5.1). Let d ≥ d̃. Then, the following statements are equivalent:

(1) span{P⋆
h(·|s, a)|(s, a) ∈ X ⋆

h} = Rd̃ and |X ⋆
h | ≥ d,

(2) there exists a non-redundant UniSOFT representation ⟨ϕ̃h, µ̃h⟩Rd = P⋆
h,

(3) if d = d̃, any representation ⟨ϕh, µh⟩Rd = P⋆
h is UniSOFT.

Proof. (1) ⇒ (2). By construction, the rows of Φ corresponding to elements in X ⋆
h , i.e. the vectors {ϕ(s, a)|(s, a) ∈ X ⋆

h},
form a basis of Rd̃. As |X ⋆

h | ≥ d holds, we can extend Φ with d − d̃ columns of unit vectors, such that Φ ∈ R|S||A|×d

and span{ϕ(s, a)|(s, a) ∈ X ⋆
h} = Rd. Hence, after appending d − d̃ rows of zero vectors to Ψ, we see that ΦΨ is a

non-redundant and UniSOFT representation of P⋆
h.

(2) ⇒ (1). First, note that |X ⋆
h | ≥ d must hold, in order to find d features ϕ that span the feature space Rd. Second, note that

rank{P⋆
h(·|s, a)|(s, a) ∈ X ⋆

h} ≤ d̃ must hold, as otherwise rank(P⋆
h) > d̃. We provide a proof by contradiction. Let Φ̃Ψ̃ be

any non-redundant UniSOFT representation. Suppose that rank{P⋆
h(·|s, a)|(s, a) ∈ X ⋆

h} < d̃ holds. Since Φ̃ is UniSOFT
and non-redundant by assumption, we have that rank(Φ̃Ψ̃) = rank(Ψ̃), which implies that rank(Ψ̃) = d̃ must be true, to
match the rank of P⋆

h. However, this further implies that

d̃
(i)
= rank{ϕ̃(s, a)T Ψ̃|(s, a) ∈ Xh} = rank{P⋆

h(·|s, a)|(s, a) ∈ X ⋆
h}

(ii)
< d̃

holds, where (i) follows from Φ̃ being UniSOFT and non-redundant and (ii) follows by assumption. This is, of course,
absurd.

(2) ⇒ (3). (Case d = d̃) Let P⋆
h = Φ⋆Ψ⋆ such that the representation is non-redundant and UniSOFT. By Theorem G.1

there exists an invertible matrix R ∈ Rd×d such that Φ̄ = Φ⋆R and Ψ̄ = R−1Ψ⋆ for any other full rank factorization
P⋆
h = Φ̄Ψ̄. Therefore, rows in Φ⋆ that form a basis of Rd also form a basis of Rd in Φ̄.

(3) ⇒ (1). The claim follows by the construction of Φ.

Corollary E.1. Let d ≥ d̃ and Yh := {s′ ∈ S|∃(s, a) ∈ S × A : P⋆
h(s

′|s, a) > 0} be the set of states reachable by any
other state (loops included). If there exists a state s ∈ Yh s.t. dπ

⋆

P⋆,h+1(s) = 0, then there exists no factorization P ⋆
h = ΦΨ

such that Φ is UniSOFT and non-redundant, where Φ ∈ R|S||A|×d and Ψ ∈ Rd×|S| .

Proof. First, note that

rank({P⋆
h(·|s, a)|(s, a) ∈ X ⋆

h}) < rank({P⋆
h(·|s, a)|(s, a) ∈ S ×A}) = d̃

must be true, since by assumption, there exists a state-action pair (s̃, ã) such that P⋆
h(·|s̃, ã) /∈ span({P⋆

h(·|s, a)|(s, a) ∈
Xh}). Now, suppose that there exists a non-redundant UniSOFT representation. Then, by Lemma 5.1, we know that

span{P⋆
h(·|s, a)|(s, a) ∈ Xh} = Rd̃

must hold, which, however, contradicts the inequality derived above.

Lemma E.3. Suppose (X, ∥ · ∥) is some normed space. Let {vi}di=1 be a set of linear independent vectors in X . Then, there
exists some ϵ > 0, such that any set of vectors {ui}di=1 in X with ∥vi − ui∥ ≤ ϵ for all i ∈ [d] is linear independent as well.
In particular, ϵ < min(α1,..,αd):Σi|αi|=1 ∥

∑d
i=1 αivi∥/2

Proof. We provide a proof by contradiction. Let S := {(α1, ..., αd) ∈ Rd|
∑d

i=1 |αi| = 1}. Suppose {ui}di=1 are linear
dependent, that is, there exists some vector (α1, ..., αd) ∈ Rd such that

0 = ∥
d∑

i=1

αiui∥.



In particular, w.l.o.g. we can assume that (α1, ..., αd) ∈ S. Let ϵ < min(α1,..,αd):Σi|αi|=1 ∥
∑d

i=1 αivi∥/2 and positive. But
then,

0 = ∥
d∑

i=1

αiui∥ = ∥
d∑

i=1

αivi +

d∑
i=1

αi(ui − vi)∥

(i)

≥ ∥
d∑

i=1

αivi∥ − ∥
d∑

i=1

αi(ui − vi)∥

(ii)
> 2ϵ− ϵ

d∑
i=1

|αi| = ϵ,

leads to a contradiction, where (i) follow from the reverse triangle inequality and (ii) follows from the Cauchy-Schwarz
inequality.

Lemma 5.2. Assume that Assumption 3.4 (minimal optimal occupancy) holds and that P⋆ admits a non-redundant UniSOFT
representation. Then, there exists an ϵ > 0 such that for any d ≥ d̃ the following holds: Let α̃ < α ≤ ϵ be arbitrary. There
exist infinitely more α⋆-approximate representations than α̃⋆-approximate representations ⟨ϕ, µ⟩Rd ≡ P̂ that are UniSOFT
and non-redundant.

Proof. Since P⋆ is assumed to admit a non-redundant UniSOFT representation, by Lemma 5.1, there exist d̃ state-action
pairs in X ⋆

h such that their transition vectors in model P⋆
h span Rd̃. Denote X̃ ⋆

h as the set that contains those d̃ state-action
pairs. Let ϵ > 0 arbitrary such that,

ϵ < min
(α1,..,αd):Σi|αi|=1

∥
d̃∑

i=1

αivi∥TV
d⋆min

2
,

where {vi}d̃i=1 = {P⋆
h(·|s, a)|(s, a) ∈ X̃ ⋆

h}. Then, by continuity of norms and integrals, we can find an α⋆-approximate
representation with induced transition operator P , such that for any h ∈ [H] and (s′, a′) ∈ X̃ ⋆

h ,

ϵ = E(s,a)∼dπ⋆

P⋆,h
[∥Ph(·|s, a)− P⋆

h(·|s, a)∥TV]

=
∑

(s,a)∈S×A

dπ
⋆

P⋆,h(s, a)∥Ph(·|s, a)− P⋆
h(·|s, a)∥TV

≥ d⋆min∥Ph(·|s′, a′)− P⋆
h(·|s′, a′)∥TV.

Then, by Lemma E.3, the vectors in {Ph(·|s, a)|(s, a) ∈ X̃ ⋆
h} are linear independent and, by Lemma E.2, there exists a

non-redundant UniSOFT representation inducing P . In particular, the existence of one good representation implies the
existence of an infinite number of good representations. As ϵ was chosen arbitrarily, we conclude the proof.

F MULTIPLE OPTIMAL POLICIES

As noted in the preliminary section, we can extend our results to environments with multiple optimal policies as well. Recall
that we denote Π⋆ as the set of all optimal (deterministic) policies. We say that a feature map ϕ is UniSOFT w.r.t. some policy
π, if π ∈ Π⋆ and ϕ fulfills the UniSOFT property, as in definition 3.2, interchanging π and π⋆. In particular, a UniSOFT
representation is non-redundant if λ⋆(ϕ) > 0 where λ⋆(ϕ) := minh∈[H],π⋆∈Π⋆ λmin(E(s,a)∼dπ⋆

P⋆,h
[ϕh(s, a)ϕh(s, a)

T ]). We
adjust the notion of α⋆-approximate representations accordingly.

Definition F.1 ((σ⋆, α⋆)-Approximate Representation). A representation (ϕ, µ) ∈ Φ × Ψ, with induced model P , is
(σ⋆, α)-approximate at level α if for the finite sequence σ⋆ = (π⋆

1 , π
⋆
2 , ..., π

⋆
t ) of optimal policies and for all h ∈ [H],

E(s,a)∼γ⋆
t,h

[∥Ph(·|s, a)− P⋆
h(·|s, a)∥TV] ≤ α,

where γ⋆
t,h(s, a) =

1
t

∑t
i=1 d

π⋆
i

P⋆,h(s, a).



Assumption F.1 (α⋆-Expressive Function Space). Let σ⋆ be an arbitrary sequence of optimal policies of finite length. For
all (σ⋆, α⋆)-approximate representations (ϕ, µ) ∈ Φ×Ψ, there exists a non-redundant representation (ϕ̃, µ̃) ∈ Φ×Ψ that
is UniSOFT w.r.t. all π⋆ ∈ σ⋆, such that the induced models P and P̃ agree on all (s, a) ∈ S ×A, for which there exists a
policy π ∈ Π, such that for any h ∈ [H], we have dπP⋆,h(s, a) > 0.

Furthermore, recall that π̃⋆
t := {π̃⋆

t,h}h∈[H], where for each h ∈ [H],

π̃⋆
t,h(s) =

{
πt,h(s) if πt,h(s) ∈ Π⋆

h(s)

Select(Π⋆
h(s)) otherwise

.

We define σ̃⋆
t := (π̃⋆

1 , π̃
⋆
2 , ..., π̃

⋆
t ).

Compared to the unique optimal policy case, we must ensure the existence of feature maps that are UniSOFT w.r.t. all
optimal policies, as we do not know in advance which distribution of optimal policies the algorithm converges to. In
exchange for updating the expressiveness assumption 4.1 to the more restrictive assumption F.1, we can drop the unique
optimal policy assumption. We note that allowing multiple optimal policies only worsens the sample complexity in the
instance-dependent variables, which now depend on the ’worst’ deterministic optimal policy.

The following two results ensure the selection of good representation. The remaining analysis can be performed analogously
to the previous sections.

Lemma F.1. (Selecting (σ̃⋆
t , α)-representations) Fix any α > 0. Assume there exists an increasing sub-linear function g

such that R(t) ≤ g(t) for all t ∈ N. Suppose we run algorithm 1 and assumptions 3.4 (minimal optimal occupancy) and 3.3
(minimal sub-optimality gap) hold. Then, given that the event E occurs, there exists an episode τα such that for all episodes
t ≥ τα and time steps h ∈ [H], the learned feature maps ϕ̂t,h are (σ̃⋆

t , α)-approximate, where

τα := min{t|t > 1

α
(

R(t)

∆mind⋆min
+

|A|
ξt

√
2t log(4t|Φ||Ψ|H/δ))}.

Proof. Directly follows from Corollary B.1 and the proof of Lemma B.1.

Lemma F.2. (Selecting non-redundant UniSOFT representation) Fix any α > 0. Assume there exists an increasing sub-
linear function g such that R(t) ≤ g(t) for all t ∈ N. Suppose we run algorithm 1 and assumptions F.1 (expressiveness) and
3.3 (minimal sub-optimality gap) hold. Additionally, if α < 1, suppose assumption 3.4 (minimal optimal occupancy) holds.
Then, given that the events E(δ) and F(δ) occur, there exists an episode τunisoft ≥ τα such that for all subsequent episodes
t ≥ τunisoft and time steps h ∈ [H] the learned feature maps ϕ̂t,h are UniSOFT w.r.t. any optimal policy π⋆ ∈ σ̃⋆

t , where

τunisoft := min{t|t >

(
2

λ⋆
α

(∆−1
minR(t) + 2

t∑
i=1

ξi−1 + 18
√
t log(6dtH|Φ|/δ)) ∨ τα

)
}.

Proof. Let Φunisoft
σ̃⋆
t

⊆ Φ denote the set containing only non-redundant feature mappings that are UniSOFT w.r.t. at least one
π̃⋆ ∈ σ̃⋆

t . By Lemma B.2, with probability at least 1− δ, for all t ∈ N, h ∈ [H], ϕ ∈ Φ \ Φunisoft
σ̃⋆
t

and ϕunisoft ∈ Φunisoft
σ̃⋆
t

,

λmin(Σt+1,h(ϕ
unisoft)− λtI) ≥ tλ⋆(ϕunisoft)− 2

t∑
i=1

ξi−1 −∆−1
minR(t)− 18

√
t log(6dtH|Φ|/δ),

λmin(Σt+1,h(ϕ)− λtI) ≤ 2

t∑
i=1

ξi−1 +∆−1
minR(t) + 18

√
t log(6dtH|Φ|/δ),

where Σh,t+1(ϕ) =
∑

(s,a)∈Dt,h
ϕh(s, a)ϕh(s, a)

T and

λ⋆(ϕ) := min
h∈[H],π⋆∈Π⋆

λmin(E(s,a)∼dπ⋆

P⋆,h
[ϕh(s, a)ϕh(s, a)

T ])

≤ min
h∈[H]

λmin(E(s,a)∼γ̃⋆
t,h

[ϕh(s, a)ϕh(s, a)
T ]).



Let us denote Φα ×Ψα ⊆ Φ×Ψ as the set of (σ̃⋆
t , α)-approximate representations. Additionally, denote

Φunisoft
α ×Ψunisoft

α = (Φα ×Ψα) ∩
(
Φunisoft

σ̃⋆
t

×Ψ
)
,

as the set containing all (σ̃⋆
t , α)-approximate representations such that the feature map is non-redundant and UniSOFT w.r.t.

at least one π ∈ σ̃⋆
t , which is non-empty by Assumption F.1. A desired feature map is selected at episode t ≥ τα if for all

α̃ ≤ α,
max

ϕunisoft∈Φunisoft
α̃

λmin(Σt+1,h(ϕ
unisoft)− λtI) > max

ϕ∈Φα̃\Φunisoft
α̃

λmin(Σt+1,h(ϕ)− λtI),

or equivalently,

tλ⋆
α(ϕ

unisoft) > 2

(
∆−1

minR(t) + 2

t∑
i=1

ξi + 18
√
t log(6dtH|Φ|/δ)

)
,

where λ⋆
α := minα̃≤α maxϕunisoft∈Φunisoft

α̃
λ⋆(ϕunisoft).

G AUXILIARY RESULTS

Lemma G.1 (Simulation Lemma [Zhang et al., 2022a]). Given two transition models P and P ′, we have:

V π,d1

P′,r+b,1 − V π,d1

P,r,1 =

H∑
h=1

E(s,a)∼dπ
P′,h

[bh(s, a) + (P ′
h − Ph)V

π
P,r,h+1(s, a)],

V π,d1

P′,r+b,1 − V π,d1

P,r,1 =

H∑
h=1

E(s,a)∼dπ
P,h

[bh(s, a) + (P ′
h − Ph)V

π
P′,r+b,h+1(s, a)].

Lemma G.2 ([He et al., 2021]). For any h ∈ [H], s ∈ S, and π ∈ Π:

V π⋆

P⋆,r⋆,h(s)− V π
P⋆,r⋆,h(s) = E[

H∑
h′=h

∆h′(sh′ , ah′)|sh = s, π,P⋆],

Hence the regret after T episodes can be expressed as:

R(T ) =

T∑
t=1

V π⋆,d1

P⋆,r⋆,1 − V πt,d1

P⋆,r⋆,1 =

T∑
t=1

Es∼d1
[

H∑
h=1

∆h(sh, ah)|s1 = s, πt,P⋆]

=

T∑
t=1

H∑
h=1

E(s,a)∼d
πt
P⋆,h

[∆h(s, a)]

Proof.

V π⋆

P⋆,r⋆,h(s)− V π
P⋆,r⋆,h(s)

= ∆h(s, πh(s)) +Qπ⋆

P⋆,r⋆,h(s, πh(s))− V π
P⋆,r⋆,h(s)

= ∆h(s, πh(s)) + r⋆h(s, πh(s)) + P⋆
hV

π⋆

P⋆,r⋆,h+1(s, πh(s))− r⋆h(s, πh(s))− P⋆
hV

π
P⋆,r⋆,h+1(s, πh(s))

= ∆h(s, πh(s)) + P⋆
h(V

π⋆

h+1 − V π
h+1)(s, πh(s))

Unravelling the recursion gives the result.

Theorem G.1 ([Piziak and Odell, 1999]). Every matrix A ∈ Cn×m with rank(A) = r > 0 has infinitely many full rank
factorizations. However, if A = FG = F̄ Ḡ are two full rank factorizations of A, then there exists an invertible matrix
R ∈ Cr×r such that F̄ = FR and Ḡ = R−1G.

Lemma G.3 (Lemma D.1. in Jin et al. [2020]). Let Σt = λI +
∑t

i=1 ϕiϕ
T
i where ϕi ∈ Rd and λ > 0. Then,

t∑
i=1

ϕT
i Σ

−1
t ϕi = Tr(Σ−1

t

t∑
i=1

ϕiϕ
T
i ) ≤ d.



Lemma G.4 (Elliptical potential lemma [Abbasi-Yadkori et al., 2011]). Consider a sequence of d× d positive semidefinite
matrices X1, ..., XT with tr(Xt) ≤ 1 for all t ∈ [T ]. Define M0 = λ0I and Mt = Mt−1 +Xt. Then

T∑
t=1

tr(XtM
−1
t−1) ≤ 2d log(1 +

T

dλ0
)

Proposition G.1 (Matrix Azuma [Tropp, 2012]). Let {Xk}tk=1 be a finite adapted sequence of symmetric matrices of
dimension d, and {Ck}tk=1 a sequence of symmetric matrices such that for all k, Ek[Xk] = 0 and X2

k ≼ C2
k almost surely.

Then, with probability at least 1− δ:

λmax(

t∑
k=1

Xk) ≤
√

8σ2 log(d/δ),

where σ2 = ∥
∑t

k=1 C
2
k∥.

Lemma G.5. (Azuma’s inequality) Let (Xk)
t
k=1 be a finite adapted sequence such that for all k, Ek[Xk] = 0 and |Xt| ≤ a

almost surely. Then, with probability at least 1− δ:

|
t∑

k=1

Xk| ≤ a
√
t log(2/δ)

Lemma G.6 (MLE guarantee [Cheng et al., 2023]). Fix δ ∈ (0, 1). Then, with probability 1− δ/2,

(1) for all h = 2, ...,H and t ∈ N,

E(s,a)∼ρ′
t,h(s,a)

[∥P̂h,t(·|s, a)− P⋆
h(·|s, a)∥2TV] ≤ ζt,

(2) for h = 1 and all t ∈ N,
E(s,a)∼ρt,h(s,a)[∥P̂h,t(·|s, a)− P⋆

h(·|s, a)∥2TV] ≤ ζt,

where ζt =
2 log(4t|Φ||Ψ|H/δ)

t .
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