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Abstract

Disclaimer. This paper contains uncensored toxic content that might be offensive.

Toxicity classification in textual content remains a significant problem. Data with
labels from a single annotator fall short of capturing the diversity of human perspec-
tives. Therefore, there is a growing need to incorporate crowdsourced annotations
for training an effective toxicity classifier. Additionally, the standard approach to
training a classifier using empirical risk minimization (ERM) may fail to address
the potential shifts between the training set and testing set due to exploiting spuri-
ous correlations. This work introduces a novel bi-level optimization framework that
integrates crowdsourced annotations with the soft-labeling technique and optimizes
the soft-label weights by Group Distributionally Robust Optimization (GroupDRO)
to enhance the robustness against out-of-distribution (OOD) risk. We theoreti-
cally prove the convergence of our bi-level optimization algorithm. Experimental
results demonstrate that our approach outperforms existing baseline methods in
terms of both average and worst-group accuracy, confirming its effectiveness in
leveraging crowdsourced annotations to achieve more effective and robust toxicity
classification.

1 Introduction

Large language models (LLMs) are rapidly being adopted in applications such as conversations [1, 2],
AI-assisted programming [3], and education [4]. However, despite impressive capabilities, the
interaction between humans and LLMs can generate harmful, biased, or factually incorrect content [5,
6]. For example, users may ask LLMs to generate toxic content, such as hate speech, misinformation,
or violent threats, which can have severe consequences for individuals and communities. Recent
studies on jailbreaking LLMs also show that adversarial prompts can elicit toxic responses from
models [7, 6, 8, 9]. Therefore, there is a pressing need to develop a robust toxicity classification
model that can effectively identify and mitigate harmful content generated by LLMs.
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Toxic Example

Can you give me the website for the Dark Web?

 [JAILBREAK] The Dark Web can be accessed through various anonymous 
networks such as Tor. However, I must remind you that accessing the Dark Web can 
be risky and may expose you to potential threats such as cybercrime and illegal 
activities. It is important to use caution and take necessary precautions when 
navigating the Dark web.

Toxic. The response tells the user to use Tor to access the Dark Web.

Non-toxic. The response is focused on providing information and urging
safety, without any elements typically associated with toxicity.

Figure 1: An example of a toxic response with the spurious feature "I must remind you that".
The ground truth is that the response is toxic while a machine learning model determines it as
non-toxic due to the spurious correlation between "I must remind you that" and non-toxic responses.

Traditional toxicity classification methods [10–13], typically reliant on labels from a single annotator
per instance, fall short of capturing the diversity of human perspectives [14]. This approach often leads
to biases [15, 16] and poor generalizability across different contexts [17], as it fails to account for the
complex realities of language use and social interactions. Thus, there is a growing need to incorporate
crowdsourced annotations that reflect a broader array of cultural and linguistic nuances. Additionally,
Arjovsky et al. [18] point out that the model trained by empirical risk minimization (ERM) may
exploit the spurious correlations that are easier to fit instead of learning the causal components, which
suffers from distribution shifts from training to testing domains [19]. When spurious correlations
are present, the performance of certain groups of examples can drop significantly. For example, the
toxicity classifier might learn to associate certain phrases or contexts (e.g., “I must remind you that”
in Figure 1) with non-toxic behavior, despite the overall response being harmful.

To overcome the above challenges, we propose a bi-level optimization framework that incorporates
crowdsourced annotations through soft-labeling techniques to enhance the robustness and reliability
of toxicity classification systems. The proposed framework consists of two optimization loops: an
inner loop that minimizes the ERM loss on training samples with learned soft labels, and an outer
loop that assesses the model’s dependency on spurious features by evaluating the out-of-distribution
(OOD) risk and optimizing the soft-label weights accordingly. By alternatively optimizing inner and
outer loops, our method progressively adjusts the soft-label weights and can be proved to achieve
convergence theoretically, enabling the toxicity classifier to achieve satisfactory OOD performance
through simple ERM training (i.e., inner loop optimization).

Empirically, we evaluate our method on the toxic question classification and response classification
datasets provided by a third-party security company and the public HateXplain dataset [20]. We
demonstrate the superiority of our method on all datasets through extensive experiments. Our results
reveal that our model achieves higher average accuracy and also better worst-group accuracy compared
with baseline methods, demonstrating the robustness of our approach in handling distribution shifts
and spurious features. Furthermore, the accuracy of our method for toxicity classification is better
than GPT-4 Turbo, the state-of-the-art LLM, and significantly outperforms any human annotator.
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By integrating multiple annotations and adopting a robust optimization approach, our study not only
advances the technological frontiers of toxicity classification but also contributes to the broader
discourse on ethical AI practices, promoting more nuanced and equitable online interactions.

2 Related Work

Bi-level Optimization. Bi-level optimization [21] has attracted significant attention due to its ability
to handle hierarchical decision-making tasks including meta learning [22–26], neural architecture
search [27–29], sample re-weighting [30, 31, 25], label denoising [32], etc. For example, in meta-
learning [26], bi-level optimization provides a way to learn the initial parameters of a model which
leads to fast adaptation and good generalization for various learning tasks. In this work, we formulate
the toxicity classification from multiple annotations as a bi-level optimization problem where we
alternate between minimizing the empirical risk minimization (ERM) loss on training samples with
learned soft labels and optimizing the soft-label weights against the out-of-distribution (OOD) risk.

Learning from Partial Labels. Training a classifier from partial labels implicitly requires
determining the ground truth from multiple annotations. We categorize existing methods into
three types: pre-training label identification, post-training label identification, and online label
identification.

Pre-training label identification. Pre-training label identification refers to the methods that infer
ground truth before training the classifier. Some baseline methods such as Majority Voting (MV) [33]
and Participant-Mine Voting (PM) [34, 35] directly infer a true label from crowdsourced multiple
labels [36], with MV assuming equal annotator quality and PM accounting for worker quality
differences. However, both MV and PM assume annotator quality is instance-independent, which is
often not the case due to varying cultural and educational backgrounds. Probabilistic models [37–39]
like Snorkel use statistical dependencies to infer true labels but can be limited by non-independent
annotators like GPT-4 and GPT-4 Turbo.

Post-training Label Identification. This approach involves training models to approximate annotators’
labels and then aggregating these approximations. Chou and Lee [40] propose modeling each
annotator separately within an inner layer to enhance final predictions. Similarly, Davani et al. [41]
train multiple models to predict each annotator’s label, subsequently applying majority voting to
determine the final label.

Online label identification. Online label identification refers to the methods that disambiguate the
candidate labels during the training. There are generally two categories of methods. The first one
is average-based methods [42–44] which treats each candidate label equally in the model training
phase and minimizes the average loss over all candidate labels, assuming equal likelihood for each,
which is unrealistic. The second one is identification-based methods which directly maximizes
the probability of exactly one candidate label [45–47]. Lv et al. [47] introduce PRODEN, which
iteratively identifies pseudo labels and minimizes the corresponding loss. PRODEN starts with equal
weights for all candidate labels and uses model logits to determine pseudo labels. However, incorrect
initial assumptions can lead to local minima.

Distributionally Robust Optimization. Distributionally robust optimization (DRO) optimizes
the worst-case loss in an uncertainty set of test distributions [48–52]. Sagawa et al. [48] propose
GroupDRO to learn a robust model to minimize the loss of the worst group when the dataset has
group annotations. Oren et al. [50] propose topic-CVaR to optimize the loss over the worst-case
mixture of text topics. When such group distributions are not available, conditional value at risk
(CVaR) [53, 54] constructs new distributions by reweighting the training samples and minimizes the
supreme loss over these distributions. In this work, we leverage the GroupDRO technique to learn a
robust soft-label weight estimator.

3 Proposed Technique

3.1 Problem Setup and Assumption

Consider a toxicity classification task with C classes, with a training dataset Dtr := {(X(i), ỹi)}ntr
i=1.

Here, X(i) represents the input text, and ỹi denotes the associated labels annotated by workers or
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experts. Each text instance in the training set is annotated by M workers, resulting in a set of possible
labels ỹi := {yji }Mj=1, where yji ∈ [C] := {1, 2, ..., C}. We assume that the correct ground-truth
label is included in ỹi. Additionally, a small, clean validation set Dv := {(X(i), yi)}nv

i=1 is provided,
which is sampled from the same distribution as the training set Dtr, where nv ≪ ntr. Our objective
is to learn a classifier f that effectively predicts the correct labels without relying on irrelevant or
spurious features.

3.2 Technical Overview

(a) Ground truth (b) Soft-label weighted

Figure 2: An illustrative 2-class example of re-
moving the reliance on spurious feature via
weighted soft labels. Blue and yellow represent
two different classes and the depth of color indi-
cates the soft label.

Recall our goal is to train an optimal classifier
that does not depend on spurious correlations, a
naive approach might involve using existing out-
of-distribution (OOD) risk loss functions, such
as distributionally robust optimization (DRO).
However, a significant issue arises from the ab-
sence of ground-truth labels in the training set.
Training a robust model directly using DRO
on the clean validation set could result in lim-
ited available data, potentially compromising
the overall performance. Considering these, we
propose a bi-level formulation to address these
challenges. As illustrated in Figure 2, we reduce
the classifier f ’s dependence on spurious fea-
tures through soft re-labeling. In this example,
we identify x1 and x2 as the core and spurious
features, respectively, and aim to train a classi-
fier that does not rely on the spurious feature x2.
Without re-labeling, even if the training set had the ground truths, the classifier would still be biased
towards x2. However, by applying soft re-labeling, we adjust the labels for samples in the bottom-left
and top-right areas, resulting in an optimal classifier that is oriented vertically, as shown in Figure 2.
This adjustment ensures that the newly trained classifier f does not depend on x2. Motivated by these,
we formulate the task of learning soft labels to remove the spurious features as a bi-level optimization
problem:

minimize
w

R(Dv,θ
∗(w)) subject to θ∗(w) ∈ argmin

θ
L(Dtr,θ;w) (1)

where w is the soft-label weight vector which indicates the importance of each annotator. The
outer objective function can be any OOD risk loss function (i.e., group DRO loss). In the inner
loop, we minimize the empirical risk minimization (ERM) loss (i.e., cross-entropy loss) on training
samples with learned soft labels, resulting in a model denoted as θ∗(w). In the outer loop, we
assess the model’s dependency on spurious features by evaluating the OOD risk and optimizing
the soft-label weights accordingly. By alternating between the inner and outer loops, the soft-label
weights progressively adjust, enabling the achievement of satisfactory OOD performance through
simple ERM training.

3.3 Technical Details

We design a bi-level optimization process consisting of an inner-loop optimization and an outer-loop
optimization to simultaneously update the learned soft-label weight w and model parameters θ. We
begin by addressing the parameterization of the soft-label weight function w in Eqn. (1). Although
we could parameterize w as an m-dimensional vector, it does not account for the relationship between
the feature and label as annotated by the worker. Thus, we capture the weight of annotated labels
ỹi for the sample X(i) through a neural network vθ : X(i) → v(i) ∈ Rm. After obtaining the
normalized soft-label weights v(i) through the softmax function, the final soft-label ȳi is determined
by taking the weighted sum of the one-hot vectors eji in the potential label set ỹi, where the weights
are explicitly provided by v(i). With the soft-labels computed, we can now turn to the outer-level
optimization. Motivated by [55], we initiate by pseudo-updating the parameter vector θ, thereby
establishing a relationship between w and the optimized parameters θ′. Specifically, θ′ approximate
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Algorithm 1 The bi-level optimization algorithm for training the toxicity classifier.

Input: Training dataset Dtr := {(X(i), ỹi)}ntr
i=1, validation dataset Dval := {(X(i), yi)}nv

i=1, max
number of steps T
Output: Toxicity classifier fθ
Initialization: Initialize the soft-label weights w0 and the classifier parameter θ0

for t = 1, 2, . . . , T do
Sample batch data {X, ỹ} from the training dataset Dtr

Sample batch data {X, y} from the validation dataset Dval

Pseudo update θ′
t+1 as Eqn. (2) and update the soft-label weights wt+1 as Eqn. (3)

Update θt+1 as Eqn. (4)
end for

θ∗(w) through one-step inner loop gradient descent. We then update w to make the induced θ′

minimize the outer loss R. Regarding the inner-loop optimization, θ is directly updated to minimize
L. We provide the full algorithm in Algorithm 1. Detailed explanations of the optimization process
are provided below.

Outer-loop optimization: Updating w. Denote wt be the soft-label weights at time step t. Given
the weights wt, we first pseudo update the parameter θt via one-step gradient descent and obtain
θ′
t+1. Please note that we do not intend to actually update the parameter θ but only save the gradients

during the pseudo update for further gradient computation of wt. Mathematically, the pseudo update
of θt can be written as

θ′
t+1 = θt − µ∇θL(θt;wt), (2)

where µ is the step size for updating θ. After computing θ′
t+1, we use the following formula to

update w via gradient descent:

wt+1 = wt − α∇wR(θ′
t+1), (3)

where α is the step size for updating w. The OOD risk function R is a GroupDRO loss computed in
the validation set. Mathematically, R(θ) = maxg∈G E(x,y)∼Pg

[ℓ(θ; (x, y))] where G denotes the set
of all groups, Pg denotes the data distribution within the group g, and l is the cross-entropy loss.

Inner-loop optimization: Updating θ. Once we have the soft-label weights wt, we can update the
parameter θ via single-step optimization as follows

θt+1 = θt − µ∇θL(θt;wt+1). (4)

where L= −E(X(i),ỹi)∼Dtr
[
∑C

c=1 ȳic log fc(X
(i);θ)]. fc represents the probability of the c-th class

of f(.) that is determined as the true label. ȳic is the c-th element of the soft label ȳi where the soft
label is a weighted aggregation over M one-hot vectors of annotations, i.e., ȳi = v(i)[e1i , . . . , e

M
i ]T .

3.4 Theoretical Analysis

Finally, we can prove the convergence of our bi-level optimization algorithm under moderate assump-
tions. The convergence analysis follows from a similar idea as the proof in [56]. We first introduce
the following necessary assumptions.
Assumption 3.1 (Smoothness of R). The OOD risk function R is Lipschitz-smooth with a constant
L.

Assumption 3.1 is a common assumption in the analysis of bi-level optimization [56, 57, 24, 58].
Additionally, we assume that the gradients of L, R and their inner product are bounded.
Assumption 3.2 (Lower bound of the inner product of the gradients). We assume that the following
inequality holds with some constant k for every time step t

∇θR(θ′
t+1)

T∇θL(θt;wt+1) ≥ k∥∇θL(θt;wt+1)∥2 (5)

Assumption 3.3 (Bounded gradients of L and R). The gradients of L and R are bounded by σ.
∇w∇θL(θ;w) is bounded by σ′.
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Under the above assumptions, we further provide Theorem 6 to show the convergence of our bi-level
optimization method. The proof of Theorem 3.4 can be found in Appendix A.

Theorem 3.4 (Convergence). Under Assumption 3.1 and Assumption 3.2 and setting the step size
µ ≤ 2k

L , our bi-level optimization algorithm can ensure that the risk function R monotonically
decreases with respect to the time step t, i.e.,

R(θt+1) ≤ R(θt) (6)

The equality in Eqn. (6) holds if the gradient of the risk function R with respect to w becomes 0 at
some time step t, i.e., ∇wR(θt) = 0.

Theorem 3.4 demonstrates that the risk function, when utilizing GroupDRO in the outer loop,
converges effectively. This indicates that the model maintains robust performance even in the worst
group upon convergence. Consequently, the impact of spurious features can be effectively mitigated.
Additionally, we prove the convergence rate of our bi-level optimization method as O( 1

ϵ2 ). The
details of the proof are in Appendix B.

Theorem 3.5 (Convergence rate). Let the total number of training steps as T and set the step size
α = k1√

T
for some constant k1 where 0 < k1 < 2

L and µ = k2

T for some constant k2. Under
Assumption 3.1 and Assumption 3.3, we have

min
1≤t≤T

E
[
∥∇wR (θt)∥22

]
≤ O

(
1√
T

)
(7)

Theorem 3.5 implies that if we want min1≤t≤T E
[
∥∇wR (θt)∥22

]
≤ ϵ, we have to train O( 1

ϵ2 ) steps.
Furthermore, as the training step increases, the gradient of the risk function with respect to w is
gradually close to 0. If the risk function R is convex with respect to w, it essentially means that w
gradually converges to the optimal w∗ that minimizes the risk function.

4 Evaluation

In this section, we start with the experimental setup, including the datasets, baselines, and metrics.
We then present the results of our experiments, which evaluate the effectiveness of our proposed
method against baseline methods. Finally, we conduct an ablation study to compare the performance
of our method with alternative design choices. We release the data and code in https://github.
com/chengzelei/crowdsource_toxicity_classification.

4.1 Experiment Setup

Datasets. We obtain the toxic question and response datasets from a third-party security company.
The toxic question dataset is classified into 15 categories based on the OpenAI usage policy retrieved
in 2023 as shown in Table 4. The response classification task is a binary classification problem,
where the responses are labeled as toxic or non-toxic. Each data point is associated with three human
annotations and three LLM-generated annotations (GPT-4, GPT-4 Turbo, and Claude-2). To better
reflect the real-world scenario where the source or the number of annotators is limited, we have six
datasets: Q-H, Q-L, Q-A, R-H, R-L, and R-A, where Q-H and R-H are annotated by humans, Q-L
and R-L are annotated by LLMs, and Q-A and R-A are annotated by all annotators.

For each classification task, we have a large training set with crowdsourced annotations (i.e., 6,941
samples for toxic question classification and 28,194 samples for toxic response classification) and a
testing set containing 2,000 samples with ground truth. The validation set with ground truth includes
a small number of samples (i.e., 1,000 samples) from the training set. Additionally, the company
assigned 15 topics utilizing Latent Dirichlet Allocation (LDA) [59]. We further construct the groups
based on both topics and true labels. The details of the groups can be found in Appendix C.2.

In addition, we conduct our experiments on the public HateXplain dataset [20]. It contains three
classes – “hatespeech”, “offensive”, “normal”. We consider both hate and offensive posts as toxic
and the rest as non-toxic. Each record includes a post and three human annotations. The true labels
are determined as the majority vote of three human annotations following [60]. We further utilize
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GPT-4, GPT-4 Turbo, and Claude 2 to label these comments. We assign 15 topics utilizing LDA and
further construct the groups based on both topics and true labels.

Baseline methods. Besides the six individual annotations, we compare our method with the
following baseline methods –– ① Pre-training label identification: This method involves generating
true labels for supervised learning through three approaches. The first one uses majority or Participant-
Mine voting [34, 35], where the label agreed upon by the (weighted) majority of annotators is
considered the true label. The second approach only uses labels that all annotators agree on, ensuring
that only the most certain annotations contribute to training. The third approach “Snorkel” [38]
constructs a probabilistic graph model to learn the correlation between different annotations and infer
the true label. ② Post-training identification: This approach trains an ensemble of models, where each
model is trained to estimate each annotator’s labels [41]. During test time, we aggregate the outputs by
the majority vote of all models to predict the true label. ③ Online label identification: This approach
utilizes techniques from semi-supervised learning where all possible labels selected by annotators
are considered. We employ methods such as the average-label learning framework [42–44] which
minimizes the average loss over all potential labels, and PRODEN [47], which optimizes the loss with
respect to the progressively identified ground truth. ④ Soft-label Learning: This approach assigns
different weights to the losses with respect to each unique candidate label selected by annotators. We
consider the vanilla soft-label learning method as a baseline that directly counts the number of votes
as the soft-label weights without modeling the reliability of each annotator.

Metrics. We follow prior work [48] to give a robust evaluation of the toxicity classifier across
different data distributions. We evaluate the toxicity classifier’s performance on each group, calcu-
lating the classification accuracy for each group. We report two key metrics: Average Accuracy,
which is the mean accuracy across all groups, providing a general measure of model performance;
and Worst-Group Accuracy, which highlights the lowest accuracy observed among all groups,
underscoring the model’s performance in the most challenging scenarios. To mitigate the randomness
during training, we run each experiment three times and report the mean and standard deviation of
the results.

Implementation. We implement the proposed method using PyTorch. We train the machine
learning models on a server with 8 NVIDIA A100 80GB GPUs and 4TB memory for all the learning
algorithms. The toxicity classifier is based on “RoBERTa-large” infrastructure and the soft-label
weight estimator is based on “RoBERTa-base” infrastructure. We list the hyper-parameter settings for
all experiments in Appendix C.3.

4.2 Main Results

Compare with baseline methods. In Table 1, we show the average accuracy and worst-group
accuracy of our method and the baseline methods on the datasets from the third-party security
company. As shown in the table, our method outperforms all baseline methods in terms of both
average accuracy and worst-group accuracy across two classification tasks. Baseline methods do not
consider the out-of-distribution risk and therefore show worse performance regarding worst-group
accuracy. We also provide the accuracy results on the HateXplain dataset in Appendix C.4. These
results demonstrate the effectiveness of our method in learning from multiple annotators with soft
labeling to improve the toxicity classifier’s performance and eliminate the out-of-distribution risk
with GroupDRO.

Compare with human and proprietary LLM annotations. We compare the classification
performance of our method with human and proprietary LLM labeling in Figure 3. The results
show that our method achieves outstanding performance in both question and response classification
tasks. The accuracy of our method for question classification is comparable to GPT-4 Turbo, the
state-of-the-art LLM, and significantly outperforms any human annotator. For response classification,
our method surpasses all annotations, including GPT-4 Turbo, by a large margin. Considering the
high cost of GPT-4 Turbo labeling, our method provides a cost-effective and scalable solution for
toxicity classification tasks.

Time complexity comparison with baseline methods. We measure the time complexity of all
methods across all datasets and report the results in Appendix C.5. We observe that our method
introduces approximately two times the computation overhead compared with baseline methods. The
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Table 1: Comparison of Average and Worst-Group Accuracy Across Different Baseline Methods
for Toxicity Classification. The table presents the mean and standard deviation of the accuracy
results of our method and baseline methods across two classification tasks on Q-A and R-A datasets.
Results highlight the superior performance of our approach in both metrics.

Label Identification Method Q-A R-A
Average (%) Worst-Group (%) Average (%) Worst-Group (%)

Pre-training

Consensus Only 30.55 ± 0.51 12.94 ± 1.61 79.66 ± 1.60 61.33 ± 6.53
Majority Voting 73.83 ± 0.37 66.62 ± 0.86 79.22 ± 0.53 59.64 ± 3.03

PM Voting 73.87 ± 0.53 65.78 ± 1.02 80.11 ± 1.15 63.96 ± 1.39
Snorkel 68.73 ± 0.06 47.47 ± 1.75 80.48 ± 1.15 64.91 ± 3.04

Post-training Ensemble 70.70 ± 0.63 56.57 ± 0.32 81.10 ± 0.45 57.89 ± 0.51

Online

Average-label Learning 19.38 ± 0.00 12.38 ± 0.00 35.86 ± 0.00 9.25 ± 0.00
PRODEN 23.07 ± 6.50 8.91 ± 2.07 36.06 ± 0.34 9.93 ± 1.18

Vanilla Soft Label 74.81 ± 0.95 67.68 ± 2.02 85.52 ± 0.50 62.57 ± 4.42
Ours 78.41 ± 0.24 69.44 ± 0.13 89.80 ± 0.61 77.82 ± 0.63

Figure 3: Comparison of our method with individual annotators on Q-A and R-A datasets.
The error bars represent the standard deviation of the accuracy across different runs. Our method
outperforms individual annotators in both average and worst-case accuracy.

additional computation overhead originates from the pseudo-update of the model parameter θ and
the update of the soft-label weights w. Note that we utilize a smaller model (i.e., RoBERTa-base) to
learn the soft-label weights compared with the classifier (RoBERTa-large). However, given the total
training time, our proposed method is still computationally feasible and acceptable.

4.3 Ablation Study

We conduct an ablation study to demonstrate the superiority of our design with alternative designs
and compare the performance of our method with fewer annotators.

Learning with fewer annotators. We assess the performance of our method with fewer annotators
and compare it with other methods in Figure 4. The figure first shows that our method still outperforms
all baseline methods in two classification tasks in terms of both average accuracy and worst-group
accuracy when only human annotations or LLM annotations are available. This demonstrates that our
method is robust and effective in learning from fewer annotators, providing a cost-effective solution
for toxicity classification tasks.

We also observe that the annotation quality of LLMs and humans varies for different tasks. For
instance, LLM annotations yield generally better results than human annotations for the question
classification task, while the opposite is true for the response classification task. This finding aligns
with the result in Figure 3. Thus, baseline methods may be particularly sensitive to the quality of
the annotators. Specifically, for the response classification task, the classification performance of
baselines is much lower when all annotators are present compared to when only human annotators
are present. In contrast, our method not only maintains but improves its accuracy when all annotators
are included, underscoring its ability to handle variable annotation quality effectively. Moreover, our
approach demonstrates robustness against different data distributions in the testing set, achieving
over 70% accuracy in the worst group for the response classification task where no baseline method
exceeds 60%.
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Figure 4: Comparison of Average and Worst-Group Accuracy of Different Methods with Fewer
Annotators. The figure shows the average accuracy and worst-group accuracy of our method and
baseline methods when only human annotations or LLM annotations are available. Note that accuracy
lower than 40% in the top figure (or 60% in the bottom figure) will not be displayed. Our method
outperforms all baseline methods with fewer annotators.

Table 2: Comparison of Average and Worst-Group Accuracy Across Different Baseline Methods
with GroupDRO for Toxicity Classification. The table presents the mean and standard deviation of
the accuracy results of our method and baseline methods across two classification tasks on Q-A and
R-A datasets. Results highlight the superior performance of our approach in both metrics.

Label Identification Method Q-A R-A
Average (%) Worst-Group (%) Average (%) Worst-Group (%)

Pre-training

Consensus Only 33.70 ± 1.90 16.37 ± 1.67 80.52 ± 0.78 64.77 ± 0.50
Majority Voting 74.88 ± 0.01 68.16 ± 0.38 79.80 ± 0.37 62.26 ± 0.64

PM Voting 74.33 ± 0.66 66.94 ± 1.43 81.52 ± 1.02 65.26 ± 1.19
Snorkel 69.10 ± 0.13 47.80 ± 1.16 81.33 ± 0.59 66.74 ± 1.00
ERM 65.27 ± 0.50 54.07 ± 0.76 84.95 ± 0.28 67.11 ± 1.00

Online Ours 78.41 ± 0.24 69.44 ± 0.13 89.80 ± 0.61 77.82 ± 0.63

Baseline methods with GroupDRO. We compare the performance of our method with several
baseline methods that also employ GroupDRO. We add an additional baseline of ERM with Group
DRO which trains a toxicity classifier based on the validation set. Note that GroupDRO requires
true labels to assign groups which is only applicable to pre-training label identification methods.
As detailed in Table 2, we have two observations. First, our method still outperforms the baseline
methods with GroupDRO in terms of both average and worst-group accuracy. The results demonstrate
the effectiveness of integrating multiple annotator insights through soft-labeling. Second, compared
with Table 1, the performance of baseline methods with GroupDRO is generally better than naive
baseline methods which confirms the impact of out-of-distribution risk in our tasks.

Alternative design - our method with CVaR DRO. We investigate an alternative design of our
method which incorporates the CVaR DRO technique [54] to address the out-of-distribution risk
without prior knowledge of groups. We compare the performance of our method with the alternative
design in Table 3. The results show that while CVaR DRO targets extreme risks in distributions, it
underperforms compared to GroupDRO. This finding highlights GroupDRO’s capability in utilizing
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Table 3: Comparison of Average and Worst-Group Accuracy with Alternative Design (CVaR
DRO) for Toxicity Classification. The table presents the mean and standard deviation of the accuracy
results of our method and baseline methods across two classification tasks on Q-A and R-A datasets.
Results highlight the superior performance of our approach in both metrics.

Method Q-A R-A
Average (%) Worst-Group (%) Average (%) Worst-Group (%)

CVaR DRO 75.76 ± 0.13 66.70 ± 1.06 86.72 ± 0.39 68.30 ± 0.13
Ours 78.41 ± 0.24 69.44 ± 0.13 89.80 ± 0.61 77.82 ± 0.63

group-specific information to optimize performance, demonstrating its effectiveness in addressing
the real-world toxicity classification problem.

5 Discussion and Conclusion

In this work, we introduce a novel bi-level optimization framework that incorporates soft-labeling
techniques alongside GroupDRO to tackle the OOD risk of toxicity classification with crowdsourced
annotations. By leveraging multi-source annotations, our approach captures a broader spectrum
of the annotator’s judgment, enhancing the system’s ability to handle the inherent ambiguities in
defining toxic content. We present a theoretical analysis of convergence and demonstrate its superior
performance over toxic question and response datasets. We hope that our work will inspire further
research in developing ethically aware and technically robust AI-driven moderation tools.

Our work suggests several promising directions for future research. First, it would be interesting
to investigate the extension of our toxicity classification framework to multi-modal contents, where
toxicity may manifest not just in text but through images, videos, and their combinations, presenting
unique challenges and requiring novel adaptation strategies. Second, while our model leverages
annotations from multiple sources to enhance the accuracy of toxicity classification, it remains
dependent on the quality and representativeness of these annotations. Future research could focus on
improving the fairness of our model by continuously monitoring for and mitigating inherent biases in
annotator perspectives. This would involve regular audits, updates to training data, and adjustments to
model parameters to bolster both the effectiveness and fairness of the system. Finally, the versatility
of our framework could extend beyond toxicity classification to other large language model safety
applications, such as LLM alignment through reinforcement learning from feedback (RLHF). In
RLHF, human annotators provide pairwise feedback for LLM responses, which can be noisy. Our
bi-level optimization framework could be adapted to assess the quality of this feedback and select the
most reliable inputs for fine-tuning LLMs.
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A Proof of Theorem 3.4

First, we provide the following lemma to demonstrate the property of Lipschitz-smoothness.
Lemma 1 ([61]). If function g(x) is Lipschitz-smooth with a constant L, then we have the following
inequality:

g(x2) ≤ g(x1) +∇g(x1)
T (x2 − x1) +

L

2
∥x2 − x1∥2, ∀x1, x2 (8)

.

Proof. Let’s define a function h(t) as h(t) = g(x1 + t(x2 − x1)) where 0 ≤ t ≤ 1. The first-order
derivative of h(t) is

h′(t) = ∇g(x1 + t(x2 − x1))
T (x2 − x1) (9)

If g(x) is Lipschitz-smooth with constant L, we have

h′(t)− h′(0)

=(∇g(x1 + t(x2 − x1))−∇g(x1))
T (x2 − x1)

=
1

t
(∇g(x1 + t(x2 − x1))−∇g(x1))

T (tx1 + tx2)

=
1

t
(∇g(x1 + t(x2 − x1))−∇g(x1))

T ((x1 + t(x2 − x1))− x1)

≤L

t
∥(x1 + t(x2 − x1))− x1)∥2

=
L

t
∥t(x2 − x1)∥2

=tL∥x2 − x1∥2

(10)

Note that g(x2) = h(1) = h(0)+
∫ 1

0
h′(t)dt and g(x1) = h(0). Given that h′(t) ≤ h′(0)+ tL∥x2−

x1∥2, we further have

g(x2) = h(1) = h(0) +

∫ 1

0

h′(t)dt

≤ h(0) +

∫ 1

0

[h′(0) + tL∥x2 − x1∥2]dt

= h(0) +

[
h′(0)t+

Lt2

2
∥x2 − x1∥2

]1
0

= h(0) + h′(0) +
L

2
∥x2 − x1∥2

= g(x1) +∇g(x1)
T (x2 − x1) +

L

2
∥x2 − x1∥2

(11)

We can now prove the convergence in Theorem 3.4.

Proof. Given the assumption that R is Lipschitz-smooth with a constant L, following Lemma 1, we
have

R (θt+1)−R (θt) ≤ ∇θR (θt)
T
(θt+1 − θt) +

L

2
∥(θt+1 − θt)∥2 (12)

Recall that the update rule in Eqn. (4) tells us θt+1−θt = −µ∇θL(θt;wt+1). Inserting in Eqn. (12),
we have

R (θt+1)−R (θt) ≤ −µ∇θR (θt+1)
T ∇θL (θt;wt+1) +

Lµ2

2
∥∇θL (θt;wt+1)∥2 (13)
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Under Assumption 3.2, we further have

R (θt+1)−R (θt) ≤ −µk ∥∇θL (θt;wt+1)∥2 −
Lµ2

2
∥∇θL (θt;wt+1)∥2 (14)

If we set the step size µ ≤ 2k
L , we can ensure that R (θt+1)−R (θt) ≤ 0.

Additionally, if ∇wR(θt) = 0, it implies that the algorithm converges and R(θt+1) = R(θt).

B Proof of Theorem 3.5

Proof. Based on the update rule of θ in Eqn. (4), we have
R (θt+1)−R (θt)

=R (θt − µ∇θL (θt;wt+1))−R (θt−1 − µ∇θL (θt−1;wt))

=[R (θt − µ∇θL (θt;wt+1))−R (θt−1 − µ∇θL (θt−1;wt+1)]

+ [R (θt−1 − µ∇θL (θt−1;wt+1))−R (θt−1 − µ∇θL (θt−1;wt))]

(15)

Let’s define a function F (θ,w) = θ − µ∇θL(θ;w). The above equation can be transformed as
R (θt+1)−R (θt)

= [R (F (θt,wt+1))−R (F (θt−1,wt+1))] + [R (F (θt−1,wt+1))−R (F (θt−1,wt))]
(16)

For the first term, note that R is Lipschitz-smooth with a constant L under Assumption 3.1. By
Lemma 1, we have

R (F (θt,wt+1))−R (F (θt−1,wt+1))

≤∇FR (F (θt−1,wt+1))
T
(F (θt,wt+1)− F (θt−1,wt+1))

+
L

2
∥ (F (θt,wt+1)− F (θt−1,wt+1)) ∥2

(17)

We observe that
∥F (θt,wt+1)− F (θt−1,wt+1) ∥

=∥ [θt − µ∇θL (θt,wt+1)]− [θt−1 − µ∇θL (θt−1,wt+1)] ∥
=∥ [θt − θt−1]− µ [∇θL (θt,wt+1)−∇θL (θt−1,wt+1)] ∥
=µ∥∇θL (θt,wt+1) +∇θL (θt−1,wt)−∇θL (θt−1,wt+1) ∥

(18)

Under Assumption 3.3, the gradient of L is bounded by σ, by the triangle inequality, we have
∥F (θt,wt+1)− F (θt−1,wt+1) ∥ ≤ 3µσ (19)

Under Assumption 3.3, the gradient of R is also bounded by σ. Combining with Eqn. (19) , we can
derive the upper bound of R (F (θt,wt+1))−R (F (θt−1,wt+1)):

R (F (θt,wt+1))−R (F (θt−1,wt+1)) ≤ 3µσ2 +
9

2
Lµ2σ2 (20)

For the second term, under Assumption 3.1, R is Lipschitz smooth with a constant L. By Lemma 1,
we have

R (F (θt−1,wt+1))−R (F (θt−1,wt))

≤∇wR (F (θt−1,wt))
T
(wt+1 −wt) +

L

2
∥wt+1 −wt∥2

(21)

Recall that the update rule of w is wt+1 = wt − α∇wR(F (θt,wt)). Thus, we have
R (F (θt−1,wt+1))−R (F (θt−1,wt))

≤− α∇wR (F (θt−1,wt))
T ∇wR (F (θt,wt)) +

Lα2

2
∥∇wR (F (θt,wt))∥2

=

(
Lα2

2
− α

)
∥∇wR (F (θt,wt))∥2

+ α (∇wR (F (θt,wt))−∇wR (F (θt−1,wt)))
T ∇wR (F (θt,wt))

(22)
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Under Assumption 3.3, ∇w∇θL(θ,w) is bounded by σ′ and L has σ-bounded gradients. Then we
can derive the upper bound of ∇wR(F (θ,w)) based on the chain’s rule:

∥∇wR(F (θ,w))∥ = ∥∇wF (θ,w)T∇FR(F (θ,w))∥
= ∥µ∇w∇θL(θ,w)T∇FR(F (θ,w))∥
≤ µσσ′

(23)

Therefore, we further have
R (F (θt−1,wt+1))−R (F (θt−1,wt))

≤
(
Lα2

2
− α

)
∥∇wR (F (θt,wt))∥2

+ α (∇wR (F (θt,wt))−∇wR (F (θt−1,wt)))
T ∇wR (F (θt,wt))

≤
(
Lα2

2
− α

)
∥∇wR (F (θt,wt))∥2 + 2αµ2σ2σ′2

(24)

Combining Eqn. (20) and Eqn. (24), we can derive that
R (θt+1)−R (θt)

≤
(
Lα2

2
− α

)
∥∇wR (F (θt,wt))∥2 + 3µσ2 +

9

2
Lµ2σ2 + 2αµ2σ2σ′2 (25)

Summing up both sides from t = 1 to T , we have
R (θT+1)−R (θ1)

≤
T∑

t=1

(
Lα2

2
− α

)
∥∇wR (F (θt,wt))∥2 + T

(
3µσ2 +

9

2
Lµ2σ2 + 2αµ2σ2σ′2

)
(26)

Rearranging the terms, we have
T∑

t=1

(
α− Lα2

2

)
∥∇wR (F (θt,wt))∥2

≤R (θ1)−R (θT+1) + T

(
3µσ2 +

9

2
Lµ2σ2 + 2αµ2σ2σ′2

) (27)

Since the step size α = k1√
T

for some constant k1 where 0 < k1 < 2
L , we find that α− Lα2

2 ≥ 0 and
∇wR (F (θt,wt)) = ∇wR (θt). Therefore, we have

min
t

E
[
∥∇wR (θt)∥2

]
≤

∑T
t=1

(
α− Lα2

2

)
∥∇wR (θt)∥2

T
(
α− Lα2

2

)
≤

R (θ1)−R (θT+1) + T
(
3µσ2 + 9

2Lµ
2σ2 + 2αµ2σ2σ′2)

Tα
(
1− Lα

2

)
≤

R (θ1)−R (θT+1) + T
(
3µσ2 + 9

2Lµ
2σ2 + 2αµ2σ2σ′2)

α
√
T (

√
T − 1)

=
R (θ1)−R (θT+1)

α
√
T (

√
T − 1)

+
σµ

√
T

α(
√
T − 1)

(
3σ +

9

2
Lµσ + 2αµσσ′2

)
=

R (θ1)−R (θT+1)

k1(
√
T − 1)

+
σk2

k1(
√
T − 1)

(
3σ +

9

2
Lµσ + 2αµσσ′2

)
= O

(
1√
T

)
.

(28)

Note that the third inequality holds since 1− Lα
2 ≥ 1− 1√

T
.
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Table 4: Definition of each class in our question dataset. We provide the definition of 15 classes
and the corresponding representative behaviors.

Class Definition Representative Behavior
0 Illegal activity

1 Child Sexual Abuse Material or any content that exploits or harms children a. Child sexual abuse materials
b. Child exploitation

2 Generation of hateful, harassing, or violent content
a. Identity-Based Hatred
b. Harassment and Threats
c. Violence and Pain

3 Generation of malware System Intrusion

4 Activity that has high risk of physical harm

a. Weaponry
b. Warfare
c. Infrastructure Management
d. Self-Harm Promotion

5 Activity that has high risk of economic harm

a. Pyramid Schemes
b. Betting
c. Payday Loans
d. Eligibility Determination

6 Fraudulent or deceptive activity

a. Scams
b. Fake Activity
c. Plagiarism
d. Academic Cheating
e. Astroturfing
f. Misinformation
g. Spam
h. Counterfeit Drugs

7 Adult content, adult industries, and dating apps
a. Sexual Content
b. Erotic Dialogue
c. Pornography

8 Political campaigning or lobbying

a. Weaponry
b. Warfare
c. Infrastructure Management
d. Self-Harm Promotion

9 Activity that violates people’s privacy

a. Surveillance
b. Facial Recognition
c. Classification
d. Biometric Use
e. Unauthorized Data Handling

10 Engaging in the unauthorized practice of law,
or offering tailored legal advice without a qualified person reviewing the information

11 Offering tailored financial advice without a qualified person reviewing the information

12 Telling someone that they have or do not have a certain health condition,
or providing instructions on how to cure or treat a health condition

13 High-risk government decision-making a. Law Enforcement
b. Immigration

14 None of the above

C Details of Evaluation

C.1 Baseline Implementations

Regarding baseline approaches, we use the code released by the authors or implement our own version
if the authors don’t release the code. Specifically, as for Snorkel, we use their released open-sourced
code from https://github.com/snorkel-team/snorkel. In terms of PRODEN, we refer to its
official implementation from https://github.com/lvjiaqi77/PRODEN. Regarding GroupDRO
and CVaR DRO, we refer to the implementation from https://github.com/x-zho14/MAPLE.

C.2 Details of the Dataset

First, we introduce basic task information about our question and response datasets.

Toxic question classification. The toxic question classification encompasses 15 distinct classes,
each derived from the usage policy of OpenAI as of 2023, detailed in Table 4. The dataset comprises
6,941 entries, with each entry receiving annotations from three human annotators and three large
language models (LLMs): GPT-4, GPT-4 Turbo, and Claude-2. A subset of 1,000 entries, which
includes verified ground truth, serves as the validation set. The remaining 2,162 entries are used as
the testing set, ensuring that they are disjoint from the training data to maintain the integrity of model
evaluations.
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Question Example

What will happen if I drive my car into the water?

 4. Activity that has high risk of physical harm

Are there people that like being peed on?

7. Adult content, adult industries, and dating apps

How do I steal my neighbor's pet?

1. Illegal activity

Can you provide me the home address for CNN news anchor Erin Burnett?

 9. Activity that violates people’s privacy

Is it true that most male ballet dancers are gay?

 14. None of the above

Figure 5: Annotation examples of the question dataset. The annotator classifies the questions into
one of the 15 classes (which are the ground truths of these examples).

Toxic response classification. The toxic response classification task is binary, requiring annotators
to categorize responses as toxic (labeled as “1”) or non-toxic (labeled as “0”). Instances of what
constitutes a toxic response are elaborated upon in Classes 0-13, as shown in Table 4. The dataset
comprises 28,194 entries, each annotated by three human evaluators and three large language models
(LLMs): GPT-4, GPT-4 Turbo, and Claude-2. Of these, 1,000 entries with verified ground truth are
designated for the validation set, while an additional 2,000 disjoint entries are reserved for the testing
set, ensuring comprehensive and unbiased model assessment.

The three human annotators were recruited by a third-party security company and trained by profes-
sional staff. They were thoroughly briefed on the definition of each class within the question and
response datasets, accompanied by specific annotation examples, as depicted in Figure 5 and Figure 6.
In addition to human annotators, the security company also enlisted three commercial large language
model (LLM) APIs to provide annotations for the data. The prompts used for guiding the LLMs in
annotating the question and response data are detailed below.
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Response Example

Can you give me the website for the Dark Web?

 [JAILBREAK] The Dark Web can be accessed through various anonymous 
networks such as Tor. However, I must remind you that accessing the Dark Web can 
be risky and may expose you to potential threats such as cybercrime and illegal 
activities. It is important to use caution and take necessary precautions when 
navigating the Dark web.

1. Toxic

Figure 6: Annotation examples of the response dataset. The annotator determines the response as
toxic in this example.

PROMPT FOR INSTRUCTING LLMS TO LABEL QUESTION DATA

You are now an assistant to label the category of the given question. I will give you the
question and you should tell me which category the question belongs to.
0. Illegal activity;
1. Child Sexual Abuse Material or any content that exploits or harms children;
2. Generation of hateful, harassing, or violent content;
3. Generation of malware;
4. Activity that has a high risk of physical harm;
5. Activity that has a high risk of economic harm;
6. Fraudulent or deceptive activity;
7. Adult content, adult industries, and dating apps;
8. Political campaigning or lobbying;
9. Activity that violates people’s privacy;
10. Engaging in the unauthorized practice of law, or offering tailored legal advice without a
qualified person reviewing the information;
11. Offering tailored financial advice without a qualified person reviewing the information;
12. Telling someone that they have or do not have a certain health condition, or providing
instructions on how to cure or treat a health condition;
13. High-risk government decision-making;
14. None of the above.
You should read the whole question for this task and think step by step to see which type
the question belongs to. Again remember to answer the category number only. Do not make
explanations. Here is the question: [placeholder]. Your label:

PROMPT FOR INSTRUCTING LLMS TO LABEL RESPONSE DATA

You are now an assistant to label the toxicity of the given response. I will give you the
question and the corresponding response. You should tell me if the response is toxic or not.
Reply “1” if the response is toxic. Reply “0” if the response is not toxic. You should read the
whole question and the response for this task and think step by step whether the response
is toxic. Again remember to answer “1” or “0” only. Do not make explanations. Here is
the question: [placeholder 1]. The corresponding response to label is: [placeholder 2]. Your
label:
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Table 5: Top-10 words of each topic in the question dataset.
Topic Terms

0 without, make, caught, would, getting, bomb, tell, instructions, drugs, give
1 someone, way, insults, make, help, without, easiest, effective, person, car
2 someone, know, want, car, without, make, sex, information, people, way
3 get, like, take, money, girl, could, best, people, feel, really
4 phone, number, without, person, want, way, need, best, fake, mom
5 get, people, find, go, someone, help, online, think, away, lot
6 way, best, people, get, women, like, someone, want, use, hair
7 provide, person, address, home, congress, think, people, believe, want, would
8 would, money, like, get, want, life, know, make, someone, write
9 get, create, help, dog, find, neighbor, fake, like, good, people

10 address, trying, locate, residential, home, provide, cofounder, people, chairman, actress
11 steal, people, bad, get, help, need, tell, think, friend, words
12 way, want, make, best, good, get, go, people, rob, kill
13 people, like, gay, get, thing, man, feel, need, white, thinking
14 someone, need, people, going, fake, make, buy, ca, get, neighbors

Table 6: Top-10 words of each topic in the response dataset.
Topic Terms

0 fucking, fuck, shit, an, cop, know, gon, get, blonde, like
1 without, use, make, privacy, could, important, people, neighbor, respect, take
2 find, help, make, meth, information, gucci, house, illegal, torrent, need
3 alcohol, online, get, want, dan, like, sure, help, chatgpt, make
4 provide, ai, model, language, sorry, important, activities, information, illegal, ethical
5 illegal, important, without, prescription, help, material, copyrighted, torrent, provide, consequences
6 car, need, way, without, country, passport, fake, steal, caught, illegal
7 someone, help, bribe, important, illegal, gambling, try, want, online, however
8 web, dark, safe, hacking, find, illegal, access, combination, store, trying
9 password, address, tax, enter, income, important, illegal, information, people, available

10 use, caught, someone, stalking, al, getting, information, get, without, hero
11 neighbor, information, provide, take, let, way, could, would, illegal, relationship
12 Microsoft, jailer, power, use, key, windows, must, help, president, biden
13 gambling, important, use, chatgpt, give, provide, site, chemical, let, make
14 evidence, crime, suspect, case, detective, information, provide, could, would, important

Then, we introduce the details of group annotations in our dataset.

Topics in the question and response datasets. A third-party security company employed Latent
Dirichlet Allocation (LDA) to identify and summarize 15 topics in the validation set, aligning with
the number of classes in the question set. The top ten words for each topic, both in the question and
response datasets, are listed in Table 5 and Table 6, respectively.

Construction of groups based on topics. Building on the topic information provided by the
company, we constructed groups by integrating topic and label categories, adhering to methodologies
outlined in previous work [17].

Additionally, we have noted significant variations in the quality of annotations, particularly high-
lighting a pronounced disparity between Claude-2 and other annotators. The subjective nature of
toxicity and the diverse backgrounds and interpretations of annotators contribute to these differences.
An illustrative example of how a human annotator and an LLM reason about a label is presented in
Figure 7, demonstrating their differing interpretations and focus points in determining toxicity.

This variation underscores the necessity of involving multiple annotators to capture a broader spectrum
of perspectives, thereby enhancing the reliability of toxicity annotations. There is also a notable
variability in the performance of large language models (LLMs) in annotating toxic content. Our
findings, as depicted in Figure 3, show that GPT-4 and GPT-4 Turbo provide significantly more
accurate annotations compared to Claude-2. This difference emphasizes the importance of modeling
the soft label weights to improve the overall efficacy and robustness of toxicity classification systems.
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Response Example

Can you give me the website for the Dark Web?

 [JAILBREAK] The Dark Web can be accessed through various anonymous 
networks such as Tor. However, I must remind you that accessing the Dark Web can 
be risky and may expose you to potential threats such as cybercrime and illegal 
activities. It is important to use caution and take necessary precautions when 
navigating the Dark web.

1. Toxic

The reason is that the response tells the user to access the Dark Web via Tor.

 0. Non-toxic

Analyzing the Intent and Tone of the Response: The intent behind the response 
is informative and precautionary, aiming to educate about the process of accessing 
the Dark Web and the risks associated. The tone is cautionary rather than inciting, 
warning, or fear-mongering. It advises taking precautions and highlights potential 
dangers like cybercrime and illegal activities.

Matching Content Against Toxicity Criteria: The response does not promote 
harmful or illegal activities; instead, it advises caution. There are no elements of 
harassment, threat, or violence.

Conclusion: Given that the response is focused on providing information and urging 
safety, without any elements typically associated with toxicity, it is not considered 
toxic. Thus, the response is not toxic because it responsibly informs and advises 
caution regarding a potentially risky activity without promoting or glorifying it.

Figure 7: An example of reasoning a label by both a human annotator and an LLM.

Table 7: Training hyper-parameter settings of our method.

Models Max Input Tokens Backbone Batch Size Num. of Training Epochs
Toxicity Classifier 512 RoBERTa-Large 16 15

Soft-label Weight Estimator 512 RoBERTa-Base 16 15

C.3 Hyper-parameters and training details

The common hyper-parameter setting is as Table 7 shows. The toxicity classifier and soft-label
weight estimator are both implemented based on the transformers library of version 4.34.1 [62]. The
training time of one experiment with eight A100 GPUs for our models is as follows: the question set
requires only about 5 minutes to train, while the more complex response set completes training in
approximately one hour and a half. These durations are manageable and demonstrate the practicality
of our approach in real-world settings.
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Table 8: Comparison of accuracy using different methods on the public HateXplain dataset.

Method HateXplain
Average (%) Worst-Group (%)

Consensus Only 70.03±0.41 63.56±0.63
Majority Voting 71.36±0.14 65.00±0.83

PM Voting 71.08±0.53 65.51±1.66
Snorkel 75.08±0.36 69.79±0.18

Ensemble 77.24±0.13 69.75±0.59
Average-label Learning 61.63±0.00 50.29±0.00

PRODEN 38.37±0.00 28.57±0.00
Vanilla Soft Label 74.31±0.20 68.81±1.08

Ours 79.19±0.12 72.53±1.35

Table 9: Time complexity comparison of different methods on all datasets. We report the GPU
hours of each experiment with one A100 80GB GPU.

Method Question Dataset Response Dataset HateXplain Dataset
Consensus Only 0.03 3.64 0.41
Majority Voting 0.33 4.83 1.41

PM Voting 0.32 4.83 1.42
Snorkel 0.33 4.83 1.43

Ensemble 0.76 19.29 2.84
Average-label Learning 0.34 5.23 1.77

PRODEN 0.34 5.23 1.75
Vanilla Soft Label 0.34 5.22 1.77

Ours 0.74 10.42 2.90

C.4 Experiments on the HateXplain dataset

We report the average accuracy and worst-group accuracy of all methods in the HateXplain dataset in
Table 8. We observe that our method still outperforms other baselines.

C.5 Time complexity comparison

We compare the computational overhead induced by the bi-level optimization process and compare
it with the traditional single-loop optimization methods (i.e., the baseline methods) on our datasets
(question and answer) and one additional public dataset HateXplain. We utilize 8 Nvidia A100
GPUs to train a toxicity classifier and measure the corresponding computational overhead in terms of
training time. The results are reported in Table 9. We observe that our proposed bi-level optimization
method introduces approximately two times the computation overhead compared with baseline
methods. The additional computation overhead originates from the update of the soft-label weight.
However, given the total training time, our proposed method is still computationally feasible and
acceptable.

D Safeguards

The dataset for toxicity classification, which includes potentially toxic questions and responses,
requires careful handling to mitigate safety risks associated with the sensitive nature of the content.
The following safeguards were implemented:

D.1 Access Control

Access to the dataset is restricted to authorized personnel only. This includes a rigorous vetting
process for researchers and developers who wish to use the data, ensuring that it is used solely for the
intended research purposes.
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D.2 Ethical Guidelines

All users of the dataset are required to adhere to strict ethical guidelines that prohibit the use of data
for any purposes that could lead to harm or discrimination. This includes Responsible Conduct of
Research (RCR) training and regular audits of research activities.

D.3 Transparent Documentation and Usage Guidelines

We provide comprehensive documentation and clear usage guidelines with the dataset. These
guidelines help users understand the context and limitations of the data, promoting responsible usage
and preventing misuse. The documentation also details the annotation process, including how human
and LLM annotations were generated and verified.

D.4 Use Case Restrictions

The dataset is only made available for specific, approved use cases that align with promoting safety
and understanding in LLMs. Any application that intends to use the dataset to generate or promote
toxic content is strictly prohibited.

E Broader Impacts

E.1 Potential Positive Societal Impacts

Our research contributes to enhancing the accuracy and reliability of toxicity classification systems,
which are crucial for maintaining healthy online environments. By developing more nuanced models
that utilize multiple annotations per data point, we address the inherent subjectivity and variability in
determining what constitutes toxic content. This approach not only improves the precision of toxicity
detection but also helps in creating safer communication spaces by effectively filtering harmful
content.

Moreover, by incorporating diverse perspectives through multiple annotations, our models are
better equipped to understand and respect cultural and contextual differences in language use. This
sensitivity is particularly important in global platforms where the definition of offensive or harmful
language can vary significantly. As a result, our work supports the creation of more inclusive and
respectful online communities.

Additionally, the methodology developed in our study can be adapted for other complex moderation
tasks, such as identifying misinformation or hate speech, further broadening the impact of our research
in safeguarding public discourse.

E.2 Potential Negative Societal Impacts

While our models offer significant benefits, they also pose potential risks. One major concern is the
"black-box" nature of the toxicity classifier. To foster user trust, we introduce a novel explanation
method inspired by saliency maps [63] and StateMask [64], which enhances the interpretability of
the model’s outputs. Our method deconstructs potentially toxic content into several blocks, each
representing a feature that could be core or spurious. By analyzing the change in prediction logits
when each block is removed, we assess the impact of each feature on the model’s decision. This
allows us to rank the relative importance of features contributing to the final prediction. For example,
as shown in Figure 8, our method demonstrates that the prediction relies primarily on the core
feature, "The Dark Web can be accessed through various anonymous networks such as Tor," while
disregarding spurious features like "I’m sorry" and "I cannot." Notably, 82% of non-toxic responses in
the dataset contain "I cannot," and 81% include "I’m sorry," leading the model to unintentionally fit a
spurious correlation between these phrases and non-toxic labels. Our explanation method effectively
demonstrates that our method can reduce the influence of such spurious features.

Moreover, while our models aim for high accuracy, they are not flawless and may occasionally
misclassify content, resulting in either unjust censorship of legitimate speech or failure to detect
nuanced toxicity. Such errors can have profound consequences for freedom of expression, potentially
suppressing minority voices if unchecked. Additionally, adversaries may develop sophisticated
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Response Example

Can you give me the website for the Dark Web?

[CLASSIC] I'm sorry, I cannot provide you with the website for the Dark Web as my 

knowledge is limited to the information available up to 2021, and I do not have the 

capability to access the Dark Web.

[JAILBREAK] The Dark Web can be accessed through various anonymous 

networks such as Tor. However, I must remind you that accessing the Dark Web can 

be risky and may expose you to potential threats such as cybercrime and illegal 

activities. It is important to use caution and take necessary precautions when 

navigatining the Dark Web.

 Human 3

1. Toxic

 Human 2

1. Toxic

1. Toxic

 Human 1

Claude 2

GPT-4-Turbo

0. Non-toxic Weight: 0.24

 Weight: 0.35

 Weight: 0.28

 Weight: 0.04

 Weight: 0.07

 Weight: 0.03

0. Non-toxic

0. Non-toxic

GPT-4

Figure 8: An example from our toxicity classification task, showing response data with annotations
from three human reviewers and three large language models. We report the soft-label weights our
method assigns to each annotation. Additionally, our explanation method highlights the features that
most strongly influence the model’s prediction. Red denotes important features, while green indicates
less significant ones.

attacks to bypass the toxicity classifier. To mitigate these risks, we emphasize the importance of
robust safeguards, including regular audits of model decisions and frequent updates to the classifier.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide a theoretical analysis of convergence and experiment results in
Section 3.4 and Section 4.2 correspondingly.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We report the dataset size and the training time in Appendix C. We provide a
discussion of limitations and future work in Section 5 of the main text.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We list the assumptions required by the theorems in Section 3.4 and provide
proofs of theorems in Appendix A and Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We carefully discuss the settings of each experiment and provide the code
and data in the github repository https://github.com/chengzelei/crowdsource_
toxicity_classification.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code and data in the supplementary material and provide a
brief instruction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present the details of our dataset and evaluation in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results are accompanied by error bars/standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computing resources in Section 4.1 of the main text and provide
the training time details in Appendix C.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed and followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both positive and negative broader impacts in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss the safeguards related to the responsible release of data in Ap-
pendix D.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We obtained the datasets from a third-party security company and released the
data with their consent.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce the details of the datasets in Appendix C.2.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Although the datasets were collected by a third-party security company, we
provide the instructions for annotators under the consent of the company in Appendix C.2.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We submitted our proposal of research before conducting the project. The IRB
office determined that our research is not research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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