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Abstract

Diffusion models have achieved remarkable

progress on image-to-video (I2V) generation,

while their noise-to-data generation process is in-

herently mismatched with this task, which may

lead to suboptimal synthesis quality. In this work,

we present FrameBridge. By modeling the frame-

to-frames generation process with a bridge model

based data-to-data generative process, we are

able to fully exploit the information contained in

the given image and improve the consistency be-

tween the generation process and I2V task. More-

over, we propose two novel techniques toward

the two popular settings of training I2V models,

respectively. Firstly, we propose SNR-Aligned

Fine-tuning (SAF), making the first attempt to

fine-tune a diffusion model to a bridge model and,

therefore, allowing us to utilize the pre-trained

diffusion-based text-to-video (T2V) models. Sec-

ondly, we propose neural prior, further improv-

ing the synthesis quality of FrameBridge when

training from scratch. Experiments conducted

on WebVid-2M and UCF-101 demonstrate the

superior quality of FrameBridge in comparison

with the diffusion counterpart (zero-shot FVD 95

vs. 192 on MSR-VTT and non-zero-shot FVD

122 vs. 171 on UCF-101), and the advantages

of our proposed SAF and neural prior for bridge-

based I2V models. The project page: https:

//framebridge-icml.github.io/.

1 Introduction

Image-to-video (I2V) generation, commonly referred as im-

age animation, aims at generating consecutive video frames

from a static image (Xing et al., 2024; Ni et al., 2023; Zhang

et al., 2024a; Guo et al., 2024; Hu et al., 2022), i.e., a frame-
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to-frames generation task where maintaining appearance

consistency and ensuring temporal coherence of generated

video frames are the key evaluation criteria (Xing et al.,

2024; Zhang et al., 2024a). With the recent progress in video

synthesis (Brooks et al., 2024; Yang et al., 2024b; Blattmann

et al., 2023; Bao et al., 2024), several diffusion-based I2V

frameworks have been proposed, with novel designs on net-

work architecture (Xing et al., 2024; Zhang et al., 2024a;

Chen et al., 2023b; Ren et al.; Lu et al.), cascaded frame-

work (Jain et al., 2024; Zhang et al., 2023), and motion

representation (Zhang et al., 2024b; Ni et al., 2023). How-

ever, although these methods have demonstrated the strong

capability of diffusion models (Ho et al., 2020; Song et al.)

for I2V synthesis, their noise-to-data generation process

is inherently mismatched with the frame-to-frames synthe-

sis of I2V task, making them suffer from the difficulty of

generating high-quality video samples from uninformative

Gaussian noise rather than the given image.

In this work, inspired by recently proposed bridge mod-

els (Chen et al.; Liu et al., 2023; Chen et al., 2023c), we

present FrameBridge, a novel I2V framework to model the

frame-to-frames synthesis process with a data-to-data gener-

ative framework instead of the noise-to-data one in diffusion

models. Specifically, given the input image and video target,

we first leverage variational auto-encoder (VAE) based com-

pression network to transform them into continuous latent

representations, and then take their latent representations as

boundary distributions, i.e., prior and target, to establish our

data-to-data generative framework. Considering the static

image has already been an informative prior for each of the

consecutive frames in video target, we naturally replicate

it to obtain the prior of the whole video clip, constructing

the frames-to-frames training data pairs for the prior-to-

target generative framework in FrameBridge. Standing on

constructed pairs, we establish bridge models (Tong et al.,

2024; Zhou et al.; Chen et al., 2023c) between them to

learn the I2V synthesis with Stochastic Differential Equa-

tion (SDE) based generation process. In comparison with

previous diffusion-based I2V methods, our FrameBridge uti-

lizes given static image as the prior of video target, which is

advantageous on preserving the appearance details of input

image than conditionally generating video samples from ran-

dom noise. Moreover, our frames-to-frames bridge model

learns image animation in model training rather than learn-
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Figure 1. Overview of FrameBridge and diffusion-based I2V models. The sampling process of FrameBridge (upper) starts from given

static image, while diffusion models (lower) synthesize videos from uninformative Gaussian noise.

ing image-conditioned noise-to-video generation, which en-

hances the consistency between generative framework and

I2V task, i.e., data-to-data for frame-to-frames and tends to

benefit temporal coherence for I2V synthesis.

In practice, I2V systems usually take advantage of a pre-

trained diffusion-based text-to-video (T2V) model (Xing

et al., 2024; Chen et al., 2023b; Ma et al., 2024a) with a

fine-tuning process, to reduce the requirements of image-

video data pairs and the computational resources at the

training stage of I2V generation. Toward efficiently utiliz-

ing previously pre-trained diffusion-based T2V models, we

propose SNR-Aligned Fine-tuning (SAF), a novel technique

for fine-tuning them to bridge-based I2V models. Specifi-

cally, we first reparameterize the bridge process in Frame-

Bridge, enabling the noisy intermediate representations of

our frames-to-frames process to be aligned with the ones

in the noise-to-frames process of pre-trained diffusion mod-

els, improving fine-tuning efficiency. Then, we change the

timestep to match the signal-to-noise (SNR) ratio between

the input of the bridge model and the pre-trained diffusion

model, remaining the differences between the diffusion and

bridge process. Our SAF aligns the noisy intermediate rep-

resentations of two generative frameworks while preserving

the difference between them (i.e., diffusion and bridge pro-

cess), and therefore improves the final synthesis quality

of FrameBridge when adapting pre-trained T2V diffusion

models.

Compared to diffusion models using Gaussian prior, Frame-

Bridge takes the given static image as the prior of video

target to improve I2V performance. Toward further im-

proving bridge-based I2V synthesis quality, we present a

stronger prior for FrameBridge. Given a static image, we

design a one-step mapping-based network and optimize it

with the video target, extracting a neural prior from the

image for the video target. Compared to input image, this

neural prior reduces the distance between prior and video

target to a greater extent, and alleviates the burden of gen-

eration process further. Although more advanced methods

can be leveraged to extract more informative neural prior,

we empirically find that a coarse estimation for video target

at the cost of a single sampling step has already been benefi-

cial to FrameBridge. This further verifies our motivation to

present FrameBridge and shows a novel method to enhance

bridge-based I2V models. In this work, our contributions

can be summarized as follows:

• We propose FrameBridge, making the first attempt to

model the frame-to-frames generation task of I2V with

a data-to-data generative framework.

• We present two novel techniques, SAF and neural prior,

further improving the performance of FrameBridge

when fine-tuning from pre-trained T2V diffusion mod-

els and training from scratch respectively.

• We conduct experiments on two I2V benchmarks by

training FrameBridge on WebVid-2M (Bain et al.,

2021) and UCF-101 (Soomro, 2012). Compared with

its diffusion counterpart, FrameBridge fine-tuned with

SAF reduces the zero-shot FVD (Unterthiner et al.

(2018); lower is better) from 192 to 95 on MSR-VTT

(Xu et al., 2016), and FrameBridge with neural prior

trained from scratch reduces the non-zero-shot FVD

from 171 to 122 on UCF-101, highlighting the supe-

riority of FrameBridge to their diffusion counterparts

and the effectiveness of SAF and neural prior.

2 Related Works

Diffusion-based I2V Generation Diffusion models have

recently achieved remarkable progress in I2V synthe-

sis (Blattmann et al., 2023; Chen et al., 2023a; Li et al.,
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Figure 2. Visualization for the mean value of marginal distributions. We visualize the decoded mean value of bridge process and

diffusion process. The prior and target of FrameBridge are naturally suitable for I2V synthesis.

2024) and proposed multi-stage generation system (Jain

et al., 2024; Zhang et al., 2023; Shi et al., 2024; Zhang et al.,

2025f), fusion module (Wang et al., 2024; Ren et al.) and

improved network architectures (Wang et al., 2024; Xing

et al., 2024; Ma et al., 2024a; Chen et al., 2023b; Ren et al.;

Zhang et al., 2025a;b;c;d). However, their noise-to-data

generation process may be inefficient for I2V synthesis. To

improve the uninformative prior of diffusion models (Fis-

cher et al., 2023; Albergo et al., 2024; Yang et al., 2024a),

PYoCo (Ge et al., 2023) proposes to use correlated noise

for each frame in both training and inference. ConsistI2V

(Ren et al.), FreeInit (Wu et al., 2024), and CIL (Zhao et al.)

present training-free strategies to better align the training

and sampling distribution of diffusion prior. These strate-

gies improve the noise distribution to enhance the quality of

synthesized videos, while they still suffer the restriction of

noise-to-data diffusion framework, which may limit their en-

deavor to utilize the entire information (e.g., both large-scale

features and fine-grained details) contained in the given im-

age. In this work, we propose a data-to-data framework

and utilize clean and deterministic prior rather than Gaus-

sian noise, allowing us to leverage the given image as prior

information.

Bridge Models Recently, bridge models (Chen et al.;

Tong et al., 2024; Liu et al., 2023; Zhou et al.; Chen et al.,

2023c; Zheng et al., 2024; He et al.; De Bortoli et al., 2021;

Peluchetti, 2023), which overcome the restriction of Gaus-

sian prior in diffusion models, have gained increasing at-

tention. They have demonstrated the advantages of data-

to-data generation process over the noise-to-data one on

image-to-image translation (Liu et al., 2023; Zhou et al.)

and speech synthesis (Chen et al., 2023c; Li et al., 2025)

tasks. In this work, we make the first attempt to extend

bridge models to I2V synthesis and further propose two

improving techniques for bridge models, enabling efficient

fine-tuning from diffusion models and stronger prior for

video target.

3 Motivation

Diffusion-based I2V Synthesis I2V synthesis aims at

generating a video clip v ∈ RL×H×W×3 with L frames

conditioning on a static image, e.g., the initial frame vi ∈
RH×W×3 of video clip v. In diffusion-based I2V sys-

tems (Xing et al., 2024; Blattmann et al., 2023), an VAE-

based compression network is usually leveraged to first

transform the video v into a latent z ∈ RL×h×w×d in a

per-frame manner with a pre-trained image encoder E(v),
where h = H

p
, w = W

p
, p > 1 and d are the spatial com-

pression ratio and the number of output channels. A for-

ward diffusion process gradually converts the video latent

p0(z0|zi, c) ≜ pdata(z0|zi, c) to a known prior distribution

pT,diff (zT ) ≜ pprior,diff (zT ) with a forward SDE (Song

et al.):

dzt = f(t)ztdt+ g(t)dw, z0 ∼ pdata(z0|zi, c), (1)

where w is a Wiener process, f and g are known coeffi-

cients, zi ∈ Rh×w×d is the compressed latent of the initial

frame vi, and c denotes other guidance such as the text

prompt (Ma et al., 2024a; Chen et al., 2023b) or the class

condition (Ni et al., 2023; Zhang et al., 2024b). In sam-

pling, we first synthesize the latent z ∼ p0(z0|zi, c) with

the backward SDE which shares the same marginal distribu-

tion pt,diff (zt|zi, c) (Song et al.):
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dzt =
[

f(t)zt − g(t)2∇zt
log pt,diff (zt|zi, c)

]

dt

+ g(t)dw̄, zT ∼ pprior,diff (zT ),
(2)

from a Gaussian prior pprior,diff (zT ) ∼ N (0, I), and then

decode the video clip with pre-trained VAE decoder D(z).
To estimate the score function∇zt

log pt,diff (zt|zi, c), a U-

Net (Ronneberger et al., 2015; Ho et al., 2020) or DiT (Pee-

bles & Xie, 2023; Bao et al., 2023) based neural network is

optimized with a denoising objective:

L(θ) = E(z0,zi,c),t,zt

[

λ(t)

∥

∥

∥

∥

ϵθ(zt, t, z
i, c)− zt − αtz0

σt

∥

∥

∥

∥

2
]

,

(3)

Here λ(t) is a time-dependent weight function, and ϵθ(zt, t)
is an alternative parameterization method of the score func-

tion (Ho et al., 2020).

Limitations As shown, the forward process of diffusion

models gradually injects noise into data samples, which

results in a boundary distribution at t = T sharing the

same distribution with the injected noise, e.g., the standard

Gaussian noise ϵ ∼ N (0, I). Therefore, in generation, their

sampling process has to start from the uninformative prior

distribution pprior,diff (zT ) ∼ N (0, I) and then iteratively

synthesize the video latent z0 with learned conditional score

function ∇zt
log pt(zt|zi, c).

However, for I2V generation, the two key requirements

are preserving the appearance details of the given static

image (Ren et al.; Ma et al., 2024a) and ensuring temporal

coherence between generated video frames (Guo et al., 2024;

Zhang et al., 2024c). The noise prior of diffusion models and

the mismatch between noise-to-data generation and frame-

to-frames synthesis inevitably increase the burden of the

generation process when meeting these two requirements.

In this work, we propose FrameBridge. By modeling I2V

with a data-to-data process, we simultaneously improve the

prior of generation process for preserving the appearance

details and enhance the consistency between the generative

framework and I2V task for ensuring temporal coherence,

leading to improved I2V performance.

4 FrameBridge

4.1 Bridge-based I2V Synthesis

Considering the given image, i.e., initial frame zi, has pro-

vided the appearance details and the starting point of ani-

mation for video target, we take it as the prior of following

frames. To construct the boundary distributions for bridge

models, we replicate the image latent zi for L times along

temporal axis to obtain zi ∈ RL×h×w×d as the prior of

video latent z ∈ RL×h×w×d, and establish the bridge pro-

cess as follows.

Bridge Process In Figure 1, we present the overview of

FrameBridge and compare it with diffusion-based I2V gen-

eration. Different from diffusion-based I2V models using

uninformative Gaussian prior, our FrameBridge replaces

the Gaussian prior with a Dirac prior δzi , building a bridge

process (Zhou et al.) to connect the video target and the

replicated image prior pprior,bridge(zT |zi, c) ≜ δzi(zT ).
Specifically, the forward process is changed from Equa-

tion (1) in diffusion models to:

dzt =
[

f(t)zt + g(t)2h(zt, t, zT , z
i, c)

]

dt

+ g(t)dw, z0 ∼ pdata(z0|zi, c), zT = zi,
(4)

where h(zt, t, zT , z
i, c) ≜ ∇zt

log pT,diff (zT |zt) and

pT,diff (zT |zt) is the marginal distribution of diffusion

process shown in Equation (1). For bridge process,

we denote the marginal distribution of Equation (4) as

pt,bridge(zt|zi, c). Similar to the forward SDE Equation (1)

in diffusion process, the forward process of bridge mod-

els Equation (4) also has a reverse process, which shares

the same marginal distribution pt,bridge(zt|zi, c) and can be

represented by the backward SDE:

dzt = [f(t)zt − g(t)2(s(zt, t, zT , z
i, c)

− h(zt, t, zT , z
i, c))]dt+ g(t)dw̄, zT = zi,

(5)

where s(zt, t, zT , z
i, c) ≜ ∇zt

log pt,bridge(zt|zT , zi, c).
The change from the diffusion to the bridge process re-

moves the restriction of noisy prior, allowing the genera-

tion process to start from a static image rather than previ-

ous Gaussian noise. Moreover, as the perturbation kernel

pt,bridge(zt|z0, zT , zi, c) in bridge process remains Gaus-

sian (Appendix A), it facilitates us to find connections be-

tween the marginal distribution, i.e., the intermediate repre-

sentations of diffusion and bridge process, and then leverage

the power of pre-trained diffusion models for bridge models.

Training Objective Analogous to diffusion models, we

use a SDE solver to solve Equation (5) when sampling

videos. Since h(zt, t, zT , z
i, c) can be calculated ana-

lytically (see Appendix A), we only need to estimate

the unknown term s(zt, t, zT , z
i, c) with neural networks

(Kingma et al., 2021). After parameterization as shown in

Appendix A, we train our models ϵΨ̂θ (zt, t, zT , z
i, c) with

the denoising objective (Chen et al., 2023c):
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(a) SAF technique (b) Effectiveness of SAF

Figure 3. SNR-Aligned Fine-tuning for FrameBridge. (a) SAF technique aligns the noisy latents of bridge process and diffusion process

with respective timesteps, enabling efficient fine-tuning from diffusion-based T2V model to bridge-based I2V models. (b) FrameBridge

with SAF can better leverage the capability of pre-trained models.

Lbridge(θ) =E(z0,z
i,c)∼pdata(z0,z

i,c),zT=z
i,

t,zt∼pt,bridge(zt|z0,zT ,zi,c)
[

∥

∥

∥

∥

ϵΨ̂θ (zt, t, zT , z
i, c)− zt − αtz0

σt

∥

∥

∥

∥

2
]

.

(6)

The training of FrameBridge resembles that of Gaussian

diffusion-based I2V models: We first sample a video latent

z0 and the condition c from training set, extracting the first

frame of z0 to construct zi. The primary difference lies in

the Gaussian perturbation kernel pt,bridge(zt|z0, zT , zi, c)
of Equation (6). As we replace the Gaussian prior with a

deterministic representation zT , the mean value is an inter-

polation between data and zT instead of the decaying data

in diffusion models, naturally preserving more data infor-

mation and facilitating generative models to learn image

animation rather than regenerating the information provided

in static image.

Bridge Process vs Diffusion Process To demonstrate the

advantages of bridge process in I2V synthesis, we visualize

the data part, i.e., the mean function of bridge and diffu-

sion process, in Figure 2. As shown, when replicating the

initial frame, I2V synthesis can be formulated as a frames-

to-frames generation task. With the data-to-data bridge pro-

cess, the boundary distributions of our FrameBridge have

been an ideal fit for the I2V task, which is helpful for gen-

erative models to focus on modeling the image animation

process.

In the meanwhile, as seen from our intermediate representa-

tions, the data information, e.g., appearance details, is well

preserved during the bridge process. In comparison, the

prior and intermediate representations of diffusion process

contain rare or coarse information of the target, which is

uninformative and requires diffusion models to generate

entire video information from scratch.

4.2 Efficient Fine-tuning

A common practice of training I2V models is to fine-

tune from pre-trained T2V diffusion models (Chen et al.,

2023b;a; Xing et al., 2024; Blattmann et al., 2023; Ma

et al., 2024a). The essential difference between the dif-

fusion and bridge process lies in the distribution of noisy

latents zt,diff ∼ pt,diff (zt) and zt,bridge ∼ pt,bridge(zt).
For certain t ∈ [0, T ], the pre-trained diffusion models only

have the capability to denoise zt,diff while our fine-tuning

target is to denoise zt,bridge, and the substantial discrepancy

between noisy latents makes it difficult to utilizing knowl-

edge of pre-trained models. To address this issue, we believe

that aligning the latents will allow us to fully leverage the de-

noising capability and learned representations of pre-trained

models, which is critical to a more efficient and effective

fine-tuning process (Yu et al., 2024a). Thus, we propose

the innovative SNR-Aligned Fine-tuning (SAF) technique

to align the latent zt,bridge with a diffusion noisy latent

zt̃,diff . Note that we use a different timestep t̃ ̸= t, and we
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Figure 4. Case of neural prior. Our neural prior provides more

motion information than the given static image, and is intuitively

closer to the video target, further improving the prior of generation

process.

only change the noisy latent as input-reparameterization of

bridge models. The forward and backward process is still a

bridge process and is different from diffusion I2V models.

Reparameterization of Bridge Process. In bridge pro-

cess, the perturbed latent zt at timestep t can be written as

the linear combination of z0, zT and a Gaussian noise ϵ:

zt = atz0 + btzT + ctϵ (detailed expression of at, bt, ct
can be found in Equation (12)), which takes a different

form from αtz0 + σtϵ in diffusion models. Therefore, the

pre-trained diffusion models have limited ability to directly

denoise such a zt, which impairs effective fine-tuning. To

match the distributions of zt, we reparameterize the bridge

process by

z̃t =
zt − btzT
√

a2t + c2t
=

at
√

a2t + c2t
z0 +

ct
√

a2t + c2t
ϵ. (7)

Then, z̃t can be represented as the combination of clean data

z0 and a Gaussian noise, with the squre sum of coefficients

equal to 1. Thus, the reparameterized bridge process z̃t
exactly aligns with a VP diffusion process.

SNR-based Latent Alignment Although the marginal

distribution of z̃t resembles that of a diffusion process,

there is still a mismatch between the input of bridge

models and pre-trained diffusion models (i.e., (z̃t, t) and

(αtz0 + σtϵ, t)), as it is not guaranteed that at√
a2
t+c2t

= αt,

ct√
a2
t+c2t

= σt (see Figure 3). To handle that, we change

the timestep t to another t̃ such that αt̃ = at√
a2
t+c2t

, σt̃ =

ct√
a2
t+c2t

, and then z̃t has the same SNR as αt̃z0 + σt̃ϵ

in diffusion process. According to the above deriva-

tion, we reparameterize the input of bridge models as

Figure 5. Qualitative comparisons between FrameBridge and

other baselines. FrameBridge outperforms diffusion baseline

methods in appearance consistency and video quality.

ϵΨ̂θ,bridge(zt, t, i, c) ≜ ϵΨ̂θ,aligned(z̃t, t̃, i, c), and initialize

ϵΨ̂θ,aligned with the pre-trained T2V diffusion models. SAF

enables bridge models to fully exploit the denoising capa-

bility of pre-trained diffusion models as the marginal dis-

tribution of z̃t aligned with αt̃z0 + σt̃ϵ. We provide more

details in Appendix A.

4.3 Improved Prior

By establishing a data-to-data process for I2V synthesis,

we have been able to reduce the distance between the prior

and the target from noise-to-frames to frames-to-frames,

and therefore facilitate the generation process and aim at

improving the synthesis quality. To further demonstrate the

function of improving prior information for I2V synthesis,

we extend our design of FrameBridge from replicated initial

frame zi to neural representations Fη(z
i, c), which serves

as a stronger prior for video frames.

As shown in Figure 4, although the static frame has provided

indicative information such as the appearance details of the

background and different objects, it may not be informative

for the motion information in consecutive frames. When

the distance between the prior frame and the target frame is

large, bridge models are faced with the challenge to generate

the motion trajectory. Therefore, we present a stronger

prior than simply duplicating the initial frame, neural prior,

which achieves a coarse estimation of the target at first, and

then bridge models generate the high-quality target from

this coarse estimation.

Considering bridge models synthesize target data with itera-
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Table 1. Zero-shot I2V generation on UCF-101 and MSR-VTT (256 × 256, 16 frames). w/o SAF means FrameBridge without SAF

techniques when fine-tuning. For each metric, we mark the best one with † and the second one with ‡. Iterated videos is the number of

videos iterated during the training of model (batch size × iterations). ∗ : results reported in Xing et al. (2024). ∗∗ : reproduced with the

open-sourced training code 2.

Method Iterated Videos
UCF-101 MSR-VTT

FVD ↓ IS ↑ PIC ↑ FVD ↓ CLIPSIM ↑ PIC ↑

SVD (Blattmann et al., 2023) – 236 – – 114 – –

SEINE (Chen et al., 2023b) – 461 22.32 0.6665 245 0.2250† 0.6848

ConsistI2V (Ren et al.) 32.64M 202† 39.76 0.7638† 106 0.2249 0.7551‡

SparseCtrl (Guo et al., 2025) – 722 19.45 0.4818 311 0.2245 0.4382
I2VGen-XL∗ (Zhang et al., 2023) – 571 – 0.5313 289 – 0.5352
DynamiCrafter∗∗ (Xing et al., 2024) 1.28M 485 29.46 0.6266 192 0.2245 0.6131
DynamiCrafter∗ 6.4M 429 – 0.6078 234 – 0.5803

FrameBridge-VideoCrafter (w/o SAF) 1.28M 433 38.61 0.5989 229 0.2246 0.5559

FrameBridge-VideoCrafter (w/ SAF) 1.28M 312 39.89‡ 0.6697 99 0.2250† 0.6963

FrameBridge-VideoCrafter (w/ SAF) 6.4M 258 44.13† 0.7274 95† 0.2250† 0.7142

FrameBridge-CogVideoX (w/ SAF) 6.4M 235‡ 39.83 0.7563‡ 96‡ 0.2250† 0.7566†

Table 2. VBench-I2V (Huang et al., 2024a;b) scores for different I2V models. For each metric, we mark the best one with † and the

second one with ‡ (higher score means better performance). The abbreviations represents Camera Motion (CM), I2V-Subject Consistency

(I2V-SC), I2V-Background Consistency (I2V-BC), Subject Consistency (SC), Background Consistency (BC), Motion Smoothness (MS),

Dynamic Degree (DD), Aesthetic Quality (AQ), Imaging Quality (IQ). Total Score: weighted average of all dimensions which evaluates

the overall quality. Scores are calculated with the official code of VBench. ∗ : results reported in Huang et al. (2024b).

Model
Total
Score

Detailed Qulity Dimensions

CM I2V-SC I2V-BC SC BC MS DD AQ IQ

DynamiCrafter-256 84.35 22.18 95.40 96.22 94.60 98.30 97.82‡ 38.69 59.40† 62.29

SEINE-256× 256 82.12 15.91 93.45 94.21 93.94 97.01 96.20 24.55 56.55 70.52‡

SEINE-512× 320∗ 83.49 23.36 94.85 94.02 94.20 97.26 96.68 34.31 58.42 70.97†

SparseCtrl 80.34 25.82 88.39 92.46 85.08 93.81 94.25 81.95† 49.88 69.35

ConsistI2V∗ 83.30 33.60‡ 94.69 94.57 95.27† 98.28 97.38 18.62 59.00 66.92

FrameBridge-VideoCrafter 85.37‡ 30.72 96.24† 97.25† 94.63‡ 98.92† 98.51† 35.77 59.38‡ 63.28

FrameBridge-CogVideoX 85.93† 92.06† 95.42‡ 97.13‡ 93.60 98.62‡ 97.57 48.29‡ 54.28 60.00

tive sampling steps, we develop a one-step mapping-based

prior network taking both image latent zi and text or label

condition c as input, and separately train the prior network

with a regression loss in latent space:

Lp(η) = E(z,zi,c)∼pdata(z,zi,c)

[

∥

∥Fη(z
i, c)− z

∥

∥

2
]

. (8)

With this objective, it can be proved that Fη(z
i, c) learns to

predict the mean value of subsequent frames, as shown

in Appendix A. Given pre-trained Fη(z
i, c), we build

FrameBridge-NP from its output and target video latent

z by replacing the prior zT in Equation (6) with the neural

prior Fη(z
i, c). More details of the training and sampling

algorithm can be found in Appendix B.

In generation, neural prior model Fη(z
i, c) provide a coarse

estimation with a single deterministic step, which is closer

to the target than the provided initial frame, and bridge

model synthesize the video target with a coarse-to-fine iter-

ative sampling process. Although more advanced methods

can be designed to further improve neural prior, we present

a design with simple training objective and one-step sam-

pling, demonstrating the performance of enhancing prior

information on I2V synthesis.

5 Experiments

We carry out experiments on UCF-101 (Soomro, 2012) and

WebVid-2M (Bain et al., 2021) datasets to demonstrate the

advantages of our data-to-data generation framework for

I2V tasks. More details can be found in Appendix D.

2https://github.com/Doubiiu/DynamiCrafter
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Table 3. Non-zero-shot I2V generation on UCF-101. The best and

second results are marked with † and ‡.

Method FVD ↓ IS ↑ PIC ↑

ExtDM 649 21.37 –
VDT-I2V 171 62.61 0.7401

FrameBridge 154‡ 64.01† 0.7443‡

FrameBridge-NP 122† 63.60‡ 0.7662†

Table 4. Ablation of SAF technique on UCF-101 (non-zero-shot).

Method Iterations FVD ↓ IS ↑ PIC ↑

Diffusion 10k 176 53.60 0.7011
Bridge (w/o SAF) 10k 176 53.93 0.7371
Bridge (w/o SAF) 5k 284 49.40 0.6557
Bridge (w/ SAF) 5k 141 55.98 0.8200

5.1 Fine-tuning from pre-trained diffusion models

Following Xing et al. (2024), we fine-tune text-conditional

FrameBridge model with replicated prior zi from the open-

sourced T2V diffusion model VideoCrafter1 (Chen et al.,

2023a) and CogVideoX-2B (Yang et al., 2024b) on WebVid-

2M dataset.

Comparison with Baselines We choose DynamiCrafter

(Xing et al., 2024), SEINE (Chen et al., 2023b), I2VGen-XL

(Zhang et al., 2023), SVD (Blattmann et al., 2023), Con-

sistI2V (Ren et al.) and SparseCtrl (Guo et al., 2025) as

text-conditional I2V baselines. Table 1 shows zero-shot

metrics on UCF-101 and MSR-VTT after fine-tuning on

WebVid-2M. Note that DynamiCrafter trained with 6.4M

videos is a direct counterpart of FrameBridge-VideoCrafter,

which uses the same model architecture, base T2V diffusion

model and training budget, which shows that powerful I2V

models can achieve better generation performance by re-

placing diffusion process with a data-to-data bridge process.

We also evaluate FrameBridge and other baselines with a

comprehensive benchemark for video quality, i.e., VBench-

I2V (Huang et al., 2024a;b) (see Table 2, all the scores

are calculated with the official code3). FrameBridge can

effectively leverage the knowledge from pre-trained T2V

diffusion models and generate videos with higher quality

and consistency than the diffusion counterparts. We further

discuss the trade-off between the dynamic degree and con-

sistency in Appendix C.1. Qualitative results are shown in

Figure 5. In the Figure, both FrameBridge and Dynami-

Crafter model are fine-tuned from VideoCrafter1 with 20k

steps. To the best of our knowledge, our trial is the first

time to fine-tune bridge models from pre-trained diffusion

models.

3https://github.com/Vchitect/VBench

Table 5. Ablation of neural prior. Condition means whether the

model conditions on Fη(z
i, c).

Method Prior Condition FVD ↓

VDT-I2V Gaussian % 171

VDT-I2V Gaussian ! 132

FrameBridge replicated % 154

FrameBridge replicated ! 129

FrameBridge-NP neural ! 122

5.2 Neural Prior for Bridge Models

We train class-conditional FrameBridge model with neural

prior (FrameBridge-NP) on UCF-101 based on the model of

Latte-S/2 (Ma et al., 2024b) by replacing diffusion process

with the Bridge-gmax bridge process (Chen et al., 2023c).

Comparison with Baselines We reproduce two diffusion

models ExtDM (Zhang et al., 2024b) and VDT (Lu et al.)

on UCF-101 dataset for the class-conditional I2V task as our

baselines. Table 3 shows that FrameBridge-NP has superior

video quality and consistency with condition images. Here

VDT-I2V is a direct counterpart of FrameBridge models

as they share the same network architecture and training

configurations. More qualitative results are shown in Ap-

pendix F. The experiments reveal that bridge-based I2V

models outperform their diffusion counterparts with both

replicated prior and neural prior, justifying the usage of the

data-to-data generation process for I2V tasks. Additionally,

FrameBridge can further benefit from neural prior Fη(z
i, c)

as it actually narrows the gap between the prior and data

distribution of bridge process.

5.3 Ablation Studies

SNR-Aligned Fine-tuning When fine-tuned with SAF,

FrameBridge can leverage the pre-trained T2V diffusion

models efficiently and effectively. To ablate on the SAF

technique, we fine-tune a pre-trained class-conditional

video generation model Latte-XL/2 on UCF-101. Table 4

shows that SAF improves fine-tuning performance of Frame-

Bridge. To conduct an ablation under the WebVid-2M train-

ing setting, we also fine-tune FrameBridge models from

VideoCrafter1 and CogVideoX-2B with the same configu-

ration except the usage of SAF technique, and compare the

zero-shot metrics in Appendix C.5.

Neural Prior To showcase the effectiveness of neural

prior, we compare five different models varying in priors

and network conditions. More details of the configurations

can be found in Appendix D. Results in Table 5 reveal that

Fη(z
i, c) is indeed more informative than a single frame

zi and can be fully utilized by FrameBridge through the

8



FrameBridge: Improving Image-to-Video Generation with Bridge Models

change of prior.

6 Conclusions

In this work, we propose FrameBridge, building a data-to-

data generation process, which matches the frame-to-frames

nature of this task, and therefore further improving the I2V

synthesis quality of strong diffusion baselines. Additionally,

targeting at two typical scenarios of training I2V models,

namely fine-tuning from pre-trained diffusion models and

training from scratch, we present SNR-Aligned Fine-tuning

(SAF) and neural prior respectively to further improve the

generation quality of FrameBridge. Extensive experiments

show that FrameBridge generate videos with enhanced ap-

pearance consistency with image condition and improved

temporal coherence, demonstrating the advantages of Frame-

Bridge and the effectiveness of two proposed techniques.
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A Proof and Derivation

A.1 Basics of Denoising Diffusion Bridge Model (DDBM)

We provide the derivations of pt,bridge(zt|z0, zT , zi, c) and h(z, t,y, zi, c) used in Section 4.1.

Similar to the proofs in (Zhou et al.), we calculate pt,bridge(zt|z0, zT , zi, c) by applying Bayes’ rule:

pt,bridge(zt|z0, zT , zi, c) = pt,diff (zt|z0, zT , zi, c) =
pT,diff (zT |zt, z0, zi, c)pt,diff (zt|z0, zi, c)

pt,diff (zT |z0, zi, c)
1
=

pT,diff (zT |zt)pt,diff (zt|z0)
pT,diff (zT |z0)

.

(9)

1 uses the Markovian of the diffusion process zt (Kingma et al., 2021).

The perturbation kernels pT,diff (zT |zt), pt,diff (zt|z0), pT,diff (zT |z0) is Gaussian and takes the form of:

pT,diff (zT |zt) = N (zT ;
αT

αt

zt, (σ
2
T −

α2
T

α2
t

σ2
t )I),

pt,diff (zt|z0) = N (zt;αtz0, σ
2
t I),

pT,diff (zT |z0) = N (zT ;αT z0, σ
2
T I).

(10)

Following (Zhou et al.), it can be derived that pt,bridge(zt|zT , z0, zi, c) is also Gaussian, and pt,bridge(zt|zT , z0, zi, c) =
N (zt;µt(z0, zT ), σ

2
t,bridgeI), where

µt(z0, zT ) = αt(1−
SNRT

SNRt

)z0 +
SNRT

SNRt

αt

αT

zT ,

σ2
t,bridge = σ2

t (1−
SNRT

SNRt

).

(11)

Specifically, zt of bridge process can be reparameterized by zt = atz0 + btzT + ctϵ, where

at = αt(1−
SNRT

SNRt

),

bt =
SNRT

SNRt

αt

αT

,

ct =

√

σ2
t (1−

SNRT

SNRt

).

(12)

Here, SNRt =
α2

t

σ2
t

(Kingma et al., 2021) is the signal-to-noise ratio of diffusion process.

Then we calculate h(z, t,y, zi, c) = ∇zt
log pT,diff (zT |zt)|zt=z,zT=y.

As pT,diff (zT |zt) = N (zT ;
αT

αt
zt, (σ

2
T −

α2

T

α2
t

σ2
t )I), we have

pT,diff (zT |zt) =
1

√

2π(σ2
T −

α2

T

α2
t

σ2
t )

D
exp






−

∥

∥

∥zT − αT

αt
zt

∥

∥

∥

2

2(σ2
T −

α2

T

α2
t

σ2
t )






, (13)

log pT,diff (zT |zt) = −

∥

∥

∥zT − αT

αt
zt

∥

∥

∥

2

2(σ2
T −

α2

T

α2
t

σ2
t )

+ C, (14)
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where C is a constant independent of zT .

∇zt
log pT,diff (zT |zt) = ∇zt






−

∥

∥

∥zT − αT

αt
zt

∥

∥

∥

2

2(σ2
T −

α2

T

α2
t

σ2
t )






= −

zT − αT

αt
zt

(σ2
T −

α2

T

α2
t

σ2
t )
. (15)

So, h(z, t,y, zi, c) = − y−
αT
αt

z

(σ2

T
−

α2
T

α2
t

σ2
t )

. Note that for the diffusion process we commonly use, αT

αt
≈ 0 and σT ≈ 1, and we

have h(z, t,y, zi, c) ≈ −y.

A.2 Parameterization of FrameBridge

Proposition 1. The score estimation sθ(zt, t, zT , z
i, c) of bridge process pt,bridge(zt|zT , zi, c) can be reparamterized by

sθ(zt, t, zT , z
i, c) = − 1

σt

ϵΨ̂θ (zt, t, zT , z
i, c)− SNRT

SNRt

zt − αt

αT
zT

σ2
t (1− SNRT

SNRt
)
, (16)

where SNRt =
α2

t

σ2
t

, and ϵΨ̂θ (zt, t, zT , z
i, c) is trained with the objective

Lbridge(θ) = E (z0,z
i,c)∼pdata(z0,z

i,c),

zT=z
i,t,zt∼pt,bridge(zt|z0,zT ,zi,c)

[

λ̃(t)

∥

∥

∥

∥

ϵΨ̂θ (zt, t, zT , z
i, c)− zt − αtz0

σt

∥

∥

∥

∥

2
]

. (17)

Here λ̃(t) is the weight function of timestep t and we take λ̃(t) = 1 unless otherwise specified.

When SNRT ≈ 0(which is often the case for diffusion process), there exists ϵ such that

sθ(zt, t, zT , z
i, c) ≈ − 1

σt

ϵΨ̂θ (zt, t, zT , z
i, c), ∀t ∈ [ϵ, T − ϵ]. (18)

Proof. We denote the desnoising target zt−αtz0

σt
by ϵΨ̂(zt, z0, t), and define at = αt(1 − SNRT

SNRt
), bt = SNRT

SNRt

αt

αT
, ct =

√

σ2
t (1− SNRT

SNRt
).

From Equation (11), we have

∇z log pt,bridge(z|z0, zT )|z=zt,zT=zi = −zt − atz0 − btz
i

c2t
, (19)

which is the target of Denoising Bridge Score Matching (Zhou et al.). Our goal is to represent this target with zt, zT , and

ϵΨ̂(zt, z0, t).

From the definition of ϵΨ̂(zt, z0, t), we have

z0 =
zt − σtϵ

Ψ̂(zt, z0, t)

αt

. (20)
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Plug it into Equation (19), it can be derived that

∇z log pt,bridge(z|z0, zT )|z=zt,zT=zi = −
zt − at

zt−σtϵ
Ψ̂(zt,z0,t)
αt

− btz
i

c2t

= −αtzt − atzt + atσtϵ
Ψ̂(zt, z0, t)− αtbtzT

αtc
2
t

= −atσtϵ
Ψ̂(zt, z0, t)

αtc
2
t

− (αt − at)zt − αtbtz
i

αtc
2
t

= − 1

σt

ϵΨ̂(zt, z0, t)−
αt

SNRT

SNRt
zt − α2

t

αT

SNRT

SNRt
zi

αtσ
2
t (1− SNRT

SNRt
)

= − 1

σt

ϵΨ̂(zt, z0, t)−
SNRT

SNRt

zt − αt

αT
zi

σ2
t (1− SNRT

SNRt
)
,

(21)

As the Denoising Bridge Score Matching takes the form of

Lbridge(θ) = E(z0,zi,c).zT=zi,t,zt

[

λ(t)
∥

∥sθ(zt, t, zT , z
i, c)−∇z log pt,bridge(z|z0, zT )|z=zt,zT=zi

∥

∥

2
]

, (22)

when we parameterize sθ(zt, t, zT , z
i, c) = − 1

σt
ϵΨ̂θ (zt, t, zT , z

i, c) − SNRT

SNRt

zt−
αt
αT

zT

σ2
t (1−

SNRT
SNRt

)
, the training objective can be

written as

Lbridge(θ) = E(z0,zi,c).zT=zi,t,zt

[

λ(t)

σ2
t

∥

∥

∥
ϵΨ̂θ (zt, t, zT , z

i, c)− ϵΨ̂(zt, z0, t)
∥

∥

∥

2
]

, (23)

which proves the first part of the proposition if we take λ̃(t) = λ(t)
σ2
t

.

For the second part, when SNRT ≈ 0, there exists an ϵ > 0, such that 1

σ2
t (1−

SNRT
SNRt

)
has an upper bound M . Since

SNRT

SNRt

αt

αT
= αT

σ2

t

αtσ
2

T

≈ 0 when SNRT ≈ 0, it can be directly inferenced from Equation (16) that sθ(zt, t, zT , z
i, c) ≈

− 1
σt
ϵΨ̂θ (zt, t, zT , z

i, c).

Remark A.1. From the first part of the proposition, we parameterize bridge models to predict zt−αtz0

σt
. It is similar to that

used in Chen et al. (2023c) although their parameterization is derived from the forward-backward diffusion process of

Schrödinger Bridge problems. The statement and proof of this proposition reveals that DDBM and Diffusion Schrödinger

Bridges are closely related. Additionally, the second part shows that our parameterization resembles the Denoising Score

Matching in diffusion models.

A.3 SNR-Aligned Fine-tuning

Existence and Uniqueness of t̃ In Section 4.2, we need to find a t̃ such that αt̃ = at√
a2
t+c2t

, σt̃ = ct√
a2
t+c2t

. Since

a2

t

c2t
=

α2

t

σ2
t

(1− SNRT

SNRt
) = SNRt − SNRT , it is a monotonically decreasing function of t. As SNRt is also a monotonically

decreasing function which ranges over (0,∞), we can take t̃ = SNR−1(
a2

t

c2t
) and the uniqueness of such t̃ can also be

guaranteed. Next, we provide a more general form of SAF, where the schedule {αt, σt}t∈[0,T ] of the pre-trained diffusion

models and bridge models are not necessarily the same.

Proposition 2. Suppose we fine-tune a Gaussian diffusion model ϵ̃η(zt, t, c) with schedule {α̃t, σ̃t}t∈[0,T ] to a diffusion

bridge model ϵΨ̂θ,bridge(zt, t, zT , z
i, c) ≜ ϵΨ̂θ,align(z̃t, t̃, zT , z

i, c) with schedule {αt, σt}t∈[0,T ]. If we use the same dataset

pdata(z0, z
i, c) for training ϵ̃η(zt, t, c) and fine-tuning ϵΨ̂θ,align(z̃t, t̃, zT , z

i, c). Then, for each c, the input (zt, t) of ϵ̃η has

the same marginal distribution as the input (z̃t, t̃) of ϵΨ̂θ,align(z̃t, t̃, zT , z
i, c). Here

z̃t =
zt − btz

i

√

a2t + c2t
,

t̃ = S̃NR
−1

(
a2t
c2t

).

(24)
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(S̃NR =
α̃2

t

σ̃2
t

is the signal-to-noise ratio of pre-trained diffusion models.)

Proof. Since S̃NR is also a monotonically decreasing function ranging over (0,∞), the uniqueness and existence of t̃ can

also be guaranteed by the above analysis.

For a fixed c, t, we denote the probability density function of z̃t by q(z̃t; t). Then

q(z̃t; t) =

∫

zi

q(z̃t|zi; t)pdata(zi)dzi

=

∫

zi

∫

z0

q(z̃t|z0, zi; t)pdata(z0, zi)dz0dzi

=

∫

zi

∫

z0

N (z̃t;
at

√

a2t + c2t
z0,

ct
√

a2t + c2t
I)pdata(z0, z

i)dz0dz
i

=

∫

zi

∫

z0

N (z̃t; α̃t̃z0, σ̃
2
t̃
I)pdata(z0, z

i)dz0dz
i

=

∫

z0

N (z̃t; α̃t̃z0, σ̃
2
t̃
I)(

∫

zi

pdata(z0, z
i)dzi)dz0

=

∫

z0

N (z̃t; α̃t̃z0, σ̃
2
t̃
I)pdata(z0)dz0,

(25)

which equals to the marginal distribution of the pre-trained diffusion process pt,diff (zt).

Output Parameterization Our previous descriptions show how to align the input of the network when fine-tuning from

T2V diffusion models to I2V bridge models. When the output parameterization of teacher diffusion models deviates

significantly from the bridge parameterization ϵΨ̂, we can also reparameterize the network output to achieve better alignment.

We take CogVideoX-2B as an example, where v-prediction is used for teacher diffusion models. The teacher diffusion

models predict αt̃ϵ− σt̃z0 from (αt̃z0 + σt̃ϵ, t̃). After the input alignment of bridge schedule, we have

z̃t =
at

√

a2t + c2t
z0 +

ct
√

a2t + c2t
ϵ,

αt̃ =
at

√

a2t + c2t
, σt̃ =

ct
√

a2t + c2t
.

(26)

To align the network output with the teacher, we can set the target of prediction as at√
a2
t+c2t

ϵ− ct√
a2
t+c2t

z0.

A.4 Neural Prior with Regression Training Objective.

Proposition 3. If we train Fη(z
i, c) with the regression training objective

Lp(η) = E(z0,zi,c)∼pdata(z0,zi,c)

[

∥

∥Fη(z
i, c)− z0

∥

∥

2
]

, (27)

and the neural network is optimized sufficiently, then we have

Fη(z
i, c) = F ∗

η (z
i, c) ≜ Ez0∼pdata(z0|zi,c) [z0] . (28)

Proof. For each (zi, c), Lp(η) optimizes the following objective:

lη(z
i, c) = Ez0∼pdata(z0|zi,c)

[

∥

∥Fη(z
i, c)− z0

∥

∥

2
]

=
∥

∥Fη(z
i, c)

∥

∥

2 − ⟨Fη(z
i, c),Ez0∼pdata(z0|zi,c) [z0]⟩+

∥

∥Ez0∼pdata(z0|zi,c) [z0]
∥

∥

2

=
∥

∥Fη(z
i, c)

∥

∥

2 − ⟨Fη(z
i, c),Ez0∼pdata(z0|zi,c) [z0]⟩+ C.

(29)
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Algorithm 1 Training algorithms for I2V diffusion models.

Output: Trained I2V diffusion model ϵθ(zt, t, z
i, c).

Set diffusion process {αt, σt}Tt=0.

if Fine-tuned from pre-trained diffuion model ϵϕ(zt, t, c) then

Initialize ϵθ with the weight of ϵϕ(zt, t, c).
else

Randomly initialize ϵθ(zt, t, z
i, c).

end if

repeat

Sample data (z0, c) ∼ pdata(z0, c), timestep t and zt = αtz0 + σtϵ, where ϵ ∼ N (0, I).
Take the first frame of z0 as the image condition zi.

l(θ) =
∥

∥ϵθ(zt, t, z
i, c)− ϵ

∥

∥

2
.

Update θ with the optimizer and loss function l(θ)
until Reach the training budget

Algorithm 2 Sampling algorithms for FrameBridge.

Output: Video latent z0.

Prepare a trained FrameBridge model ϵΨ̂θ (zt, t, zT , z
i, c) and timestep schedule 0 = t0 < t1 < ... < tN = T .

Obtain the given input image zi and additional conditions c.

if Neural prior is used then

zT ← Fη(z
i, c). Here Fη should be the same neural prior model used in the training process.)

else

Construct zT by replicating zi.

end if

for k = N downto 1 do

Calculate the score function of bridge process∇z log pbridge,tk(z|zT , zi, c)|z=ztk
with ϵΨ̂θ (ztk , tk, zT , z

i, c).

Utilize a SDE solver to solve the backward bridge SDE dzt =
[

f(t)zt − g(t)2(s(zt, t, zT , z
i, c)− h(zt, t, zT , z

i, c))
]

dt+
g(t)dw̄ from z(tk) = ztk to obtain ztk−1

.

end for

Return z0.

where C is a constant independent of η. When the network is optimized sufficiently, lη(z
i, c) takes the minimum for each

(zi, c), so we have

Fη(z
i, c) = argmin

x

(

∥x∥2 − ⟨x,Ez0∼pdata(z0|zi,c) [z0]⟩
)

(30)

It can be solved that Fη(z
i, c) = Ez0∼pdata(z0|zi,c) [z0].

B Pseudo Code for the Training and Sampling of FrameBridge

We provide the pseudo code for the training and sampling process of FrameBridge (See Algorithm 4 and 2). Meanwhile, we

also provide that of diffusion-based I2V models (See Algorithm 1 and 3) to show the distinctions between FrameBridge and

diffusion-based I2V models.

C Detailed Analysis of I2V Generation Performance

In this section, we provide further discussions and analysis of the results provided in Section 5.

C.1 Dynamic Degree of Generated Videos

As shown by (Zhao et al.), there is usually a trade-off between dynmaic motion and condition alignment for I2V models, and

the high dynamic degree scores of some baseline models in Table 2 are at the cost of condition and temporal consistency.

FrameBridge can reach a balance demonstrated by the multi-dimensional evaluation on VBench-I2V. Table 6 shows
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Algorithm 3 Sampling algorithms for I2V diffusion models.

Output: Video latent z0.

Prepare a trained I2V diffusion model ϵθ(zt, t, z
i, c) and timestep schedule 0 = t0 < t1 < ... < tN = T .

Obtain the given input image zi and additional conditions c.

Sample a latent zT ∼ N (0, σ2
T I).

for k = N downto 1 do

Calculate the score function of diffusion process∇z log pdiff,tk(z|zi, c)|z=ztk
with ϵ(ztk , tk, z

i, c).

Utilize a SDE solver to solve the backward diffusion SDE dzt =
[

f(t)zt − g(t)2∇zt
log pt,diff (zt|zi, c)

]

dt+g(t)dw̄
from z(tk) = ztk to obtain ztk−1

.

end for

Return z0.

Table 6. VBench-I2V scores related to the motion of videos for different I2V models. For all the evaluation dimensions, higher score

means better performance. For results marked by ∗, we directly use the data of VBench-I2V Leaderboard.

Model
Dynamic
Degree

Temporal
Flickering

Motion
Smoothness

FrameBridge-VideoCrafter 35.77 98.01 98.51

DynamiCrafter-256 38.69 97.03 97.82

SEINE-256 × 256 24.55 95.07 96.20

SEINE-512 × 320∗ 34.31 96.72 96.68

SEINE-512 × 512∗ 27.07 97.31 97.12

ConsistI2V∗ 18.62 97.56 97.38

VBench-I2V scores related to dynamic degree and temporal consistency.

Meanwhile, some techniques are proposed for I2V diffusion models to improve the dynamic degree and we find they

are also applicable to FrameBridge. To be more specific, we fine-tune FrameBridge-VideoCrafter by adding noise to the

image condition (Blattmann et al., 2023; Zhao et al.) and use higher value of frame-stride conditioning (Xing et al., 2024)

respectively, and conduct a user study to evaluate the dynamic degree and overall video quality. We randomly sample 50

prompts from VBench-I2V and generate one video with each prompt for each model. Participants are asked two questions

for each group of videos:

• Rank the videos according to the dynamic degree. Higher rank (i.e. lower ranking number) corresponds to higher

dynamic degree.

• Rank the videos according to the overall quality. Higher rank (i.e. lower ranking number) corresponds to higher quality.

We recruited 18 participants and use Average User Ranking (AUR) as a preference metric (lower for better performance).

The results are shown in Table 7.

C.2 Content-Debiased FVD

Ge et al. (2024) points out that the FVD metric has a content bias and may misjudge the qualify of videos. As supplementary,

we also provide the evaluation results of the Content-Debiased FVD (CD-FVD) on MSR-VTT in Table 8.

C.3 Learning Curve of Video Quality

To illustrate the change of video quality during training, we reproduce the training process of DynamiCrafter for 20k

iterations and compare the zero-shot CD-FVD metric on MSR-VTT dataset with a FrameBridge model trained during the

training process. As we use the same training batch size and model structure for FrameBridge and DynamiCrafter in this

experiment, the training budget for two models at the same training step is also the same. As demonstrated by Figure 6, the

video quality of FrameBridge is superior to that of DynamiCrafter during the training process and it also converges faster

than its diffusion counterpart (i.e., DynamiCrafter).
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Table 7. Results of user study. All the models are fine-tuned from VideoCrafter1. For FrameBridge-FrameStride, we increase the value of

conditioning frame stride (from 3 to 5) when sampling. For FrameBridge-NoisyCondition, we add noise to the image condition in the

fine-tuning process.

Model AUR of dynamic degree ↓ AUR of overall quality ↓
DynamiCrafter 2.85 3.04

FrameBridge 2.74 2.26

FrameBridge-FrameStride 2.12 2.34

FrameBridge-NoisyCondition 2.29 2.35

Table 8. Zero-shot CD-FVD metric on MSR-VTT dataset. We also include the FVD metric as a reference

Model CD-FVD ↓ FVD ↓
DynamiCrafter 207 234

SEINE 420 245

ConsistI2V 192 106

SparseCtrl 454 311

FrameBridge-VideoCrafter 148 95

C.4 Sampling Efficiency of FrameBridge

Since sampling efficiency is also important for I2V models, we also conduct experiments to show the quality of videos

sampled with different number of sampling timesteps and compare it with DynamiCrafter and SEINE. Figure C.4 shows

that the quality of videos sampled by FrameBridge is better than that of DynamiCrafter and SEINE with different timesteps

(i.e., 250, 100, 50, 40, 20). Moreover, we also measure the actual execution time of the sampling algorithm and show the

result in Figure C.4. As illustrated by these two figures, FrameBridge can achieve good balance between sample efficiency

and video quality, and there is no significant degradation in video quality when decreasing the sampling timestep from 250

to 50 or even smaller.

C.5 SNR-Aligned Fine-tuning on WebVid-2M

To ablate SAF technique on WebVid-2M, we fine-tune FrameBridge models from VideoCrafter1 with the same configuration

except the usage of SAF for 1.6k steps. The zero-shot metrics are reported in Table 9. Similar ablation is conducted with

FrameBridge models fine-tuned from CogVideoX-2B for 5k steps, and the zero-shot metrics are reported in Table 10.

D Experiment Details

We provide descriptions of the datasets and metrics used in our experiments, along with implementation details for different

I2V models.

D.1 Datasets

UCF-101 is an open-sourced video dataset consisting of 13320 videos clips, and each video clip are categorized into one of

the 101 action classes. There are three official train-test split, each of which divide the whole dataset into 9537 training

video clips and 3783 test video clips. We use the whole dataset as the training data for I2V models trained from scratch

on UCF-101, and use the test set to evaluate zero-shot metrics for models fine-tuned on WebVid-2M. When we evaluate

zero-shot metrics on UCF-101 for text-conditional I2V models, we use the class label as the input text prompt.

WebVid-2M is an open-sourced dataset consisting of about 2.5 million video-text pairs, which is a subset of WebVid-10M.

We only use WebVid-2M as the training data when fine-tuning I2V models from T2V diffusions in Section 5.1.

MSR-VTT is an open-sourced dataset consisting of 10000 video-text pairs, and we only use the test set to compute zero-shot

metrics for fine-tuned models.
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Figure 6. The learning curve of FrameBridge and DynamiCrafter.

Table 9. Zero-shot metrics on UCF-101 and MSR-VTT for FrameBridge-VideoCrafter models.

Model
UCF-101 MSR-VTT

FVD ↓ IS ↑ PIC ↑ FVD ↓ CLIPSIM ↑ PIC ↑
FrameBridge-VideoCrafter (w/o SAF) 431 45.88 0.6765 151 0.2248 0.6493

FrameBridge-VideoCrafter (w/SAF) 354 46.09 0.7060 132 0.2248 0.6778

Preprocess of Training Data: For both UCF-101 and WebVid-2M dataset, we sample 16 frames from each video clip

with a fixed frame stride of 3 when training. Then we resize and center-crop the video clips to 256 × 256 before input it to

the models.

D.2 Metrics

Fréchet Video Distance ( Unterthiner et al. (2018); FVD) evaluates the quality of synthesized videos by computing the

perceptual distance between videos sampled from the dataset and the models. We follow the protocol used in StyleGAN-V

(Skorokhodov et al., 2022) to calculate FVD. First, we sample 2048 video clips with 16 frames and frame stride of 3 from

the dataset. Then, we generate 2048 videos from the I2V models. All videos are resized to 256 × 256 before calculating

FVD except for ExtDM. (ExtDM generate videos with resolution 64 × 64, so we compute FVD on this resolution.) After

that, we extract features of those videos with the same I3D model used in the repository of StyleGAN-V 4 and calculate the

Fréchet Distance.

Inception Score (Saito et al. (2017); IS) also evaluates the quality of the generated videos. However, computing IS need a

pre-trained classifier and we only apply this metric on UCF-101. When computing IS, we use the open-sourced evaluation

code and pre-trained classifier for videos from the repository of StyleGAN-V.

CLIPSIM (Wu et al., 2021) evaluates the consistency between video frames and the text prompt by computing the average

CLIP similarity score between each frame and the prompt. We use the VIT-B/32 CLIP model (Radford et al., 2021) when

evaluating zero-shot metrics on MSR-VTT.

PIC is a metric used by Xing et al. (2024) to evaluate the consistency of video frames and the given image by the computing

average Dreamsim (Fu et al., 2023) distance between generated frames and the image condition.

4https://github.com/universome/stylegan-v
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(a) Zero-shot FVD with different sampling timesteps (b) Zero-shot PIC with different sampling timesteps

Figure 7. Video quality sampled with different number of timesteps.

Table 10. Zero-shot metrics on UCF-101 and MSR-VTT for FrameBridge-CogVideoX models.

Model
UCF-101 MSR-VTT

FVD ↓ IS ↑ PIC ↑ FVD ↓ CLIPSIM ↑ PIC ↑
FrameBridge-CogVideoX (w/o SAF) 359 36.84 0.5868 209 0.2250 0.6056

FrameBridge-CogVideoX (w/SAF) 347 41.12 0.6563 185 0.2250 0.6587

D.3 Implementation of FrameBridge and Other Baselines

We offer the implementation details of I2V models which are fine-tuned on WebVid-2M or trained from scratch on UCF-101.

D.3.1 FRAMEBRIDGE

Fine-tuning on WebVid2M For FrameBridge-VideoCrafter, we refer to the codebase of Dynamicrafter5 to fine-tune

FrameBridge, and initialize our model from the pre-trained VideoCrafter1 (Chen et al., 2023a) checkpoint. For FrameBridge-

CogVideoX, we refer to the official codebase 6 and initialize our model from the pre-trained CogVideoX-2B (Yang et al.,

2024b) checkpoint. For the schedule of bridge, we adopt the Bridge-gmax schedule of (Chen et al., 2023c), where f(t) = 0,

g(t)2 = β0 + t(β1 − β0), αt = 1, σ2
t = 1

2 (β1 − β0)t
2 + β0t with β0 = 0.01, β1 = 50. We fine-tune the models ϵΨ̂

for 20k iterations or 100k iterations with batch size 64. We use the AdamW optimizer with learning rate 1 × 10−5 and

mixed precision of BFloat16. We do not apply ema to the model weight during fine-tuning. The conditions c and zi are

incorporated into the network in the same way as DynamiCrafter, and we concatenate zt with zi along the channel or

temporal axis to condition the network on the prior (we find that the performance is quite similar whether we conduct the

concatenation along channel or temporal axis). As the schedule {αt, σt}t∈[0,T ] is different from that of the pre-trained

diffusion models, we use the generalized SAF (Proposition 2).

Training From Scratch on UCF-101 We reference the codebase of Latte7 to train FrameBridge from scratch on UCF-101.

We adopt Latte-S/2 as our bridge model with the same schedule as above and train FrameBridge for 400k iterations with

batch size 40. For FrameBridge with neural prior, we also implement Fη(z
i, c) with Latte-S/2 except that the conditioning of

timestep t is removed from the model. To match zi with the input shape of Latte, we replicate zi for L times and concatenate

them along temporal axis. We train Fη(z
i, c) for 400k iterations with batch size 32 before training bridge models if the

5https://github.com/Doubiiu/DynamiCrafter
6https://github.com/THUDM/CogVideo
7https://github.com/Vchitect/Latte
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(a) Zero-shot FVD with different execution time (b) Zero-shot PIC with different execution time

Figure 8. Video quality sampled with different execution time.

neural prior is applied. For both the training of bridge models and Fη(z
i, c), we use the AdamW optimizer with learning

rate 1× 10−5 and ema is not applied. The conditions c are incorporated into the network in the same way as Latte. Since

Latte-S/2 is a transformer-based diffusion network, we incorporate the condition zi by concatenate it with video latent zt in

the token sequence. To condition the network on prior zi or Fη(z
i, c), we concatenate them with zt along the channel axis.

SNR-Aligned Fine-tuning When implementing the SAF technique, we need to calculate the inverse function of SNR

for the teacher diffusion schedule t̃ = SNR−1(
a2

t

c2t
). However, some T2V diffusion models use discrete timesteps

and we need to approximate the aligned t̃. In our experiments, we choose to find a discrete timestep tn such that

SNR(tn) >
a2

t

c2t
> SNR(tn+1) and assume SNR(·) is a linear function with respect to the input t of diffusion schedule in

the interval (tn, tn+1) to obtain the aligned t̃.

D.3.2 BASELINES FOR TEXT-CONDITIONAL I2V GENERATION

For SVD (Blattmann et al., 2023), SEINE (Chen et al., 2023b), ConsistI2V (Ren et al.) and SparseCtrl (Guo et al., 2025), we

use the official model checkpoints and sampling code to sample videos for evaluation. For DynamiCrafter (Xing et al., 2024),

we sample videos with the official model checkpoints. We also use the official training code 8 to train a DynamiCrafter for

20k iterations with batch size of 64 as a diffusion-based I2V fine-tuning baseline to compare it with FrameBridge fine-tuned

under the same training budget.

D.3.3 BASELINES FOR CLASS-CONDITIONAL I2V GENERATION

ExtDM (Zhang et al., 2024b) is a diffusion-based video prediction model, which is trained to predict the following m frames

with the given first n frames of a video clip. We train ExtDM with their official implementation9 and set n = 1,m = 15 for

our I2V setting on UCF-101.

VDT-I2V is our implementation of the I2V method proposed by Lu et al.. They use a transformer-based diffusion network

for I2V generation by directly concatenating the image condition with the token sequence of the noisy video latent zt. We

also implement their I2V method on a Latte-S/2 model considering the similarities among transformer-based diffusion

models.

8https://github.com/Doubiiu/DynamiCrafter
9https://github.com/nku-zhichengzhang/ExtDM
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Algorithm 4 Training algorithms for FrameBridge.

Output: Trained FrameBridge model ϵΨ̂θ (zt, t, zT , z
i, c).

Set bridge process {αt, σt, at, bt, ct}Tt=0.

if Neural prior is used then

Train a neural prior model Fη(z
i, c) with Equation (8) before training FrameBridge.

end if

if Fine-tuned from pre-trained diffuion model ϵϕ(zt, t, c) then

if SAF is used then

Re-parameterize the input of ϵΨ̂θ (zt, t, zT , z
i, c) by ϵΨ̂θ (zt, t, zT , z

i, c) ≜ ϵΨ̂θ,align(z̃t, t̃, zT , z
i, c) with Equation (24).

Initialize ϵΨ̂θ,align with the weight of ϵϕ(zt, t, c).
else

Initialize ϵΨ̂θ with the weight of ϵϕ(zt, t, c).
end if

else

Randomly initialize ϵΨ̂θ (zt, t, zT , z
i, c).

end if

repeat

Sample data (z0, c) ∼ pdata(z0, c), timestep t and zt ∼ pbridge,t(zt|z0, zT ).
Take the first frame of z0 as the image condition zi.

if Neural prior is used then

zT ← Fη(z
i, c).

else

Construct zT by replicating zi.

end if

l(θ) =
∥

∥

∥ϵΨ̂θ (zt, t, zT , z
i, c)− zt−αtz0

σt

∥

∥

∥

2

.

Update θ with the optimizer and loss function l(θ).
until Reach the training budget

D.3.4 ABLATION STUDIES ON NEURAL PRIOR

In Section 5.3, we ablate on the neural prior technique by comparing the performance of four models:

• VDT-I2V: The same model as our diffusion baseline on UCF-101.

• VDT-I2V with neural prior as the network condition: The same model as VDT-I2V except that we additionally

condition the network on Fη(z
i, c).

• FrameBridge without neural prior: A FrameBridge model implemented by utilizing the replicated image zi as the

prior.

• FrameBridge with neural prior only as the network condition: A FrameBridge model implemented by utilizing zi

as the prior. However, we condition the bridge model on Fη(z
i, c) by additionally feeding it into the network through

concatenation with zt along the channel axis.

• FrameBridge-NP: A FrameBridge model implemented by utilizing Fη(z
i, c) as the prior.

E Discussion On Related Works

Video Diffusion Models Inspired by the success of text-to-image (T2I) diffusion models (Ramesh et al., 2022; Nichol

et al., 2022), numerous studies have investigated diffusion-based text-to-video (T2V) models (Blattmann et al., 2023; Yang

et al., 2024b; Singer et al.) by designing 3D spatial-temporal U-Net (Ho et al., 2022b;a) and Diffusion Transformers

(DiT) (Peebles & Xie, 2023; Bao et al., 2023; Zhang et al., 2025e). To improve memory and computation efficiency, Latent

Diffusion Models (LDM) (Rombach et al., 2022; Vahdat et al., 2021) are utilized where the diffusion process is applied in
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the compressed latent space of video samples (Bao et al., 2024; Brooks et al., 2024; He et al., 2022). Meanwhile, some

other works designed cascaded diffusion models to generate motion representation (Yu et al., 2024b) or videos with lower

resolution (Ho et al., 2022a; Wang et al., 2025) first, which are utilized to synthesize the result videos in the subsequent

stages. Another line of research (Zhang et al., 2025f; Guo et al., 2024; Wu et al., 2023) focuses on leveraging T2I diffusion

models to enhance the performance of T2V generation, achieving high spatial quality and motion smoothness at the same

time.

Diffusion-based I2V Generation The main difference between I2V and T2V is the incorporation of image conditions

into the sampling process. Xing et al. (2024) utilizes the features of a CLIP image encoder and a lightweight transformer to

inject image conditions into the backbone of a T2V model. Ma et al. (2024a) and Zhang et al. (2024c) propose to directly

model the residual between the subsequent frames and the given initial frame with diffusion for I2V generation. Moreover,

Ma et al. (2024a) also uses the DCTInit technique to enhance the consistency of video content with the given image. Chen

et al. (2023b) presents to train short-to-long video generation models with masked diffusion models. Guo et al. (2024) and

Zhang et al. (2024a) propose to utilize pre-trained T2I models for image animation by training an additional component

to model the relationship between video frames. SparseCtrl (Guo et al., 2025) and Animate Anyone (Hu, 2024) design

specific fusion modules for video diffusion models to adapt to various types of conditions including RGB images. Ren et al.

propose improved network architecture and sampling strategy for image-to-video generation at the same time to enhance the

controllability of image conditions. Jain et al. (2024), Zhang et al. (2023) and Shi et al. (2024) design cascaded diffusion

systems for I2V generation. VIDIM (Jain et al., 2024) consists of one base diffusion model and another two diffusion

models for spatial and temporal super-resolution respectively. Zhang et al. (2023) uses a base diffusion model to generate

videos with low resolutions, which serve as the input of the following video super-resolution diffusion model. Shi et al.

(2024) first generates the optical flow between the subsequent frames and given image with a diffusion process, and use the

optical flow as conditions of another model to generate videos. Ni et al. (2023) and Zhang et al. (2024b) train an autoencoder

to represent the motions between frames in a latent space, and use diffusion models to generate motion latents. However,

previous I2V diffusion models are built on the noise-to-data generation of conditional diffusion process and the sampling

remains a denoising process conditioned on given images. In contrast, FrameBridge replaces the diffusion process with a

bridge process and the sampling directly model the animation of static images.

Noise Manipulation for Video Diffusion Models Several works have explored to improve the uninformative prior

distribution of diffusion models. PYoCo (Ge et al., 2023) recently proposes to use correlated noise for each frame in both

training and inference. ConsistI2V (Ren et al.), FreeInit (Wu et al., 2024), and CIL (Zhao et al.) present training-free

strategies to better align the training and inference distribution of diffusion prior, which is popular in diffusion models (Lin

et al., 2024; Podell et al.; Blattmann et al., 2023). Noise Calibration (Yang et al., 2024a) proposed to enhance the video

quality of SDEdit (Meng et al.) with iterative calibration of initial noise These strategies focus on improving the noise

distribution to enhance the quality of synthesized videos, while they still suffer the restriction of noise-to-data diffusion

framework, which may limit their endeavor to utilize the entire information (e.g., both large-scale features and fine-grained

details) contained in the given image. In contrast, we propose a data-to-data framework and utilize deterministic prior rather

than Gaussian noise, allowing us to leverage the clean input image as prior information.

Comparison with Previous Works of Bridge Models and Coupling Flow Matching In Section 4, we leverage the

forward SDE of bridge models (Zhou et al.) and the backward sampler proposed by Chen et al. (2023c) to build FrameBridge.

We unify their theoretical frameworks to establish our formulation, and emphasize that bridge models are suitable for

image-to-video generation, which is a typical data-to-data generation task. Liu et al. (2023) and Chen et al. (2023c) apply

bridge models to image-to-image translation and text-to-speech synthesis tasks respectively. Similar as bridge models, flow

matching can also be used to construct the data-dependent stochastic interpolants (Albergo et al., 2024; Fischer et al., 2023;

Albergo et al., 2023) for paired-data generation and has been used in image-to-image generation. However, whether the

coupling flow matching is suitable for image-to-video generation has not been fully explored. Compared with their works,

we focus on I2V tasks, building our bridge-based framework by utilizing the frames-to-frames essence and presenting two

innovative techniques for two scenarios of training I2V models, namely fine-tuning from pre-trained text-to-video diffusion

models and training from scratch.
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Figure 9. Another case of qualitative comparison between FrameBridge and other baselines. FrameBridge outperforms diffusion

baseline methods in appearance consistency and video quality. FrameBridge and DynamiCrafter models are fine-tuned from VideoCrafter1

for 20k steps.

F More Qualitative Results of FrameBridge

We show several randomly selected samples of FrameBridge below, and more synthesized samples can be visited at:

https://framebridge-icml.github.io/
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Figure 10. Qualitative comparison between FrameBridge and other baselines. Here FrameBridge is fine-tuned from CogVideoX-2B

for 100k steps, and the samples of other baselines are generated with their official checkpoints. DynamiCrafter, SEINE, ConsistI2V are

fine-tuned from VideoCrafter1, inflated Stable Diffusion 2.1-Base and LaVie respectively.
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Figure 11. Qualitative comparison between FrameBridge and other baselines. Here FrameBridge is fine-tuned from CogVideoX-2B

for 100k steps, and the samples of other baselines are generated with their official checkpoints. DynamiCrafter, SEINE, ConsistI2V are

fine-tuned from VideoCrafter1, inflated Stable Diffusion 2.1-Base and LaVie respectively.
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Figure 12. Zero-shot generation results of fine-tuned FrameBridge (with SAF) on UCF-101.
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Figure 13. Zero-shot generation results of fine-tuned FrameBridge (with SAF) on MSR-VTT.
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Figure 14. Non-zero-shot generation results of FrameBridge-NP on UCF-101. We use two lines to present a neural prior and the

corresponding generated video.
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Figure 15. Comparisons between fine-tuned FrameBridge and other diffusion-based I2V models.
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