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ABSTRACT

Recent work on the limitations of using reinforcement learning from human feed-
back (RLHF) to incorporate human preferences into model behavior often raises
social choice theory as a reference point. Social choice theory’s analysis of settings
such as voting mechanisms provides technical infrastructure that can inform how to
aggregate human preferences amid disagreement. We analyze the problem settings
of social choice and RLHF, and identify differences between them that prevent
well-known technical results in social choice from immediately applying to RLHF.
We then redefine canonical desiderata from social choice theory for the RLHF
context and discuss how they may serve as analytical tools for open problems in
RLHF. Finally, we contextualize the role of social choice in the broader political
theory literature on democracy and collective decision making.

1 INTRODUCTION AND RELATED WORK

Reinforcement learning from human feedback (RLHF) has recently emerged as a key technique for
incorporating human values into AI models.1 The central problem setting of RLHF, in which people
provide preferences over options that are then used to determine global behavior, shares key sim-
ilarities with scenarios studied under social choice theory (SCT).2 Recent work has discussed some
of the ways in which SCT can serve as a reference for analysis of RLHF, including direct application
of social choice axioms to RLHF (Mishra, 2023) and indicating that RLHF implicitly optimizes
for the Borda count (Siththaranjan et al., 2023). Open problems in RLHF identified in surveys by
Casper et al. (2023) and Lambert et al. (2023), among others, include the difficulty of selecting
evaluators, accounting for disagreement among evaluators and cognitive biases, non-representative
sampled prompts, challenges of developing a single reward function for diverse users, measuring
downstream impacts, and assumptions regarding the ease of quantifying or aggregating complex
individual preferences. Both Casper et al. (2023) and Lambert et al. (2023) raise social choice as
one potential way to analyze some of the problems they identify (see also Appendix A). However,
differences in the RLHF setting mean that established technical results in SCT require adjustment
to be applicable to RLHF. We outline core differences and similarities between the RLHF and SCT
problem settings (§2). We then propose SCT-style axioms for RLHF given the differences in problem
settings and discuss open problems raised by these axioms (§3). Finally, we discuss implications
of our analysis for conceptualization of human preference models in the context of RLHF (§4).

2 LEARNING PROBLEMS: PREFERENCE MODELING AND SOCIAL CHOICE

We first outline each problem setting and their core differences (see Table 1). We notate alternatives,
the options that voters or evaluators can choose, as a ∈ A, with A ⊆ Rd as the space of all possible
alternatives. Each alternative a should be thought of as a prompt-response pair, not just a response.3
Humans—often called evaluators (preference modeling) or voters (social choice)—are indexed with

1RLHF is the dominant paradigm for incorporating human preferences into language models, but this paper
discusses learning human preferences from pairwise or k-wise comparisons of outputs more generally. Our
analyses are not restricted only to using RL as the method of incorporating these preferences into model behavior.

2See Brandt et al. (2016) for a textbook treatment of SCT for a computational audience.
3We choose to consider alternatives at the level of prompt-response pairs, rather than individual responses

per prompt. This is because even though RLHF annotations are pairwise comparisons for responses to the same
prompt, the high-level goal is to learn a global reward function that can score any prompt-response pair.
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Social Choice RLHF/ Preference Modeling
Space of alternatives Fixed and finite (e.g., candidates in

an election)
Evaluators see only samples from a structured
but infinite space (e.g. all possible prompts and
completions)

Inputs to process Fixed set of voters; often assume
full information over alternatives
(e.g. each voter submits a ballot
ranking all candidates)

Set of evaluators (not always representative of
general population) give pairwise comparisons
over subset of alternatives; no guarantee over
which evaluators give feedback on which alter-
natives

Goal of process A single winner (e.g. an elected
official) or a set of top-k winners

A reward function that measures the quality of
any alternative, even if unseen (in the election
example, a way to quantify not only the good-
ness of all the current candidates, but also of
any new candidate)

Evaluation Preferences of fixed set of voters
over fixed alternatives evaluated
based on axioms (analyze proper-
ties of voting rule) or distortion
(measure utility of outcome)

Generalization, as measured by accuracy of the
reward model or utility/regret of a policy using
the reward model, with respect to all possible
prompts/completions

Table 1: Summary of major differences in problem settings of social choice and preference modeling for LLMs.

i, with n total evaluators. The set of actual preferences (votes) is denoted {π}i∈[n], with πi, a set of
pairwise comparisons, as the preferences from voter i. For a, a′ ∈ A, a ≻ a′ denotes “a is preferred
to a′.”

Human Preference Modeling The goal of human preference modeling4 is to learn a reward model
r : A → R that quantifies the desirability of a particular alternative a. The standard data collection
method is via pairwise comparisons of text completions for a given prompt, and the standard noise
model assumed is a Bradley-Terry model, where the likelihood of observing an instance of a being
preferred to a′ is proportional to how much “better” a is than a′, i.e. p(a ≻ a′) = exp(r(a))

exp(r(a))+exp(r(a′)) .

Social Choice In the standard social choice setting, given a set of alternatives and a set of voters,
we receive a ballot from each voter i quantifying the voter’s preferences over all A alternatives.
Commonly, this takes the form of rankings, where πi gives voter i’s rankings of all alternatives.
A voting rule aggregates all n ballots to produce a single election winner. Voting rules can be
evaluated axiomatically, i.e. with respect to whether they satisfy particular axioms (properties of
the aggregation process), or in terms of distortion, i.e. with respect to the (aggregate) benefit derived
from selecting the winner over other alternatives.

Properties and goals of the learning problem Common assumptions of the social choice problem
setting include: that alternatives are fixed and finite, i.e. that A contains the only options that could
possibly be considered; that we have full information from each voter about each alternative; and
that voters and their preferences are fixed (see also Appendix A). By contrast, in RLHF, the space
of alternatives is structured but infinite. The evaluators, who may not be representative of the full
population, give pairwise or k-wise preferences over subsets of alternatives, often from a handpicked
set of prompts. Each evaluator only sees a small subset of alternatives, and each alternative is only
seen by a small subset of evaluators.

In SCT, common goals of the voting process include selecting a single winner (e.g. an elected official)
or a set of top-k winners. By contrast, the goal of RLHF is to produce a reward model that can score
the quality of new alternatives. That is, alternatives are not only ranked but assigned real-valued
rewards, and the assignment of these rewards must generalize to unseen alternatives.

4See Lambert et al. (2023); Casper et al. (2023) for detailed surveys, and citations therein for mathematical
derivations of the RLHF objective.
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2.1 DEFINING THE (PREFERENCE MODELING) VOTING RULE

We propose a reformulation of the social choice problem that lets us interpolate between both
settings.5

Consideration 1: Parameterization of alternatives and preferences. First, we assume that
alternatives are parameterized in a d-dimensional space as a ∈ Rd, with A ⊆ Rd. Recall that we
let a represent a prompt and its completion; accordingly, we continue to assume that all alternatives
are commensurable, i.e. that there is a reasonable and well-defined comparison across alternatives.
We also parameterize the preferences of each voter i over text features as θi ∈ Rd and model voter
i’s reward ascribed to a particular piece of text as rθi(x) = ⟨θi, x⟩. In our model, voters have fixed
preferences over features, and rewards for each piece of text are scaled by those preferences; see also
Appendix A.

Consideration 2: Voters from a population. Instead of considering n fixed voters (evaluators),
as in social choice, we assume all voters’ preferences are drawn from some underlying population
θi ∼ V .6 This allows us to model both the scenario in which there exists some shared societal norm
from which individual preferences are drawn, and more complicated distributions (e.g. mixtures of
preference models; Zhao et al. (2016; 2018); Liu & Moitra (2018) discuss mixtures of Bradley-Terry
and random utility models).

With these considerations in mind, we present the preference modeling voting rule. Though the defini-
tion can simply be interpreted as a reward model, our statement is intended to emphasize the interplay
between how the voting rule aggregates seen preferences and how it evaluates unseen alternatives.

Definition 2.1 (Preference Modeling Voting Rule). A preference modeling voting rule f : Rd → R
is a function that maps some (parameterized) alternative a ∈ Rd to some real-valued score, which
represents the population’s assessment of the quality of a.

3 EVALUATING THE (PREFERENCE MODELING) VOTING RULE

How can social choice inform preference model evaluation? We argue that preference modeling can
be divided into two subproblems: that of generalizing a particular set of preferences to new outputs;
and that of deciding how to aggregate preferences over outputs. RLHF research has focused almost
exclusively on the generalization problem. This perspective, though reasonable under the assumption
that evaluators do not meaningfully disagree on their preferences, does not account for meaningful
and widespread disagreement between evaluators, as evidenced by work such as Aroyo et al. (2023).
When evaluators disagree, two perspectives from SCT can help to analyze problems that arise in
RLHF: axiomatic approaches and distortion. We discuss the tenets and potential contributions of
these three perspectives–generalization, axiomatic approaches, and distortion–in this section.

3.1 PERSPECTIVE 1: GENERALIZATION

Following standard approaches in statistics and machine learning theory, recent work (Zhu et al.,
2023; Wang et al., 2020) studies the problem of estimating θ̂ under Bradley-Terry models where
rθ(x) ∝ ⟨θ, x⟩. These approaches take the alternatives to be fixed and predetermined, and all
randomness is due to Bradley-Terry. Even under the goal of estimating θ̂ well (or minimizing the
regret of a policy that would use an estimated θ̂, as analyzed in Zhu et al., 2023), natural extensions
could consider the complication of psychological factors that bias observed preferences, such as
preferences for “sycophantic” text or long outputs (Perez et al., 2023; Singhal et al., 2023); modeling
more diverse evaluators; or analyzing the set of prompts to be annotated.

3.2 PERSPECTIVE 2: AXIOMATIC CHARACTERIZATIONS

A core tenet of social choice is that voting rules can be axiomatically analyzed; i.e., absent the notion
of some “ground truth,” there are particular principles that the final output should follow. This permits

5Siththaranjan et al. (2023) give an interpretation of the maximum-likelihood estimator (MLE) under the
Bradley-Terry model as an implementation of Borda count, a standard voting rule from the social choice
literature, though without explicitly making the modeling decisions we propose here. In future work, we hope to
give a deeper analysis of this proposition based on the discussion in Sec. 3.

6Some work in SCT, e.g. the line of work in Dey & Bhattacharyya (2015), also considers a population of
voters; most, however, assumes fixed voters.

3



Published at ICLR Workshop on Reliable and Responsible Foundation Models 2024

a finer-grained understanding of how aggregations handle individual pieces of input. However, to
apply axiomatic analysis to the preference modeling setting, we must still consider “generalization”
in a sense not considered by standard SCT approaches.

On a technical level, axioms for the preference modeling setting must satisfy two criteria: (1) they
must apply to scores, rather than single winners; and (2) they must distinguish between relationships
that apply to the full space of alternatives A and all voters, and those that apply only to alternatives
and ballots seen at train time. These properties mean that some canonical SCT axioms may be
wholly inapplicable, while others may require careful reformulation to apply in the RLHF setting.
We highlight examples of each of these cases below.

Example: unanimity, consistency, and Condorcet consistency. In the single-winner setting, an
alternative a ∈ A is a Condorcet winner on a particular set of ballots if, for the majority of voters,
a ≻ a′ for all a′ ̸= a and a′ ∈ A. A Condorcet-consistent voting rule for the single-winner setting
always returns the Condorcet winner, if it exists. Consistency is satisfied if when, for every partition
of voters, the voting rule selects the same winner, it holds that the voting rule over all the voters also
selects that winner. Unanimity is satisfied when, if every individual voter expresses the preference
a ≻ b, then the voting rule also selects a over b.

Recall that, for RLHF, we are interested not in the final winner but in the scores that f assigns to
arbitrary (unseen) alternatives, and that in this setting, arbitrarily small preferences may matter less
than differences in reward greater than some margin ε. Also recall that voters are sampled from
an underlying population. To account for these differences, we propose definitions for unanimity,
consistency, and Condorcet consistency for the RLHF setting as follows:
Definition 3.1 (Unanimity for preference modeling). First, define (a, ε)-unanimity as follows. For
a fixed a (a potentially unseen alternative) and a population of (potentially unseen) voters V , let
A′

a ⊆ A be the set of alternatives such that for all voters, ⟨θi, (a − a′)⟩ > ε for all a′ ̸= a and
a′ ∈ A′

a. Then a (preference modeling) voting rule f is (a, ε)-unanimous when f(a)− f(a′) > ε
for all a′ ∈ A′

a, and ε-unanimous when it is (a, ε)-unanimous for all a ∈ A. If f is ε-unanimous for
ε = 0, then we say f is unanimous.
Definition 3.2 (Condorcet consistency for preference modeling). We define (a, ε)-Condorcet consis-
tency as follows. For a fixed a and voter population V , let A′

a ⊆ A be the set of alternatives such that
Eθi∼V [⟨θi, (a− a′)⟩] > ε for all a′ ̸= a and a′ ∈ A′

a. Then a (preference modeling) voting rule f
is (a, ε)-Condorcet consistent when f(a)− f(a′) > ε for all a′ ∈ A′

a, and ε-Condorcet consistent
when it is (a, ε)-Condorcet consistent for all a ∈ A. If f is ε-Condorcet consistent for ε = 0, then
we say f is Condorcet consistent.
Definition 3.3 (Consistency for preference modeling). We define (a, ε)-consistency as follows. For
a fixed a, let A′

a ⊆ A be the set of alternatives such that for any sufficiently-large subset of voters
V ′ ⊆ V , fV′(a)− fV′(a′) > ε for all a′ ∈ A′

a. Then a (preference modeling) voting rule f is (a, ε)-
consistent when fV(a)− fV(a

′) > ε for all a′ ∈ A′
a, and ε-consistent when it is (a, ε)-consistent

for all a ∈ A. If f is ε-consistent for ε = 0, then we say f is consistent.

Note the distinction between 3.1, 3.2, and 3.3 lies primarily in what slice of voters is being examined;
the expectation in 3.2 captures the idea of majority preference, while 3.3 is concerned with agreement
across subsets of voters. The fact that these axioms can be expressed in terms of which types of
agreement are important to respect suggests that there is room for more explicit consideration of
which types of disagreement are important in preference modeling.

Other axioms of (single-winner) social choice may not apply. Resolvability (that the voting
rule produces no ties) or majority (that any alternative ranked first by a majority of voters should win)
have no clear translation to the preference model setting, since choosing a single winner is no longer
the main objective. Strategyproofness—the robustness of the final outcome to strategic behavior by
individual voters—is a less pressing concern when the number of alternatives is very large, and when
the final outcome is a scoring rule rather than a single winner.7 Despite the seeming inapplicability
of some “classic” SCT axioms, we argue that it is still worthwhile to consider what new axioms
for preference modeling might look like: axioms were developed to establish more fundamental
desiderata for democratic processes; moreover, they are designed to apply in cases that lack an
obvious “ground truth” optimum.

7Even in the context of binary classification, Hardt et al. (2023) require coordinated action of around 10% of
evaluators to substantially affect the output of the learned model.

4



Published at ICLR Workshop on Reliable and Responsible Foundation Models 2024

3.3 PERSPECTIVE 3: DISTORTION

An alternative approach to evaluating voting rules in social choice is through distortion (see An-
shelevich et al. (2021) for a recent survey). At a high level, distortion is a quantitative notion of
suboptimality with respect to some information that the voting rule may not be able to access (e.g. the
“hidden context” of Siththaranjan et al. (2023). In an extension of the standard setting, voters have
utilities over alternatives, and submit ballots—rankings—that are consistent with those true utilities.
8 The distortion of a voting rule is the worst-case difference in utility between the optimal election
winner and the winner chosen by the voting rule, where the worst-case is taken over all possible
utility functions that would have still been consistent with the observed ballots.

As with axiomatic characterizations, it is nontrivial to redefine distortion directly for RLHF. In
SCT, it is reasonable to analyze “worst-case” (hidden) utilities due to the finiteness of both the
alternatives and the voter, the assumption of no noise in reporting utilities, and because ballots tend
to contain information about voters’ preferences over the entire space of alternatives. For RLHF,
therefore, we might consider an approach that captures the conceptual insight of the distortion metric
rather than attempting to transliterate it directly. For example, we might consider some per-feature
weight w ∈ Rd where wj scales the importance of feature j. This could represent phenomena like
cognitive bias in labeling, such that annotations are received according to a proxy reward function
rθ,w(a) =

∑
j∈[d] θjwjaj , but where true utilities depend only on θ and not w. On the other hand,

this could also reflect the scenario where annotations are given with respect to rθ = ⟨θ, a⟩ but utility
for how accurately a particular feature θi is learned varies by feature (scaled by wi)—for example,
someone may prefer both longer text completions and text that avoids gendered stereotypes, but would
care more about the final θ capturing the latter. To operationalize the “worst-case” in conjunction
with the randomness in voting assumed by Bradley-Terry-Luce, we could work with expected welfare
(where the expectation includes randomness in voting); assume some relationship between θ and
w; and take the worst-case over possible θ and w that would be consistent with the observed votes.
Interestingly, for the statistical inference problem of estimating θ, this is a fundamentally distinct
perspective from the standard RLHF approach of maximum likelihood; instead, it is more analogous
to estimating a θ that is robust to “worst case” realizations of hidden context.

4 DISCUSSION

SCT provides a rich infrastructure for finer-grained discussion of many difficulties in using RLHF
to represent human preferences by providing theoretical underpinnings for sources of these problems.
These include conceptions of the prompt space, including how prompts for RLHF are chosen and
what guarantees on representation may be lacking if the sample is handpicked in an unusual way; and
of the evaluator space, including consequences of using an unrepresentative or small set of evaluators.
In addition, they may help to conceptualize evaluator behavior: though potentially “misaligned” or
“strategic” evaluators are often discussed (Casper et al., 2023), SCT provides a framework for analyz-
ing the perhaps more common issues of evaluators dealing with poor incentives, incomplete directions,
and cognitive biases (Singhal et al., 2023; Huang et al., 2023). Careful engagement is necessary to
combine insights from these communities in a way that is both rigorous and fruitful. One naive inter-
pretation of impossibility results such as Arrow’s Theorem is that a version of democracy that relies
on direct input from the public is simply untenable. However, a key aspect of SCT is that the axioms
or properties of a voting mechanism that are actually desirable depend greatly on the context of the de-
cision. By focusing on the properties that matter in the RLHF setting, and adapting SCT formulations
to differences in the RLHF problem, we reach a space of problems that are both critical and tractable.
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A ADDITIONAL RELATED WORK

Social choice Instead of applying social choice to AI, Fish et al. (2023) show that applying AI to
augment democratic processes can improve canonical social choice results. In line with our discussion
of application-specific reworkings of social choice axioms, Flanigan et al. (2023) uses smoothed
analysis for relaxation of worst-case social choice axioms, which helps to distinguish voting rules
that rarely satisfy axioms from those that often do.

Halpern et al. (2023) discuss relaxed assumptions on fixed preferences and full information. Fish et al.
(2023) discusses relaxations of assumptions regarding fixed, finite, and commensurable preferences.
The literature on metric preferences (see e.g. Skowron & Elkind (2017); Anshelevich et al. (2018))
also parameterizes alternatives in Euclidean space; however, voters’ preferences over them are
determined by their distance from each alternative.

In single-winner elections, the distortion of Borda count is unbounded (Procaccia & Rosenschein,
2006); however, numerical experiments from Benade et al. (2019) suggest that Borda count may be
near-optimal in a setting where the voting rule outputs a ranking over alternatives rather than a single
winner.

RLHF Related empirical RLHF work has raised alternative ways to collect human preferences,
such as measuring the degree of preference (Wilde et al., 2022) or soliciting fine-grained preferences
that compare alternatives along multiple dimensions (Wu et al., 2023). Alternative optimization
methods to RLHF have also been proposed (e.g. Rafailov et al. (2023); Liu et al. (2023)).

Political theory For democratic theorists, social choice results over the last few decades have
provided both challenges and clarity to normative discussions of what makes collective decision-
making “legitimate.” For example, types of choices have different normative consequences (e.g.,
choosing the best way to explain a math problem or the best way to discuss a conspiracy theory),
which links to discussion of what decisions are best suited to different voting rules; for instance,
Miller (1992) argue that Borda count often works well, but key normative decisions might demand
majoritarianism. In the context of LMs, this distinction also helps to distinguish between preferences
that can be personalized and universal judgments that must affect all users.
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