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ABSTRACT

There have been significant interests in designing Graph Neural Networks (GNNs)
for seeded graph matching, which aims to match two (unlabeled) graphs using
only topological information and a small set of seeds. However, most previous
GNNs for seeded graph matching employ a semi-supervised approach, which re-
quires a large number of seeds and can not learn knowledge transferable to unseen
graphs. In contrast, this paper proposes a new supervised approach that can learn
from a training set how to match unseen graphs with only a few seeds. At the core
of our SeedGNN architecture are two novel modules: 1) a convolution module
that can easily learn the capability of counting and using witnesses of different
hops; 2) a percolation module that can use easily-matched pairs as new seeds
to percolate and match other nodes. We evaluate SeedGNN on both synthetic
and real graphs, and demonstrate significant performance improvement over both
non-learning and learning algorithms in the existing literature. Further, our exper-
iments confirm that the knowledge learned by SeedGNN from training graphs can
be generalized to test graphs with different sizes and categories.

1 INTRODUCTION

Graph matching, also known as network alignment, aims to find the node correspondence between
two graphs that maximally aligns their edge sets. As a ubiquitous but challenging problem, graph
matching has numerous applications, including social network analysis (Narayanan et al., 2008;
2009; Zafarani et al., 2015; Zhang et al., 2015b;a; Chiasserini et al., 2016), computer vision (Conte
et al., 2004; Schellewald et al., 2005; Vento et al., 2013), natural language processing (Haghighi
et al., 2005), and computational biology (Singh et al., 2008; Kazemi et al., 2016; Kriege et al., 2019).
This paper focuses on seeded graph matching, where a small portion of the node correspondence
between the two graphs is revealed as seeds, and we seek to complete the correspondence by growing
from the few seeded node pairs. Seeded graph matching is motivated by the fact that, in many real
applications, the correspondence between a small portion of the two node sets is naturally available.
For example, in social network de-anonymization, some users who explicitly link their accounts
across different social networks could become seeds (Narayanan et al., 2008; 2009). Knowledge of
even a few seeds has been shown to significantly improve the matching results for many real-world
graphs (Kazemi et al., 2015; Fishkind et al., 2019).

Recently, the Graph Neural Network (GNN) approach for graph matching has attracted much re-
search attention. Although such a machine-learning-based approach usually does not possess prov-
able theoretical guarantees, it has the potential to learn valuable features from a large set of train-
ing data. Unfortunately, to date GNN has not been successfully applied to seeded graph matching.
Most previous GNNs for seeded graph matching are limited to a semi-supervised learning paradigm,
which only operates on a single pair of graphs (Zhang et al., 2019; Li et al., 2019a;b;c; Zhou et al.,
2019; Chen et al., 2020; Derr et al., 2021) and treats the seed set as the labelled training data. The
goal is to learn the useful features from the seed set, and then to generalize the knowledge to the rest
of the unseeded nodes. This semi-supervised learning, however, suffers from two major limitations.
First, in order to obtain high matching accuracy, the set of seeds needs to be sufficiently large, which
is often unrealistic in practice. Second, as this semi-supervised setting only learns within a given
pair of graphs, there is no effort in transferring knowledge from one pair of graphs to other pairs of
unseen graphs, which severely limits GNNs’ potential in distilling the common knowledge from a
large set of training graphs. A natural but fundamental question is
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Can we learn to match two graphs from only a few seeds while generalizing to unseen graphs?

This paper provides an affirmative answer to this question. Specifically, we design a novel GNN
architecture through a supervised approach, namely SeedGNN, that can learn from many examples
of matched graph pairs, distill the knowledge into the trained model automatically, and then apply
such knowledge to match unseen graph pairs with only a few seeds. In contrast to prior GNN
approach for seeded graph matching that apply GNNs separately to each graph and learn a node-
embedding for each node (by aggregating neighborhood information within each individual graph),
a key departure of our SeedGNN architecture is to apply the GNN jointly over two graphs and to
learn a pair-wise similarity for each pair of nodes directly. As we will discuss further below, this
pair-wise GNN architecture is crucial for learning both useful features (from seeds) and the best
way to synthesize them in different types of graphs. (We note that this type of pair-wise GNNs have
been used in a supervised learning approach for seedless graph matching in Rolı́nek et al. (2020);
Wang et al. (2021). However, they have not been used for seeded graph matching. See Section 2
for further discussions.) Numerical experiments on both synthetic and real-world graphs show that
our SeedGNN significantly outperforms the state-of-the-art algorithms, including both non-learning
and learning-based ones, in terms of seed size requirement and matching accuracy. Moreover, our
SeedGNN can generalize to match unseen graphs of sizes and types different from the training set.

At the core of our SeedGNN are two innovative designs. One is the convolution module that learns
to count “witnesses” at different hops — a notion that plays a pivotal role in seeded graph match-
ing (Mossel et al., 2019). Here, the ℓ-hop witnesses of a node-pair are seeded pairs that lie in the
neighborhood at ℓ hops. Naturally, a true pair is expected to have more witnesses than a fake pair.
As we will further discuss in Section 4.1 and Section 4.2, our pair-wise SeedGNN architecture is
much more effective than existing node-based GNNs in learning how to count witnesses, in a man-
ner that can be easily generalized to unseen graphs. The second innovation is the percolation module
that matches high-confidence node-pairs at one layer and propagates the matched node-pairs as new
seeds to the subsequent layers, triggering a percolation process that matches a large number of node
pairs. However, we emphasize that it remains highly non-trivial how to best utilize either the witness
or the percolation idea for achieving high matching accuracy. Indeed, when graphs are very sparse,
even true node-pairs may not have enough witnesses if the number of hops ℓ is small; when graphs
are very dense, a fake pair may also have many witnesses if ℓ is large. Similarly, a fake pair may be
incorrectly propagated as a new seed, which can lead to many cascading errors. The pair-wise archi-
tecture of SeedGNN is also crucial to facilitate learning how to best synthesize these two modules.
As a result, our SeedGNN can potentially figure out which hops of witnesses are more reliable and
what “cleaner” new seeds should be used to trigger the percolation process.

2 FURTHER RELATED WORK

Theoretical Algorithms Various seeded matching algorithms have been proposed based on hand-
designed similarity metrics computed from local topological structures (Pedarsani et al., 2011; Yart-
seva et al., 2013; Korula et al., 2014; Chiasserini et al., 2016; Shirani et al., 2017; Mossel et al.,
2019; Yu et al., 2021b). The theoretical analysis on these algorithms explains why a particular set
of features (e.g., witnesses (Korula et al., 2014) and percolation (Yartseva et al., 2013)) are valuable
for graph matching. However, these theoretical algorithms may not synthesize different features
most effectively. See detailed discussion in Appendix A. In contrast, our SeedGNN can potentially
figure out what combinations of features are most useful, and therefore it can potentially outperform
known theoretical algorithms (see our experiments in Section 5 and Appendix C.3).

GNN for Seedless Graph Matching As we discussed earlier, most existing GNNs for seeded
graph matching take a semi-supervised learning approach. In contrast, our SeedGNN falls into a
supervised learning approach, which aims to transfer knowledge from training graphs to unseen
graphs. In the literature, such a supervised learning approach has been applied to seedless versions
of the graph matching problems in (Zanfir et al., 2018; Wang et al., 2019; 2021; 2020a; 2021; Jiang
et al., 2022; Wang et al., 2020b; Fey et al., 2020; Rolı́nek et al., 2020; Gao et al., 2021; Yu et al.,
2021c). For such seedless matching problems, non-topological node features are often assumed to
be available. Thus, a node-based GNN is effective in learning how to extract useful node representa-
tions from high-quality non-topological node features. Unfortunately, from our own experience, we
found that it is not easy to design a node-based GNN that effectively utilizes seed information (see
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detailed discussions in Section 4.1). In contrast, our pair-wise SeedGNN architecture is much more
effective in learning how to use seed information and synthesize various features. The design of our
pair-wise architecture is also related to the work in Rolı́nek et al. (2020); Wang et al. (2021). How-
ever, Rolı́nek et al. (2020) still corresponds to a node-based GNN method and relies on high-quality
node features. The NGM architecture of Wang et al. (2021) is most similar to us. However, NGM
was not designed for seeded graph matching and has not been evaluated for this purpose either. See
detailed discussion Appendix A.1 and our experiments in Section 5.2, where we find that, when
extended to seeded graph matching, the NGM algorithm in Wang et al. (2021) does not generalize
well when the test graph is with much larger size and node-degree than the training graph.

Inductive Semi-supervised Learning on Graphs Our goal of using supervised learning for
seeded graph matching shares some similarity with Wen et al. (2021), which also aims to both
perform inductive learning (i.e., learn transferable knowledge from training graphs) and use a small
amount of labeled data on the test graph. However, Wen et al. (2021) focuses on node classification,
which is quite different from seeded graph matching. See detailed discussion in Appendix A.

More discussion on additional related work is deferred to Appendix A.

3 PROBLEM DEFINITION

We represent a graph of n nodes by G = (V,A), where V = {1, 2, ..., n} denotes the node set, and
A ∈ {0, 1}n×n denotes the symmetric adjacent matrix, such that A(i, j) = 1 if and only if nodes
i and j are connected. For seeded graph matching, we are given two graphs G1 = (V1,A1) of n1

nodes and G2 = (V2,A2) of n2 nodes. Without loss of generality, we assume n1 ≤ n2. There is an
unknown injective mapping π : V1 → V2 between G1 and G2. When π(i) = j, we say that i ∈ V1

corresponds to j ∈ V2. Throughout the paper, we denote a node-pair by (i, j), where i ∈ V1 and
j ∈ V2. For each node-pair (i, j), if j = π(i), then (i, j) is a true pair; if j ̸= π(i), then (i, j) is a
fake pair. Then, an initial seed set S containing a fraction of true pairs is given. The goal of seeded
graph matching is to recover the ground-truth mapping π based on the observation of G1, G2 and S.

In this work, we consider the problem of seeded graph matching in the supervised setting. The train-
ing set consists of several pairs of graphs, their initial seeds, and ground-truth mappings. Specif-
ically, we use T = {(P (1), π(1)), (P (2), π(2)), ..., (P (N), π(N))} to denote the training set, where
P (i) = (G(i)

1 ,G(i)
2 ,S(i)) denotes the i-th training example and π(i) is the ground-truth mapping for

the i-th training example. For different training examples, the sizes of graphs and seed sets could be
different. Our goal is to design a GNN architecture that can learn from training examples to predict
the ground-truth mappings for unseen test graphs.

4 THE PROPOSED METHOD

In this section, we present in detail our proposed SeedGNN for seeded graph matching. See Figure 1
for a high-level illustration. In Section 4.1, we briefly illustrate the limitations of node-based GNNs
for seeded graph matching, which motivate us to design pair-wise GNNs. We then describe the
convolution module in Section 4.2, and the percolation module in Section 4.3. The supervised
training procedure is presented in Section 4.4.

The l-th layer

Convolution Module

Aggregation (2) MLP (3)
vec(·)

Percolation Module

MLP (5)

Softmax (6) Hungarian

Masking (7)
unvec(·)

vec(·) Concatsl
unvec(·) sl+1

Figure 1: An overview of the l-th layer of our SeedGNN architecture. There are L layers in total
and each layer consists of two main modules. With the node-pair representations sl as input, the
convolution module is a local processing step that aggregates the neighborhood information of each
node-pair and updates the representation of its similarity through a neural network. The percolation
module is a global processing step that compares the updated similarities of all node-pairs and finds
the high-confidence ones. Then, we combine the local and global information from the two modules
and propagate the new representations sl+1 to the next layer.
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Notation we use vec(·) to denote the vectorization that converts a n1 × n2 × d matrix to a matrix
of n1n2 × d, where the (i, j, :)-th entry of the input matrix is the ((i − 1)n2 + j, :)-th entry of the
output matrix. Then, the unvectorization unvec(·) is the inverse operation of the vectorization.

4.1 FROM NODE-BASED GNNS TO PAIRWISE GNNS

Since most existing approaches for graph matching use node-based GNNs (Zhang et al., 2019; Chen
et al., 2020; Wang et al., 2019; 2020a; Fey et al., 2020; Rolı́nek et al., 2020), we also started with
node-based GNNs when we first researched the supervised approach to seeded-graph matching.
However, from our experience, we found that node-based GNNs have significant difficulty effec-
tively utilizing seed information. Note that node-based GNNs are adequate for the semi-supervised
setting because the seed information is only used in the training objectives. However, as we discuss
earlier in the introduction, this semi-supervised approach does not lead to transferable knowledge to
unseen graphs. In contrast, to apply the node-based GNNs in the supervised setting, the first diffi-
culty is to figure out a way to encode seed information as input. One natural attempt is to convert
seeds to node features as input. For example, one could apply one-hot encoding, which represents
the i-th seeds as a binary vector with the i-th element being 1 and 0 otherwise. However, this method
needs to pre-specify the maximum number of seeds, and thus can not generalize to new graphs with
even more seeds. Another possible method is random encoding, which uses a random vector to
represent each seed. However, the vector dimension must also be chosen to be sufficiently large;
otherwise two vectors corresponding to different seeds may have too similar encodings, which may
confuse the GNN. This dependency on the vector dimension will again lead to generalization issue
when the test graphs have much more seeds than the training graphs.

1 1′

2 2′

3 3′

4 4′
5 5′

6 6′

G1 G2

Figure 2: Let i′ = π(i). The
red node-pairs are seeds. The
red edges are cross-links.

To avoid the generalization difficulty, an alternative approach is to
use auxiliary “cross-links” across the two graphs to represent the
seeds (see Figure 2). With these “cross-links”, we can then com-
bine the two graphs together and apply the node-based GNN on this
union graph. This method is easier for generalization because the
same GNN can be applied to graphs with arbitrary size and num-
ber of seeds. However, the topological structure of this union graph
only informs the GNN that there is a seed at a particular location in
the neighborhood, but not the seed identity. For example, in Figure 2, even though node 1 and node
4′ have different seeds in their neighborhoods, their local neighborhood typologies (and the seed
positions) look exactly the same. Thus, it would be difficult for a node-based GNN to produce node
representations that can distinguish the two nodes.

To circumvent the aforementioned issues of existing node-based GNNs, we instead apply GNNs on
node-pairs instead of nodes. Intuitively, when we apply such a pair-wise GNN to the node-pairs
(1, 1′) and (1, 4′) in Figure 2, it can easily tell that (1, 1′) has a common seed, while (1, 4′) does
not. As a result, this pair-wise GNN architecture will be able to learn generalizable knowledge
from cross-links. We discuss the difference between our design and the previous pair-wise GNN
architectures for seedless graph matching (Wang et al., 2021) in Appendix A.1. Below, we provide
details of our proposed SeedGNN based on this idea.

4.2 CONVOLUTION MODULE

Generalizable Encoding Method for Seeds. We follow the cross-link idea to encode the seed
information as inputs for our SeedGNN, which is easier for generalization to unseen graphs as
discussed earlier. Specifically, let S1 ∈ {0, 1}n1×n2 be the indicator matrix for seeds among n1n2

node-pairs. If the node-pair (i, j) is a seed, we let S1(i, j) be 1, and 0 otherwise. Then, we input
s1 = vec(S1) ∈ {0, 1}n1n2×1 into our SeedGNN.

With the input of seed information, we design the convolution module for SeedGNN that can count
and utilize witnesses. We first introduce the definition of l-hop witnesses (Mossel et al., 2019).
Given any graph G and two nodes u, v in G, we denote the length of the shortest path from u to v
in G by distG(u, v). Then, for each node pair (u, v) with u in G1 and v in G2, the seed (w, π(w))
becomes a l-hop witness for (u, v) if distG1

(u,w) = l and distG2
(v, π(w)) = l. Since we take the

node-pair representations as input, our design is to apply SeedGNN to each node-pair across the
two graphs. In this way, the pair-wise SeedGNN can directly infer from the neighboring topological
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structure whether there is a witness. Specifically, taking the seed encoding vector s1 as input, the
counting of 1-hop witnesses can be written as

h1 = (A1 ⊗A2)s1,

where ⊗ denotes the Kronecker product. Likewise, we may further compute the l-hop witness-like
information in the l-th layer of our SeedGNN as

hl = (A1 ⊗A2)sl, (1)

where sl ∈ Rn1n2×dl is specified later in Section 4.3, which contains the witness-like information
within (l − 1)-hops. Note that this expression (1) can be expanded as, for node-pair (i, j),

hl[(i− 1)n2 + j, :] =
∑

(u,v): A1(u,i)=1, A2(v,j)=1

sl[(u− 1)n2 + v, :],

which is similar to the aggregation step of the standard GNN in (Hamilton et al., 2017). The only
difference is that we aggregate over a node-pair’s neighborhoods. A direct implementation of (1)
takes O(n2

1n
2
2) computation, but we can reduce the complexity by letting Hl = unvec(hl) and

Sl = unvec(sl), and rewriting (1) as

Hl[:, :, t] = unvec((A1 ⊗A2)sl[:, t]) = A1Sl[:, :, t]A2, t = 1, 2, ..., dl. (2)

Assume that the mean of the node degrees of G1 and G2 is dmean. Then, by sparse matrix multiplica-
tion, the complexity of the right-hand-side of (2) is reduced to O(n1n2dmean).

As we will see later in Section 4.3, in our SeedGNN sl will also contain outputs from the perco-
lation layer. In order to learn how to best synthesize these two features (see further discussions in
Section 4.3), we apply a neural network on hl after (1):

ml = ϕl(hl), (3)

where the update function ϕl is implemented as a K-layer neural network (we use K = 2 in our
experiment). Let ϕ[0]

l (hl) = hl. The k-th layer of ϕl can be formulated as

ϕ
[k]
l (hl) = σ

(
ϕ
[k−1]
l (hl)W

[k−1] + b[k−1]
)
, (4)

where W [k−1] and b[k−1] are learnable weights, initialized as Gaussian random variables; σ is an
activation function (we use ReLU). The updated representations ml ∈ Rn1n2×(dl−1) will be sent to
the next layer of SeedGNN.

4.3 PERCOLATION MODULE

The percolation module is designed to match high-confidence nodes at one layer and to propagate
the matched nodes as new seeds to the subsequent layers. Formally, we first obtain a similarity
matrix in the l-th layer by mapping the node-pair representations ml to 1-dimension vectors, which
is used to assess the similarity of each node-pair:

xl = ρl(ml). (5)

We implement ρl as multi-layer neural networks that is defined similarly as ϕl in (4). The output xl

is in Rn1n2×1. Then, we transform xl to Xl = unvec(xl) ∈ Rn1×n2 , and apply row-wise softmax
to normalize Xl:

Yl =
(
softmax(Xl) + softmax(X⊤

l )⊤
)
/2, (6)

where for each row v = (v1, ..., vn) ∈ Rn of input matrix, the softmax function is defined as

softmax(v)i =
exp(vi)∑n
j=1 exp(vj)

, for i = 1, 2, .., n.

The similarity matrix Yl needs “cleaning” because it contains a lot of “noisy” information. For ex-
ample, many fake pairs possess comparable similarity with true pairs (see Figure 3(a) for example).
Further, there are far more fake pairs than true pairs. As a result, directly utilizing such misleading
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information would lead to even more matching errors. Since the percolation idea from theoretical
algorithms passes only new seeds with high confidence to the next stage (Yartseva et al., 2013),
we leverage an approach called “masking” to remove the noisy information and retain the cleaner
information in Yl. More precisely, we utilize the Hungarian matching algorithm (Edmonds & Karp,
1972) to solve a linear assignment problem on Yl to find an injective mapping between G1 and G2,
such that the total similarity of the matched node-pairs is maximized (see Figure 3(b) for example).
The matching result is denoted by Rl ∈ {0, 1}n1×n2 , where Rl(i, j) = 1 if the node-pair (i, j)
is matched by the Hungarian algorithm and Rl(i, j) = 0 otherwise. Then, we filter out the noisy
information in Yl by “masking”:

zl = vec(Yl ◦Rl), (7)

where ◦ denotes element-wise multiplication (see Figure 3(c) for example). The matching informa-
tion zl is sent to the next layer. As a result, many potentially noisy node-pairs are discarded. We note
that both the idea of using similarity matrix to refine higher-layer matching and the idea of masking
have appeared in seedless matching (Wang et al., 2019; Fey et al., 2020; Yu et al., 2019). However,
there are crucial differences in the way that these ideas are utilized. Further, unlike previous perco-
lation algorithms (Yartseva et al., 2013), our design of the percolation module can correct matching
errors from earlier layers. We discuss these differences further in Appendix A.
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Figure 3: An illustration of our percolation process.

The combination of the two features With the convolution module and the percolation module,
our SeedGNN can identify witnesses at different hops and generate new seeds for percolation. How-
ever, these capabilities alone are insufficient. For example, when graphs are very sparse, even true
node-pairs may not have enough witnesses if the number of hops l is small. When graphs are very
dense, a fake pair may also have many witnesses if l is large. Thus, SeedGNN needs to learn how
to adaptively utilize various types of witnesses in different types of graphs. Similarly, even with
the above “cleaning” procedure, the output of the percolation module may still have low-confident
seeds. Directly using them for percolation could lead to cascading errors. Thus, SeedGNN also
needs to learn how to use new seeds with different levels of confidence.

Layer 1 Layer 2 Layer l

initial seeds

s1

1-hop

new seeds z1

m1

s2 = [m1, z1]

2-hop

1-hop

new seeds z2

m2

s3 = [m2, z2]

l-hop

(l − 1)-hop

1-hop

ml

new seeds zl

sl+1 = [ml, zl]

...
...

Convolution

Percolation

...

Figure 4: The witness information and new seeds
computed by each layer.

The neural module in (3) is precisely designed
to enable such learning. Specifically, instead of
directly using the output zl from the percolation
module as new seeds, we concatenate it with the
output of the convolution module, i.e., sl+1 =
[ml, zl] ∈ Rn1n2×dl+1 , as the input to the next
layer. Then, after passing sl+1 through (1), we
apply the neural module (3). The joint effect
of this design is that SeedGNN can utilize the
confidence of zl to decide how much it should
rely on various types of witnesses. Intuitively,
at a higher layer l ≥ 2, after passing sl by (1) and (3), ml may contain l-hop witness information
from the initial seeds s1, (l−1)-hop witness information from new seeds z1, ... and 1-hop witnesses
information from new seeds zl−1 (see Figure 4). However, unlike the initial seeds s1 that are either
0 or 1, the new seeds z1, z2, ..., zl−1 also come with confidence levels. Thus, thanks to the non-
linearity in ϕl at each layer, the strength of the various types of witness information (from either
the initial seeds or the new seeds) will vary depending on the confidence levels of the new seeds,
which then potentially allows SeedGNN to learn how to best utilize them adaptively. For example,
for sparse graphs, the confidence levels of the new seeds in the first several layers are low. As a
result, SeedGNN can utilize witnesses based on the initial seeds but at a larger number of hops. In
contrast, for dense graphs, if the confidence levels of the new seeds in the first several layers are
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already high, SeedGNN can then utilize the new witnesses computed from those new seeds. This
capability is experimentally validated in Appendix C.3 by studying the layer-wise matching process
of SeedGNN for different types of graphs. Further, SeedGNN can even combine different types of
witness information together and potentially extract unknown but more valuable features.

4.4 LOSS FUNCTION

Finally, we utilize the ground-truth node-to-node correspondence as the supervised training infor-
mation for end-to-end training. More precisely, for any training example (P, π) ∈ T , we adopt the
cross-entropy loss to measure the difference between our prediction and the ground-truth mapping
π. Then, we add up the cross-entropy loss of every layer:

LP (ϑ) = −
L∑

l=1

 ∑
(i,j): j=π(i)

log (Yl(i, j) + ϵ) +
∑

(i,j), j ̸=π(i)

log (1− Yl(i, j) + ϵ)

 ,

where Yl is given in (6), ϑ denotes all the learnable weights in the networks ϕl and ρl, and ϵ is
a small positive value (e.g. ϵ = 10−9) to avoid a logarithm of zero. The total loss function is
L(ϑ) =

∑
P∈T LP (ϑ). We find that the use of the losses from all layers in training helps to speed

up the training process. This is somewhat inspired by hierarchical learning methods in (Bengio,
2009; Schmidhuber, 1992; Simonyan & Zisserman, 2015). It allows the lower layers to be trained
first, making it easier to train the next layers. Then, in testing, we will apply the trained SeedGNN
model on the test graphs and only use the matching result of the final layer, RL, as the predicted
mapping since the final layer already synthesizes all the features learned at the lower layers.

The total time complexity of SeedGNN is O(n1n
2
2), and the space complexity is O(n1n2). The

detailed discussion on the complexity and scalability of our SeedGNN is deferred to Appendix B.

5 EXPERIMENTS

In this section, we conduct numerical experiments to demonstrate the advantages of SeedGNN.

5.1 EXPERIMENTAL SET-UP

The number of SeedGNN layers is empirically fixed to 6 throughout our experiments. We implement
the operators ϕl and ρl as two-layer neural networks with dl = 16. For all experiments, optimization
is done via ADAM (Kingma et al., 2015) with a fixed learning rate of 10−2. Our code is implemented
using PyTorch (Paszke et al., 2019) and trained on an Intel Core i7-8750H CPU. The performance
is evaluated using the matching accuracy rate, i.e., the fraction of nodes that are correctly matched.

Datasets. We use the correlated Erdős-Rényi graph model (Pedarsani et al., 2011), SHREC’16
dataset in (Lähner et al., 2016) and Facebook networks provided in (Traud et al., 2012) in our
experiments. 1) The correlated Erdős-Rényi graph model. We first generate the parent graph G0

from the Erdős-Rényi model G(n, p), i.e., we start with an empty graph on n nodes and connect any
pair of two nodes independently with probability p. Then, we obtain a subgraph G1 by sampling
each edge of G0 into G1 independently with probability s. Repeat the same sub-sampling process
independently and relabel the nodes according to a uniformly random permutation permutation π to
construct another subgraph G2. Then, each true pair is independently added into the seed set S with
probability θ. 2) Facebook networks. The dataset in (Traud et al., 2012) provides 100 Facebook
networks from different institutions. We randomly choose 10 for training and 90 for testing. The
sizes of the Facebook networks range from 962 to 32361. To lower the training cost, we down-
sample the sizes of the training graphs. Specifically, for each Facebook network for training, we
first down-sample nodes with probability 0.25 to get the parent graph G0. However, for testing, we
do not perform this down-sampling and use the original graphs directly as the parent graph G0. For
both training and testing, we generate G1 and G2 from G0 by independently sub-sampling each edge
of G0 twice with probability s = 0.8 and sub-sampling each node of G0 twice with probability 0.9.
The nodes of G2 are then relabeled according to a random permutation π. Then, each true pair is
independently added into the seed set S with probability θ. 3) The SHREC’16 dataset. Matching
3D deformable shapes is a central problem in computer vision, and has been extensively studied
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for decades (see (Van Kaick et al., 2011) and (Sahillioğlu, 2020) for surveys). The SHREC’16
dataset in (Lähner et al., 2016) provides 25 deformable 3D shapes (15 for training and 10 for testing)
undergoing different topological changes. Each shape is represented by a triangulated mesh graph
consisting of around 8K-11K nodes (with 3D coordinates).

Training set. We construct the training set T in the following way. First, we generate 100 random
pairs of correlated Erdős-Rényi graphs with n = 100, p ∈ {0.1, 0.3, 0.5}, s ∈ {0.6, 0.8, 1}, and
θ = 0.1. Second, we add 10 pairs of Facebook networks as discussed above with θ = 0.1 into
the training set. Third, we do not include any SHREC’16 dataset in the training set, because our
SeedGNN trained on the above two datasets already performs well for the SHREC’16 dataset (see
Section 5.2), which verifies the generalization power of our SeedGNN.

Baselines. We compare the performance of our proposed SeedGNN with several state-of-the-art
algorithms: 1) D-hop (Mossel et al., 2019) finds the node mapping between the two graphs that
maximizes the total number of D-hop witnesses for a given D. For a fair comparison with other
algorithms, we iteratively apply the D-hop algorithm T times (with DT = 6 because SeedGNN
is fixed to have 6 layers). In each iteration, we use the matching result of the previous iteration as
new seeds and apply the D-hop algorithm again. 2) PGM (Kazemi et al., 2015) iteratively matches
node-pairs with at least r witnesses. We choose r = 2, which is the same as the simulation setting
in (Kazemi et al., 2015). 3) PLD (Yu et al., 2021b) is the state-of-the-art seeded graph matching
algorithm designed for graphs with power-law degree distributions (which is a common feature of
real-world social networks (Barabási, 2016)). 4) SGM (Fishkind et al., 2019) uses Frank–Wolfe
method to approximately solves a quadratic assignment problem that maximizes the number of
matched edges between two graphs, while being consistent with the given seeds. 5) MGCN (Chen
et al., 2020) is a representative semi-supervised learning-based GNN approach, whose performance
is comparable with other semi-supervised learning approaches. The parameters are set in the same
way as those in (Chen et al., 2020). 6) NGM (Wang et al., 2021) is a supervised GNN method for
seedless graph matching, but it also uses a pair-wise GNN that utilizes an affinity matrix as input.
We transfer this approach to seeded graph matching by modifying the affinity matrix to also encode
seed information. We then train the weights of NGM with the same training set as our SeedGNN.

5.2 RESULTS

Performance Comparison on Correlated Erdős-Rényi Model. In Figure 5, we show the per-
formance of the algorithms on the correlated Erdős-Rényi graph model. For test graphs, we vary θ
while fixing n = 500, p ∈ {0.01, 0.2}, s = 0.8. The different graph sizes between the training set
(n = 100) and the test set (n = 500) aim to demonstrate the generalization power of our SeedGNN.
We can observe that, among the state-of-the-art methods, the iterative 2-hop algorithm has the best
performance for sparse graphs (p = 0.01), and the SGM algorithm performs the best for dense
graphs (p = 0.2). However, our SeedGNN has overall the best performance among all algorithms.
From theoretical graph matching results (Mossel et al., 2019), we have learned that we need to use
witnesses at different numbers of hops for matching sparse graphs (p = 0.01) and dense graphs
(p = 0.2). Thus, these results suggest that our SeedGNN chooses the appropriate features to match
different types of graphs. Further, from the fact that our SeedGNN outperforms existing algorithms
even in the settings that they work well, it indicates that our SeedGNN is able to utilize the features
more effectively than the state-of-the-art methods. When comparing the performance of SeedGNN
with NGM (which also uses a pair-wise GNN architecture), we can observe from Figure 5 that, al-
though NGM performs close to our SeedGNN in larger sparse graphs (p = 0.01), it performs quite
poorly in larger dense graphs (p = 0.2). We discuss the possible reason in Appendix A.1.
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Figure 5: Performance comparison on correlated Erdős-Rényi graphs. Fix n = 500 and s = 0.8.
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Performance Comparison on Facebook Networks. We compare the SeedGNN with the state-of-
the-art algorithms on the 90 Facebook networks for testing, when we vary θ from 0 to 0.05. We show
the performance of these algorithms in Figure 6. We can observe that our SeedGNN is comparable
with SGM and significantly outperforms other algorithms. Note that the matching accuracy is satu-
rated at around 80%, because there are about 15% nodes that do not have any common neighbour in
G1 and G2, and thus can not be correctly matched.

Performance Comparison on SHREC’16 Dataset. To validate that our SeedGNN can adapt
to different graphs, we evaluate SeedGNN for deformable shape matching using the SHREC’16
dataset. Note that the sizes and types of graphs in this dataset are quite different from the Erdős-
Rényi and Facebook graphs in the training set. We can see in Figure 7 that our SeedGNN still
outperforms all baselines. This improvement demonstrates that SeedGNN trained with the other
two datasets can generalize to real-world graphs with different sizes and types. We note that MGCN
(a GNN based on semi-supervised training) utilizes both topological structures and non-topological
node features. However, in this application the non-topological node features correspond to 3D
coordinates, which do not provide much useful information for correlating two 3D shapes with
different poses. As a result, MGCN algorithm using 3D coordinates as node features almost fails
completely. To confirm that the non-topological node features in the SHREC’16 dataset are not very
helpful, we also run supervised learning methods for seedless graph matching that only rely on the
3D coordinates. As we shown in Table 1, they all suffer poor performance. Due to this reason,
MGCN does not perform well either. To further validate that our SeedGNN use seed information
more effectively than other supervised learning methods, we use the random encoding mentioned in
Section 4.1 to represent seed information, and provide them as input for supervised GNNs (except
NGM, for which we directly modify the affinity matrix using seed information). We fix the fraction
of seeds θ at 0.01 and the encoding vector dimension at 16. In Table 1, we can observe that both
our SeedGNN and NGM outperform the supervised methods using node-based GNNs, even when
the latter are augmented with seed information. This suggests that our method is more effective in
using seed information than the node-based supervised GNN methods. Moreover, we discuss why
NGM has a similar performance with our SeedGNN on the SHREC’16 dataset in Appendix A.1.
In Table 1, we also show the average run time of supervised learning algorithms to match a pair of
graphs. We can observe that our SeedGNN is comparable with these algorithms on large graphs.
Additional numerical studies to compare SeedGNN with more state-of-the-art GNN approaches on
another real graph datasets with different sizes and types are deferred to Appendix D.
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Figure 7: Performance comparison on the
SHREC’16 dataset with different θ.

Table 1: Comparison of GNN methods on SHREC’16 dataset. The best results are marked as bold.

Method
Semi-Supervised Supervised

DeepLink CrossMNA MGCN DGMC BB-GM DGM NGM SeedGNN
Zhou et al. (2018) Chu et al. (2019) Chen et al. (2020) Fey et al. (2020) Rolı́nek et al. (2020) Gao et al. (2021) Wang et al. (2021) ours

Accuracy seeded 3.3± 0.8 4.2± 1.7 3.8± 1.1 23.2± 6.8 21.1± 4.4 19.31± 10.6 37.9± 5.7 43.1± 8.5
(%) seedless − − − 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0 −
run time (s) − − − 80.2 130.1 211.3 879.2 141.5

Additional experiments. We conduct additional experiments to further investigate the inner work-
ing of our SeedGNN (please refer to Appendix C for details). First, to verify the effectiveness of our
design choices for SeedGNN, we compare the performance of different architectural designs. Then,
we investigate which sets of samples need to be included in our training set to obtain an effective
trained model. Finally, we study the matching process of SeedGNN for different types of graphs.
The results suggest that SeedGNN chooses the appropriate features for different graphs based on the
confidence level of new seeds.
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Yusuf Sahillioğlu. Recent advances in shape correspondence. The Visual Computer, 36(8):1705–
1721, 2020.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine learn-
ing, pp. 1842–1850. PMLR, 2016.
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A ADDITIONAL RELATED WORK

Theoretical Algorithms Existing theoretical algorithms suffer from several limitations. First,
graphs with different characteristics (e.g., Erdős-Rényi graphs versus power-law graphs) may require
different features and carefully tuned parameters. In contrast, by learning from the training graphs,
our SeedGNN can automatically choose the effective features. Second, these theoretical algorithms
may not synthesize different features most effectively. For instance, the l-hop algorithm in (Mossel
et al., 2019) only utilizes the witnesses at a specific hop l, but does not study how to combine
witnesses at different hops.

Inductive Semi-supervised Learning on Graphs Our goal of using supervised learning for
seeded graph matching shares some similarity with the work in Wen et al. (2021), which also aims
to both perform inductive learning (i.e., learn transferrable knowledge from training graphs) and
utilize a small amount of labeled data on the test graph. However, Wen et al. (2021) focuses on a
node classification problem, which is quite different from seeded graph matching. In particular, Wen
et al. (2021) uses node-based GNNs, which (as we discussed in Section 4.1) have more difficulty in
effectively utilizing seed information than our proposed pair-wise GNN. Further, in order to transfer
knowledge from the trained GNN to test graphs, Wen et al. (2021) scales all GNN weights by a
common factor. It is unclear how this scaling will effectively transfer knowledge for seeded graph
matching, e.g., how to best use different hops of witnesses. In contrast, our design of SeedGNN
exploits the inherent structure of the seeded graph matching problem, and can be shown to general-
ize well to unseen graphs of sizes and types very different from the training set. For future work, it
would be of interest to explore whether our SeedGNN can be further improved with a meta-learning
component (Santoro et al., 2016).

Convex Relaxation Algorithms In addition to the theoretical algorithms and the GNN ap-
proaches, there is another class of algorithms based on convex relaxations of the quadratic assign-
ment problem, which maximizes the total number of matched edges between two graphs subject
to the seed constraint (Lyzinski et al., 2014; Fishkind et al., 2019). In (Fishkind et al., 2019), the
authors describe a gradient ascent approach to solve this relaxed problem, which is called SGM.
Compared to SeedGNN, SGM also has flavors of using witnesses and percolation ideas. Specifi-
cally, the gradient of the SGM algorithm is similar to a matrix counting 1-hop witnesses. However,
using only 1-hop witnesses is known to be ineffective in sparse graphs (as there are very few 1-hop
witnesses even for true pairs). Indeed, our experiments in Section 5 find that our SeedGNN often
outperforms SGM, especially in sparse graphs.

Differences in Using Similarity Matrix and Masking We note that both the idea of using sim-
ilarity matrix to refine higher-layer matching and the idea of masking have appeared in seedless
matching. For example, some previously proposed node-based GNN architectures for seedless graph
matching also compute the similarity matrix and use it to refine the node embedding in each layer
(Wang et al., 2019; Fey et al., 2020). However, these approaches heavily rely on high-quality non-
topological node features and does not clean up the “noisy” information as we carefully did. Yu
et al. (2019) also uses the Hungarian algorithm for seedless graph matching, but they only clean up
the matching result in their loss function. The results of intermediate layers are still very noisy. We
use the Hungarian algorithm in each layer to filter out the misleading information, and thus the final
result would be better.

Differences between Our Percolation Module and Previous Percolation Aalgorithms Unlike
previous percolation algorithms (Yartseva et al., 2013), we allow SeedGNN to correct errors from
ealier layers by re-matching nodes at each layer. Note that in many percolation algorithms, once a
new pair of seeds is identified, it will be used as the correct matching until the end. This approach
can be problematic if an incorrect pair is identified as seeds, whose impact will be lasting for many
iterations down the road. In contrast, since our SeedGNN rematches nodes at each layer, even if
some of the newly-identified seeds in the previous layer are incorrect, we can potentially correct
these errors in the next layer, as long as the fraction of incorrect seeds is small. In other words,
our design of SeedGNN takes advantage of the power of partially-correct (i.e., noisy) seeds (as
theoretically verified in Yu et al. (2021a))
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A.1 COMPARISON WITH NGM

The NGM architecture of Wang et al. (2021) shares some similarity with our SeedGNN, and it also
uses a pair-wise GNN and uses the affinity matrix as input. However, note that Wang et al. (2021)
focuses on seedless graph matching. Therefore, the NGM architecture in Wang et al. (2021) was not
designed for seeded graph matching. For example, they do not aim to exploit important features such
as witness. Further, the NGM algorithm has not been evaluated for seeded graph matching either. In
Section 5.2, we transferred the NGM approach to seeded graph matching by modifying the affinity
matrix to encode seed information, and compare its performance with our SeedGNN. Through these
experiments, we find that the NGM algorithm in Wang et al. (2021) does not generalize well when
the test graph is with much larger size and node-degree than the training graph. Below, we discuss
the possible reasons.

Recall that we train both NGM and our SeedGNN on the same training set in Section 5.1, and test
on correlated Erdős-Rényi graphs with n = 500, s = 0.8, p = {0.01, 0.2}. Note that this test graph
size is larger than the training Erdős-Rényi graph size of n = 100. From the experimental results
in Figure 5 in Section 5.2, we can observe that, although NGM performs close to our SeedGNN
in larger sparse graphs (p = 0.01), it performs quite poorly in larger dense graphs (p = 0.2).
One possible reason for this deterioration in the generalization power of NGM could be that, in the
aggregation step, NGM normalizes each representation by the vertex degree of the association graph
(which is roughly the square of the node degrees), but we do not. To see why this difference matters,
note that according to known theoretical results on seeded graph matching, there exist algorithms
that only need Ω(log n) seeds to match all n nodes (Mossel et al., 2019). However, if the graph
sparsity p is fixed, the node degree increases proportionally to n, and correspondingly the vertex
degree of the association graph increases quadratically with n. As a result, when NGM divides the
similarity of each node pair by the vertex degree, we expect that the resulting value (∼ logn

n2 ) will
decrease close to zero as the graph size increases. Hence, it would be difficult for the sinkhorn step
in NGM to distinguish the true pairs from the fake pairs in test graphs with larger size and node
degrees than the training graphs. In contrast, since SeedGNN does not divide the similarity scores
by the vertex degrees, the Hungarian algorithm step in our percolation (which can distinguish any
absolute difference) will then be able to distinguish the true pairs from the fake pairs.

In contrast to Figure 5(b), for the experiment on the SHREC’16 dataset (Table 1), NGM has similar
performance as our SeedGNN. This is because in this experiment, we train NGM also with the
SHREC ’16 dataset (same as other seedless GNNs in Table 1). Note that the node degrees of the
graphs in the SHREC’16 dataset are all around 6. In other words, the test graphs and training graphs
are with similar node degrees. As a result, the issue caused by dividing the similarity scores by the
vertex degree of the associate graphs is not as critical for the SHREC’16 dataset.

B COMPLEXITY AND SCALABILITY

B.1 TIME AND SPACE COMPLEXITY

First, we analyze the computational complexity of our SeedGNN. In each layer, counting witnesses
in (2) takes O(n1n2dmean) time. The neural networks (3) and (5) take O(n1n2) time. The Hungarian
algorithm takes O(n1n

2
2) times (Crouse, 2016). Thus, the total time complexity is O(n1n

2
2).

The space complexity of our SeedGNN is O(n1n2) since we need to store the representations of all
n1n2 node-pairs in each layer.

B.2 MAKING SEEDGNN MORE SCALABLE

For very large graphs, the step of the Hungarian algorithm may potentially become the compu-
tational bottleneck. We can use greedy max-weight matching (GMWM) in (Avis, 1983) instead,
as the time complexity of GMWM is only O(n1n2 log n2). With this improvement, the total time-
complexity is reduced to O(n1n2 log n2+n1n2dmean). To the best of our knowledge, the best-known
time complexity for GNN-based algorithms is O(n1n2) (Fey et al., 2020). Thus, the computational
complexity of our SeedGNN is only moderately larger than the best known one. Our numerical
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result shown in Table 1 has demonstrated that the run time of our SeedGNN is comparable to the
best-known GNN-based algorithms.

C STUDYING THE INNER-WORKING OF SEEDGNN

In this section, we further investigate how the performance of SeedGNN varies as we change its
inner working. First, to verify the effectiveness of our design choices for our SeedGNN method,
we compare the performance of different architectural designs. Then, we investigate which sets of
samples need to be included in our training set to obtain an effective trained model. Finally, we study
the matching process of SeedGNN for different types of graphs. The results suggest that SeedGNN
could potentially choose the appropriate features for different graphs based on the confidence level
of new seeds.

C.1 STUDY OF THE DESIGN CHOICES

To verify the effectiveness of our design choices, we consider four variants of SeedGNN, which are:

1. SeedGNN-x: SeedGNN without convolution module. This variant aims to verify the im-
portance of extracting witness-like information at a larger number of hops.

2. SeedGNN-w: SeedGNN without percolation module. This variant aims to verify the im-
portance of the percolation module in SeedGNN.

3. SeedGNN-p: SeedGNN with percolation module but without the Hungarian matching al-
gorithm (i.e., zl = unvec(Yl) in each GNN layer). This variant aims to verify the impor-
tance of the “cleaning” process in SeedGNN.

4. SeedGNN-h: SeedGNN with zl = unvec(Rl) instead of (7) in each layer. This vari-
ant aims to verify that among the new seeds, it is still important to distinguish the high-
confident one and low-confident one.

Finally, we use “SeedGNN” to denote the full design in Fig. 1. We train all these variants with the
same training set T in Section 5.1.

In Figure 8, we show the performance of the above variants of SeedGNN on correlated Erdős-Rényi
graph model. For test graphs, we increase θ from 0 to 0.05 while fixing n = 500, p = 0.04, s = 0.8.
As illustrated in Figure 8, our SeedGNN with full design achieves the best performance among
all variants, which shows the effectiveness of our design choices for the SeedGNN architecture.
Further, among the variants, SeedGNN-w almost fails completely, which highlights the significant
importance of using the percolation idea in SeedGNN for seeded graph matching. SeedGNNx does
performs poorly, which demonstrates that it is also important to extract witness information at a
larger number of hops instead of only 1-hop. We can observe that SeedGNN and SeedGNN-h
both outperform SeedGNN-p and the improvement of SeedGNN is significantly bigger. This result
verifies that it is not enough to only use the soft-correspondence (as in SeedGNN-p), and we need
to combine both the matching result Rl of the Hungarian algorithm and the similarity Yl as in (7) to
achieve the best performance.

C.2 STUDY OF THE NECESSARY TRAINING SAMPLES FOR GENERALIZATION

Intuitively, in order to help our SeedGNN successfully learn useful knowledge that can be applied to
never-seen graphs, the training set needs to contain graph pairs with different varieties, e.g., graph
sparsity, graph correlation, and the size of seed set. However, a larger training set also increases
the training time. To show which sets of graph pairs are necessary, we compare SeedGNN trained
with different training sets, whose parameters are shown in Table 2. We use T to denote the training
set that only includes the Erdős-Rényi graphs of the training set in Section 5.1. First, to show the
necessity of training graph pairs with a wide range of sparsity, we train SeedGNN with T , Tp1 and
Tp2, and compare the performance of the trained models while increasing p from 0.02 to 0.2 and
fixing n = 500, s = 0.8 and θ = 0.05. Figure 9(a) shows that, if SeedGNN is only trained with
p = 0.1, it performs well on sparse graphs but poorly on dense graphs. In contrast, if SeedGNN is
only trained with p = 0.5, it performs well on dense graphs but poorly on sparse graphs. Thus, we
should include both p = 0.1 and p = 0.5 in the training set to achieve good performance. Second, to
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Figure 8: Performance comparison of our SeedGNN and four other variants on correlated Erdős-
Rényi graph model with different θ. Fix n = 500, p = 0.04, s = 0.8.

show the necessity of training graph pairs with different correlations, we compare the performance of
SeedGNN trained with T , Ts1, Ts2 and Ts3, and compare these models while increasing s from 0.5
to 1 and fixing n = 500, p = 0.08 and θ = 0.05. Figure 9(b) shows that, if SeedGNN is only trained
with s = 0.6, it performs well on moderately correlated graphs but poorly on highly correlated
graphs. In contrast, if SeedGNN is only trained with s = 0.8 or s = 1, it performs well on highly
correlated graphs but poorly on moderately correlated graphs. Thus, we should include different
correlations in the training set to achieve good performance. Third, we compare the performance of
SeedGNN trained with T , Tt1 and Tt2, and compare these models while increasing θ from 0 to 0.05
and fixing n = 500, p = 0.04 and s = 0.8. Figure 9(c) shows that, if SeedGNN is only trained with
θ = 0.1 and θ ∈ {0.1, 0.3}, it performs exactly the same. If SeedGNN is only trained with θ = 0.3,
it performs worse than the former two. Thus, we only need to include graph pairs with a relatively
small seed set in the training set.

Table 2: Different Training Sets

Training Sets p s θ
Tp1 {0.1} {0.6, 0.8, 1} {0.05, 0.1}
Tp2 {0.5} {0.6, 0.8, 1} {0.05, 0.1}
Ts1 {0.1, 0.5} {1} {0.05, 0.1}
Ts2 {0.1, 0.5} {0.8} {0.05, 0.1}
Ts3 {0.1, 0.5} {0.6} {0.05, 0.1}
Tt1 {0.1, 0.5} {0.6, 0.8, 1} {0.3}
Tt2 {0.1, 0.5} {0.6, 0.8, 1} {0.1, 0.3}
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(a) s = 0.8, θ = 0.05.
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(b) p = 0.08, θ = 0.05.

0.00 0.01 0.02 0.03 0.04 0.05
Fraction of Seeds θ

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy
 R
at
e

SeedGNN
SeedGNN t1
SeedGNN t2

(c) p = 0.04, s = 0.8.

Figure 9: Performance comparison of SeedGNN trained with different training sets. Fix n = 500.
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C.3 LAYER-WISE STUDY OF SEEDGNN

Recall from Section 4.3 that our design on the feature combination potentially enables SeedGNN to
utilize various types of witness information adaptively, based on the confidence levels of new seeds
zl. In this section, we verify this capability through numerical results. To directly visualize zl in
the matching process, we present the similarity matrix Yl of each layer of SeedGNN and compare
it with the witness matrix of the iterative 1-hop and 2-hop algorithms at each iteration. We assume
that the true mapping π is the identity permutation, i.e., π(i) = i.

First, we study the matching process in dense graphs. We fix a pair of correlated Erdős-Rényi graphs
with n = 50, p = 0.4, s = 0.8 and θ = 0.1. Then, we index the nodes from 0 to 49 in the descending
order of the node degree in the parent graph G0. In Figure 10, we show the similarity matrix Yl in
each layer of our SeedGNN, and compare it with the witness matrix in each iteration using either
the 1-hop or 2-hop algorithm. We can immediately see that the similarity matrices provided by
SeedGNN are more similar to the witness matrices of the iterative 1-hop algorithm than that of the
iterative 2-hop algorithm. Specifically, since the graphs are dense, the 1-hop witness information
from the initial seeds can already generate new seeds with high confidence (see Figure 10(a) and
10(g), where there are many dark points on the diagonal (i.e., consistent with the underlying true
mapping), while there are few dark points off the diagonal). The iterative 1-hop algorithm is known
to use new 1-hop witnesses from these new seeds (see Figure 10(h)) in the next iteration. In contrast,
the 2-hop witnesses from the initial seeds are much noisier (see Figure 10(m), where the darkness of
the points on the diagonal cannot be differentiated from those off the diagonal). As we illustrated in
Figure 4, these two types of witness information are both contained in the second layer of SeedGNN.
By comparing Figure 10(b) with Figure 10(h) and Figure 10(m), we can observe that the second layer
of SeedGNN produces a similarity matrix that is closer to the witness matrix of the 1-hop algorithm
than that of the 2-hop algorithm. Thus, we infer that, for these dense graphs in which the new seeds
are reliable, the SeedGNN relies more on witnesses computed from these new seeds.
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Figure 10: The similarity/witness matrices of the matching process on a fixed pair of dense corre-
lated Erdős-Rényi graphs with n = 50, p = 0.4, s = 0.8 and θ = 0.1. Darker points correspond
to higher similarity (in Yl) or a larger number of witnesses. Figure 10(a) — Figure 10(f) are the
similarity matrix from each layer of SeedGNN. Figure 10(g) — Figure 10(l) are the witness matrix
from each iteration of the iterative 1-hop algorithm. Figure 10(m) — Figure 10(o) are the witness
matrix from each iteration of the iterative 2-hop algorithm.

Then, we study the matching process in sparse graphs. We fix a pair of correlated Erdős-Rényi
graphs with n = 50, p = 0.1, s = 0.8 and θ = 0.1. Then, we also index the nodes from 0 to 49 in
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the descending order of the node degree in the parent graph G0. In Figure 11, we show the similarity
matrix Yl in each layer of our SeedGNN, and compare it with the witness matrix in each iteration
using either the 1-hop or 2-hop algorithm. In contrast to Figure 10, in this case, we observe that the
similarity matrices provided by SeedGNN are more similar to the witness matrices of the iterative
2-hop algorithm than those of the iterative 1-hop algorithm. Specifically, since the graphs are sparse,
there are very few 1-hop witnesses even for true pairs. Thus, the 1-hop algorithm almost fails com-
pletely (see Figure 11(g) — Figure 11(l)). On the contrary, the 2-hop witnesses from the initial seeds
are much more reliable (see Figure 11(m)). As a result, the iterative 2-hop algorithm produces much
better results (see Figure 11(m) — Figure 11(o)). By comparing Figure 11(b) with Figure 11(h) and
Figure 11(m), we can observe that the second layer of SeedGNN produces a similarity matrix that is
closer to the witness matrix of the 2-hop algorithm than that of the 1-hop algorithm. Thus, we can
infer that, for these sparse graphs in which the confidence levels of new seeds are low, SeedGNN
utilizes 2-hop witness information from the initial seeds, and avoids using 1-hop witnesses based on
these new seeds.
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Figure 11: The similarity/witness matrices of the matching process on a fixed pair of sparse corre-
lated Erdős-Rényi graphs with n = 50, p = 0.1, s = 0.8 and θ = 0.1. Darker points correspond
to higher similarity (in Yl) or a larger number of witnesses. Figure 11(a) — Figure 11(f) are the
similarity matrix from each layer of SeedGNN. Figure 11(g) — Figure 11(l) are the witness matrix
from each iteration of the iterative 1-hop algorithm. Figure 11(m) — Figure 11(o) are the witness
matrix from each iteration of the iterative 2-hop algorithm.

In summary, from these two case studies, we conclude that our SeedGNN might be able to choose
the appropriate features for different types of graphs according to the confidence level of new seeds.
Further, we observe that the matching accuracy of SeedGNN is even higher than that of the 1-
hop and 2-hop algorithms, the latter two of which have been theoretically proven to work well for
dense graphs and sparse graphs, respectively (Mossel et al., 2019). Thus, this result suggests that
SeedGNN may extract more valuable features, or learn more effective ways to synthesize witness
information, than the theoretical algorithms.

D PERFORMANCE COMPARISON WITH GNN METHODS

In this section, we further compare the SeedGNN with several state-of-the-art deep graph match-
ing networks, including semi-supervised learning methods (PALE (Man et al., 2016), DeepLink
(Zhou et al., 2018), dName (Zhou et al., 2019), CrossMNA (Chu et al., 2019), MGCN (Chen et al.,
2020) ) and supervised learning methods (GMN (Zanfir et al., 2018),PCA-GM (Wang et al., 2019),
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NGM (Wang et al., 2021), IPCA-GM (Wang et al., 2020a), CIE (Yu et al., 2019), GLMNet (Jiang
et al., 2022), LCS (Wang et al., 2020b), DGMC (Fey et al., 2020), BB-GM (Rolı́nek et al., 2020),
DGM (Gao et al., 2021), DLGM (Yu et al., 2021c)). We conduct experiments on Willow Object
dataset (Cho et al., 2013), which consists of 256 images in 5 categories. The training set contains
all categories of images, with 20 images of each category. We test the trained models on the rest
images. Following the experimental setups in (Fey et al., 2020), we construct graphs via the De-
launay triangulation of keypoints, and the input features of keypoints are given by the concatenated
output of relu4 2 and relu5 1 of a pre-trained VGG16 (Simonyan & Zisserman, 2015). Note that
the resulting graphs only have 10 nodes. For semi-supervised methods, we randomly choose 5 true
pairs as seeds. For supervised methods, they do not need seeds. For SeedGNN, we still directly
use the model trained in Section 5.1. We generate the seeds in two ways. The first way is to apply
the Hungarian algorithm on the similarities of non-topological node features. The second way is
to use the matching result of the GNN methods for seedless graph matching (we choose DGMC).
Note that for both ways, our SeedGNN does not utilize any training graph in the Willow Object
dataset. For the semi-supervised algorithms, we use the publicly available implementations from
their respective papers to generate the corresponding matching results. The performance values of
the existing supervised algorithms are directly retrieved from their respective papers.

Since there are lack of sufficient training data for semi-supervised methods (there are only 5 seeds
for each pair of graphs), it is difficult for them to learn to match the seeds effectively. As a result,
we observe in Table 3 that SeedGNN significantly outperforms the semi-supervised methods. In
contrast, the supervised methods learn from a large number of graph pairs. Further, the two images
to be matched are of the same category. Therefore, the input node feature generated are similar
and informative enough for correlating keypoints. Thus, the supervised methods have performed
relatively well, and SeedGNN using seeds generated by the non-topological node features does not
achieve performance gain. However, we can use SeedGNN to refine the output of seedless graph
matching algorithms. We observe that SeedGNN consistently improves the matching performance
of DGMC and achieves the best performance.

Table 3: Comparison of matching accuracy (%) on Willow Object dataset. The best results are
marked as bold. The performance values of the existing supervised algorithms are directly retrieved
from their respective papers.
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ed PALE (Man et al., 2016) 85.4 52.9 55.1 56.4 68.1 60.1

DeepLink (Zhou et al., 2018) 86.1 55.8 63.7 62.0 72.3 66.0
dName (Zhou et al., 2019) 86.9 58.3 65.3 66.0 77.7 68.8

CrossMNA (Chu et al., 2019) 85.6 60.1 61.4 65.8 74.2 68.0
MGCN (Chen et al., 2020) 87.2 63.0 67.5 67.2 78.1 72.6
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GMN (Zanfir et al., 2018) 98.1 65.0 72.9 74.3 70.5 76.2
PCA-GM (Wang et al., 2019) 100.0 76.7 84.0 93.5 96.9 90.2

NGM (Wang et al., 2021) 99.2 82.1 84.1 77.4 93.5 87.2
IPCA-GM (Wang et al., 2020a) 100.0 77.7 90.2 84.9 95.2 89.6

CIE (Yu et al., 2019) 100.0 90.0 82.2 81.2 97.6 90.2
GLMNet (Jiang et al., 2022) 100.0 89.7 93.6 85.4 93.4 92.4

LCS (Wang et al., 2020b) 100.0 99.4 91.2 86.2 97.9 94.9
DGMC (Fey et al., 2020) 100.0 92.1 90.3 89.0 97.1 93.7

BB-GM (Rolı́nek et al., 2020) 100.0 98.9 95.7 93.1 99.1 97.4
DGM (Gao et al., 2021) 100.0 98.8 98.0 92.8 99.0 97.7
DLGM (Yu et al., 2021c) 100.0 99.3 96.5 93.7 99.3 97.8

SeedGNN (ours) 100.0 98.9 98.0 93.1 98.7 97.7
DGMC+ SeedGNN 100.0 99.6 100.0 99.7 99.1 99.5
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