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ABSTRACT

Being able to quantify the complexity of data is an important question in machine
learning, computer science, and data science. In the case of image data, a number
of methods have been proposed. However, existing methods are based only on the
degree of variation across the image, and cannot distinguish meaningful content
from noise. In particular, existing methods assign a very high complexity to white
noise images, despite such images containing no meaningful information. In this
paper, we present a method to measure the complexity of images by analyzing
them has a discrete hierarchy of patches, using MDL clustering. Beginning with
individual pixels, each level of the hierarchy is formed using the cluster labels
from the level below. The complexity is the sum, across all levels, of the entropy
of cluster labels inside all patches on that level. Clustering is performed using the
minimum description length principle (MDL), which we leverage in a novel way
to distinguish signal from noise. We test against existing methods on seven differ-
ent sets of images, four from public image datasets and three synthetic, and show
that ours is the only method that can assign an accurate measure of complexity to
all images considered. Every other method measures white noise as highly com-
plex, while our method gives it zero complexity. We then present ablation studies
showing the contribution of the components of our method, and further experi-
ments showing robustness to image quality.

1 INTRODUCTION

There is unavoidable subjectivity in trying to quantify the notion of complexity. This is always the
case when defining a new metric. We cannot begin the investigation of a complexity metric by
defining what we take complexity to mean, that would be to put the cart before the horse. Inevitably,
the investigation involves exploring what complexity is, not just how to measure it, that is, the
definition of complexity and the specification of a complexity metric are two sides of the same
thing, the latter is really an instantiation of the former. For example, if one defines complex images
as those in which there is high variation between all the pixel values, then it is natural to use the
entropy of pixel values as a complexity metric; or if one defines complex images as those in which
nearby pixel intensities tend to be very different from each other, then another metric is the obvious
choice (grey-level co-occurrence matrix, (Section 4). This renders unavailable the standard blueprint
for applied machine learning research of showing that a novel method outperforms existing methods
on some quantifiable task or benchmark, because the field does not have such a benchmark for
measuring image complexity. What we do have is a vague idea of what complexity is, vague but still
powerful and important. The task is to translate this vague idea into something computable.

Many existing techniques for quantifying and measuring image complexity (discussed further in
Section 2) are based on measuring intricacy, the idea being that the more intricate it is and the more
dissimilar its parts, the more complex it is. This is relatively easy to measure, but it is incomplete
for two reasons. Firstly, and most importantly, it does not distinguish between meaningful intricacy
(signal) and meaningless intricacy (noise). Using intricacy as a measure of complexity means that
a white-noise image, where the pixel values are chosen independently at random, is measured as
highly, perhaps even maximally, complex, because there is a high degree of difference between
neighbouring pixels. Secondly, it cannot capture the fact that images can have a different complexity
at different scales. A blurry photograph of a complex scene, for example, is locally simple but
globally complex, while a finely-detailed but repetitive pattern is the opposite.
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Rather than meaning a high degree of variation, we instead conceive of complexity as ‘taking a
large number of steps to assemble’. An image can be thought of as being built out of pixels, lo-
cal groups of pixels are combined to form patches, groups of neighbouring patches are combined
to form super-patches etc. Quantifying complexity based on the assembly process is the approach
taken in the theory of assembly pathways Cronin et al. (2006); Marshall et al. (2019), originally
for the purpose of quantifying the complexity of molecules to aid in the search for extraterrestrial
life Marshall et al. (2021); Schwieterman et al. (2018). The pathway assembly index of an object
is the minimum number of combinations needed to produce it from simple parts, where repeated
components can be reused without adding to the count. In order to discretize the structure of the
image and allow assembly index to be applied, we employ clustering. For the first level of the hi-
erarchy, we cluster the pixel values and replace them with their cluster index. For higher levels, we
cluster the multisets of cluster indices in from the level below. This is a similar idea to that used by
convolutional neural networks, which also process an image patch-wise and hierarchically. Another
advantage of discretizing is that we can then easily compute entropy. Taking entropy of a continuous
image is difficult, we must use some approximation of differential entropy Hulle (2005); Pichler
et al. (2022). In our case, however, we are dealing with discrete cluster labels, so we need only com-
pute the entropy of a categorical distribution, which is easy. At each scale (i.e. hierarchy level), we
compute the entropy of the multisets of cluster indices across the image to quantify complexity. The
total complexity score is the sum of this entropy at each scale. We can also examine the entropy for
individual scales to get an indication of the local vs. global complexity in the image: low scales (i.e.,
small patch sizes) measure local complexity, whereas higher scales capture more global structure
(as shown in Section 4).

At each level of the hierarchy, the cluster indices produced depend on K, the number of clusters
in the clustering the model. We choose K in a sound way by employing the minimum descrip-
tion length (MDL) principle Rissanen (1983). MDL says that we should choose the model that can
completely represent the given data in the fewest number of bits. Clustering can be interpreted as
compression, where we encode each point by its cluster index, along with the residual error of how
it differs from the centroid of that cluster. Treating each cluster as a probability distribution, and em-
ploying the Kraft-McMillan inequality, we see that the residual error for a point x under the cluster
probability distribution p can be represented using − log p(x) bits. Representing the data under the
clustering model takes −

∑
x log p(x) bits, plus the number of bits to represent the cluster indices

and the model itself. Increasing K reduces the average residual error, but increases the size of the
indices and the model itself. By MDL, we choose K so as to minimize the total size. MDL is a
key component in filtering out noise from our complexity measure. In white noise images, where
there is no meaningful or consistent pattern between different points, MDL finds only one cluster,
because the small reduction in residual error from encoding more is not worth the extra cost, so
the image ends up with a very low complexity score. With respect to real-world applications of im-
age complexity metrics, being able to distinguish signal from noise is especially relevant to remote
sensing, where images often become corrupted by noise due to the sensing equipment or various
post-processing steps Chioukh et al. (2014); Narayanan et al. (2003); Landgrebe & Malaret (1986).
Much work has been done to reduce noise in remote sensing images and to improve the robustness
of image processing methods to noise Chang et al. (2016); Rasti et al. (2018); Huang et al. (2020);
Duan et al. (2019); Chen et al. (2014).

The contributions of this paper are briefly summarized below.

• We propose a novel measure of image complexity, which has a clear theoretical interpreta-
tion and is rigorously grounded in information theory.

• We test our method empirically on seven image datasets, four public and three synthetic
datasets that we created. We show that our method performs as desired in distinguishing
images from different datasets. In particular, our method is able to correctly assign a low
complexity to white noise, in contrast to existing methods, which assign it a high complex-
ity.

• In a further empirical analysis, we show how our method can measure complexity at dif-
ferent scales in the image, and show its robustness to changes in image quality.

• We release the code (on publication) for our method, for the creation of our synthetic
datasets and for our testing procedure.
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The rest of this paper is organized as follows. Section 2 gives an overview of related work. Sec-
tion 3 describes our method, and Section 4 presents our empirical evaluation. Finally, Section 5
summarizes our findings and suggests directions for future work.

2 RELATED WORK

Image complexity measures are used in a number of different tasks: remote sensing Falconer (2004);
Sun et al. (2006); Yang & Zhou (2000), automatic target recognition Peters & Strickland (1990);
Wang et al. (2018), psychometrics Forsythe et al. (2008), user interface design Stickel et al. (2010),
and measuring aesthetic properties of art Forsythe et al. (2011); Carballal et al. (2020). Existing
works fall into one of a several approaches.

Fractal dimension is a property of curves, which in some sense measures their complexity Man-
delbrot (1967); Falconer (2004). It can be applied to an image by first binarizing with a threshold,
then taking the boundary between white and black pixels as a curve and computing its Minkowski-
Bouligand dimension. Lam et al. (2002) explores the use of fractal dimension to measure the com-
plexity of satellite images, and Sun et al. (2006) considers the application to remote sensing images
more generally. Both also contain a detailed account of methods that use fractal dimension for image
complexity. In Forsythe et al. (2011), fractal dimension is compared against human judgements of
the complexity and beauty of visual art.

The file compression ratio is the ratio between the size of a compressed file under a chosen com-
pression algorithm, and the size of the uncompressed original. In Marin & Leder (2013), image
complexity is measured using the file compression ratio, under two compression algorithms: GIF,
which is lossy, and TIFF, which is lossless. The compression ratio was compared to human judge-
ments of complexity, on the International Affective Picture System. It is also used as a complexity
measure in Forsythe et al. (2011) and in Machado et al. (2015). The former investigates the ability
of JPEG, GIF, and a novel ‘perimeter detection’ method to predict human judgements of complexity
in visual art. The latter explores various combinations of compression algorithms with automated
edge detection, and compares the results to human judgements of complexity. The authors find the
best results using Sobel and Canny filters, followed by JPEG compression.

An alternative method is to use the gradient of pixel intensities across the image. This is the ap-
proach taken by Redies et al. (2012). The gradient is computed separately for each of the RGB
channels, and the gradient at a pixel is taken to be the maximum across the three channels. The
average gradient across the entire image is then taken as a measure of complexity. This is again ap-
plied to quantifying aesthetic judgement of visual art, this time as part of the Birkhoff-like measure
Birkhoff (1933), which characterizes beauty as the ratio of order and complexity.

A final method to consider is the Fourier transform, as used by Khan et al. (2021). The idea is that
the more high-frequency components present in the power spectrum, the more complex the image.
The authors investigate using both the mean and the median of the power spectrum. The best results
are found for the median power spectrum. The application in this case is guiding neural architecture
search, the claim being that one should first measure the complexity of a given image dataset, and
then use the result to inform architecture design.

3 METHOD

3.1 MINIMUM DESCRIPTION LENGTH PATCH CLUSTERING

The clustering of patches, which is an important component of our complexity metric, is based
on description length, i.e., the number of bits needed to specify the given data. Description length
is relative to an encoding scheme, and via the Kraft-MacMillan inequality, this corresponds to a
probability distribution. Specifically, the Kraft-MacMillan inequality says that, under the optimal
encoding scheme (optimal in the sense of being shortest on average) of a probability distribution
p(·), the description length of a point x is − log p(x). We model the probability distribution with
a Gaussian mixture model (GMM) because (a) we seek a distribution-based clustering model, and
a GMM is by far the most commonly used distribution-based cluster model, (b) choosing a GMM
is equivalent to simply modelling the distribution within each cluster as Normal, and this has the-
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oretical justifications in the central limit theorem and maximization of differential entropy Thomas
& Joy (2006). The description length is then relative to its means µ = (µi)1≤i≤K and covariances
Σ = (Σi)1≤i≤K of the GMM. The probability density of a point x is given by

p(x, µ,Σ) = max
1≤k≤K

exp(− 1
2 (x− µk)Σ

−1
k (x− µk))√

(2π)d|Σk|
, (1)

where µk and σk are, respectively, the mean and covariance of the kth component, and d is the
dimensionality of the data. Specifying x under p requires first indexing the cluster to which x belongs
and then encoding x under the probability distribution of that cluster, which we refer to as the
residual error. The latter we have just shown to take− log p(x, µ,Σ) bits. Similarly, the length of the
former depends on the encoding scheme for, and equivalently the probability distribution over, the
indices 1, . . . ,K, which can be taken empirically from the data. Specifically, the length of encoding
which cluster x belongs to is − log nk/N , where k is the index of the cluster that it belongs to, nk

is the number of points belonging to cluster k, and N is the total number of data points.

Discretizing the Probability Density Function Because the multivariate normal distributions
composing the GMM are continuous probability density functions, it is possible that p(x, µ,Σ) > 1.
The Kraft-MacMillan inequality would then seem to suggest that the corresponding encoding
scheme can represent x with a strictly negative number of bits, which of course is not possible.
The apparent contradiction is resolved by making explicit the precision with which we want to en-
code x. Completely specifying any real number is not possible with a finite number of bits, instead
we can only specify an extended region Dx ⊂ Rn, which is thought to contain x. The number of
required bits is then determined by the probability mass inside Dx, which is given by

pm(Dx, µ,Σ) =

∫
Dx

p(z, µ,Σ)dz. (2)

Let ϵ be the coordinate-wise precision for specifying x, i.e., set Dx to be a hypercube of side-length ϵ.
The probability mass in Dx is then approximated as p(x, µ,Σ)ϵd, giving description length

−d log ϵ− log(p(x, µ,Σ) + logK . (3)

So, even if − log(p(x, µ,Σ) < 0, the total description length is still positive, as the probability
mass in equation 2 is always at most 1. In our experiments, we set ϵ = 2−32, corresponding to the
maximum precision possible for a 32-bit float.

Determining Outliers As well as choosing the number of clusters (see Section 3.1), we use the
minimum description length (MDL) principle, to precisely determine which points are outliers with
respect to our model. Recall that we apply clustering to different parts of a single image, so identi-
fying outliers can be interpreted as identifying irrelevant parts of an image. To our knowledge, no
existing works have used the MDL principle in this way. An outlier can be defined as one that takes
more bits to specify under the model than it does to specify directly, independently of the model. We
can always specify (up to finite precision ϵ) any point directly using the same discretizing reasoning
as above. First, we restrict our attention to some bounded region of Rn, which is large enough that
we can assume it will contain all values our data could have. There are several reasonable choices
for such a bounded set. We find that the exact choice does not affect results. In our implementation,
we choose the hypercube whose sides, in each dimension, run from the minimum to the maximum
values across all dimensions in the dataset, denoted amax and amin, respectively. Once this bounded
region is specified, we partition it into a set of small regions–hypercubes with side-length ϵ–and then
specify a point x by indexing the unique region that contains x. Then, comparing to equation 3, x is
an outlier iff

p(x, µ,Σ)
nk

K
< (amax − amin)

−d , (4)

where, as above, nk is the number of points assigned to the same cluster as x (details in appendix).
We can then define the description length of x, where x can be specified either directly or using the
encoding scheme from the model, as

d(x, µ,Σ) = −d log ϵ+min

(
d log(amax − amin),− log(p(x, µ,Σ) + log

N

nk

)
. (5)
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Figure 1: Method for computing the entropy of patch signatures as a measure of complexity. Each patch
signature is the multiset of MDL cluster indices that appear there.

Determining the Number of Clusters The description length of a given image X depends on
the number of clusters in the GMM, and using the MDL principle, we can determine the optimum
number of clusters as that which produces the smallest description length.

Let µ(X,K),Σ(X,K) denote the values of µ and Σ with K components, which maximize the
probability of X:

µ(X,K), σ(X,K) = argmax
µ,Σ

∏
x∈X

p(x, µ,Σ) . (6)

Finding these optimal parameters means fitting the GMM to the dataset X , and can be performed
with the usual expectation-maximization algorithm. Then, using d(·) from equation 5, the MDL-
optimal number of clusters K∗ is that which minimizes the total description length:

K∗ = argmin
1≤K≤|X|

∑
x∈X

d(x, µ(X,K), σ(X,K)) . (7)

We need only consider K up to the size of the dataset, as adding more clusters beyond that point
can only increase the total description length. In practice, we test values up to 8, we find testing
more does not change results. GMMs have diagonal covariances, are initialized with k-means, have
tolerance 1e − 3, and are capped at 100 iterations. Total processing time is ∼10s per image, which
can be reduced to ∼4s by only checking up to 5 clusters, with essentially the same results.

3.2 HIERARCHICAL PATCH ENTROPY

The method described in this section is depicted graphically in Figure 1. At each level of the hi-
erarchy, we begin with a 3d tensor X of shape (H,W,C) and will cluster the vectors of the last
dimension; on the first level, this means clustering 3d vectors specifying the colour intensities for
each of the three colour channels at each point. Before clustering, the model computes K∗ as in
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equation 7, then clusters the last-dimension vectors of X using a mixture model with K∗ compo-
nents. From this clustering, we can form the 2d tensor A, of shape (H,W ) whose (i, j)th entry is the
cluster index of the (i, j)th pixel in X , and B, the 3d tensor of shape (H −m+1,W −m+1,K∗)
whose (i, j, k)th entry is the count of how many times the kth cluster appears in the m ×m patch
beginning at (i, j) in A. The patch size m is a user-set parameter. We refer to the vector at (i, j)
in B as the signature of the (i, j)th patch. Our measure of complexity at this level is the entropy of
all signatures that appear in B. As we are dealing with discrete data, in the form of cluster labels,
computing entropy is easy.

To measure complexity at larger scales, we repeat the above procedure, this time beginning with B
instead of X , and interpreting the counts as points in continuous space. Let Ai and Bi be the tensors
formed, as just described, on the ith level of the hierarchy. Then Bi contains the signatures (i.e.
counts vectors) of the patches in Ai, and Ai contains the MDL-cluster indices of the last-dimension
vectors in Bi−1. To begin the iteration, B0 is set to X , the input image.

The present implementation computes up to B4, and uses larger patch sizes for each level: 4, 8, 16,
and 32. Note, however, that this is not the same as simply clustering larger patches of an image.
What is clustered at each level is the cluster indices from the level below, so, apart from the first
level, it is quite different from the input image. The full method is described in Algorithm 1.

Algorithm 1: Algorithm for computing the complexity of an image.

function MDL CLUSTER(D)
best DL←∞
A← cluster indices of MDL of D, initialized randomly
for K ∈ {1, . . . ,K max} do

fit a GMM with K components to D
DL← description length of D under this fit GMM
if DL ¡ best DL then

A← cluster indices of D under this fit GMM
best DL← DL

return A
function SIGNATURES ENTROPY(S)

bin counts← hash table whose keys are the unique elements in S, and whose values are the
number of times that element occurs in S

return -
∑

b∈bin counts
bin counts[x]

|S| log bin counts[x]
|S|

function COMPUTE PATCH SIGNATURES(X,m)
A← MDL CLUSTER(X)
B ←multisets of cluster indices appearing in all m×m patches of A (including overlapping)
return B

function COMPLEXITY(X,scales)
total complexity ← 0
for m ∈ scales do

X ← COMPUTE PATCH SIGNATURES(X,m)
total complexity ← total complexity+ SIGNATURES ENTROPY(X)

return total complexity

4 EXPERIMENTAL EVALUATION

It is difficult to assess the performance of an image complexity measure. Some works gather hu-
man subjective judgements on a particular distribution of images (e.g., European renaissance paint-
ings) and report accuracy/correlation, often also training a supervised model on these human judge-
ments Machado et al. (2015); Nagle & Lavie (2020). Aside from the practical difficulties of running
these psychological studies, evaluating a model on a single distribution does not give a rounded
indication of its accuracy, it is unclear how such models will perform when presented with a more
diverse set of images. Additionally, collecting human judgements of complexity in this way may
not be reliable, they have been shown to be influenced by the presentation of the image as well as
cognitive factors such as visual working memory Sherman et al. (2013), and show high inter-subject
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variability Madrid-Herrera et al. (2019). There is also EEG evidence suggesting that humans use
different cognitive processes to judge an image’s complexity depending on its degree of natural-
ness/familiarity Nicolae & Ivanovici (2020).

We instead evaluate our method by presenting the scores that it produces for a diverse set of images
of different types. Comparing sets/types of images, rather than individual images, has the advantage
of reducing subjectivity. One can say with reasonable objectivity that ImageNet images are more
complex than MNIST images, whereas trying to compare the complexity of two different images of
the same type, such as renaissance paintings or ImageNet images, may be more subjective.

Datasets We present the average score of our method on seven different sets of images, four pop-
ular image datasets and three synthetic datasets that we created: ImageNet and CIFAR are datasets
with high complexity, depicting real-world objects in context, of resolutions 224× 224 and 32× 32
respectively. MNIST depicts low-resolution greyscale digits. Its images are simple in that they can
be represented with a few bits, but still have meaningful semantic content. DTD2 is a dataset we
created by manually searching through the Describable Textures Dataset Cimpoi et al. (2014) for
all images of fine-detailed repeating textures (full list in appendix). Stripes, Halves, and Rand are
our synthetic datasets of greyscale images of stripes of varying thickness and orientation, cleanly
divided white-black halves, and independent uniformly random pixel values (i.e., white noise), re-
spectively (details in appendix). For DTD2, we find 341 suitable images. For all other datasets, we
report the average for 1500 randomly sampled images, all resized to 224× 224.

Comparison with Existing Methods Table 1 compares our method to seven others: ‘khan2021’
Khan et al. (2021), ‘machado2015’ Machado et al. (2015), and ‘redies2012’ Redies et al. (2012) are
as described in Section 2; ‘entropy’ converts the image to greyscale, discretizes the values into 256
bins, and then computes the Shannon entropy of the bin counts; ‘fractal dim.’ converts the image to
greyscale, then binarizes it to 0 or 1, and computes the fractal dimension of the resulting shape using
the box-counting method; ‘jpg-ratio’ measures the ratio of the JPEG-compressed file size to that of
the original; and ‘GLCM’ computes the the average entropy of the grey-level co-occurrence matrix,
at offsets 1, 4, 8, 16 32 (see Sebastian V. et al. (2012) for details of GLCM in image complexity). The
most striking result is that our method assigns zero complexity to white-noise images, while every
other method assigns them high complexity, with many assigning maximum complexity. White noise
images are not at all meaningful or interesting to humans, and it is a significant finding that our
method is the first to reflect this. It suggests that, while existing methods are based only on the
variation across the image, our method is able to measure the degree of meaningful variation. The
only two existing methods not to measure white noise as maximally complex are ‘machado2015’ and
‘redies20212’, though they still give it a high score. Instead, they give their max score to Stripes.
This is also undesirable, because the simple repeating black and white stripes are not intuitively
complex or meaningful either. Stripes is also given a high score by the fractal dimension and JPEG-
ratio methods, both assigning it only slightly less than white noise and significantly more than any
other dataset, including ImageNet. Our method agrees much more closely with the intuitive notion
of complexity: it assigns the highest complexity to ImageNet; it puts CIFAR ahead of DTD2 even
though the latter is of higher resolution and has a complex texture, which shows that it recognizes
CIFAR to have more semantically meaningful content; and it assigns MNIST a reasonably high
complexity, despite it being the smallest in terms of file size, again showing that it can recognize
global structure. Even aside from the white noise, no method but ours correctly places the remaining
six datasets in order of complexity (left-to-right, as they appear in Table 1). This highlights the
superior ability of our method to capture meaningful complexity across a variety of image types.

Complexity at Different Scales The results from Section 4 suggest that, unlike existing methods,
which focus only on detailed textures, ours is able to recognize complexity at a global level. Figure 2
provides further support for this claim by showing the breakdown of our complexity measure at the
four different scales (that is, four different patch sizes; see Section 3.2). Smaller scales respond to
local complexity, and as the process is iterated to larger scales, global structure can be detected.
The first plot shows MNIST and our synthetic images. While MNIST has a similar local complexity
score to Stripes, it has a much higher global complexity score, indicating that the more meaningful
global structure in MNIST images can be detected. Halves, which is almost uniform locally but
shows some variation globally, is given a very low local complexity but a small amount of global
complexity. The second plot compares real-world images. CIFAR has the lowest local complexity
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Table 1: Comparison of our method with existing methods. The figures for each dataset are the mean
across all images from that dataset, with std. dev. from batches of 25 in parentheses. All methods are
normalized, so the maximum score that they assign is 1. Ours is the only method that does not assign
white noise images high complexity, and gives the most reasonable results on all other datasets.

Dataset

ImageNet CIFAR DTD2 MNIST Stripes Halves white-noise
ours 0.80 (.10) 0.74 (.06) 0.62 (.29) 0.50 (.08) 0.36 (.11) 0.26 (.01) 0.00 (.00)
khan2021 0.09 (.05) 0.01 (.01) 0.07 (.06) 0.00 (.00) 0.00 (.00) 0.00 (.00) 0.99 (.00)
machado2015 0.23 (.08) 0.15 (.02) 0.38 (.08) 0.21 (.01) 0.53 (.02) 0.06 (.00) 0.87 (.00)
redies2012 0.13 (.05) 0.04 (.01) 0.21 (.11) 0.00 (.00) 0.66 (.34) 0.01 (.00) 0.59 (.00)
entropy 0.89 (.10) 0.89 (.07) 0.83 (.13) 0.30 (.06) 0.13 (.00) 0.13 (.00) 0.96 (.00)
fractal dim. 0.74 (.09) 0.61 (.08) 0.86 (.16) 0.45 (.06) 0.98 (.02) 0.44 (.02) 1.00 (.00)
jpg-ratio 0.22 (.08) 0.09 (.0) 0.29 (.09) 0.06 (.01) 0.57 (.01) 0.06 (.00) 0.57 (.00)
GLCM 0.84 (.11) 0.80 (.08) 0.83 (.14) 0.27 (.05) 0.11 (.02) 0.08 (.00) 0.98 (.00)

Figure 2: Our complexity measure for different scales. The x-axis depicts patch size, on a log scale. Plots show
mean score for all images of that type. Shaded regions are std dev from batches of 25 images.

because it is low resolution, having been resized from 32×32 so neighbouring pixels are all similar,
but this does not affect its global complexity, which is as high as that of Imagenet. DTD2, on the
other hand, has the highest local complexity, because it depicts detailed textures, but the lowest
global complexity, because the textures are uniform across different regions of the image.

Ablation Studies Table 2 shows the effect of removing two key components of our method. In ‘no
mdl’, we fix the number of clusters to five for all images, rather than using the minimum description
length principle. This results in the same problem that existing methods suffer from: white noise is
mistaken for high complexity and receives the maximum score. Also, ‘no mdl’ scores DTD2 too
highly, showing that the method is not responding to global structure. In ‘no patch’, we take the
entropy not of patch signatures, but of individual points in the array, i.e., of A rather than B in the

Table 2: Effect of removing two main components of our method. In ‘no mdl’, clustering is per-
formed without MDL, instead simply fixing the number of clusters to 5 for all images and all scales.
In ‘no patch’, we compute the entropy of the clusters themselves rather than of the patch signatures.

Dataset

ImageNet CIFAR DTD2 MNIST Stripes Halves white-noise
main 0.80 (.10) 0.74 (.06) 0.62 (.29) 0.50 (.08) 0.36 (.11) 0.26 (.01) 0.00 (.00)
no mdl 0.73 (.09) 0.66 (.06) 0.90 (.11) 0.40 (.07) 0.35 (.13) 0.27 (.01) 0.98 (.00)
no patch 0.92 (.09) 94 (.04) 0.62 (.28) 0.61 (.1) 0.74 (.09) 0.50 (.01) 0.00 (.00)
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Table 3: Effect of adding Gaussian noise. Shaded re-
gions are std. dev. from batches of 25 images.

Table 4: Effect of reducing image resolution of
ImageNet images. Shown resolution is for both
axes. Full resolution is 224.

full 128 64 32

L1 7.70 7.01 6.32 5.49
L2 9.71 9.49 9.31 8.86
L3 11.93 11.69 11.75 11.56
L4 12.43 12.26 12.31 12.43
Total 41.77 40.46 39.69 38.33

terminology of Section 3.2. This setting still performs reasonably well, but it gives too high a score
to Stripes and a higher score to CIFAR than to ImageNet.

Addition of Gaussian Noise As our method so consistently assigns zero complexity to white
noise, one may wonder whether it just searches for randomness in the image, and assigns zero if it
finds any. To check this, we progressively add Gaussian noise to the three real-world datasets. The
results are shown in Figure 3. Noise is sampled independently from a standard Normal distribution
for each pixel, and a fraction of this noise is added to the image. Up until 10%, the scores are largely
unchanged (DTD drops slightly), and then the scores for all three datasets steadily decrease with
further noise. If the method was simply assigning low complexity in response to any randomness in
the image, then we would see a sharp decline as soon as a small amount of noise is added. The results
suggest that the method is instead responding to the amount of meaningful content in the image. A
gradual decline in complexity is precisely what we would expect as the image quality deteriorates.

Reducing Image Resolution The effect of resolution on our method is already somewhat apparent
from Table 1. CIFAR gets a higher score than DTD despite being lower resolution, which suggests
that our method is not responding to high resolution. Specifically, it is not just giving ImageNet a
high score because its images are high-resolution. Here, we provide further support for this fact by
directly manipulating the resolution of ImageNet images. Table 4 shows the score at four different
reduced resolutions. Similar to the addition of Gaussian noise, a small reduction in resolution does
not change the semantic contents, so should have little impact on complexity, and further reuctions
should show a gradual decline as meaningful information begins to be lost. Additionally, we should
see the largest effect on the lowest level of the hierarchy, as the higher levels do not respond to local
detail anyway. This is precisely the case for our method. There is a slight drop on the lower levels,
corresponding to greater uniformity at the local scale in the blurry, low-resolution images. The scores
at the higher levels are essentially identical, and overall the scores are almost the same as for the
full-resolution images. This shows our method to be robust to changes in resolution, responding
more to the contents of the image than to the resolution it is depicted at.

5 CONCLUSION

This paper presented a new method for measuring image complexity. It uses clustering to analyse an
image as a hierarchy of patches, with each patch composed of the cluster indices of its sub-patches.
Clustering is pppenderformed with the minimum description length principle to distinguish signal
from noise. We gave a derivation of our method, and presented experimental evaluation showing
that it performs better than existing measures of image complexity. It assigns zero complexity to
white noise, in contrast to existing methods which all assign white noise very high complexity. We
also presented ablation studies, and further experiments showing our method captures complexity at
different scales, and that it is robust to degradations in image quality.
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