Causal LLM Routing: End-to-End Regret
Minimization from Observational Data

Asterios Tsiourvas Wei Sun Georgia Perakis
MIT IBM Research MIT
Abstract

LLM routing aims to select the most appropriate model for each query, balancing
competing performance metrics such as accuracy and cost across a pool of language
models. Prior approaches typically adopt a decoupled strategy, where metrics are
first predicted and the model is then selected based on these estimates. This setup
is prone to compounding errors and often relies on full-feedback data, where each
query is evaluated by all candidate models, which is costly to obtain and maintain
in practice. In contrast, we learn from observational data, which records only
the outcome of the model actually deployed. We propose a causal end-to-end
framework that learns routing policies by minimizing decision-making regret from
observational data. To enable efficient optimization, we introduce two theoretically
grounded surrogate objectives: a classification-based upper bound, and a softmax-
weighted regret approximation shown to recover the optimal policy at convergence.
We further extend our framework to handle heterogeneous cost preferences via an
interval-conditioned architecture. Experiments on public benchmarks show that
our method outperforms existing baselines, achieving state-of-the-art performance
across different embedding models.

1 Introduction

LLM routing is an emerging research area focused on optimizing model selection for each input query,
balancing performance and cost across a pool of available LLMs. Because LLM performance varies
significantly by task and input [Hu et al., 2024], as well as computational cost [Ong et al.| [2024],
dynamic routing strategies have been proposed to select the most suitable model per query [Shnitzer
et al.| [2023]]. This challenge becomes even more critical in agentic applications, where multiple
LLM calls may be made within a single workflow, making efficient model selection essential for
user experience and resource allocation. As LLLM deployment scales, routing also contributes to
environmental sustainability by reducing unnecessary computation [Singh et al., 2025].

Routing methods can be broadly classified based on whether they invoke one or multiple models per
query. Multi-model approaches include non-predictive routing, which cascades models sequentially
from light to heavy [Wang et al.,2023| [Chen et al.| 2023, and predictive ensembles, which learn to
combine outputs or scores from multiple LLMs [Shekhar et al., 2024, [Huang et al., [2025]]. While
these methods can improve accuracy and robustness, they incur significant computational cost and
latency due to repeated inference. By contrast, predictive routing methods, including our approach,
select a single LLM for each query by training a router that maps input queries to the most appropriate
model [Shnitzer et al.| 2023]Ong et al., [2024] Somerstep et al.,[2025]]. This framework offers a more
scalable and cost-efficient solution, particularly in settings where minimizing latency and compute
resources is critical.

A common formulation in predictive routing is to maximize a utility function of the form y, (t) =
az(t) — X\ - cg(t), where a,(t) and ¢, (t) denote the quality (e.g., accuracy) and cost for model ¢ on
a given query z, and A > 0 captures user cost sensitivity, or willingness-to-pay. Existing methods

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

typically adopt a decoupled approach: separate predictors are trained for each metric, and routing
is performed by selecting the model with the highest estimated utility. However, decision quality
is highly sensitive to these predictors, and errors can compound, especially when incorporating
additional metrics (e.g., latency, faithfulness, alignment), increasing complexity and uncertainty.

Another fundamental limitation in the existing literature on predictive routing is its reliance on
full-feedback datasets. Prior work [Ong et al.,[2024]] [Somerstep et al., 2025] assumes access to data
where each query has been evaluated by all available LLMs. This assumption is impractical: (i) the
computational and monetary cost of exhaustively querying all models is prohibitive; and (ii) the rapid
pace of LLM development makes it challenging to maintain comprehensive, up-to-date evaluation
datasets. In contrast, observational data, where each query is evaluated by only one model, is readily
available from real-world LLM deployments, making it far more scalable than full feedback datasets.
However, it introduces treatment bias from historical routing policies, which can lead to suboptimal
decisions if not properly addressed [Swaminathan and Joachims}, 2015| |Kiinzel et al.,[2019].

To the best of our knowledge, this is the first work to (i) learn LLM routing from observational data
and (ii) introduce an integrated learning framework for routing. Our main contributions are:

* We propose a causal end-to-end framework that learns routing policies by directly minimiz-
ing decision-making regret using observational data. Unlike the predominant decoupled
paradigm, where various performance metrics (e.g., accuracy, cost) are first predicted and
then used to inform routing decisions, our method integrates prediction and prescription into
a unified objective. By optimizing for regret directly, the framework is explicitly aligned
with the final routing decision quality. Furthermore, it is designed to scale efficiently and
leverage readily available observational data, while accounting for treatment bias without
requiring costly full-feedback datasets.

* As the original regret minimization objective is not directly differentiable, we derive two
surrogate objectives to enable end-to-end policy learning. The first is a classification-based
upper bound that reframes regret minimization as a multiclass prediction problem under
mild Lipschitz assumptions, allowing efficient training with standard methods. The second
is a softmax-weighted regret surrogate that smoothly approximates regret using a softmax
distribution and provably recovers optimal decisions at convergence.

* We extend our framework to support heterogeneous cost preferences by introducing a unified
model that conditions on both the query and the user’s cost sensitivity. Leveraging the affine
structure of the utility function, we design an efficient interpolation scheme using only two
endpoint models per interval. We theoretically show that the optimal treatment is piecewise
constant in the cost parameter and that our architecture can exactly represent the optimal
policy, enabling flexible and scalable routing across diverse preferences.

* We conduct comprehensive experiments on two public benchmarks, demonstrating that our
regret-minimizing and heterogeneous cost-aware approaches consistently outperform exist-
ing baselines. Our methods achieve state-of-the-art performance across both BERT-based
and LLaMA-based embeddings, highlighting their robustness and practical effectiveness.

2 Methodology

2.1 Problem Formulation

We consider a dataset of n observational samples, denoted by D = {(z;, t;, a;, ¢;) }?_,, where each
sample is independently drawn from the joint distribution p(z, ¢, a, c). Here, 2; € X C R? denotes a
feature vector, typically an embedding, that characterizes the query; ¢; € [T]:= {0,1,...,T — 1}
specifies the LLM assigned to the query; a; € R>(denotes a numeric quality score of the LLM’s
response, such as accuracy, or a preference rating; and ¢; € R>(represents the cost incurred by
model ¢; when processing query x;.

Given a query x € X, the objective of an LLM router is to select a model ¢ € 7 that maximizes
the cost-aware performance, or utility, defined as y,(t) := a;(t) — A - ¢;(t). Here, A > Ois a
user-specified parameter, modeling the trade-off between accuracy and cost. Higher values of y. (t),
corresponding to greater performance, are preferred.

2.2 End-to-End Regret Minimization

Our goal is to route each prompt x to the LLM ¢ such that the decision leads to the highest possible
utility y,(t). To this end, we aim to learn an end-to-end policy f : X — T that minimizes the
decision-making regret [Fernandez-Loria and Provost, 2022} Zou et al.,|2022]. More formally,

fri=arg m}n Regret(f)

where regret is defined as

Regret(f) :=Ex[Yx(tx) — Yx (f(X))] = Ex[Yx (t%)] — Ex[Yx (f(X))], M
with t% := arg max;c7 Yx (%).

We want to point out that unlike full-feedback datasets used in prior routing work, which record
outcomes for all models ¢ € T, observational datasets contain only partial feedback, logging the
outcome of a single model ¢; selected by historical policies. As a result, counterfactual outcomes for
unobserved LLMs are missing, making it necessary to estimate them while correcting for treatment

bias. We address this challenge of estimating Yx (+) using causal inference techniques, as detailed in
Section2.3]

With an accurate approximation Yx (+), the empirical regret can be approximated as
1 n) R
Regret(f) ~ ~ (Yw,t’f—yx) 2
caret(§) ~ 2 3 (Fout) = T (£(20) @
where t} := arg max,; e Y,, (t) is the estimated optimal decision for query ;.
A key challenge with the objective in Equation (2) is its dependence on the discrete routing decision

f(x;), which makes the regret non-differentiable. To address this, we introduce two surrogate loss
functions that serve as differentiable approximations.

Surrogate Loss 1: Classification-Based Upper Bound Our first approach is to derive a tractable
upper bound on the regret and directly minimize it. To do so, we define the following notion of
Lipschitz continuity for utility functions over the probability simplex.

Definition 1. Let Y, : 7 — R be an estimated utility function assigning a scalar utility to each
model t € T for a given input x. We extend Y, to the probability simplex AlT| by defining

= p(t)Ya(t), 3)

teT

for any p‘ El ATl We say that Y, is L-Lipschitz over the simplex with respect to the {1 norm if for all
p,q € AT

V. (p) = V(@) < L-|lp—qlh- 4)

Here, the constant L can be taken as L := max,c7 | Yy (t)].

This condition ensures that small changes in the model distribution lead to bounded changes in
expected utility. Since 7 is a finite set and Y (-) is typically learned via bounded smooth function
approximators (e.g., neural networks), it is natural to expect bounded variation in utility values across
nearby treatments. Note that when p is a one-hot vector e;+ and ¢ = f () is a probabilistic policy, this
setting corresponds to our model selection problem, where we seek to minimize the regret between
the optimal choice and a stochastic routing decision.

Proposition 1. Suppose the estimated utility function Y,: T — Ris L-Lipschitz continuous over the
probability simplex with respect to the ¢; norm, as in Definition[1} Then, for a policy f : X — Al7!
that outputs a distribution f(x) over T, the regret can be upper bounded by:

Regret(f Z 2. CE(t}, f(x:)), 5)

where t¥ := argmax,c7 Y,,(t) is the optimal treatment for input z;, and CE(t!, f(z;)) :=
—log f(xi)¢: denotes the cross-entropy loss.

This motivates a classification-based surrogate objective: rather than modeling the full utility surface,
we directly learn a policy f : X — 7T by solving a supervised learning problem, where the target label
for each input z; is the estimated optimal decision ¢}. Optimizing a classification loss d(¢}, f(z;)),
serves as a tractable surrogate for minimizing the regret in Equation (2)), as it upper bounds the regret
under mild assumptions. This formulation reduces policy learning to a multiclass classification task,
enabling efficient training using standard techniques.

2.2.1 Surrogate Loss 2: Softmax-Weighted Regret

The second proxy directly minimizes the regret using a differentiable softmax approximation. Specif-
ically, we model the policy function f as a neural network with |7| outputs passed through a
softmax layer with temperature parameter 7 > 0, which makes the regret surrogate in Equation
differentiable. The first term of the regret, E x [Yx (¢*)], is approximated as:

I m e -
Ex[Yx(t")] = - Z Y..(t7), wheret] :=arg max Y, (). (6)
i=1

The second term, Ex [Yx (f(X))], is estimated by treating the softmax output as a distribution over

treatments:
n |T]|

Ex[Vx (FOO)] & =30 D Vo, () - softmax(f(z:) @)

i=1 t=1

Combining the two, we minimize the following differentiable surrogate objective:

n |71
min — Z (Ym (t5) = > ¥y, (1) - softmax(f(:ci))t> ‘ (8)

After training, the learned policy prescribes for each 2 € X’ the treatment = arg max;c7 f(x);.
We now show that this objective recovers pointwise optimal treatment assignment, thus providing a
consistent and differentiable approximation to the original regret minimization objective.

Proposition 2. Let f : X — RI7| be a neural network whose output is passed through a softmax

layer with fixed temperature 7 > 0, and define ¢} := arg max;ct Ym (t). Then, optimizing the
softmax-weighted surrogate regret objective via gradient descent

n |71

1 A .

min — Y. (t5) — Y., (t) - softmax(f(x; 9
i 2 () = 3 o) -softmast 2. ©)
leads the model f to concentrate all probability mass on the optimal treatment ¢;. That is, at
convergence,

1 ift =1t

10
0 otherwise. (10)

softmax(f(z;)); — {

2.3 Estimating Counterfactual Utility via Causal Inference

In the previous sections, we assumed that we have access to Yy (+). Given the observational nature
of the data, the potential utility function Y (+) is not directly observable. We follow the potential
outcomes framework |Rosenbaum and Rubin| [[1983]], Rubin| [[1984] and assume the existence of a
potential utility function Y, (¢). We adopt the following assumptions, which are standard in the causal
inference literature.

Assumption 1 (Stable Unit Treatment Value). The potential outcome of one sample is independent of
the treatment assignments on the other samples.

Assumption 2 (Ignorability). The assigned treatments and potential outcomes are independent condi-
tional on observed covariates, i.e. t L {Y,(¢')|t' € T }|« [Hirano and Imbens| [2004].

Assumption 3 (Support). For z € X such that p(x) > 0, we have that p(t|z) > 0 for each ¢t € T.

In the causal inference literature, counterfactual outcomes can be estimated using various methods.
Such examples include the “meta-learner” [Kiinzel et al.,|2019], or the Inverse Propensity Weighting

(IPW) estimator [Horvitz and Thompson, |1952]. In this work, we utilize the doubly robust estimator
introduced by |Dudik et al.|[2011]], defined as:

o (y— f(@)ln(x) = 1
Yalt) = o)

where 7, : X —) denotes the direct outcome regression model for treatment ¢, p(t|x) is the
estimated propensity score, and 7 : X — T is the logging policy observed in the dataset D.

+7(z), VteT, (11)

The doubly robust estimator combines an outcome model 7;(x) and a propensity model p(t|z),
yielding consistent estimates if either is correctly specified [Dudik et al., |2011]]. It offers a favorable
bias-variance trade-off: the propensity model corrects for selection bias, while the outcome model
reduces variance by leveraging structure in the data.

Remark 1. While we use the doubly robust (DR) estimator in our experiments due to its favorable
bias—variance tradeoff and strong practical performance, our framework is estimator-agnostic: any
valid counterfactual estimator can be used to compute utility estimates. This includes more advanced
approaches that relax or mitigate these assumptions

In the experimental section, we show that ignoring the treatment bias leads to inaccurate counterfactual
estimates and causes substantial degradation in routing quality, highlighting the limitations of standard
supervised learning approaches that assume full feedback.

3 Routing under Heterogeneous Cost Preferences

In the previous section, we introduced a causal end-to-end framework for learning optimal routing
policies from observational data, where the objective is to maximize a utility function of the form
y = a — Ac, with a fixed A > 0 representing the trade-off between accuracy and cost.

In practice, however, user preferences vary, i.e., different queries may be associated with different
values of A\. From a system design perspective, training and maintaining a separate router for each
possible X is impractical. In this section, we propose a unified approach that supports routing under
heterogeneous cost sensitivities. We first present a joint model architecture that conditions on both the
query and the cost parameter, and then provide a theoretical analysis to justify the proposed design.

3.1 Interval-Conditioned Joint Router

We design a neural network f : X x R>g — RI71 that jointly takes a query € X and a cost
sensitivity parameter A € R>(as input, outputs a score vector over available LLMs and the routing
decision is then made via:

t = argmax f(x, \);. 12
g teT f(’)t ()
We assume access to a finite, representative set of cost preferences A := {A1,..., A} C Rxq. For

ease of notation we assume that \; < Ay < --+ < A,,. In practice, these values may correspond to
discrete service quality tiers (e.g., basic, standard, premium) that reflect users’ varying willingness to
trade off cost for performance. For each \ € A, we partition the training data by cost preference and

estimate \-specific utility ?m’\ (t), which forms the basis of our joint interval-conditioned architecture.

Training Procedure.

1. Foreach A € A, we first train an individual router fy : X — RI7! using the methods introduced
in Section 2.2

2. Foreachinterval [Aj, X\; 1] € [1,...,m—1], we initialize a joint network f(z, A) : X xR>¢ —
R!7 that uses as input both 7, A € (A, \j+1).

3. The shared model is fine-tuned to minimize regret over the interval:

1 -

m;n on Z Z Regret (f(zi, \)), (13)
AE{A; A 41} i=1

where regret is computed using the doubly robust estimator as described earlier, under the

corresponding A-specific utility f/x): (t).

Deployment Strategy. At inference time, given a user-specified cost sensitivity parameter A € Rx>:

» If A € A, we use the individual model f(z).

« If A ¢ A, we identify the closest neighbors A X € Asuchthat A < A < A, and we use the
corresponding joint network f(x, \) trained to generalize across the preference in (A, \).

3.2 Model Architecture

A key component of the heterogeneous cost preference routing setup introduced in Section [3.1]is
the interval-conditioned joint model f(x,), that for each interval [A;, A;11], interpolates between
the two corresponding individual models f, and f,,,. Specifically, the architecture is designed
to exploit the affine structure of the utility function with respect to A, namely y = a — Ac. This
motivates a lightweight parameterization that uses only the two endpoints of the interval [A;, Aj41]
rather than all m pre-trained models. Concretely, the joint model that we propose is defined as:

f(@,\) = Linear ([fx, (@), fx,.(@)]+ 9(V), (14)

where [-, -] denotes concatenation, and g(\) := Activation(Linear())) is a learnable representa-
tion of the cost sensitivity parameter.

This architecture enables smooth interpolation between f; and fy,, within [A;, A;;1], allowing the
router to adapt to intermediate values of A without requiring an individual model for each one. By
conditioning only on the two bounding models, this design achieves computational efficiency and
strong generalization across cost preferences. The proposed architecture is illustrated in Figure[T}

[‘ linear layer]

[& linear layer] [activation]

interpolate router

on [\, A [concat] [‘ linear layer]

i I

(router fa J [router fx}
learnable
¢ I I

frozen [embeddings] [A]

Figure 1: Overview of the proposed interval-conditioned joint router framework. Left: Decision
logic for handling a given cost sensitivity parameter A. Right: Joint router architecture.

3.3 Theoretical Guarantees

We now present theoretical guarantees that justify the structure and training strategy of joint cost-
preference router. These guarantees leverage the affine nature of the utility function, which is linear
in the cost parameter \ for fixed accuracy a and cost ¢, enabling exact interpolation for specific cost
sensitivity across fixed intervals.

Proposition 3 (Piecewise Constant Optimal Policy). Fix a query z € & and assume the estimated
utility is affine in A, i.e., V) (£) = a4 (t) — X - ¢o(t) for all t € 7. Then the optimal treatment

t*(\) := YAt
() arg max (1)

is piecewise constant in A. That is, the cost parameter R>(can be partitioned into intervals over
which the optimal treatment remains fixed.

Proposition 4 (Affine Closure of Utility Function). Let A; < \;4; be two adjacent cost values and
let A € [\j, \j11]. Suppose the utility function is affine in)\, i.e., Y (t) = a,(t) — A - ¢x(t). Then

for all t € T, the utility at X is a convex combination of utilities at the endpoints:

; : . A1 — A
YME) = a- Y09 (t) + (1 —a)- Y9+ (t), wherea := 22
' Aj+1 = Aj

Corollary 1 (Sufficiency of Two Models per Interval). Under the affine assumption, the utility }A/;‘ (t)

for any A € [\, \j11] can be exactly reconstructed using only the endpoints Y29 (¢) and Y27+ (8).
Thus, it is sufficient to use only the two corresponding models f»; and fy,,, for interpolation within
the interval.

Proposition 5 (Expressivity of Additive Two-Model joint Architecture). Let A € [A;, Aj+1], and
suppose that for each ¢ € 7T the utility satisfies Y} () = a,(t) — A+ c,.(t). Then the optimal treatment
t*()\) := arg max; Y} (¢) can be exactly represented by a softmax policy over a function of the form:

f(x,) = Linear ([fx, (), f,;. (2)] + 9(N)) ,

where g(\) is any differentiable embedding of A, and fy,, fx,,, are accurate predictors trained at
endpoints A\; and A4 1.

Implications for Architecture and Training. The theoretical results above provide strong justifi-
cation for both the proposed model architecture and the associated training procedure. Proposition 3|
shows that the optimal treatment changes only across a small number of cost sensitivities, supporting
our interval-conditioned strategy for routing. Proposition 4] guarantees that the utility for any inter-
mediate cost preference can be exactly recovered through convex interpolation of endpoint models.
Finally, Proposition [5]establishes that our joint model is expressive enough to capture the optimal
policy within each interval. Our method provides a principled approach for learning a joint routing
model that accommodates heterogeneous cost preferences from observational data.

4 Experiments

4.1 Datasets

We evaluate our methods on two publicly available benchmarks for LLM routing: RouterBench [Hu
et al., 2024]] and SPROUT [Somerstep et al., 2025].

RouterBench is a standardized benchmark comprising 35,712 prompt-response pairs from 11
language models. The prompts are drawn from eight evaluation suites spanning reasoning, factual
recall, dialogue, mathematics, and code generation. Each prompt is annotated with model accuracy
and execution cost, enabling supervised training and evaluation of routing policies.

SPROUT is a larger and more diverse benchmark focused on cost-aware routing, consisting of
44,241 prompts and responses from 13 state-of-the-art LLMs. The prompts cover six challenging
tasks: GPQA [Rein et al., [2024]], MuSR [Sprague et al., [2023|]], MMLU-Pro [Wang et al.| [2024],
MATH [Hendrycks et al., 2021]], OpenHermes [Teknium), |2023]], and RAGBench [Friel et al.| 2024].
SPROUT includes a predefined split: 80% for training, with the remaining 20% evenly divided
between validation and test sets.

4.2 Embeddings and Model Architecture

To encode input queries into vector representations x, we generate embeddings using two compact,
publicly available language models: BERT-base-uncased (768 dimensions) and L1ama-3.2-1B
(2048 dimensions). Each input is passed once through the model, and the final hidden states are
mean-pooled to obtain a fixed-length embeddings. These models were selected for their efficiency
and suitability for real-time routing.

The embeddings are processed by a two-layer fully connected network with GELU activations and
200 hidden units per layer. The model is trained with the Adam optimizer (learning rate 1 x 10~%) for
up to 10,000 epochs, using early stopping with a patience of 100. A softmax output with temperature
7 = 100 is used to control the sharpness of the output probabilities. This architecture is used
consistently across all benchmarked methods for fair comparison. For the doubly robust estimator, the
same network models the direct outcomes (), while the propensity scores p(t |) are estimated

using XGBoost. To reduce variance from extreme inverse propensity weights, we apply clipping
at the 5th and 95th percentiles. The only architectural modification is for the interval-based model,
where the softmax temperature is increased to 7 = 1000 to enable smoother interpolation across A.
Hyperparameters are summarized in Appendix

4.3 Methods

We evaluate our proposed routing strategies against a range of baselines from the causal machine
learning and LLM routing literature. Since both SPROUT and RouterBench provide full-feedback
datasets (i.e., responses from all models), we simulate observational data by sampling a single model
per prompt. Specifically, for each prompt, we sample a model ¢ € 7 with probability proportional to

e

its accuracy Pt = 7] = S e where a, is the accuracy of model 7 on that prompt.
T'eT

As an optimistic oracle, we include a Full-Feedback model that learns a model f : X — R!7! using
the complete outcome vector for each query and optimizes a standard multi-class classification loss.
We benchmark against a common decoupled routing strategy denoted Baseline, which independently
estimates model accuracy a(t) and cost ¢, (t), without accounting for selection bias. This reflects
the approach taken in prior predictive routing methods such as CARROT [Somerstep et al.| [2025]],
which has demonstrated superior performance over alternatives like RouteLLM [Ong et al., 2024]
and RoRF [Jain et al.,|2023]]. To adjust for treatment assignment bias, we consider a Regress-and-
Compare (R&C) method, which fits outcome models ?x (t) for each treatment ¢, and selects the action
= argmax, Y, (t). Building on this, we implement a Causal-CARROT variant by adapting both the
parametric and kNN instantiations of CARROT to the R&C framework. We additionally include CF-
Regression, which models f : X — RI7! and is trained to minimize MSE against the counterfactual
utility function from the doubly robust estimator: miny > .., Z,‘s7:—|1 (Ya, () — f(2;):)?. Decisions
are made by selecting the treatment with the highest predicted value, i.e., f = arg max; f(z);.

Finally, we evaluate our regret-minimization methods. RM-Classification formulates the task as
multi-class prediction over optimal treatments, serving as a classification-based upper bound. RM-
Softmax directly minimizes a softmax-weighted regret surrogate. In the heterogeneous preference
setting, we also assess RM-Interval (Section EI), which generalizes across a continuum of cost
sensitivities by interpolating between models trained at discrete A values.

Table 1: Comparison of routing methods by causal reasoning and end-to-end training.

Method Causal End-to-End
_Full-Feedback . o A
Baseline

X

R&C v

Causal-CARROT (kNN & Embed) v

CF-Regression v

- RM-Classification (Ours) o Vo
RM-Softmax (Ours) v v
4 v

RM-Interval (Ours)

4.4 Evaluations

We evaluate our methods in two settings. In the A-specific setting, each cost sensitivity value \ €
{0,100,...,1000} defines a separate routing task, with models trained and evaluated independently.
In the heterogeneous preference setting, RM-Interval is trained on a subset {0, 200, . .., 1000} and
tested on held-out values {100, 300, 500, 700, 900} to assess generalization across cost sensitivities.

We report the average utility across 10 independent trials for each routing method for SPROUT
dataset and BERT embeddings in Table 2] where each trial involves randomly sampling observational
data and retraining all models. In Figure[2] we also visualize the corresponding accuracy—cost curve
associated with each method. Additional plots for the rest of the datasets and embeddings, along with
detailed router performance are provided in Appendix

Accuracy vs. Cost — Dataset: SPROUT | Embedding: BERT
Full range: A € [0, 1000]

&

©
N
o

©
o
=}

N
N
wn

~
u
o

~
N
wn

Zoom-in: A € [100, 900]

851 e

~ N
o wu

o
[
Fana o

- g&'”uv!
1
\

--A-+ Full-Feedback
RM-Classification

—8— RM-Softmax
RM-interval

—< Baseline
—»— R&C

—#- Causal-CARROT (kNN)
Causal-CARROT (Embed)

Titan
GPT-40

GPT-40-mini
Granite-3-2B

+ CF-Regression

Accuracy (%)
Accuracy (%)

o
o

Granite-3-8B
LLaMA-3-1-70B
LLaMA-3-1-8B
LLaMA-3-2-1B
LLaMA-3-2-3B
LLaMA-3-3-70B
LLaMA-3-405B
Mixtral-8x7B

o ~

N o

o o
o
vl

50

65.0

®
e0OR*EVADaEO L

45
0.000

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.001 0.002 0.003

Cost ($)

Cost ($)

0.004 0.005

Figure 2: Accuracy—cost trade-off curve for SPROUT with BERT embeddings.

Table 2: Utility on SPROUT with BERT embeddings. Full Feedback serves as an oracle upper bound.
The best-performing method for each column is highlighted in bold.

Method A=0 A =100 A =200 A =300 A =400 A =500
Full-Feedback 8599;&0 17 793410 13 75.55:&0‘29 72]6:&0 24 694710 23 66.971()‘37
“Baseline 66884155 04.621 066 61.85107s 59.151084 56. 731067 54.081057
R&C 833441032 76451053 72401056 68591069 65341066 63.1910.83
Causal-CARROT (kNN) 84.52i0‘35 76.55i0,37 71~34i0.23 67.82i0 43 65.38i0‘40 63,38i0443
Causal-CARROT (EmbedNet) 83.46i0‘39 68.73:&()‘74 62~44i2.40 5672i1 68 54'37j:2412 48.913:2‘41
CF—Regression 83.54:&0_25 76.6510_46 72.42;&0_53 6895;&0 60 65.8110_67 63.5810_67
RM-Classification 84.20i0‘24 77.58i0,34 73.36i0'49 69.84i0'48 66.49i0‘63 64.03i1402
RM-Softmax 84'97j:0 39 77-53:(:()‘81 73'89i0 00 70'47i0 00 67.38i0 47 65'51j:0 60
"RM-Interval ~ 8497039 77601062 73.891000 69.92.057 67.38.047 65201067
Method A =600 A =700 A =800 A =900 A = 1000
Full-Feedback 64. 793:0 31 6318i0 21 6143i0 27 59. 98j:0 30 58833:0 24

“Baseline 51174054 48791067 45741191 42581136 38971065
R&C 60981051 59.0110s6 572li009 55971111 54331137
Causal-CARROT (kNN) 61 -77:t0 43 60.3910,38 59.07;&0.37 57.99:&0.35 56.99i0 34
Causal-CARROT (EmbedNet) 46.354;53 43.664304 41.814234 37424585 34.6944.44
CF—Regression 6137i0 64 59452i0A54 57~72i0‘72 56~31i0‘66 54.56i0(71
RM-Classification 61 .84i1 13 59.68i1,48 58.09i1.22 56-52j:1.63 54~85i1,76
RM-Softmax 64'03i0439 62'04:t1 17 60'32i1 31 58.85i1 13 56'95i0455

"RM-Interval 64.03. 059 6154173 6032413 58581115 5695.05

Our RM-based approaches consistently deliver the strongest performance overall, with RM-Softmax
and RM-Interval standing out for both high utility and low variance. Notably, RM-Interval general-
izes remarkably well to unseen budget levels (i.e., odd A values), many times even outperforming
models trained specifically on those points. These results underscore the effectiveness of our regret-
minimization framework in both fixed and variable cost settings.

The standard Baseline method, which reflects the common decoupled approach used in prior work
and ignores treatment selection bias, performs the worst across most values of A, underscoring
the importance of accounting for treatment bias in observational data. Notably, the simple R&C
method and the Causal-CARROT variants (which incorporate causal corrections) achieve substantial
improvements over it, validating our claim that bias-aware routing significantly improves performance.

The performance gap between CF-Regression and our RM-based methods demonstrates the benefit
of an integrated end-to-end approach. Whereas CF-Regression focuses on approximating the
counterfactual utility function and then selecting the best model based on predicted outcomes, our
methods directly minimize regret, leading to superior and more stable results. Comparing our two
surrogate formulations, RM-Softmax generally outperforms RM-Classification in both utility and
variance, indicating the advantage of optimizing a differentiable surrogate objective. Finally, among
the Causal-CARROT variants, the kNN version consistently outperforms the EmbedNet variant,
suggesting that non-parametric estimators may offer greater robustness in this setting.

5 Conclusion

We propose a causal end-to-end framework for routing queries to LLMs under observational data. Our
approach introduces a regret-minimizing objective grounded in counterfactual estimation, enabling
principled policy learning that accounts for treatment selection bias without requiring full-feedback
data. Unlike prior approaches that rely on decoupled prediction of accuracy and cost, where errors
can compound, our method directly optimizes the decision objective. To support heterogeneous
user preferences, we develop an interval-conditioned routing architecture that generalizes across a
continuum of cost-sensitivity parameters. Theoretical analysis provides guarantees on interpolation
sufficiency and regret bounds, while empirical evaluations on public routing benchmarks demonstrate
that our methods consistently outperform strong baselines, including recent routing algorithms,
across multiple embedding models. Future work includes extending the framework to accommodate
additional user-defined metrics or hard constraints that cannot be readily incorporated as soft penalties
in the objective. Another promising direction is to explore online or adaptive routing in dynamic
environments, as well as extending causal regret minimization to multi-turn settings.

References

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake
VanderPlas, Arnaud Joly, Brian Holt, and Ga&l Varoquaux. API design for machine learning
software: experiences from the scikit-learn project. CoRR, abs/1309.0238, 2013. URL http:
//arxiv.org/abs/1309.0238,

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017. URL http://archive,
ics.uci.edu/mll

Miroslav Dudik, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. arXiv
preprint arXiv:1103.4601, 2011.

Carlos Fernandez-Loria and Foster Provost. Causal classification: Treatment effect estimation vs.
outcome prediction. Journal of Machine Learning Research, 23(59):1-35, 2022.

Robert Friel, Masha Belyi, and Atindriyo Sanyal. Ragbench: Explainable benchmark for retrieval-
augmented generation systems, 2025. URL https://arxiv. org/abs/2407.11005, 2024.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www,
gurobi.com.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Keisuke Hirano and Guido W Imbens. The propensity score with continuous treatments. Applied
Bayesian modeling and causal inference from incomplete-data perspectives, 226164:73-84, 2004.

Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement from
a finite universe. Journal of the American statistical Association, 47(260):663—-685, 1952.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. arXiv preprint arXiv:2403.12031, 2024.

Keke Huang, Yimin Shi, Dujian Ding, Yifei Li, Yang Fei, Laks Lakshmanan, and Xiaokui Xiao.
Thriftllm: On cost-effective selection of large language models for classification queries. arXiv
preprint arXiv:2501.04901, 2025.

D. Jain, T.-Y. Tung, and T. H. Kofman. RoRF: Routing on random forests. https://www,
notdiamond.ai/blog/rorf, 2023. Accessed: 2025-01-02.

10

http://arxiv.org/abs/1309.0238
http://arxiv.org/abs/1309.0238
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.gurobi.com
https://www.gurobi.com
https://www.notdiamond.ai/blog/rorf
https://www.notdiamond.ai/blog/rorf

Soren R Kiinzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heteroge-
neous treatment effects using machine learning. Proceedings of the national academy of sciences,
116(10):4156-4165, 2019.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms from preference data. In The
Thirteenth International Conference on Learning Representations, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems 32,
pages 8024—-8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpga: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41-55, 1983.

Donald B Rubin. Bayesianly justifiable and relevant frequency calculations for the applied statistician.
The Annals of Statistics, pages 1151-1172, 1984.

Shivanshu Shekhar, Tanishq Dubey, Koyel Mukherjee, Apoorv Saxena, Atharv Tyagi, and Nishanth
Kotla. Towards optimizing the costs of llm usage. arXiv preprint arXiv:2402.01742, 2024.

Tal Shnitzer, Anthony Ou, Mirian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thompson,
and Mikhail Yurochkin. Large language model routing with benchmark datasets. arXiv preprint
arXiv:2309.15789, 2023.

Aditi Singh, Nirmal Prakashbhai Patel, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. A
survey of sustainability in large language models: Applications, economics, and challenges. In
2025 IEEE 15th Annual Computing and Communication Workshop and Conference (CCWC),
pages 00008-00014. IEEE, 2025.

Seamus Somerstep, Felipe Maia Polo, Allysson Flavio Melo de Oliveira, Prattyush Mangal, Mirian
Silva, Onkar Bhardwaj, Mikhail Yurochkin, and Subha Maity. Carrot: A cost aware rate optimal
router. arXiv preprint arXiv:2502.03261, 2025.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the limits
of chain-of-thought with multistep soft reasoning. arXiv preprint arXiv:2310.16049, 2023.

Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through
counterfactual risk minimization. The Journal of Machine Learning Research, 16(1):1731-1755,
2015.

Teknium. Openhermes 2.5. https://huggingface.co/datasets/teknium/OpenHermes-2.5,
2023. Accessed: 2025-01-30.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA,
2009. ISBN 1441412697.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin.
Fusing models with complementary expertise. arXiv preprint arXiv:2310.01542, 2023.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024.

11

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://huggingface.co/datasets/teknium/OpenHermes-2.5

Hao Zou, Bo Li, Jiangang Han, Shuiping Chen, Xuetao Ding, and Peng Cui. Counterfactual
prediction for outcome-oriented treatments. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 27693-27706. PMLR, 17-23 Jul 2022. URL https://proceedings.mlr.press/v162/
zou22a.html.

12

https://proceedings.mlr.press/v162/zou22a.html
https://proceedings.mlr.press/v162/zou22a.html

A Proofs of Propositions

Proposition 1. Suppose the estimated utility function Y, : T —Ris L-Lipschitz continuous over the
probability simplex with respect to the ¢; norm, as in Deﬁnition Then, for a policy f : X — AlT
that outputs a distribution f(z) over T, the regret can be upper bounded by:

Regret(f Z 2. CE(t}, f(x:)), (15)

where t¥ := argmax,c7 Y,,(t) is the optimal treatment for input z;, and CE(t}, f(z;)) :=
—log f (i) denotes the cross-entropy loss.

Proof. Letet: € AlTI denote the one-hot distribution over the optimal treatment t7. By the definition
of regret:

= =3 [Faule) = Vau (@) - (16)

i=1

:\'—‘

Regret(f

Using the L-Lipschitz continuity of Y, (-) under the ¢, norm:

Vaile) = Yo, (f@a))| < L+ llew; = Fla)]h. a7
Applying Pinsker’s inequality:

= \/2- CE(t. f(22). (18)

where the equality follows because KL divergence from a one-hot distribution to a probability vector
reduces to cross-entropy. Combining the above:

e = F@a)ll < 4/2- KL(ex

Regret(f Z 2. CE(tr, f(x4)), (19)

which completes the proof. O

Proposition 2. Let f : X — RI7| be a neural network whose output is passed through a softmax layer

with fixed temperature 7 > 0, and define ¢] := arg max;c7 f{m (t). Then, optimizing the following
objective using gradient descent

n

7]
min % S Ve t) - t:zl Y, (t) - softmax(f(x;))q (20)

i=1
leads the model f to place all probability mass on the optimal treatment ¢;. That is, at convergence,

1 ift =t
0 otherwise.

softmax(f(x;))s — { (21

Proof. Let ffmi € RI7! denote the vector of estimated potential outcomes for input z;, and let

f(z;) € RI7I be the output of the neural network before the softmax layer. The objective for a single
instance z; can be written as minimizing the regret surrogate:

7]
- Z Y, (t) - softmax(f(z;)):. (22)

This is equivalent to maximizing the inner product:

(Y, softmax(f(x;))). (23)

13

Let us denote p := softmax(f(z;)) € Al7I=1, the probability simplex. We now show that the inner

product (Y7, p) increases at each gradient step. Since p = softmax(f(x;)), we can compute the
gradient of the objective with respect to f(x;) as:

vf(l’i)<?$i780ftmax(f(xi))> = JsoftmaX(f(xi))TYwu (24
where Jsoftmax (f (7)) is the Jacobian of the softmax function, given by:
_ Osoftmax(f(x;))e

Jsottmax (f (%i))t,s = = softmax(f(x;)): (0,5 — softmax(f(x;))s). (25)

Of (zi)s

This gradient direction corresponds to increasing the logit value of actions with higher Yri (t) and

decreasing those with lower values, pushing the softmax distribution toward the mode of Ywi. In
other words, the gradient ascent step increases the inner product at each iteration k:

(Y, , softmax(f (x;))) F+Y > (V. softmax(f(z;)))®. (26)

Since f’m is fixed and the softmax is smooth and bounded, this sequence is monotonically increasing
and converges to the maximum possible value:

(Y, softmax(f(x;))) — max Y, (t) =Yg, (1), (27)

3

which implies:

1 ift=1¢;
ft i)t — b 28
softmax(f(z:)): {0 otherwise. (28)
Thus, the regret surrogate converges to zero:
Vo, () — (Ya,, softmax(f(z;))) — 0, (29)
and the learned policy selects the treatment maximizing the estimated outcome. O

Proposition 3 (Piecewise Constant Optimal Policy). Fix a query x € X and assume the estimated
utility function is affine in A, i.e., Y} () = a,(t) — A - c(t) forall t € 7. Then the optimal treatment

t*(\) = Y2t
(N) arg max o (1)

is piecewise constant in A. That is, the budget space R>(can be partitioned into intervals over which
the optimal treatment remains fixed.

Proof. For fixed x, each Y} (t) is an affine function of A. The pointwise maximum of a finite
collection of affine functions is piecewise affine, and the argmax corresponds to the highest line at
each A. Since each pair of lines can intersect at most once, the number of intervals over which a
single treatment is optimal is bounded by |7 | — 1. Therefore, t*(\) changes only at these intersection
points and remains constant within each interval. O

Proposition 4 (Affine Closure of Utility Function). Let A\; < A;4; be two adjacent budget values
and let A € [Aj, Aj+1]. Suppose the utility function is affine in A:

YME) = an(t) — A - cu(t).
Then for all ¢ € T, the utility at A is a convex combination of utilities at the endpoints:

Aj+1 — A

YAt =a - Y)i(t)+ (1 —a) Y+ (t), wherea:= 21—
Aj+1 = Aj

x

Proof. We expand each term:

Then:
a-Y2(t) + (1—a) - Y4 () = a- (a,(t) = Ajea(t) + (1 — @) - (an(t) = Ajpaca(D)
= ag(t) — [ad; + (1 —) Aja] - ca(t)
= ax(t) = - ea(t) = Y1),
since:
adj+ (1 —a)rjp1 =\
O

Corollary 1 (Sufficiency of Two Models per Interval). Under the affine assumption, the utility Ygf‘ (t)

for any A € [Aj, A 41] can be exactly reconstructed using only the endpoints v (t) and Yot (t).
Thus, it is sufficient to use only the two corresponding models fy; and fy,,, for interpolation within
the interval.

Proof. This follows immediately from the statement of Proposition 4. O

Proposition 5 (Expressivity of Additive Two-Model joint Architecture). Let A € [Aj, A\j11], and
suppose that for each ¢ € T the utility function satisfies Y, (t) = a,(t) — X - ¢, (t). Then the optimal
treatment t*(\) := arg max; Y;(t) can be exactly represented by a softmax policy over a function

of the form:
f(@,X) = Linear ([f, (), fr, ;. (@)] +9(V)

where g(\) is any differentiable embedding of A, and fy,, fx,,, are accurate predictors trained at
endpoints A\; and A\ 1.

Proof. From Proposition 4] the utility Y;}(¢) is a convex combination of Vs (t) and Yo (t). If
the network f(z, A) linearly combines the outputs of fy,(z) and fy, (), then its scores can match
f’x’\ (t) up to a scalar transformation. Applying softmax preserves the argmax.

Including g(\) allows the architecture to learn any additional monotonic reweighting of the interpola-
tion, ensuring the output scores can be shaped to approximate the true utility surface exactly. Thus,
the architecture can represent the optimal policy within each interval. O

B Additional Results

In this section, we present the additional plots for the rest of the datasets as well as the exact values
of utility for value A\. We begin by presenting the rest of the figures.

B.1 Additional Figures

Accuracy vs. Cost — Dataset: ROUTERBENCH | Embedding: BERT

~
o

o
v}

Accuracy (%)

[
o

S
o

Full range: A € [0, 1000]

o
o

v
o

80

K3
704 Ap——""

(=2
> S
o Wy,
I\
1
A
<
>

Accuracy (%)
B w
o o

w
o

204

040‘001 0.0602 0.0603 0.0604 0.0605 0.0006

Cost ($)

0.00000.06050.06100.06150.06200.06250.0630

Cost ($)

--A- Full-Feedback
RM-Classification
—&— RM-Softmax
RM-interval

-« Baseline

—»— R&C

—#- Causal-CARROT (kNN)
Causal-CARROT (Embed)

-+ CF-Regression
WizardLM-13B
Claude-Instant
Claude-1
Claude-2
GPT-3.5
GPT-4
CodelLLaMA-34B
LLaMA-2-70B
Mistral-7B
Mixtral-8x7B
Yi-34B

CORFEVAD DO &

Figure 3: Accuracy—cost trade-off curve for RouterBench with BERT embeddings.

15

Accuracy vs. Cost — Dataset: ROUTERBENCH | Embedding: LLAMA-3.2-1B
Full range: A € [0, 1000]

Zoom-in

: A €[100, 900]

704

Accuracy (%)
o o
o w

w
o
s

501

Accuracy (%)
w
o

201

&

--A- Full-Feedback

~m- RM-Classification
—&— RM-Softmax

RM-interval

-<- Baseline

—— R&C

—#- Causal-CARROT (kNN)
Causal-CARROT (Embed)
+ CF-Regression
WizardLM-13B
Claude-Instant
Claude-1

Claude-2

GPT-3.5

GPT-4
CodelLaMA-34B
LLaMA-2-70B
Mistral-7B

0.01‘1)01 OAObO2 0A0'003 0.0b04 0.02)05 OAObOG

COR*BVA>IDO

Mixtral-8x7B
Yi-34B

OAOOOOOAOVOOSOAObIOOAObISOAObZOOAObZS 0.0630

Cost ($) Cost ($)

Figure 4: Accuracy—cost trade-off curve for RouterBench with LLaMa-3.2-1B embeddings.

Accuracy vs. Cost — Dataset: SPROUT | Embedding: BERT
Zoom-in: A € [100, 900

Full range: A € [0, 1000]

--A-+ Full-Feedback
~m- RM-Classification
—&— RM-Softmax
RM-interval

~-<- Baseline

—— R&C

~#- Causal-CARROT (kNN)
Causal-CARROT (Embed)
+ CF-Regression
Titan

GPT-40
GPT-40-mini
Granite-3-2B
Granite-3-8B
LLaMA-3-1-70B
LLaMA-3-1-8B
LLaMA-3-2-1B
LLaMA-3-2-3B
LLaMA-3-3-70B
LLaMA-3-405B
Mixtral-8x7B

coon*revaAbdmo k

--A- Full-Feedback
~m- RM-Classification
—o— RM-Softmax
RM-interval
~<- Baseline
- R&C
—#-. Causal-CARROT (kNN)
Causal-CARROT (Embed)
+ CF-Regression
Titan
GPT-40
GPT-40-mini
Granite-3-2B
Granite-3-8B
LLaMA-3-1-70B
LLaMA-3-1-8B
LLaMA-3-2-1B
LLaMA-3-2-3B
LLaMA-3-3-70B
LLaMA-3-405B
Mixtral-8x7B

0ooR*EVA>IHO &

82.5 { 85 1 a8
» -
80.0 { 2 80
__ 715 s
S S
> 75.0 1 gl
o 13
I C 65
37251 3
< £ 60
70.0 1
55
67.5 1
50
65.0 1
T a T T T T T 45 r T T T T T
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.000 0.001 0.002 0.003 0.004 0.005
Cost ($) Cost ($)
Figure 5: Accuracy—cost trade-off curve for SPROUT with BERT embeddings.
Accuracy vs. Cost — Dataset: SPROUT | Embedding: LLAMA-3.2-1B
Zoom-in: A € [100, 900]
82.5 | = T
" o
80.0 .A’v‘\’j ®
Py
77.5 1 el
) , ‘//,)
$ 7501 g,” s
E 72.5 y §
5 5
S 70.01 3
< & <
67.5 1
< 55
65.0 { /
p) 50
62.5 1 Y sk
0.0000 0.0002 0.0004 0.0006 0.000 0.001 0002 0.003 0.004 0.005
Cost ($) Cost ($)

Figure 6: Accuracy—cost trade-off curve for SPROUT with LLaMa-3.2-1B embeddings.

16

B.2 Additional Tables

Table 3: Utility for RouterBench with BERT embeddings. Full Feedback serves as an oracle upper
bound. The best-performing method for each column is highlighted in bold.

Method A=0 A =100 A =200 A =300 A =400 A =500 A =600 A =700 A =800 A =900 A = 1000
Full-Feedback 78.07 014 68.07 1024 64.1240.18 3 58924018 57.6210.21 53.73+0 52421018
“Baseline ~ T T T T 66461066 61601064 5975406 57409 53.85:10.96 S51.67:1.04 47871076 46.095046
R&C 75.0810.49 65581028 61.734053 59.631053 58231058 56.794063 55471064 51.6540.50 50.1810.53
Causal-CARROT (kNN) 750250061 6512505 6221i052 60561049 58941041 5739:042 55861035 51474040 50081060
Causal-CARROT (EmbedNet) 75.074050 56.87+139 47714476 44.664195 42.06123; 38.551330 28.891353 24.641550
CF-Regression 74811055 65564017 61951044 59711069 57911065 56.3610.73 50.784051 49.4310.39
RM-Classification 76.301061 66431028 62.651064 60851054 59.65:051 58.071062 5245072 51144061

RM-Softmax 77821003 65.51405 60751061 58.58+050 56.48.1052
“RMAnterval ~ " " T T T T T T 71825005 6 633002 6101 05 5838050 569203 54 5110005 49.601121 47.6411 40

Table 4: Utility for RouterBench with L1ama-3.2-1B embeddings. The best-performing method
for each column is highlighted in bold.

Method A=0 A =100 A =200 A =300 A =400 A =500 A =600 A =700 A =800 A =900 A = 1000
Full-Feedback 77.06+0.30 _67.37+0.35 _63.52+0.35 58201019 56.88+0.33 _ 55491038 _ 54031004 _ 52.8610.25 51471028
Baseline 50241108 54561096 54794111 § 50.631068 49431066 47.781120 46.194061 44.9640.66 43.1040.84
R&C 69.301063 61.624070 58044044 56204052 54331058 53021062 51721057 50304050 48941045 48.031056 46.73:10.56
Causal-CARROT (kNN) 75085047 64724047 61865053 60231051 5871ios0 57181045 55581050 S5404i040 52501051 510005 49.54100s
Causal-CARROT (EmbedNet) 69301055 44624155 38941065 33824007 28601400 24.04sg76 20471641 15.00unrs 12320507 9.6diges 13481145
CF-Regression 70.021033 62331078 59.05:0.24 57.19i042 55.5810.56 53.0310.64 51971064 50.5010.56 49.101045 47.6810.44
RM-Classification 72761050 64221065 60.68+0.56 56.640.72 53981046 52711044 Sl.14i059 50.061055 48.6310.36
RM-Softmax 77581049 64491050 61971052 52861070 50.9610.02 49.7011.19 47.691165
“RMnterval ~~ T T T T T T T 7758010 63704147 61971052 59434156 582040 fi051 52551001 50961002 49231181 47691165

Table 5: Utility for SPOUT with

highlighted in bold.

BERT embeddings. The best-performing method for each column is

Method A=0 A =100 A =200 A =300 A =400 A =500 A =600 A =T700 A =800 A =900 A = 1000
Full-Feedback 85.99:017 79.341013 75.551020 72161021 69471023 66.9710.37 63181901 61431057 59981030 58.8340.24
“Baseline ~ T T T 7T 66884155 64625066 61854078 59.15:081 56731067 54.0810.57 T 48791067 45741101 42581136 38971065
R&C 83341032 76451053 72404056 68.59:i0.60 05341066 63.1940.83 59.0140.86 57214090 55974111 54334137
Causal-CARROT (kKNN) 84.524055 76555057 71341023 67.821043 65.38:040 63385043 60.394055 59.074037 57991035 56.9910.31
Causal-CARROT (EmbedNet) 83461030 68731074 62441010 567211658 54371212 4891404 43661301 4181103 37420585 3469144
CF-Regression 83.541005 76.65:046 72421053 68951060 65.81:067 63.58%0.67 59.52:051 57721072 563liggs 54561071
RM-Classification 84201024 77.58+031 73361049 69.84:048 66491063 64031102 59.68+11.48 58.09:120 56521163 54.85117

RM-Softmax 84971030 77.5310.81 % X .. X
“RMenterval ~ =" " T T T T T T 8497030 77601062 73.89:000 69.92:057 67.38:047 65201067 61.541131 6032113 58581115 56951055

Table 6: Utility for SPOUT with LLaMa-3.2-1B embeddings.

column is highlighted in bold.

The best-performing method for each

Method A=0 A=100 A=200 A=300 A=400 A=500 A=600 A=700 A=800 A=900 A=1000
Full-Feedback 85.194017 785041035 74474028 70.874023 67442020 64.874051 62.69:036 57.75:0.60 56.2210.58
Baseline 61124195 57124166 52354263 51234101 47864019 423504060 40.051479 2 29641505 27991566
R&C 81341041 74751050 68971581 67.091067 64.62:057 62331063 60221046 58.81io.us 5576117 54101148
Causal-CARROT (KNN) 84504038 76301042 71245067 68.024051 65571053 63624047 61931043 60.3310.41 37 57861035 56.891029
Causal-CARROT (EmbedNet) 8129 045 62965132 55694427 49401541 4521saa7 325241000 31051157 31.70s675 22344900 20471061 15524670
CF-Regression 82324045 75.55t043 70244537 68264061 65551058 63.51p052 61491053 5990060 58.19i060 56.861061 55614076
RM-Classification 83.6040.43 77172047 70951642 69364062 66381076 63991080 61.821071 60.45106s 56.83:053 55.6411.3;
RM-Softmax 84.60.050 77481121 7145601 6991i0s5 67181051 65.35i060 63041135 61.38i1 6 57724033 5712501
RM-Interval X 145,601 699906 6718, 051 647310097 63.041 135 61.1611 81 105 37484099 S5TA21001

We also report the AUC (Area Under the Curve) of the accuracy—cost trade-off curve for each method.
This is computed using the sklearn.metrics.auc function Buitinck et al.|[2013]]. AUC provides
a single scalar summary of performance that captures how well a model balances accuracy and
computational cost. A higher AUC indicates a more favorable overall trade-off across budgets,
making it a robust evaluation metric for comparing routing strategies.

17

Table 7: Average AUC over 10 trials across datasets and embedding models. Higher is better.
Abbreviations: RB = RouterBench, SP = SPROUT.

Method RB-BERT RB-LLaMa SP-BERT SP-LLaMa
Full-Feedback 0.1839 0.1719 0.1727 0.1655

“Baseline 0.0890 0.0134 0.0255 ~ 0.0148
R&C 0.1539 0.1108 0.1316 0.1105
Causal-CARROT (kNN) 0.1441 0.1433 0.1642 0.1618
Causal-CARROT (EmbedNet) 0.1376 0.0842 0.1148 0.0768
CF-Regression 0.1412 0.1119 0.1352 0.1233
RM-Classification 0.1665 0.1389 0.1477 0.1436
RM-Softmax 0.2286 0.2213 0.3320 0.2444

" RM-Interval 0.2285 0.2196 0.3320 0.2464

C Contribution of Each Component

The results highlight the impact of causal bias correction, end-to-end training, and regret-focused
objectives as follows:

Causal Inference (Bias Correction): Our Baseline corresponds to CARROT without any causal
correction - that is, a decoupled predictor trained directly on observational data without accounting
for treatment bias. It consistently performs the worst across all settings. In contrast, incorporating
causal techniques for bias correction yields substantial gains: both R&C and Causal-CARROT, which
integrate causal adjustments into routing, achieve +10-15% routing accuracy at comparable cost,
demonstrating that accounting for selection bias is critical for effective routing. These results validate
that bias-aware routing significantly improves utility over naive predictors trained on biased data.

End-to-End Learning vs. Two-Stage: Among bias-corrected approaches, our end-to-end regret-
minimizing methods (RM) consistently outperform the two-stage methods (CF-Regression, Causal-
CARROT, R&C). The performance gap (+1-3% routing accuracy at comparable cost) demonstrates
the benefit of an integrated end-to-end approach: by directly optimizing the decision-quality objective
(regret) rather than optimizing intermediate predictions, our method achieves superior and more
stable results.

Regret Minimization Objective: Even compared to other causal learners, our specific training
objective provides an edge. For instance, RM-Softmax (differentiable surrogate) slightly outperforms
RM-Classification (upper-bound surrogate) in most cases, with lower variance (+0.5—1% routing
accuracy at comparable cost). This highlights the advantage of our softmax-weighted regret objective
and its alignment with the true decision loss. Moreover, both RM methods outperform Causal-
CARROT and CF-Regression, underscoring that minimizing expected regret is more effective than
surrogate approaches that focus only on accuracy/cost prediction.

D Experimental Details

All experiments were implemented in Python 3.8.12|Van Rossum and Drake| [2009], using PyTorch
2.4.1+cul21 Paszke et al.|[2019]] and Scikit-learn Buitinck et al.| [2013]]. Experiments were conducted
on an internal compute cluster equipped with an Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz,
512 GB of RAM, and two NVIDIA V100 GPUs with 16 GB memory each.

Prompt Encoding & Augmentation To encode input queries into vector representations x, we
employ a two-stage embedding process. First, we enrich each prompt with contextual metadata by
prepending a natural language prefix that identifies the source dataset. Specifically, for a prompt
p originating from dataset D (e.g., openhermes/teknium), we construct the following context-
augmented input: “The following prompt comes from the dataset D. The prompt is: p”. This step
provides the embedding model with useful dataset-level context, which is particularly beneficial in
multi-domain routing scenarios. The template is flexible and can be extended to include additional
metadata if desired.

18

Datasets. RouterBench [Hu et al.; 2024] is a standardized benchmark for LLM routing, comprising
35,712 prompt-response pairs collected from 11 LLMs. The prompts span eight different evaluation
benchmarks covering reasoning, factual knowledge, dialogue, mathematics, and code generation.
Each prompt is annotated with model accuracy and execution cost, enabling response-based decision-
making. To maintain consistency in evaluation, we adopt the same split strategy for RouterBench,
applied deterministically at the prompt level to ensure reproducibility. SPROUT [Somerstep et al.,
2025] is a more recent and larger benchmark for cost-aware routing, consisting of 44,241 prompts
and responses from 13 state-of-the-art language models. The prompts are drawn from six diverse
benchmarks, including GPQA [Rein et al., 2024], MuSR [Sprague et al.,|2023], MMLU-Pro [Wang
et al.| [2024], MATH [Hendrycks et al., 2021]], OpenHermes [Tekniuml 2023]], and RAGBench [Friel
et al., 2024]. SPROUT includes a predefined train/validation/test split, using 80% of the data for
training and splitting the remaining 20% equally between validation and test sets.

Neural Router Models. All neural models used in our experiments share the same architecture for
fairness and comparability. We use a 2-layer feedforward neural network with GELU activation and
200 hidden units per layer. Models are trained using the Adam optimizer with a learning rate of 10~4,
batch size of 128, and a maximum of 10,000 epochs. Early stopping is applied with a patience of 100
epochs based on validation regret. The temperature parameter for the softmax-based regret objective
is set to 100, and to 1000 for the interval model to allow smoother gradients across budget intervals.

Doubly Robust Estimation. For the outcome model #;(z), we use the same neural architecture
described above, trained separately for each treatment ¢. For the propensity model p(t|z), we use
an XGBoost classifier with the following hyperparameters: maximum depth = [1,2,3,5], number of
trees = [10,20,50,100]. The estimated DR scores are clipped to the [5%, 95t percentile to reduce the
impact of extreme propensity weights and improve training stability.

Embedding Generation. We generate sentence-level embeddings using the bert-base-uncased
(768-dim) and meta-1lama/Llama-3.2-1B (2048-dim) models. Embeddings are extracted via
mean pooling over the final hidden states and are precomputed in batches using GPU acceleration.
These embeddings are fixed during training of all downstream routing models.

RM-Interval Network. The joint model used for budget interpolation is implemented using a small
feedforward network that takes as input the concatenation of outputs from f A0 f Ajg1 and a linear
embedding of \. The architecture mirrors the router described above and is fine-tuned using the regret
objective over interval-specific training data. The proposed architecture is presented in Figure [I]

Inference latency and computational efficiency Latency is critical in real-time applications. Our
method is designed to minimize this by using lightweight routing networks (2-layer MLP with 200
neurons per hidden layer) and precomputed light-weight embeddings (Llama-3.2-1B and BERT). For
instance, with Llama-3.2-1B embeddings and an MLP-based router on the RoutherBench dataset,
the end-to-end routing latency is under 2.5 ms on a single A100 GPU for a batch size of almost
25,000. To contextualize this, recent benchmarks show that on 8x A100s, LLaMA-2 or LLaMA-3
70B can generate a 100-token paragraph in 1.5 to 2.5 seconds under realistic conditions using
optimized inference stacks. Even when using fewer GPUs or smaller models, generation latency
typically remains one to two orders of magnitude higher than our routing time. In many cases (e.g.,
longer outputs or cold starts), the difference can be significantly larger. Thus, the routing overhead is
negligible relative to the cost of LLM generation and does not meaningfully impact user experience.
Additionally, the interval-conditioned architecture reduces deployment complexity by avoiding the
need to train or store separate models for different user preferences.

19

	Introduction
	Methodology
	Problem Formulation
	End-to-End Regret Minimization
	Surrogate Loss 2: Softmax-Weighted Regret

	Estimating Counterfactual Utility via Causal Inference

	Routing under Heterogeneous Cost Preferences
	Interval-Conditioned Joint Router
	Model Architecture
	Theoretical Guarantees

	Experiments
	Datasets
	Embeddings and Model Architecture
	Methods
	Evaluations

	Conclusion
	Proofs of Propositions
	Additional Results
	Additional Figures
	Additional Tables

	Contribution of Each Component
	Experimental Details

