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ABSTRACT

Matrix multiplication lies at the heart of machine learning, yet standard approaches
to approximate the multiplication often ignore the interactions that truly governs
error. In this work, we introduce a structure-aware upper bound on the optimal
achievable approximation using only linear combination of k column-multiplication
of the matrices. Our bounds, formulated via convex optimization over an interaction
matrix, reveal the hidden challenges and opportunities in matrix multiplication.
Through comprehensive numerical experiments, we demonstrate that our bounds
not only outperform existing alternatives but also shed new light on the inherent
complexity of structured matrix products. This framework paves the way for
the development of structure-exploiting algorithms and principled performance
guarantees in large-scale machine learning.

Keywords: Matrix Multiplication Approximation, Sparse Approximation, Randomized Algorithms, Upper
Bounds, Sparsity Constrained Quadratic Programming, Gram Matrix Methods, Convex Optimization

1 INTRODUCTION

Large-scale matrix multiplication is a computational primitive powering numerous modern machine
learning models, including kernel methods (Schölkopf & Smola, 2002; Hofmann et al., 2008),
recommender systems (Koren et al., 2009), Transformers (Goodfellow et al., 2016), and graph
embeddings. The prohibitive cost of exact multiplication (Strassen, 1969; Coppersmith & Winograd,
1987; Alman & Williams, 2021) motivates Approximate Matrix Multiplication (AMM) (Halko et al.,
2011; Mahoney, 2011; Woodruff, 2014). Established AMM techniques, primarily based on sampling
(Drineas et al., 2006a) or sketching (Sarlos, 2006; Clarkson & Woodruff, 2017), offer significant
computational savings. However, their standard performance guarantees typically depend on coarse
matrix properties (e.g., product of Frobenius nomrs of the matrices (Drineas & Mahoney, 2005),
stable ranks (Cohen et al., 2016)) and often overlook the fine-grained interaction structure inherent in
the product sum.

This oversight becomes critical in many practical ML scenarios where the interplay (cancellations
or reinforcements) between the individual vector outer products significantly dictates the true ap-
proximation difficulty. This effect is captured by the structure ratio (Section 2). When this ratio is
large, indicating strong interactions, standard AMM bounds can become dramatically loose or even
uninformative, offering little guidance on achievable performance or optimal term selection. As ML
models increasingly leverage complex dependencies where such effects are pronounced, we face a
fundamental gap: a lack of understanding of the optimal error achievable when approximating the
product with a budget of only k column-multiplications, especially in these structurally challenging
regimes.

Our goal in this work is to provide a computable, instance-specific upper bound on the optimal k-term
Frobenius error. This is distinct from analyzing any specific algorithm, and it yields a structure-aware
benchmark that is useful for evaluating any k-term method on a given instance. For examples
of standard AMM bounds (sampling and sketching) and how they differ from our approach, see
Section 3 and Table 2. We focus on the Frobenius norm because, crucially, it admits the exact
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quadratic representation in Lemma 2.1, which underpins our framework; a comparable formulation
for spectral norm is not used here and lies outside our scope.

Our main contributions are:

• Introducing our proposed structure-aware upper bound on the optimal k-term approximation
error, derived via auxiliary quadratic programs on the interaction matrix.

• Deriving analytical variants of the bound that serve as computationally efficient yet tight
approximations to the bound derived from quadratic programs, offering structural insights
explicitly dependent on the structure ratio and demonstrating strong empirical performance.

• Demonstrating theoretically and numerically how our proposed bound (and its close approx-
imations) capture approximation difficulty arising from term interactions (quantified by the
structure ratio), unlike standard bounds.

The paper is organized as follows: Section 2 formally defines the k-term matrix approximation
problem and key concepts. Section 3 reviews prior Approximate Matrix Multiplication (AMM)
work, highlighting limitations relevant to our objective. Section 4 presents the core derivation of our
proposed upper bound, on the optimal k-term error. Section 5 provides numerical validation of our
bound’s tightness and compares it against existing methods.

2 PROBLEM FORMULATION

2.1 SPARSE APPROXIMATION VIA QUADRATIC OPTIMIZATION

We consider approximating the product AB⊤ =
∑n

j=1 ajb
⊤
j , where A = (a1| . . . |an) ∈ Rm×n

and B = (b1| . . . |bn) ∈ Rp×n. Our goal is to find the best approximation using only k terms,
with contributions modulated by a weight vector x = (x1, . . . , xn)

⊤ ∈ Rn. The approximation is
C̃x =

∑n
j=1 xjajb

⊤
j .

The underlying structure governing this approximation is captured by the n× n interaction matrix
G ≡ Ga,b, defined as the Hadamard (element-wise) product of the Gram matrices Ga = A⊤A and
Gb = B⊤B:

G = Ga,b = Ga ◦Gb = (A⊤A) ◦ (B⊤B). (1)

Its entries [G]ij = ⟨ai, aj⟩⟨bi, bj⟩ quantify the interaction between terms i and j. G is symmetric
and positive semidefinite (PSD), being the Gram matrix for {ajb⊤j }nj=1 under the Frobenius inner
product. The connection between G and the approximation error is fundamental:

Lemma 2.1. For any weight vector x ∈ Rn, the squared Frobenius norm error is:∥∥∥∥AB⊤ −
n∑

j=1

xjajb
⊤
j

∥∥∥∥2
F

= (1− x)⊤G(1− x), (2)

where 1 = (1, . . . , 1)⊤ ∈ Rn. The total energy is 1⊤G1 = ∥AB⊤∥2F .

Proof. See Appendix A.1.

Lemma 2.1 transforms the AMM problem into minimizing a quadratic form governed by G. The
core challenge is finding a sparse weight vector x (i.e., ∥x∥0 ≤ k) within a specified constraint set
K ⊆ Rn (e.g., K = {0, 1}n for subset selection, K = Rn

+, K = Rn) that minimizes this error. This
defines the generally NP-hard Sparsity Constrained Quadratic Program (SCQP):

Pk(K,G)

{
minimize f(x) = (1− x)⊤G(1− x)

subject to x ∈ K, ∥x∥0 ≤ k
(SCQP)

We denote the optimal value by v∗k(K,G). This value represents the fundamental limit of k-term
approximation under constraints K. Our central goal is to derive a computable upper bound u∗

k(K,G)
for v∗k(K,G).
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2.2 THE STRUCTURE RATIO ρG

The relationship between individual term energies (∥ajb⊤j ∥2F = Gjj) and the total energy
(∥AB⊤∥2F = 1⊤G1) is crucial. We quantify this using the structure ratio ρG.

Definition 2.2. Let G = Ga,b be the interaction matrix equation 1. Assuming ∥AB⊤∥F ̸= 0:

ρG =
Tr(G)

1⊤G1
=

∑n
j=1 Gjj∑
i,j Gij

=

∑n
j=1 ∥aj∥22∥bj∥22
∥AB⊤∥2F

. (3)

Since G is PSD, ρG ≥ 1/n. Its magnitude reveals the nature of the sum
∑

ajb
⊤
j . Formally, ρG

compares the sum of individual term energies (numerator; diagonal of G) to the energy of the final
product (denominator; full sum over G). Thus:

• Significant cancellation (ρG ≫ 1): Many anti-aligned pairs yield large negative off-
diagonals, making 1⊤G1 ≪ Tr(G) (e.g., aib⊤i ≈−ajb⊤j ); reproducing delicate cancella-
tions makes sparse approximation hard.

• Strong reinforcement (ρG ≈ 1/n): Terms are strongly aligned with large positive off-
diagonals, so 1⊤G1 ≫ Tr(G); the lower limit 1/n occurs when all n term-products are
(near) identical.

Real-World Implications of a structure aware approach. In practice, a G-aware selection is
especially beneficial in three common settings: (i) matrices with correlated columns, where near-
duplicates (ai ≈ aj) produce large positive Gij and negatives (ai ≈−aj) produce large negative
Gij—the former suggests choosing one representative with an adapted weight, while the latter warns
against selecting canceling pairs; (ii) structured transforms (e.g., Fourier, wavelets), where many
columns have similar norms and norm-based sampling cannot discriminate, but G reveals regular
sparse/banded interaction patterns from orthogonality/overlap, enabling a subset that better preserves
the signal’s essential structure; and (iii) graph-derived matrices with community structure, where
G is block-like—norm-based methods overemphasize the largest community, while leveraging G
highlights strong intra-community correlations across all blocks and supports balanced, globally
informative choices that better preserve graph topology.

Matrix M Tr(M) 1⊤M1 Range of ρM

Ga = A⊤A ∥A∥2F =
∑
∥aj∥2 ∥A1∥2 [1/n,+∞)

Ga,b = Ga ◦Gb

∑
∥aj∥2∥bj∥2 ∥AB⊤∥2F [1/n,+∞)

Ga,a = Ga ◦Ga

∑
∥aj∥4 ∥AA⊤∥2F [1/n, 1]

Table 1: Trace, Total Sum, and Range of ρM for Interaction Matrices.

3 RELATED WORK

Existing AMM approaches provide guarantees on specific algorithms but offer limited insight into
the fundamental optimal error v∗k(K,G) of SCQP, especially when interactions are strong (ρG ≫ 1).
We review key paradigms, highlighting why their bounds are insufficient as benchmarks for v∗k.

Sampling-Based AMM. These methods sample columns j with probabilities {pj} to form C̃ =∑k
l=1

1
kpjl

ajlb
⊤
jl

(Frieze et al., 2004; Achlioptas & Mcsherry, 2007). Optimal probabilities popt
j ∝ Gjj

minimize expected error (Drineas et al., 2006a; Drineas & Kannan, 2001), but the resulting bounds
depend on Tr(G) or related sums (e.g., (

∑
∥aj∥∥bj∥)2), ignoring off-diagonal interactions in G.

They become uninformative when ρG ≫ 1.

Leverage score sampling (Drineas et al., 2006b; Mahoney & Drineas, 2009) offers powerful alterna-
tives, particularly for regression or spectral norm AMM (Cohen et al., 2016), but these bounds target
different objectives and do not directly benchmark the optimal k-term Frobenius error v∗k(K,G)
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as a function of Ga,b. Notationally, {jℓ}kℓ=1 denotes k indices sampled with replacement from
{1, . . . , n} according to {pj}; the reweighting by 1/(kpjℓ) makes C̃ an unbiased estimator of AB⊤.

The standard bounds quoted are on E
[
∥AB⊤ − C̃∥2F

]
.

Sketching-Based AMM. Methods using sketching matrices S ∈ Rk×n compute C̃ =
(AS⊤)(SB⊤) (Sarlos, 2006; Woodruff, 2014). Popular choices include random projections, Fast JL,
SRHT, CountSketch, etc. (Ailon & Chazelle, 2009; TROPP, 2011; Clarkson & Woodruff, 2017; Kane
& Nelson, 2014). While efficient, standard Frobenius error bounds typically scale with aggregate
norms like ∥A∥2F ∥B∥2F (Sarlos, 2006; Cohen et al., 2023). This form inherently ignores the specific
product structure ∥AB⊤∥2F = 1⊤G1 and the cancellation effects measured by ρG, limiting their
utility as benchmarks for v∗k.

Table 2 lists representative upper bounds for the k-term approximation error of M = AB⊤. These
often rely on ∥M∥2F = 1⊤G1, computable in O(mpn) time from the input matrices A ∈ Rm×n and
B ∈ Rp×n. For a more comprehensive list and discussion of bounds, see Table A.8.1.

Method Frobenius Error Bound Reference Key Terms To Compute

Uniform Sampling n
k
Tr(G)− 1

k
∥M∥2F (Drineas

et al., 2006a)

∑
Gii, ∥M∥2F

Optimal Sampling 1
k

(∑n
i=1

√
Gii

)2 − 1
k
∥M∥2F (Drineas

et al., 2006a)

∑√
Gii, ∥M∥2F

Rand. Sketching 1
k
∥A∥2F ∥B∥2F (Sarlos,

2006;
Clarkson
& Woodruff,
2017)

∥A∥2F , ∥B∥2F

Aux QP Bound min0≤s≤k

(
∥M∥2F + s

n
w∗

s(K)
)

Thm. 4.1 ∥M∥2F + QP Sol. (O(n3))
Scaled-Id Bound

(
1− k

n
γ∗
k

)
∥M∥2F Prop. 4.3

∑
Gii, ∥M∥2F

Table 2: Representative upper bounds for error ∥AB⊤ − C̃∥2F of k-term approximate matrix multi-
plication. For randomized methods the expressions are in expectation.

Other Guarantees and Methods. Spectral norm bounds (∥AB⊤ − C̃∥) are crucial for certain
applications (Gower & Richtárik, 2015) and leverage tools like matrix concentration and stable rank
(Tropp, 2012; Cohen et al., 2016). However, they target a different error measure. Gram matrix
approximation (AA⊤) methods like Nyström (Williams & Seeger, 2000; Gittens & Mahoney, 2013)
or Frequent Directions (Ghashami et al., 2016) focus on low-rank approximation of AA⊤, not the
general k-term selection problem for AB⊤. Greedy methods like OMP variants (Tropp & Gilbert,
2007; Needell & Tropp, 2009) or norm-based selection (Belabbas & Wolfe, 2008) are empirically
useful but lack guarantees regarding proximity to v∗k(K,G), and their performance varies significantly
with structure (ρG), precisely where a tight benchmark is most needed.

Positioning Our Work. Existing theoretical guarantees predominantly focus on specific algorithms
and depend on aggregate properties (∥A∥F , ∥B∥F ,Tr(G), stable ranks), often failing to reflect the
true difficulty imposed by term interactions (ρG). Our work diverges by directly targeting the optimal
k-term approximation value v∗k(K,G) itself. By deriving the computable upper bound u∗

k(K,G) from
the interaction matrix Ga,b (Theorem 4.1), we obtain a structure-aware benchmark that depends on
the pairwise interactions in G, unlike standard bounds (Table 2) based on coarse norms (∥A∥F , ∥B∥F )
and thus blind to cancellations measured by ρG. Because u∗

k is an instance-specific estimate of the
best k-term error, any heuristic (e.g., OMP, leverage-score sampling) can be evaluated by comparing
its empirical error to u∗

k to quantify its gap to optimal. Our experiments (Figures 5–4) demonstrate
this, especially in high-cancellation regimes (ρG ≫ 1) where standard bounds are uninformative.
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4 MAIN RESULTS

We now develop our main contribution: computable upper bounds for the optimal value v∗k(K,G) of
the Sparsity Constrained Quadratic Program SCQP. As highlighted earlier, standard AMM bounds
often rely on coarse matrix properties and can become dramatically loose when the interaction
structure (quantified by ρG) leads to significant cancellations or reinforcements. This leaves a critical
gap in our understanding: What is the fundamental limit of approximation achievable with a k-term
budget for a specific instance (A,B), and how can we quantify it? Our work addresses this by deriving
bounds that explicitly incorporate the interaction matrix G, providing a much-needed, structure-aware
perspective.

The core challenge remains the combinatorial nature of the sparsity constraint ∥x∥0 ≤ k, which
makes problem SCQP NP-hard. Our strategy is to circumvent this direct combinatorial difficulty.
We leverage an averaging principle (detailed in the proof appendix) over solutions to related, but
tractable, continuous optimization problems. These auxiliary problems encode sparsity information
and probe the structure of the original objective function.

The central idea is to analyze the objective function landscape f(x) = (1 − x)⊤G(1 − x) by
considering approximations that incorporate varying degrees of the interaction structure encoded in
the off-diagonal elements of G. To achieve this controlled incorporation of structure, we define a
sequence of matrices G(s) that interpolate smoothly between the purely diagonal part of G (ignoring
all interactions) and the full matrix G. Let βs =

s−1
n−1 for s = 1, . . . , n. We define the matrix:

G(s) = βsG+ (1− βs)diag(G), s = 1, . . . , n. (4)

The matrix G(s) provides a convex interpolation between the diagonal part of G (when s = 1) and
the full interaction matrix G (when s = n). Assuming G is PSD with a positive diagonal (true if no
aj , bj are zero), G(s) is positive definite for s < n. This positive definiteness is crucial as it ensures
the strict convexity of the auxiliary quadratic programs equation Aux-QP defined below.

Now, using these interpolated matrices, we define a family of auxiliary quadratic programs. These
serve as tractable proxies for the original problem, allowing us to leverage efficient convex optimiza-
tion techniques. They are parameterized by the interpolation index s ∈ {1, . . . , n}:

Qs(K)

{
minimizey∈Rn ϕs(y) = y⊤G(s)y − 2⟨G1, y⟩
subject to y ∈ K

(Aux-QP)

Let w∗
s(K) denote the optimal value of Qs(K). We also use the convention w∗

0(K) = 0. This
problem seeks a vector y within the original constraint set K that minimizes a quadratic objective.
The quadratic term y⊤G(s)y is governed by the interpolated interaction matrix G(s), while the
linear term −2⟨G1, y⟩ derives directly from expanding the original objective f(x) around x = 1.
Because G(s) is typically positive definite or PSD, and the constraint set K is often convex (e.g.,
K = Rn, K = Rn

+, K = [0, ξ]n), the auxiliary problemQs(K) is a convex Quadratic Program (QP).
Unlike the original NP-hard SCQP, convex QPs can be solved efficiently using standard optimization
techniques (e.g., interior-point methods, active-set methods).

Our main theoretical result establishes the crucial connection: it links the optimal value v∗k(K,G) of
the intractable SCQP problem to the efficiently computable optimal values w∗

s(K) of these tractable
auxiliary convex QPs.

4.1 UPPER BOUNDS VIA AUXILIARY QPS

Theorem 4.1 (Upper Bound via Auxiliary QPs). Assume the constraint set K ⊆ Rn is convex and
has the form K = Ωn with 0 ∈ Ω. Let G be a PSD matrix. For any sparsity level k ∈ {1, . . . , n},
the optimal value v∗k(K,G) of the SCQP problem SCQP is bounded above by:

v∗k(K,G) ≤ u∗
k(K,G) := min

0≤s≤k

(
1⊤G1+

s

n
w∗

s(K)
)
. (5)

Proof. The proof relies on an averaging argument over subsets of indices and upper bound with the
expected value of the objective function f(yS) for subsets S of cardinality s uniformly chosen in
{1, . . . , n}, which yields 1⊤G1+ s

nh(y) with h the objective function of of the auxiliary problem
Qs(K). See Appendix A.3 for the complete derivation.
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Discussion and Interpretation. Theorem 4.1 provides a constructive, computationally feasible
method to obtain the upper bound u∗

k(K,G) on the optimal k-term error v∗k(K,G). This involves
computing interpolated matrices G(s), solving k auxiliary convex QPsQs(K) for their optimal values
w∗

s(K), and combining these values via formula equation 5 (details in Algorithm 1, Appendix A.6).

The significance of u∗
k(K,G) lies in its ability to capture instance-specific structure. By incorporating

the detailed interactions within G and respecting the weight constraints K, it offers a far more
informative benchmark than generic, structure-agnostic bounds. It reflects the intrinsic difficulty
of achieving a k-sparse approximation for the given problem. As experiments in Section 5 will
demonstrate, this bound is expected to be tighter than known bounds, and more insightful in high-ρG
scenarios where simpler bounds falter. Importantly, the minimization over s ∈ {0, . . . , k} balances
two effects: larger s incorporates more of the off-diagonal structure via G(s), but also scales the QP
value by s/n. Hence the optimizer need not be s = k in general; the trade-off is instance-dependent.

Analytical Consequences and Role of ρG. While the tightest bound u∗
k(K,G) requires solving

the auxiliary QPs numerically, we can gain further, more direct insight by analyzing specific feasible
solutions for Qs(K) or considering specific constraint sets K. These analyses lead to analytical
bounds expressed directly in terms of n, k, and the Structure Ratio ρG. These serve as valuable
complements to the numerical bound, offering immediate, interpretable understanding of structural
effects.

1. Binary Case (K = {0, 1}n): Although K = {0, 1}n is not convex, the underlying averaging
technique can be adapted for this specific discrete set, yielding a bound directly involving ρG. (See
Appendix A.4 for the adaptation).

Proposition 4.2 (Binary Case Bound). For the binary constraint set K = {0, 1}n, the optimal value
v∗k({0, 1}n, G) of SCQP (corresponding to simple subset selection) is bounded by:

v∗k({0, 1}n, G) ≤ min

{
1,

(
1− k

n

)((
1− k

n− 1

)
+

k

n− 1
ρG

)}
1⊤G1. (6)

where ρG = Tr(G)/(1⊤G1) as defined in equation 3.

This analytical bound explicitly reveals the influence of the Structure Ratio ρG.

• If ρG ≤ 1 (low cancellation or reinforcement, e.g., when G = Ga,a from Table 2.2), the
bound simplifies to v∗k ≤ (1 − k/n)(1 − k

n−1 (1 − ρG))1
⊤G1 ≤ (1 − k/n)1⊤G1. This

guarantees a relative error reduction that is at least linear in k/n. This rate is known to be
achievable and sharp in simple cases like orthogonal terms (G ∝ I , where ρG = 1).

• If ρG > 1 (significant cancellation). This term acts as a penalty, slowing down the guaranteed
rate of error reduction compared to the low-ρG case. The bound quantifies how much the
difficulty (cancellation) inherent in the problem, measured by ρG, limits the guaranteed
performance of any k-subset selection.

The minimum over s allows the bound to adapt; sometimes a smaller s (less interaction considered in
G(s)) might yield a tighter bound, especially if k is large relative to n.

2. Scaled Identity Analysis (y = γ1): For constraint sets K that contain scaled versions of the
all-ones vector 1 (e.g., K = Rn,K = Rn

+), we can analyze the objective ϕs(y) for the specific
feasible point y = γ1. Optimizing γ for this simple choice within Qs(K) provides a suboptimal
value for w∗

s(K), which, when plugged into Theorem 4.1, yields another analytical bound. (See
Appendix A.5 for derivation).

Proposition 4.3 (Scaled Identity Bound). Assume the constraint set K ⊆ Rn contains the line
segment {γ1 | γ ∈ [0, ξ]} where ξ = max(1, ρ−1

G ). Let G be PSD. Then for any k ∈ {1, . . . , n}:

v∗k(K,G) ≤
(
1− k

n
γ∗
k

)
1⊤G1, (7)

where γ∗
s = 1⊤G1

1⊤G(s)1
= 1

βs+(1−βs)ρG
with βs = s−1

n−1 . The minimum in Theorem 4.1 is achieved at
s = k for this specific analysis because (s/n)γ∗

s is non-decreasing in s.

6
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Proof. The proof involves substituting y = γ1 into ϕs(y), optimizing for γ subject to γ ∈ [0, ξ],
and using the result in Theorem 4.1. The non-decreasing property of (s/n)γ∗

s ensures the minimum
occurs at the largest s value considered, i.e., s = k. See Appendix A.5.

Similar to the binary case, the factor γ∗
k modulates the guaranteed linear decay rate based on ρG.

• If ρG ≤ 1, then γ∗
k ≥ 1. The bound becomes v∗k(K,G) ≤ (1 − (k/n)γ∗

k)1
⊤G1 ≤

(1− k/n)1⊤G1, again recovering the baseline linear decay guarantee.

• If ρG > 1, then γ∗
k < 1. The guaranteed relative error reduction is (k/n)γ∗

k , which is
less than k/n. The bound explicitly shows a slower guaranteed decay rate, (1− (k/n)γ∗

k),
reflecting the increased difficulty imposed by cancellations (ρG > 1).

This bound applies more broadly than the binary one (to convex K containing {γ1 : γ ∈ [0, ξ]}) but
is derived from a specific, potentially suboptimal, choice of y in the auxiliary problem, so it is likely
looser than the computationally derived bound u∗

k(K,G) from Theorem 4.1.

Benchmarking AMM Performance. Our bounds directly translate to guarantees on the minimal
achievable squared Frobenius error for AMM by setting G = Ga,b (where 1⊤G1 = ∥AB⊤∥2F ). For
example, Proposition 4.3 implies for constraint sets K such as Rn

+:

min
x∈K

∥x∥0≤k

∥∥∥∥AB⊤ −
n∑

i=1

xiaib
⊤
i

∥∥∥∥2
F

≤
(
1− k

n
γ∗
k(Ga,b)

)
∥AB⊤∥2F .

The tighter bound u∗
k(K,Ga,b) from Theorem 4.1, computed via the auxiliary QPs, provides the

most refined, instance-specific benchmark. Any algorithm (e.g., standard AMM, Sketching, Greedy)
producing an error significantly exceeding u∗

k demonstrates provable suboptimality for that specific
problem instance. This structure-aware benchmark is particularly valuable in high-ρG regimes where
generic bounds often fail or become ineffective. (Implications for optimal weight norms are detailed
in Appendix A.7).

5 EXPERIMENTAL VALIDATION: BOUND TIGHTNESS AND PERFORMANCE
INSIGHTS

The reported execution times were obtained on a machine with an Intel i7 CPU, 31.2 GB of RAM,
and a 233.18 GB disk. All algorithms were implemented as single-core versions. For details of all
algorithm implementations refer to Appendix B.5.

In Figure 5, we validate our QP-based bounds against the optimal column selection error, v∗k, for
matrices with n = 30 across different ρG values. Our bounds closely track the optimal solution v∗k,
while standard literature bounds become dramatically looser by orders of magnitude, particularly
when ρG > 1. The exhaustive search for v∗k is only feasible at this small scale (n = 30), yet provides
crucial validation of our framework. We adapt Orthogonal Matching Pursuit (OMP) to our matrix
product approximation problem to demonstrate that our bounds are practically achievable. Despite
some instability in the high-ρG regime due to cancellation effects and the small number of columns,
OMP’s performance remains remarkably close to the optimal solution. This confirms that algorithms
leveraging the full matrix structure can achieve near-optimal performance, validating our theoretical
bounds. For details on matrix generation and OMP adaptation, see Appendices B.1 and B.2.

Figure 2 presents our evaluation across diverse matrix settings (n = 5000,m = 50, p = 30), includ-
ing uniform distributions, Gaussian distributions, and matrices with orthogonal rows. The results
demonstrate that our computationally efficient Scaled Id Bound (Prop. 4.3) from Proposition 4.3
consistently and tightly tracks both the more complex Auxiliary QP Bound (Thm. 4.1) (Theorem 4.1)
and the empirical performance of OMP. This close alignment persists across fundamentally differ-
ent matrix structures, confirming the robustness of our Scaled Id Bound (Prop. 4.3) as a practical,
easy-to-compute proxy for optimal performance. Notably, OMP consistently outperforms all other
methods when ρG is not close to zero, highlighting the value of exploiting structural information.
Additional experiments with other matrix types are detailed in Appendix B.1.
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Figure 1: Validation against optimal error (n = 30).

Figure 2: Relative approximation error vs. sampling ratio k/n across different matrix types.

Scalability Analysis. Figure 3 (m = 50, p = 80, k = 0.2n, ρG ≈ 1) reveals a critical insight:
while existing methods maintain relatively constant error as n increases (suggesting their error
depends primarily on the k/n ratio), our bounds and OMP actually improve with larger n. The left
panel shows OMP achieving the lowest error, closely tracked by our QP-based bounds, while the right
panel illustrates the computational trade-off. OMP and the Auxiliary QP Bound (Thm. 4.1) scale
more steeply with n than faster sketching or sampling algorithms, reflecting the cost of exploiting
structural information. This trade-off is justified when precision is paramount, as our structure-aware
approaches deliver substantially better approximations. The efficient Scaled Id Bound (Prop. 4.3)
offers a particularly attractive balance, providing much tighter guarantees than generic sketching
bounds without the full computational burden of the Auxiliary QP Bound (Thm. 4.1).

Figure 4 (log-log scale) demonstrates how structural complexity ρG impacts approximation error
across different sampling ratios. As ρG increases, standard non-adaptive approaches fail catastroph-
ically, with errors scaling approximately as ∝ ρG. At high ρG values, these methods perform no
better than uniform random sampling, rendering them essentially uninformative. In stark contrast,
OMP maintains consistently low error across all ρG values, demonstrating remarkable robustness to
structural complexity. Crucially, our QP-based bounds accurately track OMP’s empirical performance,
confirming their ability to provide reliable performance predictions even in challenging scenarios
where traditional bounds become overly pessimistic. This underscores the fundamental importance
of structure-aware algorithms and bounds when dealing with complex data interdependencies.

Practical Implications. Across all experiments, our Scaled Id Bound (Prop. 4.3) remains remark-
ably close to the more complex Auxiliary QP Bound (Thm. 4.1) while being significantly more com-
putationally efficient. While computing these bounds requires knowledge of the full product matrix

8
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Figure 3: Scalability of approximation algorithms and bounds. Left: Relative error versus matrix dimension n.
Right: Computation time (seconds, log-log scale) versus n. For this experiment, m = 50, p = 80, k = 0.2n,
and matrices A,B were generated from an i.i.d. Gaussian distribution, resulting in ρG ≈ 1.

Figure 4: Impact of structural complexity (ρG) on approximation error (log-log scale) for ranks k = 0.05n
(left), k = 0.1n (middle), and k = 0.2n (right) (n = 8000,m = 30, p = 50).

(making them primarily valuable as theoretical tools rather than runtime optimizations), they provide
crucial insights for algorithm design. Our results strongly suggest that developing new structure-aware
algorithms that can exploit the information captured by the matrix G = (ATA)⊙ (BTB) represents
a promising direction for future research. Such algorithms could potentially achieve the accuracy
benefits demonstrated by OMP while maintaining better computational scalability, opening new
avenues for efficient matrix product approximation in high-dimensional settings.

Reproducibility Statement. Reproducibility is supported by: clear problem setup, notation, and
assumptions in Section 2 (incl. G and ρG) and Lemma 2.1; complete proofs for Theorem 4.1 and
Propositions 4.2–4.3 in the appendix; implementation details and solver settings for computing
the bounds in Appendix A.6; and fully specified experimental protocols, data generation, OMP
pseudocode, and hyperparameters in Section 5 and Appendices B.1, B.2, B.5. An anonymized code
archive with scripts to generate figures is included in the supplementary materials.
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LLM USAGE DISCLOSURE

LLMs were used only for light copy-editing and not for research ideation, proofs, code, or experiments.
The authors take full responsibility for all content; LLMs are not authors.

A APPENDIX: PROOFS AND ADDITIONAL DETAILS

This appendix provides detailed proofs for the main theoretical results presented in the paper, along
with supplementary discussions, algorithmic details, and analysis of special cases.

A.1 PROOF OF LEMMA 2.1

We want to show that ∥AB⊤ −
∑n

j=1 xjajb
⊤
j ∥2F = (1− x)⊤G(1− x). Since AB⊤ =

∑n
j=1 ajb

⊤
j ,

then Ex := AB⊤ −
∑n

j=1 xjajb
⊤
j =

∑n
j=1(1− xj)ajb

⊤
j . Let y = 1− x, where 1 is the vector of

all ones. Then yj = 1− xj , hence Ex =
∑n

j=1 yjajb
⊤
j .

The squared Frobenius norm is defined as ∥Ex∥2F = Tr(E⊤
x Ex). Let’s compute E⊤

x Ex:

E⊤
x Ex =

(
n∑

i=1

yiaib
⊤
i

)⊤
 n∑

j=1

yjajb
⊤
j


=

(
n∑

i=1

yibia
⊤
i

) n∑
j=1

yjajb
⊤
j


=

n∑
i=1

n∑
j=1

yiyjbi(a
⊤
i aj)b

T
j .

Now, we take the trace:

Tr(E⊤
x Ex) = Tr

 n∑
i=1

n∑
j=1

yiyjbi(a
⊤
i aj)b

⊤
j


=

n∑
i=1

n∑
j=1

yiyj(a
⊤
i aj) Tr(bib

⊤
j ) (Linearity of Trace)

=

n∑
i=1

n∑
j=1

yiyj(a
⊤
i aj)(b

⊤
j bi) (Using Tr(uv⊤) = v⊤u)

=

n∑
i=1

n∑
j=1

yiyj⟨ai, aj⟩⟨bi, bj⟩

=

n∑
i=1

n∑
j=1

yiyj [G]ij (By definition of G = (A⊤A)⊙ (B⊤B))

= y⊤Gy = (1− x)⊤G(1− x).

This proves the first part of the lemma.

For the second part, plugging x = 0 into the formula we just derived gives ∥AB⊤∥2F = 1⊤G1. This
confirms the second statement of the lemma.

A.2 PROPERTIES OF THE GRAM MATRIX G

The analysis of our bounds and the Greedy OMP algorithm relies heavily on the properties of the
Gram matrix G = Ga,b = (ATA)⊙ (BTB), where⊙ denotes the element-wise (Hadamard) product.

The matrix G is symmetric and positive semi-definite (SDP) because it is a Gram matrix associated
with the set of matrices {aib⊤i }ni=1 when considering the Frobenius inner product as an inner product
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in the space of matrices. It is positive definite if and only if the matrices {aib⊤i }ni=1 are linearly
independent. This condition may not hold if pm < n.
Remark A.1 (Special Cases for Positive Definiteness). The following cases ensure linear indepen-
dence and thus positive definiteness of G:

• If rank(A) = n and B has no zero columns.

• If rank(B) = n and A has no zero columns.

We prove the first case; the second follows by transposition. Let x ∈ Rn be such that
∑n

i=1 xiaib
⊤
i =

0. Taking the inner product with akb
⊤
k yields

∑n
i=1 xi⟨aib⊤i , akb⊤k ⟩ =

∑n
i=1 xi⟨ai, ak⟩⟨bi, bk⟩ = 0

for all k ∈ [n]. This can be written as (Gx)k = 0 for all k. Alternatively, multiplying by bk on
the right gives

∑n
i=1 xiaib

⊤
i bk = (

∑n
i=1 xiaib

⊤
i )bk = 0. This implies

∑n
i=1(xib

T
k bi)ai = 0. Since

rank(A) = n, the vectors ai are linearly independent, so we must have xib
T
k bi = 0 for all i. As B

has no zero columns, bTk bk = ∥bk∥2 ̸= 0, thus xk = 0. We then repeat for all k.

In general, definiteness of G can still occur even when ATA and BTB are singular (e.g., when
m < n and p < n). The inequality below relating the ranks ra = rank(A), rb = rank(B) and
ra,b = rank(G) is established in Horn & Yang (2020),

ra,b ≥ min(n,max(ra + r̂b, rb + r̂a)− 1), (8)

where r̂a and r̂b denote the Kruskal ranks of A and B, respectively, as defined in Horn & Yang
(2020).

The Kruskal rank of an m× n matrix X that has no zero columns is defined as the largest positive
integer k such that every list of k distinct columns of X is linearly independent. This definition
corresponds to spark(X), the spark of X (smallest number of linearly dependent columns). Using the
facts rank(X⊤X) = rank(X) and that the Kruskal rank relates to spark, we can interpret equation 8.
A related inequality might be formulated using spark directly, potentially leading to:

rank(G) ≥ min(n,max(rank(A) + spark(B)− 1, spark(A) + rank(B)− 1)). (9)

This suggests conditions like rank(A) + spark(B) ≥ n+1 or rank(B) + spark(A) ≥ n+1 might
contribute to ensuring G is nonsingular.

For the SDP matrix G, the trace Tr(G) (sum of diagonal elements) and the total sum 1⊤G1 (sum of
all elements) are crucial. We define the structure ratio ρG as

ρG :=
Tr(G)

1⊤G1
=

∑n
i=1 ∥ai∥2∥bi∥2

∥AB⊤∥2F
. (10)

We assume 1⊤G1 = ∥AB⊤∥2F ̸= 0, otherwise the approximation problem is trivial. Since 1⊤G1 ≤
nTr(G) (via Cauchy-Schwarz or Gershgorin bounds on eigenvalues), we have ρG ≥ 1/n. The ratio
ρG can be arbitrarily large, particularly if G is singular and 1 has significant components in the null
space or near-null space of G.

A.3 PROOF OF THEOREM 4.1 (MAIN UPPER BOUND)

Let x∗ be an optimal solution of Pk(K,G), and let y ∈ K be an arbitrary fixed vector in the set K.
For any subset S ⊂ [n] of size s ∈ {1, . . . , k}, consider the vector yS . Since K = Ωn with 0 ∈ Ω,
the vector yS which coincides with y on S and is zero elsewhere belongs to K. That is, (yS)i = yi if
i ∈ S and (yS)i = 0 if i /∈ S. Since yS is feasible (as ∥yS∥0 ≤ s ≤ k and yS ∈ K), then

v∗k(K,G) = (1− x∗)⊤G(1− x∗) ≤ (1− yS)
⊤G(1− yS)

= 1⊤G1− 2 1⊤GyS + y⊤S GyS

= v0 − 2⟨q, yS⟩+ y⊤S GyS ,

where v0 = 1⊤G1 and q = G1. Summing over all
(
n
s

)
possible sets S of size s, we bound v∗k(K,G)

according to (
n

s

)
(v∗k(K,G)− v0) ≤

∑
S⊂[n],|S|=s

(
−2⟨q, yS⟩+ y⊤S G yS

)
.
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We then expand the sums on the right-hand side. For the linear term, since each index i belongs to(
n−1
s−1

)
sets S of size s, we have

∑
S⊂[n]
|S|=s

⟨q, yS⟩ =
∑
S⊂[n]
|S|=s

∑
i∈S

qiyi =

n∑
i=1

∑
S⊂[n]

|S|=s,i∈S

qiyi =

(
n− 1

s− 1

) n∑
i=1

qiyi =

(
n− 1

s− 1

)
⟨q, y⟩.

For the quadratic term y⊤S GyS =
∑

i,j∈S Gijyiyj =
∑

i∈S Giiy
2
i +

∑
i̸=j∈S Gijyiyj , we need to

consider separately the two sums. When summing the first for all S , each Giiy
2
i is added

(
n−1
s−1

)
times.

On the second summation, each Gijyiyj (i ̸= j) is added
(
n−2
s−2

)
times (for s ≥ 2). Therefore,

∑
S⊂[n]
|S|=s

y⊤S GyS =

(
n− 1

s− 1

) n∑
i=1

Giiy
2
i +

(
n− 2

s− 2

) ∑
i̸=j∈[n]

Gijyiyj .

Combining all the previous and using identities(
n− 1

s− 1

)
=

s

n

(
n

s

)
,

(
n− 2

s− 2

)
=

s(s− 1)

n(n− 1)

(
n

s

)
,

valid for s = 2, . . . , n, we imply

v∗k(K,G)− v0 ≤
s

n

−2⟨q, y⟩+ n∑
i=1

Giiy
2
i +

s− 1

n− 1

∑
i̸=j∈[n]

Gijyiyj

 .

We recall the notation βs = (s− 1)/(n− 1). Since G(s) has the same diagonal as G and its off-
diagonal elements are βsGij , the quadratic form above is

∑n
i=1 Giiy

2
i + βs

∑
i̸=j∈[n] Gijyiyj =

y⊤G(s)y. Thus, the expression in the parenthesis is reduced to −2⟨q, y⟩+ y⊤G(s)y. We note that
for s = 1, the same arguments apply, yielding −2⟨q, y⟩+

∑n
i=1 Giiy

2
i = −2⟨q, y⟩+ y⊤G(1)y since

G(1) = G. Since the inequality v∗k(K,G) − v0 ≤ s
n (−2⟨q, y⟩ + y⊤G(s)y) holds for any y ∈ K,

minimizing the right hand side over y ∈ K implies

v∗k(K,G) ≤ v0 +
s

n
min
y∈K

(
−2⟨q, y⟩+ y⊤G(s)y

)
= v0 +

s

n
w∗

s(K) = us.

Minimizing over all s ∈ {1, . . . , k} yields v∗k(K,G) ≤ min1≤s≤k(us). Including the trivial bound
v∗k(K,G) ≤ v0 = 1⊤G1 (corresponding to x = 0), we get v∗k(K,G) ≤ min(v0,min1≤s≤k us).
The theorem statement uses u0 = v0 and defines us = v0 +

s
nw

∗
s(K), so the bound is min0≤s≤k us.

The proof is complete.

Trade-off and Approximation There is an inherent trade-off in this approach. We are replacing
a combinatorial optimization problem with a set of continuous optimization problems. The quality
of the upper bound depends on how well the solutions of Qs(K) approximate the behavior of the
original problem Pk(K,G). In cases where the structure of G and K allows for efficient solution of
Qs(K), this method provides a practical approximation strategy and a useful theoretical benchmark.

A.4 PROOF OF PROPOSITION 4.2 (BINARY CASE BOUND)

For s ∈ {1, . . . , n} fixed, we consider problem Qs({0, 1}n). Remark that:

1⊤G(s)1 = βs1
⊤G1+ (1− βs)Tr(G), s = 1, . . . , n. (11)

The vector 1 is feasible for this problem (since 1 ∈ {0, 1}n). Thus, the optimal value w∗
s({0, 1}n)

satisfies w∗
s({0, 1}n) ≤ ϕs(1) = 1⊤G(s)1 − 2⟨G1,1⟩ = 1⊤G(s)1 − 2 × 1⊤G1. Using equation

equation 11 for 1⊤G(s)1, we get:

w∗
s({0, 1}n) ≤ (βs1

⊤G1+ (1− βs)Tr(G))− 2× 1⊤G1

= −1⊤G1+ (1− βs)(Tr(G)− 1⊤G1).
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Now, we use this in the general bound from Theorem 4.1: We have

1⊤G1+
s

n
w∗

s({0, 1}n) ≤ us := 1⊤G1+
s

n
[−1⊤G1+ (1− βs)(Tr(G)− 1⊤G1)]

us =
(
1− s

n

)
1⊤G1+

s

n
(1− βs)(Tr(G)− 1⊤G1)

us =
(
1− s

n

)
1⊤G1+

s

n

(
n− 1− (s− 1)

n− 1

)
(Tr(G)− 1⊤G1)

us =
(
1− s

n

)
1⊤G1+

s(n− s)

n(n− 1)
(Tr(G)− 1⊤G1)

us =
(
1− s

n

)
1⊤G1+

s

n− 1

(
1− s

n

)
(Tr(G)− 1⊤G1)

us =
(
1− s

n

)[
1⊤G1+

s

n− 1
(Tr(G)− 1⊤G1)

]
us =

(
1− s

n

)[(
1− s

n− 1

)
1⊤G1+

s

n− 1
Tr(G)

]
us =

(
1− s

n

)[(
1− s

n− 1

)
+

s

n− 1
ρG

]
1⊤G1.

Theorem 4.1 applied for K = {0, 1}n implies that v∗k({0, 1}n, G) is bounded by min0≤s≤k(us). For
n, ρ > 0 fixed, the function t 7→

(
1− t

n

)
( t
n−1ρ+ (1− t

n−1 )) has a simple monotony pattern over
[0, n]. It is decreasing if ρ ≤ 2 − 1/n, otherwise it increases then decreases. As a result, we have
min0≤s≤k(us) = min(u0, uk). The proof is complete.

Discussion on Proposition 4.2 In the problem of approximating AB⊤, the sharpness of the estimate
min(u0, uk) (where us is given by the proof above) is observed when G is, for example, the identity
matrix, corresponding, for instance, to the case where the rank-one matrices aib

⊤
i are pairwise

orthogonal and normalized (∥aib⊤i ∥F = 1). In this specific scenario (Tr(G) = n, 1⊤G1 = n, ρG =
1), the upper bound equation 6 simplifies to uk =

(
1− k

n

)
1⊤G1. This bound is achieved by selecting

any k indices, yielding an error of
∑

n−k terms Gjj = n− k = (1− k/n)n = (1− k/n)1⊤G1.

It is worth noting that the inequality uk ≤ (1 − k/n)1⊤G1 remains valid in more general cases,
specifically when ρG ≤ 1 (i.e. Tr(G) ≤ 1⊤G1 ). This condition is satisfied, for example, if ⟨ai, aj⟩
and ⟨bi, bj⟩ have consistent signs (or one is zero) for all pairs i ̸= j, ensuring Gij ≥ 0.

We note that (
1− s

n− 1

)
+

s

n− 1

1

n
= 1− s

n− 1

(
1− 1

n

)
= 1− s

n
.

Therefore

us =
(
1− s

n

)[(
1− s

n

)
+

s

n− 1

(
ρG −

1

n

)]
1⊤G1.

In extreme cases where ρG = 1/n (implying 1⊤G1 = nTr(G) which occurs if and only if G is
proportional to 11⊤), the upper bound min(u0, uk) further simplifies to (1− k/n)

2
1⊤G1. This

yields the bound:

v∗k({0, 1}n, G) ≤
(
1− k

n

)2

1⊤G1, (12)

This extremal setting corresponds to scenarios where the matrices aib⊤i are highly correlated, specif-
ically aib

⊤
i = λiM for some fixed rank-one matrix M and scalars λi. If λi > 0 for all i, optimal

solutions indeed achieve an objective value bounded by
(
1− k

n

)2
1⊤G1, with equality when all λi

are equal. This is discussed further in Appendix A.8.
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A.5 PROOF OF PROPOSITION 4.3 (SCALED IDENTITY BOUND)

We explore solutions to the quadratic program Qs(K) of the form y = γ1 with γ ≥ 0. Substituting
y = γ1 into the objective function of Qs(K) equation Aux-QP, we aim to minimize over γ. The
objective function becomes:

ϕs(γ1) = (γ1)⊤G(s)(γ1)− 2⟨G1, γ1⟩ = (1⊤G(s)1)γ2 − 2(1⊤G1)γ.

Since G(s) is positive definite for s < n (assuming Gii > 0), we have 1⊤G(s)1 > 0. Minimizing the
quadratic function with respect to γ ∈ R yields the optimal solution γ∗

unc =
1⊤G1

1⊤G(s)1
. The optimal

value associated with this choice is

ϕs(γ
∗
unc1) = (1⊤G(s)1)(γ∗

unc)
2 − 2(1⊤G1)γ∗

unc = −(1⊤G1)γ∗
unc

Let γ∗
s = γ∗

unc. Recall the definition ρG = Tr(G)/1⊤G1 (assuming 1⊤G1 > 0). Using equation 11,
we express γ∗

s as:

γ∗
s =

1⊤G1

βs(1⊤G1) + (1− βs)Tr(G)
=

1

βs + (1− βs)ρG
, 1 ≤ s ≤ n. (13)

We recall that the ratio ρG = Tr(G)/1⊤G1 belongs to [1/n,+∞[. We have that γ∗
1 = 1/ρG ∈]0, n]

(since β1 = 0) and γ∗
s ∈]0, 1/βs] for s ∈ {2, . . . , n}, with γ∗

n = 1 (since βn = 1). By simply using
βs + (1− βs)

1
n = 1

n + βs
n−1
n = s

n , we rearrange the above expression as

γ∗
s =

1

s

n
+ (1− βs)

(
ρG −

1

n

) , 1 ≤ s ≤ n.

Since ρG ≥ 1/n, we can easily check that the sequence ( s
nγ

∗
s )

n
s=1 is non-decreasing. It is strictly

increasing if ρG > 1/n and constant (equal to 1) if ρG = 1/n.

Combining the analysis above with Theorem 4.1, we derive Proposition 4.3.

Proof of Proposition 4.3. The assumption is that K ⊆ Rn contains the line segment {γ1 | γ ∈ [0, ξ]}
where ξ = max(1, ρ−1

G ). We need to ensure that the unconstrained minimizer γ∗
s lies within the

feasible range [0, ξ] for the γ variable when considering the restricted problem minγ∈[0,ξ] ϕs(γ1).

Case 1: ρG ≤ 1. Then ξ = ρ−1
G ≥ 1. In this case γ∗

s is decreasing in s, hence γ∗
s ∈ [0, γ∗

1 ] = [0, ρ−1
G ]

for all 1 ≤ s ≤ n.

Case 2: ρG > 1. Then ξ = 1. In this case γ∗
s ≤ 1 (since βs + (1− βs)ρG ≥ βs + (1− βs) = 1) for

all 1 ≤ s ≤ n.

In both cases, γ∗
s ∈ [0, ξ]. Therefore, the minimum of ϕs(γ1) over γ ∈ [0, ξ] occurs at γ = γ∗

s . This
implies that for the original problem Qs(K), the optimal value w∗

s(K) must be less than or equal to
the value achieved by the feasible point y = γ∗

s1.

w∗
s(K) ≤ ϕs(γ

∗
s1) = −(1⊤G1)γ∗

s

for any s ∈ {1, . . . , n}. We then apply Theorem 4.1:

v∗k(K,G) ≤ min
0≤s≤k

(
1⊤G1− s

n
(1⊤G1)γ∗

s

)
= min

0≤s≤k

(
1− s

n
γ∗
s

)
1⊤G1.

Since the sequence h(s) = s
nγ

∗
s is non-decreasing, the term (1− h(s)) is non-increasing. Therefore,

the minimum value of (1 − h(s)) for s ∈ {0, . . . , k} occurs at s = k (note h(0) = 0). Thus,
v∗k(K,G) ≤

(
1− k

nγ
∗
k

)
1⊤G1. The proof is complete.
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Implications for Different Values of ρG Proposition 4.3 provides insights into how the ratio ρG
affects the upper bound derived from the γ1 analysis.

• If ρG ≤ 1: In this case, γ∗
k ≥ 1, hence k

nγ
∗
k ≥ k

n . We again recover the baseline linear decay
guarantee: v∗k(K,G) ≤

(
1− k

nγ
∗
k

)
1⊤G1 ≤

(
1− k

n

)
1⊤G1.

• If ρG > 1: Here, γ∗
1 ≤ γ∗

k < 1. The bound guarantees a decay rate of
(
1− k

nγ
∗
k

)
. Since

γ∗
k < 1, this rate is slower than the linear (1 − k/n) rate. The guaranteed rate is at least(
1− k

nγ
∗
1

)
= (1− k/(nρG)). This highlights how significant cancellations (ρG > 1) slow

down the guaranteed error reduction based on this specific analysis.

Setting ρG = 1/n : The extremal setting where ρG = 1/n, which corresponds necessarily to
G = α11⊤ for some α > 0, is a specific instance discussed further in Appendix A.8. In this
case γ∗

s = 1/(βs + (1 − βs)/n), hence γ∗
s = n

s for all 1 ≤ s ≤ n. Thus, for k ≥ 1, the upper
estimate from Prop 4.3) becomes (1− k

nγ
∗
k)1

⊤G1 = (1− 1)1⊤G1 = 0. The zero optimal objective
v∗k(K,G) = 0 for all 1 ≤ k ≤ n implied by this is coherent. This occurs because for s ≥ 1 fixed, the
choice y = γ∗

s1 (which equals n
s 1 in this case) leads to an average error of 0 in the proof derivation,

meaning for this specific structure, no loss is incurred in the averaging argument used for proving
Theorem 4.1]

Generalizing the Ansatz The analysis for identifying solutions of the form γ1 can be examined for
solutions of the form γx for arbitrary x. Assuming x is such that γ∗

s (x)x ∈ K with γ∗
s (x) :=

x⊤Gx
x⊤G(s)x

,
we get w∗

s(K) ≤ ϕs(γ
∗
s (x)x) = −(x⊤Gx)γ∗

s (x). This provides an alternative way to get bounds
using different test vectors x.

A.6 COMPUTING THE UPPER BOUND

Based on Theorem 4.1, we can outline Algorithm 1 for deriving an estimate the optimal value
v∗k(K,G) of problem Pk(K,G).

Algorithm 1 Estimate Upper Bound u∗
k(K,G) for k ∈ {1, . . . , n− 1}

1: procedure ESTIMATEUPPERBOUND(G, K, k)
2: Compute v0 = 1⊤G1, q = G1, Gdiag = diag(G)
3: Initialize U = v0
4: for s = 1 to k do
5: Construct the matrix G(s) = βsG+ (1− βs)Gdiag

6: Consider the quadratic program Qs(K): miny∈K

{
ϕs(y) = y⊤G(s)y − 2q⊤y

}
7: Solve Qs(K) to obtain the optimal value w∗

s(K)
8: Compute the upper bound candidate us = v0 +

s
nw

∗
s(K)

9: Update U = min(U, us)
10: end for
11: return U ▷ U = min0≤s≤k us

12: end procedure

Solving the Auxiliary Problems Qs(K) Since G(s) is positive definite for s ∈ {1, . . . , n − 1}
(assuming Gii > 0), the program Qs(K) admits a unique solution y(s) if K is a non-empty, closed,
convex set.

• For K = Rn, the unique solution of equation Aux-QP is found by setting the gradient
to zero: 2G(s)y − 2G1 = 0, which gives y(s) = (G(s))−1G1. The optimal value is
w∗

s(Rn) = (y(s))⊤G(s)y(s) − 2(G1)⊤y(s) = (y(s))⊤G1− 2(G1)⊤y(s) = −(G1)⊤y(s).

• For K = Rn
+ (non-negative orthant), the problem is a standard convex QP. The solution y(s)

can be found using various QP solvers. It satisfies KKT conditions, potentially involving
projection-like operations.
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• For K = [0, ξ]n (box constraints), this is also a standard convex QP solvable by many
algorithms. As discussed in Section 4, the main computational cost of Algorithm 1 lies in
solving these k convex QPs, which, while tractable, represents a higher complexity than
typical approximation heuristics.

In cases where K is convex and w∗
s(K) is found (e.g., w∗

s(K) = −(G1)⊤y(s) for K = Rn), the
bound from Theorem 4.1 can be expressed using the optimal solution y(s) of the auxiliary problem:

v∗k(K,G) ≤ min0≤s≤k

(
1⊤G1+

s

n
w∗

s(K)
)
. (14)

A.6.1 APPLICATION TO MATRIX APPROXIMATION PROBLEMS

Using Proposition 4.2 (Eq. equation 6) for the binary selection case K = {0, 1}n: Let ηk = k
n−1

for k < n (and ηn = 1, although the bound is trivial for k = n). The bound on the optimal value
v∗k({0, 1}n, G) is min(u0, uk) where uk = (1 − k/n)(ηk Tr(G) + (1 − ηk)1

⊤G1) for k < n,
and u0 = 1⊤G1. Assuming Tr(G) ≤ 1⊤G1, the bound simplifies to uk. If ρG is such that
(1− k/n)(ηkρG + (1− ηk)) ≥ 1 we only have the trivial bound u0.

The bounds translates on the squared Frobenius norm error for specific problems:

• Problem 1: approximating A1 using k columns of A (where G = Ga = A⊤A):

min
x∈{0,1}n

∥x∥0≤k

∥∥∥∥A1−
n∑

i=1

xiai

∥∥∥∥2
2

≤
(
1− k

n

)(
ηk∥A∥2F + (1− ηk)∥A1∥22

)
.

The trivial bound ∥A1∥22, and solution x = 0, is to be considered if the above is not better.

• Problem 2: approximating AB⊤ using k outer products aib⊤i (here G = Ga,b = Ga⊙Gb):

min
x∈{0,1}n

∥x∥0≤k

∥∥∥∥AB⊤−
n∑

i=1

xiaib
⊤
i

∥∥∥∥2
F

≤
(
1− k

n

)(
ηk

n∑
i=1

(∥ai∥2∥bi∥2)2+(1−ηk)∥AB⊤∥2F
)
.

Here Tr(G) =
∑n

i=1(a
⊤
i ai)(b

⊤
i bi) =

∑n
i=1 ∥ai∥22∥bi∥22, and 1⊤G1 = ∥AB⊤∥2F . The

trivial bound ∥AB⊤∥2F and solution x = 0 is to be considered if the above is not better.

• Problem 3: approximating AA⊤ using k outer products aia⊤i (here G = Ga,a = Ga⊙Ga):

min
x∈{0,1}n

∥x∥0≤k

∥∥∥∥AA⊤ −
n∑

i=1

xiaia
⊤
i

∥∥∥∥2
F

≤
(
1− k

n

)(
ηk

n∑
i=1

∥ai∥42 + (1− ηk)∥AA⊤∥2F
)
.

Here Tr(G) =
∑n

i=1 ∥ai∥42 and 1⊤G1 = ∥AA⊤∥2F . As ρGa,a ≤ 1, this bound is guaran-
teed to be ≤ (1− k/n)∥AA⊤∥2F .

If we consider x ∈ K with [0,max(1, ρ−1
G,i)]

n ⊂ K such as K = R+, associated upper estimates for
the above three problem are(

1− k

n
γ∗
k,1

)
∥A1∥22,

(
1− k

n
γ∗
k,2

)
∥AB⊤∥2F ,

(
1− k

n
γ∗
k,3

)
∥AA⊤∥2F .

where γ∗
k,i = (βk + (1− βk)ρG,i)

−1 and ρG,i is the structure ratio for each problem i ∈ {1, 2, 3}.
In the third problem, we have ρG ≤ 1, so that the decay (1− k/n) is guaranteed as already shown.

The identified decays(
1− k

n

)
((1− ηk) + ηkρG), and 1− k/n

βk + (1− βk)ρG

in the unweighted/weighted approximation, become similar if ρG ≈ 1.
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A.7 BOUND ON THE NORM OF OPTIMAL SOLUTIONS

Since Pk({0, 1}n, G) is a restriction of the general problem Pk(K,G) to binary variables, optimal
solutions for problem Pk(K,G) with constraint sets K that include {0, 1}n also satisfy the bounds
derived for the binary case, specifically Proposition 4.2. This has implications for the norms of these
solutions, as explored in the following corollary.
Corollary A.2. Assume G is non-singular (and thus positive definite, since it’s PSD) and let
λmin(G) > 0 be its smallest eigenvalue. Let x∗ be an optimal solution to problem Pk(K,G) for a
constraint set K such that {0, 1}n ⊂ K. Then x∗ satisfies

∥x∗∥2 ≤
√
k +

√
min(u0, uk)

λmin(G)
− (n− k) (15)

where u0 = 1⊤G1 and uk is given by Eq. equation 6 from Proposition 4.2:

uk =

(
1− k

n

)(
k

n− 1
Tr(G) +

(
1− k

n− 1

)
1⊤G1

)
.

Proof. Let S ⊂ [n] be the support of x∗, with |S| ≤ k. We can assume |S| = k without loss of
generality (if |S| < k, we can add indices outside the support without changing x∗ or its norm).
We denote by x∗

S the vector extracted from x∗ associated with indices in S, and similarly 1S .
Then ∥x∗∥2 = ∥x∗

S∥2. By the triangle inequality, ∥x∗
S∥2 ≤ ∥1S∥2 + ∥1S − x∗

S∥2. We have
∥1S∥2 =

√
k. Also consider the vector 1 − x∗. Its squared norm is ∥1 − x∗∥22. The components

of 1 − x∗ are (1 − x∗
i ) if i ∈ S and 1 if i /∈ S. So, ∥1 − x∗∥22 =

∑
i∈S(1 − x∗

i )
2 +

∑
i/∈S 12 =

∥1S − x∗
S∥22 + (n − k). Thus, ∥1S − x∗

S∥2 =
√
∥1− x∗∥22 − (n− k). Combining these, we

get: ∥x∗∥2 ≤
√
k +

√
∥1− x∗∥22 − (n− k). Since G is positive definite, its smallest eigenvalue

λmin(G) is positive. We have the standard inequality relating the quadratic form to the Euclidean
norm: (1− x∗)⊤G(1− x∗) ≥ λmin(G)∥1− x∗∥22. The objective value for the optimal solution x∗

is v∗k(K,G) = (1− x∗)⊤G(1− x∗). Since {0, 1}n ⊂ K, the optimal value v∗k(K,G) must be less
than or equal to the optimal value for the binary case, v∗k({0, 1}n, G). From Proposition 4.2, we know
v∗k({0, 1}n, G) ≤ min(u0, uk), where uk is given by equation 6. Therefore, λmin(G)∥1− x∗∥22 ≤
v∗k(K,G) ≤ min(u0, uk). This implies ∥1−x∗∥22 ≤

min(u0,uk)
λmin(G) . Substituting this into the inequality

for ∥x∗∥2: ∥x∗∥2 ≤
√
k +

√
min(u0,uk)
λmin(G) − (n− k). The expression under the square root must be

non-negative for the bound to be meaningful. The proof is complete.

A.8 ANALYSIS FOR SPECIAL GRAM MATRIX STRUCTURES

A.8.1 ANALYSIS IN SPECIAL SETTINGS

This section consolidates discussions regarding specific structures of the matrix G.

Diagonal G (Orthogonal Terms) Consider the case where G is diagonal, G =
diag(G11, . . . , Gnn). This corresponds to the situation where the rank-one terms aib

⊤
i are mu-

tually orthogonal under the Frobenius inner product, i.e., ⟨aib⊤i , ajb⊤j ⟩F = Gij = 0 for i ̸= j. In

this case, Tr(G) =
∑n

i=1 Gii and 1⊤G1 =
∑n

i=1 Gii, so ρG = Tr(G)
1⊤G1

= 1. The interpolated matrix
G(s) = βsG + (1 − βs)diag(G11, . . . , Gnn) = βsG + (1 − βs)G = G for all s. The auxiliary
problem Qs(K) becomes miny∈K y⊤Gy − 2(G1)⊤y. Let’s examine the bounds:

• Prop. 4.2 (Binary Case): With ρG = 1, equation 6 gives

uk = (1− k/n)(1 +
k

n− 1
(1− 1))1⊤G1 = (1− k/n)1⊤G1.

The bound is v∗k ≤ (1− k/n)Tr(G). This is sharp; the optimal strategy is to select the k
indices corresponding to the largest Gii values, setting xi = 1 for these. The error is exactly
the sum of the n − k smallest Gii values. If all Gii are equal (say, to G11), the error is
(n− k)G11 = (1− k/n)nG11 = (1− k/n)Tr(G).
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• Prop. 4.3 (Scaled Identity): With ρG = 1, we have γ∗
k = 1/(βk + (1 − βk) · 1) = 1.

The bound equation 7 becomes v∗k(K,G) ≤ (1 − k/n)1⊤G1 = (1 − k/n) Tr(G). This
matches the binary case bound.

• Theorem 4.1 (General Bound): If we solve Qs(K) for K = Rn, the solution is y(s) =
(G(s))−1G1 = G−1G1 = 1 (since G is diagonal and assumed invertible). The optimal
value is w∗

s(Rn) = −(G1)⊤1 = −1⊤G1 = −Tr(G). The bound becomes us = Tr(G) +
(s/n)(−Tr(G)) = (1 − s/n)Tr(G). Minimizing over s ∈ {1, . . . , k} gives uk = (1 −
k/n)Tr(G).

All approaches consistently yield the (1− k/n) Tr(G) bound for diagonal G.

Rank-One G (Extremal Correlation) Consider the case where G has rank one, G = gg⊤ for
some vector g ∈ Rn. We assume G ̸= 0. Then Tr(G) = Tr(gg⊤) = g⊤g = ∥g∥22. And
1⊤G1 = 1⊤gg⊤1 = (g⊤1)2 = (

∑
gi)

2. The structure ratio is ρG = Tr(G)
1⊤G1

=
∥g∥2

2

(g⊤1)2
. By the

Cauchy-Schwarz inequality, (g⊤1)2 ≤ ∥1∥22∥g∥22 = n∥g∥22, so ρG ≥ 1/n. Equality holds if and
only if g is proportional to 1.

If g = α1 for some α ̸= 0 (i.e., G = α211⊤). Here ρG =
∥α1∥2

2

(α1⊤1)2
= α2n

(αn)2 = α2n
α2n2 = 1/n.

Looking at Proposition 4.2: As shown previously (Eq. equation 12), the bound becomes v∗k ≤
(1− k/n)21⊤G1.

Improved Rates for Constant Diagonal G
Proposition A.3. Assume that diag(G) = α1 for some α > 0 (i.e., Gii = α for all i). Let
r = rank(G) and let G =

∑r
i=1 λiuiu

⊤
i be its reduced eigenvalue decomposition. Define c =

1
n

(∑r
i=1⟨1, ui⟩2

)
=

∥Prange(G)1∥2
2

n ∈ [0, 1], where Prange(G) is the orthogonal projector onto the
range of G. Define γ̃∗

s as:

γ̃∗
s =

1

βs + (1− βs)cρG
, 1 ≤ s ≤ n. (16)

For K = Rn, the optimal value v∗k(K,G) is bounded according to

v∗k(Rn, G) ≤
(
1− k

n
γ̃∗
k

)
1⊤G1, 1 ≤ k ≤ n. (17)

Proof. We consider the vector x = Prange(G)1 =
∑r

i=1⟨1, ui⟩ui, the projection of 1 onto the range
of G. We evaluate the objective ϕs(y) from Theorem 4.1 using the ansatz y = γx. We need x⊤Gx
and x⊤G(s)x. First,

x⊤Gx =

r∑
i=1

λi⟨1, ui⟩2 = 1⊤G1

Now consider G(s) = βsG+ (1− βs)diag(G) = βsG+ (1− βs)αIn. Then

x⊤G(s)x = βsx
⊤Gx+ (1− βs)α∥x∥2 = βs1

⊤G1+ (1− βs)nα
∥x∥2

n
.

Also, Tr(G) =
∑

Gii = nα thus the structure ratio is ρG = Tr(G)
1⊤G1

= nα
1⊤G1

. Using c = ∥x∥2/n
and substituting these into the expression for x⊤G(s)x:

x⊤G(s)x = (βs + (1− βs)cρG)1
⊤G1.

The objective function in Theorem 4.1 is ϕs(y) = y⊤G(s)y − 2(G1)⊤y. For y = γx, this becomes

ϕs(γx) = γ2(x⊤G(s)x)− 2γ(G1)⊤x = γ2(x⊤G(s)x)− 2γ1⊤G1.

This quadratic in γ is minimized at γunc = 1⊤G1
x⊤G(s)x

and the optimal value is −γunc1⊤G1. Substitut-
ing the expression for x⊤G(s)x we have:

γunc =
1⊤G1

(1⊤G1)[βs + (1− βs)cρG]
=

1

βs + (1− βs)cρG
= γ̃∗

s .
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Since y = γ̃∗
sx is feasible for K = Rn (as K imposes no constraints), the true minimum w∗

s(Rn)
must be less than or equal to this value: w∗

s(Rn) ≤ −(1⊤G1)γ̃∗
s . Plugging this upper bound on

w∗
s(Rn) into the bound from Theorem 4.1:

v∗k(Rn, G) ≤ min
0≤s≤k

(
1⊤G1+

s

n
w∗

s(Rn)
)

≤ min
0≤s≤k

(
1⊤G1− s

n
(1⊤G1)γ̃∗

s

)
= min

0≤s≤k

(
1− s

n
γ̃∗
s

)
1⊤G1.

Assuming the function f(s) = s
n γ̃

∗
s is non-decreasing for s ∈ {1, . . . , n} (which holds under typical

conditions for βs), the minimum occurs at s = k. Therefore, v∗k(Rn, G) ≤
(
1− k

n γ̃
∗
k

)
1⊤G1. The

proof is complete.

Note that in this specific setting (constant diagonal), we only require cρG ≤ 1, that is Tr(G) ≤
(1⊤G1)/c = n(1⊤G1)/∥Prange(G)1∥22, in order to ensure γ̃∗

k ≥ 1. If γ̃∗
k ≥ 1, then the bound

implies a linear decay rate v∗k(Rn, G) ≤
(
1− k

n

)
1⊤G1.

Selected Upper bounds on AMM: A recapitulative table is provided in Table 3
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B APPENDIX: ADDITIONAL EXPERIMENTAL RESULTS AND MATRIX
GENERATION DETAILS

This appendix provides detailed methodologies for generating the diverse matrix types used in our
experiments, all configured with dimensions n (columns), m (rows for matrix A), and p (rows
for matrix B). We also present a comprehensive set of plots corresponding to these matrix types,
illustrating the performance of our proposed bounds alongside other algorithms. The relative squared
approximation error is defined as ∥ABT − ÃB̃T ∥2F /∥ABT ∥2F , plotted against the sampling ratio
k/n.

B.1 MATRIX GENERATION METHODOLOGIES

The following subsections detail the generation process for each matrix type.

i.i.d. Gaussian Matrices Matrices A ∈ Rm×n and B ∈ Rp×n are generated with all entries
drawn independently from a standard Gaussian distribution N (0, 1). This fundamental matrix type
is produced using our generate_matrices_gaussian_cancellation function by setting
the cancel_fraction = 0.0 and noise_level = 0.0. This setup serves as a common
baseline, characterized by no specific induced correlation or cancellation structures.

Uniform [-1, 1] Matrices For this type, entries for both matrices A and B are drawn inde-
pendently and uniformly at random from the interval [−1, 1]. This is implemented using the
generate_matrices_uniform function with parameters low = -1.0 and high = 1.0.
These matrices allow for the evaluation of algorithms on non-Gaussian, bounded data.

Row Orthogonal Matrices To generate matrices with orthogonal rows, we first create random
Gaussian matrices of appropriate dimensions and then apply QR decomposition to obtain orthogonal
bases. Specifically, for matrix A ∈ Rm×n, we generate a random Gaussian matrix X ∈ Rn×m,
compute its QR decomposition X = QR, and set A = QT . Similarly for B, we generate a random
Gaussian matrix Y ∈ Rn×p, compute its QR decomposition, and set B = QT . This process ensures
that AAT = Im and BBT = Ip, meaning the rows of both matrices form orthonormal bases. This is
implemented using the generate_matrices_row_orthogonal function.

Gaussian Matrices with 10% Column Cancellation Matrices A and B are initially filled with
i.i.d. Gaussian entries N (0, 1). A cancellation effect is then introduced for 10% of the columns (500
columns for n = 5000), selected uniformly at random. For each selected column index j, the j-th
column of B is made proportional to the negative of the corresponding column in A (for the minimum
number of rows shared between A and B), creating a cancellation effect in the product ABT . After
this structural modification, a small amount of Gaussian noise, scaled to 5% of the standard deviation
of the original matrix entries (noise_level = 0.05), is added to all elements of both A and B.
This type is generated using the generate_matrices_gaussian_cancellation function
with cancel_fraction = 0.1.

Matrices with 10% Repeated Columns For this type, we first generate matrices A and B with i.i.d.
Gaussian entries. We then randomly select 10% of the columns to be replaced with duplicates of other
randomly selected columns. Specifically, we keep 90% of the columns as unique, and the remaining
10% are set as exact copies of randomly selected columns from the unique set. After this structural
modification, a small amount of Gaussian noise, scaled to 1% of the Frobenius norm of the matrices, is
added to all elements. This is implemented using the generate_matrices_repeated_cols
function with parameters repeat_frac = 0.1 and noise_ratio = 0.01.

NonLinear Tanh(Gaussian) Matrices To generate these matrices, intermediate matrices A′ and
B′ are first populated with i.i.d. standard Gaussian entries N (0, 1). The final matrices A and
B are then obtained by applying the hyperbolic tangent function (tanh) element-wise to A′ and
B′ respectively, i.e., Aij = tanh(A′

ij) and Bij = tanh(B′
ij). This transformation is handled

by the generate_matrices_nonlinear function with base_type=’gaussian’ and
func=np.tanh. This process introduces significant non-linearity, resulting in matrix entries
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bounded within (−1, 1) but with a distribution markedly different from simple uniform or Gaussian
distributions, challenging assumptions of linearity or specific distributional forms.

The following figures present the experimental results for the matrix types detailed above.

Figure 5: Performance comparison for Uniform, Gaussian, and Row Orthogonal matrix types
(n = 5000,m = 50, p = 30). The Scaled Id Bound (Proposition 4.3) consistently tracks the Aux QP
Bound (Theorem 4.1). Plots show relative error vs. sampling ratio k/n.

Figure 6: Performance comparison for Repeated Columns, RBF Features, and NonLinear Tanh matrix
types (n = 5000,m = 50, p = 30). Our bounds remain tight across these diverse matrix structures,
while OMP consistently achieves the lowest error. Plots show relative error vs. sampling ratio k/n.

B.2 ORTHOGONAL MATCHING PURSUIT (OMP) FOR MATRIX PRODUCT APPROXIMATION

To demonstrate the practical achievability of our theoretical bounds, we adapt Orthogonal Matching
Pursuit (OMP) to the matrix product approximation problem. OMP is a greedy iterative algorithm
that selects columns one by one to minimize the approximation error.

B.2.1 PROBLEM FORMULATION

Given matrices A ∈ Rm×n and B ∈ Rp×n, our goal is to select a subset of k columns (indexed by
set S) to minimize:

min
S⊂[n],|S|=k

∥ABT −ASXBT
S ∥2F (18)

where AS and BS are submatrices formed by the columns indexed by S, and X is an optimal weight
matrix.

B.2.2 ALGORITHM DESCRIPTION

The OMP algorithm for matrix product approximation is presented in Algorithm 2.
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Algorithm 2 Orthogonal Matching Pursuit for Matrix Product Approximation
Require: Matrices A ∈ Rm×n, B ∈ Rp×n, target number of columns k
Ensure: Set of selected column indices S with |S| = k

1: Initialize residual R0 ← ABT

2: Initialize selected indices S0 ← ∅
3: for j = 1 to k do
4: Matching Step: Find column index

sj ← arg max
l/∈Sj−1

|⟨Rj−1, alb
T
l ⟩F | = |Tr(RT

j−1alb
T
l )| (19)

where al and bl are the l-th columns of A and B respectively
5: Update selected indices: Sj ← Sj−1 ∪ {sj}
6: Optimal Weight Computation: Solve for optimal weight matrix X∗

j :

X∗
j ← arg min

X∈Rj×j
∥ABT −ASj

XBT
Sj
∥2F (20)

7: Projection Step: Update approximation using optimal weights
8: Update residual: Rj ← ABT −ASj

X∗
jB

T
Sj

9: end for
10: Return Sk, X∗

k

B.2.3 IMPLEMENTATION DETAILS

The optimal weight matrix X∗
j in step 6 can be computed by solving the least squares problem:

X∗
j = (AT

Sj
ASj

)−1(AT
Sj
ABTBSj

)(BT
Sj
BSj

)−1 (21)

This formulation ensures that at each iteration, we not only select the most promising column but
also optimally reweight all previously selected columns to minimize the approximation error. This is
crucial for achieving the best possible approximation with the selected columns.

The relative squared approximation error reported for OMP at step k is:

Errork =
∥ABT −ASk

X∗
kB

T
Sk
∥2F

∥ABT ∥2F
(22)

B.3 ANALYSIS OF OMP PERFORMANCE AND NUMERICAL EFFECTS AT HIGH ρG

As observed in our experiments, particularly in Figure 5, OMP generally exhibits strong empirical
performance that closely tracks our theoretical bounds. However, we note some minor non-monotonic
behavior in its error curve, especially for small n (e.g., n = 30) and high ρG values. This section
explains the underlying causes of this phenomenon.

B.3.1 CHALLENGES IN HIGH-ρG REGIMES

To construct matrices with high ρG values, our generation process (detailed in Section B.1) creates
specific structural patterns that can introduce numerical challenges:

• Induced Cancellations: We create pairs of columns with properties such as Aj ≈ cAi and
Bj ≈ −c′Bi, making off-diagonal terms in (ATA) ⊙ (BTB) significant and potentially
negative.

• Near-Collinearity: Some columns become nearly collinear, creating ill-conditioned sub-
problems during the OMP projection step.

• Large Dynamic Range: Matrix entries may span a wide range of magnitudes, exacerbating
floating-point precision issues.
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B.3.2 NUMERICAL EFFECTS ON OMP PERFORMANCE

These characteristics lead to several numerical challenges that affect OMP’s performance:

1. Ill-Conditioned Subproblems: When OMP selects columns that are part of an induced
cancellation structure, computing the optimal weights may involve inverting ill-conditioned
matrices (AT

Sj
ASj

) and (BT
Sj
BSj

), leading to numerical instability.

2. Residual Calculation Sensitivity: Computing Rj = ABT −ASj
X∗

jB
T
Sj

involves subtract-
ing two potentially large, nearly equal matrices. This subtraction can suffer from catastrophic
cancellation in floating-point arithmetic.

3. Error Propagation: The greedy nature of OMP means that small numerical errors in
early iterations can lead to suboptimal column selections, with effects that compound in
subsequent iterations.

When n is small (as in our n = 30 experiments), these numerical effects have a more pronounced
impact:

• The limited pool of columns means fewer alternatives when a numerically-influenced
suboptimal choice is made

• The relative impact of each column selection is greater

• The error curve becomes more sensitive to individual column selections

Despite these numerical challenges, OMP’s overall performance remains strong and closely tracks our
theoretical bounds, confirming that our bounds are not only theoretically sound but also practically
achievable. The minor non-monotonicity observed in high-ρG regimes is primarily a numerical
artifact rather than a fundamental limitation of the algorithm.

B.4 GENERATION OF MATRICES WITH CONTROLLED ρG

To systematically evaluate algorithm performance under varying matrix structures, we define the
structural metric ρG for matrices A ∈ Rm×n and B ∈ Rp×n as:

ρG(A,B) =
Tr((ATA)⊙ (BTB))∑
i,j((A

TA)⊙ (BTB))ij
=

∑n
l=1(A

TA)ll(B
TB)ll∑n

i=1

∑n
j=1(A

TA)ij(BTB)ij
(23)

where ⊙ denotes the element-wise (Hadamard) product.

Our matrix generation procedure employs two primary mechanisms to control ρG:

Induced Column Cancellations For a specified number of column pairs, we create structural
dependencies that influence the off-diagonal elements of (ATA)⊙ (BTB). Specifically, for selected
pairs of columns (i, j):

• We set Aj ≈ c ·Ai (where c is close to 1)

• We set Bj ≈ −c′ ·Bi (where c′ is close to 1)

This creates negative products in the off-diagonal terms: if Aj ≈ Ai and Bj ≈ −Bi, then ⟨Ai, Aj⟩ ≈
∥Ai∥2 and ⟨Bi, Bj⟩ ≈ −∥Bi∥2, making their product negative. This reduces the denominator of ρG
relative to the numerator, increasing ρG.

The number of cancellation pairs is adjusted based on the target ρG:

• Low ρG (0.5-1.0): Few to no cancellation pairs

• Medium ρG (2.0-10.0): 10-25% of columns involved in pairs

• High ρG (>10.0): 25-50% of columns involved in pairs
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Controlled Noise Injection We add Gaussian noise scaled to a percentage (typically 0-15%) of the
standard deviation of the original matrix entries. This noise:

• Prevents perfect cancellations that could make the denominator of ρG too small
• Introduces variability in the distribution of values in ATA and BTB

• Helps achieve very high or very low target ρG values by breaking symmetries

Our generation algorithm iteratively tries different combinations of cancellation pairs and noise levels
until it finds matrices with ρG within a specified tolerance of the target (typically ±25-30%). This
approach allows us to generate datasets spanning a controlled range of ρG values for comprehensive
algorithm evaluation.

B.5 ALGORITHMS AND BASELINES

We implemented and compared the following algorithms and bounds in our experiments:

Optimal Error (v∗k) The true minimum squared Frobenius norm error achievable by selecting the
best k columns:

v∗k = min
S:|S|=k

∥ABT −ASXBT
S ∥2F (24)

This is computed via exhaustive search for small n, with X being a weight matrix.

Our Proposed Bounds

• Aux QP Bound (Theorem 4.1): Derived from solving a Quadratic Program, providing a
tight upper bound on v∗k. Implemented using CVXPY Agrawal et al. (2018); Diamond &
Boyd (2016).

• Scaled Id Bound (Proposition 4.3): An analytical approximation to the QP bound that is
computationally more efficient while maintaining tightness.

Algorithms

• Orthogonal Matching Pursuit (OMP): The greedy algorithm described in Section B.2,
which iteratively selects columns to minimize the residual error. Based on the approach in
Tropp & Gilbert (2007).

• Optimal Sampling: Columns are sampled proportionally to their norms. We compare
against the theoretical bound from Drineas et al. (2006a).

• Gaussian Projection: A sketching method where matrices are projected onto random
Gaussian matrices. Based on the approach in Sarlos (2006).

• CountSketch: A sketching technique based on hashing Charikar et al. (2004).
• Subsampled Randomized Hadamard Transform (SRHT): A fast sketching method using

Hadamard transforms TROPP (2011) (Boutsidis & Gittens (2013) for specific implementa-
tion).

For each algorithm, we report the relative squared approximation error:

Error =
∥ABT − ÃB̃T ∥2F
∥ABT ∥2F

(25)

where Ã and B̃ are the approximations produced by the respective algorithm.
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