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Abstract
Large language models (LLMs) exhibit remark-
able task generalization, solving tasks they were
never explicitly trained on with only a few demon-
strations. This raises a fundamental question:
When can learning from a small set of tasks gen-
eralize to a large task family? In this paper, we
investigate task generalization through the lens
of autoregressive compositional structure, where
each task is a composition of T operations, and
each operation is among a finite family of D sub-
tasks. This yields a total class of size DT . We
first show that generalization to all DT tasks is
theoretically achievable by training on only Õ(D)
tasks. Empirically, we demonstrate that Trans-
formers achieve such exponential task general-
ization on sparse parity functions via In-context
Learning (ICL) and chain-of-thought (CoT) rea-
soning. We further show generalization in arith-
metic and translation, beyond parity functions.

1. Introduction
Large language models (LLMs) demonstrate a remarkable
ability to solve tasks they were never explicitly trained on.
Unlike classical supervised learning, which typically as-
sumes that the test data distribution follows the training data
distribution, LLMs can generalize to new task distributions
with just a few demonstrations—a phenomenon known as in-
context learning (ICL) (Brown et al., 2020; Wei et al., 2022;
Garg et al., 2022). Recent studies suggest that trained Trans-
formers implement algorithmic learners capable of solving
various statistical tasks—such as linear regression—at in-
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Figure 1. We train a Transformer to learn parity functions through
In-Context Learning (ICL): given a demonstration sequence
(x1, f(x1)), . . . , (xn, f(xn)), infer the target f(xquery) from a
new input xquery. Each function f defines a distinct learning task.
In this prototype experiment, tasks are sampled from the parity
function family Parity(10, 2) with secret length k = 2 and bit
length d = 10, totaling 45 tasks. To evaluate task generalization,
we withhold a subset of tasks and train only on different subset
of the remaining ones. Consistent with prior work (Bhattamishra
et al., 2024), we observe that standard ICL fails to generalize
across tasks. In contrast, incorporating Chain-of-Thought (CoT)
reasoning significantly improves performance on unseen tasks.

ference time in context (Li et al., 2023; Bai et al., 2023).
Despite their success in tasks such as learning conjunctions
or linear regression, Transformers relying solely on ICL
struggle with more complex problems, particularly those
requiring hierarchical reasoning.

A notable case where Transformers struggle with ICL is the
learning of parity functions, as examined in (Bhattamishra
et al., 2024). In this setting, a Transformer is provided with a
sequence of demonstrations (x1, f(x1)), . . . , (xn, f(xn))
and is required to predict f(xquery) for a new input xquery.
Specifically, they focused on parity functions from the class
Parity(10, 2), where each function is defined by a secret key
of length k = 2 within a length space of d = 10. Each
function f corresponds to a distinct learning task, resulting
in 45 possible tasks. To assess generalization, a subset of
tasks was held out during training. Their results demon-
strate that Transformers trained via ICL fail to generalize

1



Task Generalization With AutoRegressive Compositional Structure

to unseen tasks, even when the new tasks require only a
simple XOR operation. These findings, along with other
empirical studies (An et al., 2023; Xu et al., 2024), suggest
that standard ICL struggles with tasks requiring hierarchical
or compositional reasoning.

In contrast, we found that incorporating Chain-of-Thought
(CoT) reasoning—introducing intermediate reasoning steps
to the model—allows Transformers to easily generalize to
unseen tasks, as illustrated in Figure 1. Consistent with
(Bhattamishra et al., 2024), we observe that Transformers
without CoT perform only slightly better than chance level,
no matter how many training tasks are presented to the
model. However, as the number of training tasks increases,
Transformers with CoT achieve near-perfect generalization
on the held-out set of unseen tasks. We see that the extra
information provided by CoT enables the model to exploit
the compositional structure of the parity problem.

Motivated by this example, we aim to systematically ana-
lyze how models can leverage autoregressive compositional
structures to extend their capabilities beyond the training
tasks. Conventionally, learning involves approximating a
target function f∗ drawn from a function class F using
examples from a training distribution over the input space
X ; generalization is then measured by testing f∗ on new
examples. In contrast, our focus is on task generalization,
where training is restricted to a subset of functions or “tasks”
Ftrain ⊂ F , leaving the remaining functions, unseen during
training. Our goal is to investigate whether a model trained
on tasks from Ftrain (with inputs from X ) can generalize to
all tasks, including unseen tasks.

This notion of task generalization goes beyond the stan-
dard out-of-distribution (OOD) settings (see, e.g., (Zhou
et al., 2022) for review) by shifting the focus from adapting
to new input distributions to learning entirely new tasks.
Specifically, we ask:

How can we quantify the number of tasks a model must be
trained on to generalize to the entire class F?

To analyze task generalization, we consider a finite set of
functions F , where each function maps an input x ∈ X to
a tuple of random variables y = (y1, . . . , yT ). We assume
each function can be characterized by a parameter tuple θ =
(θ1, θ2, . . . , θT ). The outputs are generated autoregressively:
first, y1 is produced from x; then y2 is generated from x
and y1; and then y3 is generated from x, y1 and y2; and
this process continues until yT is produced. Specifically, the
sequence is generated sequentially as:

yt ∼ Pθt(yt | x,y<t), for t = 1, . . . , T,

where y<t = (y1, . . . , yt−1) denotes the previously gener-
ated outputs, and Pθt is some conditional probability distri-
bution that is parametrized by θt and is conditioned on y<t

and x.This structure can also be interpreted as a sequence
of compositions,

x
Pθ1−−→ y1

x, y1
Pθ2−−→ y2

. . .

x, y1, . . . , yT−1

PθT−1−−−−→ yT .

We will call this function class AutoRegressive Composi-
tional structure. Assuming that the cardinality of the set of
possible values for each parameter θt is finite and is equal
to D, we will use the notation F = ARC(T,D). The
cardinality of this class is DT .

For the sparse parity problem with k secret keys in this
framework, the output sequence has length T = k. Given
an input x ∈ X = {0, 1}n, let the secret keys correspond to
indices i1, i2, . . . , ik (in a predetermined order). The output
sequence y = (y1, y2, . . . , yk) is defined as follows,

y1 = xi1 , y2 = xi1⊕xi2 , . . . , yk = xi1⊕xi2⊕· · ·⊕xik .

That is, each yt recovers the XOR of the first t secret coor-
dinates. In this example, the output distribution at each step
is deterministic, assigning probability 1 to the correct XOR
value and 0 to all other values.

We can now address the following fundamental question:

How many tasks in Ftrain must a model be trained on to
generalize to all tasks in F , including those it has not seen?
In particular, can a model trained on Õ(D) tasks generalize
across the entire set of DT tasks?

Our main contributions are:
• We define AutoRegressive Compositional structure and

introduce a framework to quantitatively analyze task
generalization when the function class follows an Au-
toRegressive Compositional structure. (Sections 3.2
and 3.3)

• We establish that under this structure, task general-
ization to all DT tasks is theoretically achievable by
training on Õ(D) tasks up to logarithmic terms (Sec-
tion 3.4).

• We demonstrate how the parity problem aligns with
our framework and empirically show that Transformers
trained on i.i.d. sampled tasks exhibit exponential task
generalization via chain-of-thought (CoT) reasoning,
consistent with theoretical scaling (Section 4).

• Finally, we show that the selection of training tasks
significantly impacts generalization to unseen tasks. If
tasks are chosen adversarially, training on even nearly
all DT of the tasks with CoT may fail to generalize to
the remaining tasks (Section 5.1).
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2. Related Works
2.1. Composition and Generalization

The role of composition in reasoning for language models
has been widely studied. (Saparov et al., 2023) explores
various out-of-distribution (OOD) generalization formats,
including compositional generalization, showing that a neu-
ral network’s ability to generalize compositionally is highly
dependent on both architecture and task properties. Similar
conclusions have been drawn in prior works (Lake & Baroni,
2018; Keysers et al., 2020). Further, (Bhattamishra et al.,
2024; Dziri et al., 2023; An et al., 2023; Xu et al., 2024)
examine compositional generalization in in-context learning
(ICL) and find that generalization to composing multiple
steps is in general hard for LLMs. One notable observation
is that LLMs succeed in compositional generalization for
clause satisfaction problems but not for parity problems.

Another line of research investigates composition as a mech-
anism underlying emergent abilities in language models.
(Arora & Goyal, 2023) demonstrates that language model-
ing can lead to learning tuples of skills, which are small
compositions of fundamental capabilities. Building on this
idea, (Kaur et al., 2025; Zhao et al., 2024) leverage compo-
sitional structures to generate supervised fine-tuning (SFT)
data, leading to improved language model performance.

Beyond sequential composition, other forms of composi-
tionality in neural networks have been explored. (Song
et al., 2025) investigates layer-wise composition in trans-
formers, while (Schug et al., 2024) proposes a modular
neural architecture for learning hidden compositional repre-
sentations. Additionally, (Wiedemer et al., 2024) examines
compositional structures in image reconstruction, and (Lippl
& Stachenfeld, 2025) provides a theoretical analysis of com-
position in kernel and linear models.

While prior work has largely focused on qualitative insights
into compositional generalization, our work takes a quantita-
tive approach: studying how many training tasks are needed
to achieve task generalization over an entire function class.

2.2. Learning and Testing with Multiple Distributions

Our work aims to analyze generalization when the train-
ing and testing distributions differ. This problem has been
studied from various perspectives in the statistical learn-
ing community. One approach is to frame it as learning
a shared representation across multiple tasks. (Ye et al.,
2021) defines variation and informativeness between differ-
ent environments based on a common representation, while
(Arjovsky et al., 2019) addresses the problem by designing
specific training objectives. Earlier studies on linear and
kernel models also explore this direction (Du et al., 2017;
Lei et al., 2021).

Another perspective considers the testing environment as a
distribution shift, where the model may sample during infer-
ence to achieve domain adaptation. (Mansour et al., 2009)
analyzes generalization error when a model is trained on
distribution P but tested on a different distribution Q, intro-
ducing an error bias dependent on the distance d(P,Q). To
mitigate this bias, (Cortes et al., 2010) proposes reweighting
training samples when test samples from Q are available.

A related line of research investigates scenarios where both
training and test samples are accessible. Notable setups
include covariate shift (Kpotufe & Martinet, 2021; Ma et al.,
2023) and domain adaptation (Sugiyama et al., 2007; Ben-
David & Urner, 2014). When direct sampling from the
test distribution is not feasible, alternative strategies focus
on training robustly against worst-case shifts. This can
be achieved through adversarial perturbations or min-max
optimization formulations (Madry et al., 2018; Raghunathan
et al., 2020; Duchi et al., 2023).

In this work we impose an AutoRegressive Composi-
tional(ARC) structure on the function class and propose
a new framework to study task generalization. This compo-
sitional structure decomposes the function class into atomic
subtasks, enabling a modular approach to learning. By
leveraging this structure, we establish a quantitative un-
derstanding of how many training tasks are required for
generalization. Our results provide a theoretical foundation
for structured learning and demonstrate how models can
efficiently generalize beyond the training distribution.

3. Theoretical Framework for Task
Generalization

In this section, we present a theoretical framework to study
task generalization with autoregressive compositional struc-
ture. When the compositional structure holds, we show
that there exists a learning algorithm that is only trained on
Õ(D) different tasks, but can generalize to exponentially
many unseen tasks.

3.1. Preliminaries and Notations

For a positive integer n, denote [n] = {1, 2, · · · , n}. For a
finte set S , we denote by ∆(S) the probability simplex over
with support S . Given t sets S1,S2, . . . ,St, their Cartesian
product is defined as

t×
i=1

Si := {(s1, s2, . . . , st) | si ∈ Si for all i ∈ [t]} .

We further denote St :=×t

i=1
S . For two probability distri-

butions P and Q over a discrete space S , the total variation
distance is defined as

TV(P,Q) :=
1

2

∑
s∈S
|P (s)−Q(s)| .
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We let the bold letter y denote a sequence, and the sub-
scripted yj denote the jth sequence / example. Within each
sequence yj = (y1, ..., yT ), the regular letter yt denote the
tth token in the sequence.

3.2. AutoRegressive Compositional Structure

In the following definition, we formally introduce the Au-
toRegressive Compositional (ARC) task class, which mod-
els structured sequence generation through a composition
of conditional distributions.
Definition 3.1. (AutoRegressive Compositional task class).
Let X and Y denote the finite input and output spaces, re-
spectively. The AutoRegressive Compositional (ARC) task
class consists of sequential generation processes:

F := {fθ = (Pθ1 , . . . , PθT ) | Pθt ∈ PΘt
for all t ∈ [T ]} ,

where each task fθ ∈ F for any input x ∈ X generates
an output sequence y = (y1, . . . , yT ) ∈ Y through an
autoregressive sampling process:

yt ∼ Pθt(· | x,y<t), for all t ∈ [T ].

At each step t, the conditional probability distribution Pθt

is drawn from a subtask family PΘt , parametrized by θt:

PΘt
:=

{
Pθt(· | x,y<t) : X × Yt−1 → ∆(Y) | θt ∈ Θt

}
.

Here, Θt represents the parameter space at step t, and the
overall task parameter space is Θ :=×T

t=1
Θt. Assum-

ing each step has a finite number of possible subtasks, i.e.,
|Θt| = d for all t ∈ [T ], the AutoRegressive Compositional
task class ARC(d, T ) consists of |F| = |Θ| = dT tasks.

Given any input x ∈ X and a sequence y ∈ YT , the joint
distribution for a task fθ = (Pθ1 , · · · , PθT ) ∈ F is:

Pθ(x,y) = P (x)

T∏
s=1

Pθs(ys | x,y<s), (1)

and for partial sequences up to any t ∈ [T ]:

Pθ1:t(x,y1:t) = Px(x)

t∏
s=1

Pθs(ys | x,y<s). (2)

At a high level, an AutoRegressive Compositional task class
ARC(D,T ) is characterized by two key properties:

• Modularity. The generation process is decomposed into
T sequential steps, each governed by an independent con-
ditional distribution Pθt ∈ PΘt . This modular structure
allows tasks to be constructed by combining different
components at each step.

• Exponential Growth. The task class size grows expo-
nentially in T as |F| = DT , despite each step having
only D choices. This reflects the combinatorial nature of
task construction, where variations at each step lead to
an exponentially large set of possible tasks.

3.3. Task Generalization

Under the autoregressive task learning setup, there are two
levels of generalization:

1. Generalizing to unseen inputs within a task.

2. Generalizing to unseen tasks in the class F .

We focus on the latter one, referred as task generalization.

Training Phase During training, the model can only ac-
cess to a small subset of tasks Ftrain = {fθ1 , . . . , fθnθ } ⊆
F with nθ = |Ftrain|. For each task fθi ∈ Ftrain, we
observe nx i.i.d. demonstration samples:

Di =
{
(xi,j ,yi,j)

}nx

j=1

i.i.d.∼ Pθi(x,y),

where Pθi is defined as in Equation (1). The full training
dataset is the union of Di denoted by Dtrain = {Di}nθ

i=1.

We assume the learner does not know the true subtask con-
ditional distribution families {PΘt

}Tt=1 a priori. Instead, it
accesses to a larger hypothesis class:

PΞt
:=

{
Pζt(· | x,y<t)

∣∣ ζt ∈ Ξt

}
⊇ PΘt ,

where Ξt parameterizes the learner’s model class at step t.
The goal of training is to identify the true subtask families
PΘt

from PΞt
through Dtrain.

Inference Phase At test time, the learner is given ℓ
inference-time demonstration samples:

Dinfer = {(x̃i, ỹi)}ℓi=1
i.i.d.∼ Pθ̃(x,y),

where fθ̃ ∈ F is an unseen task. The learner must identify
the true conditionals {Pθ̃t

}Tt=1 from PΘt
for each step t.

Formally, the learner A that is trained on Dtrain and given
Dinfer as input, produces an output sequence of conditional
distributions:

A (Dinfer;Dtrain) ∈ {(Pξ1 , · · · , PξT ) |Pξt ∈ PΞt
, t ∈ [T ]}.

3.4. Main Result: Exponential Task Generalization

We now establish our main theoretical result: with the com-
positional structure in Definition 3.1, a learner can achieve
exponential task generalization with only Õ(D) training
tasks. This demonstrates how compositional structure fun-
damentally reduces the sample complexity of task learning
from exponential to polynomial in D. Our results hold under
the following mild assumptions:

Assumption 3.2 (Compositional Identifiability). The au-
toregressive task class F satisfies:

1. Finite Subtask Families. For each t ∈ [T ], the hy-
pothesis class PΞt is finite and the subtask conditional
distribution family PΘt ⊆ PΞt has size |PΘt | = D.
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2. Task Identifiability. For any t ∈ [T ], θ1:t−1 ∈×t−1

s=1
Θs,

and θt ∈ Θt, ζt ∈ Ξt, Pζt ̸= Pθt , the induced distribu-
tions stasify:

TV
(
Pθ1:t−1,θt , Pθ1:t−1,ζt

)
> 0.

Furthermore, for any t ∈ [T ], θ1:t−1 ∈×t−1

s=1
Θs, and

θt ̸= θ′t ∈ Θt, the induced distributions satisfy:

TV
(
Pθ1:t−1,θt , Pθ1:t−1,θ′

t

)
≥ c > 0.

Under these conditions, we establish our main theorem:

Theorem 3.3 (Exponential Task Generalization). Let F
be an AutoRegressive Compositional(ARC) task class sat-
isfying Assumption 3.2. Then there exists a learner A with
the following property: if during training, one samples
nθ ≥ D ln

(
100DT

)
tasks uniformly and independently

from F , each provided with nx i.i.d. demonstration samples
as the training dataset, and if at inference one observes

ℓ ≥ 2 ln
(
100T nθ

)
c2 i.i.d. demonstration samples from a

previously unseen task Pθ̃ ∈ F , then

lim
nx→∞

Pr
[
A
(
Dinfer; Dtrain

)
̸=

(
Pθ̃1

, . . . , Pθ̃T

)]
≤ 0.02,

where Dtrain and Dinfer denote the training dataset and
inference-time demonstration samples respectively, and the
probability is taken over the random selection of train-
ing tasks Ftrain ⊆ F , the training data Dtrain, and the
inference-time demonstration samples Dinfer.

In other words, Theorem 3.3 shows that the learner can
generalize from only Õ(D) tasks to an exponentially large
number of unseen tasks, on the order of DT . The learn-
ing algorithm A operates in two stage. In the training
stage, it applies a maximum-likelihood estimation (MLE)
procedure to Di in order to identify the subtasks of the i-
th training task (Pθi

1
, · · · , Pθi

T
). In the inference stage, it

then uses a total-variation-based distribution discrimination
test (Lemma A.1) on inference-time demonstration sam-
ples Dinfer to recover fθ̃ = (Pθ̃1

, · · · , Pθ̃T
). The proof is

deferred to Appendix A.1.
Remark 3.4. If we additionally assume that every subtask
distribution is separated from any incorrect hypothesis by
a fixed total-variation margin, i.e. for all t ∈ [T ], θ1:t−1 ∈
×t−1

s=1
Θs, and θt ∈ Θt, ζt ∈ Ξt with Pζt ̸= Pθt ,

TV
(
Pθ1:t−1, θt , Pθ1:t−1, ζt

)
≥ r > 0,

then one can replace the MLE procedure used in the training
stage with the same distribution-discrimination approach
from the inference stage (Lemma A.1). Under this condition,
we can derive a non-asymptotic bound on the nx needed per
task for accurate identification. See Appendix B for details.

3.5. Example: Sparse Parity Problem

To illustrate the role of the AutoRegressive Compositional
structure, we use sparse parity problem as an example.

Sparse Parity Problem. Given d binary variables x =
(b1, b2, . . . , bd), a sparse parity function selects k secret
indices S = {i1, i2, . . . , ik} and outputs 1 if the sum of the
corresponding variables is odd, and 0 otherwise:

parityS(b1, b2, . . . , bd) = bi1 ⊕ bi2 ⊕ · · · ⊕ bik ,

where ⊕ denotes the XOR (exclusive OR) operation. We
define Parity(d, k) as the set of all parity functions with d
variables and k secret indices, yielding a total of

|Parity(d, k)| =
(
d

k

)
= O(dk).

Representation Matters. Without Chain-of-Thought
(CoT), the sparse parity problem Parity(d, k) is of
ARC(

(
d
k

)
, 1), but with CoT, it becomes an autoregressive

compositional structure of ARC(d, k).

• No CoT→ ARC
((

d
k

)
, 1
)

.

• With CoT→ ARC(d, k).

Indeed, without CoT, the model maps input x =
(b1, . . . , bd) directly to output y = bi1 ⊕ bi2 ⊕ · · · ⊕ bik in
a single step, hence we have length T = 1 and the breadth
D = |Parity(d, k)| = O(dk). Such exponential depen-
dency on the breadth suggests that one would need to train
on O(dk) tasks, explaining what we are observing unsuc-
cessful task generalization in the introduction figure.

In contrast, with CoT (Abbe et al., 2024; Wen et al., 2025),
the parity computation is decomposed into small steps:

y = (bi1 , bi1 ⊕ bi2 , . . . , bi1 ⊕ · · · ⊕ bik),

enabling a structured representation that reduces the breadth.
More precisely, at step t, the class of subtask is exactly
defined by the XOR operation with previous token and one
secret index :

P(t,it)(yt|x,y<t) = 1[yt = yt−1 ⊕ bit ].
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where it is the t-th secret index, by default lying ∈ [1, d].
Therefore, the breadth D at each step is exactly d.

This said, the CoT effectively reduces the breadth from
O(dk) to d. According to Theorem 3.3,
Corollary 3.5. For the sparse parity problem described
above, we can show that the parameter c in Assumption 3.2
is 1

2 , thus when nθ ≥ d ln(100kd), ℓ ≥ 8 ln(100knθ) , it
holds that

lim
nx→∞

Pr
[
A (Dinfer;Dtrain) ̸= (P(1,i1), · · · , P(k,ik))

]
≤ 0.02.

In other words, the family of Parity(d, k) with CoT is
learnable with O(d log(d)) training tasks.

4. Experiments: Parity Problem Case Study
As we have shown, there exists a learning algorithm that
is only trained on Õ(d) different tasks to fully generalize
on all the tasks in Parity(d, k). However, from a practical
standpoint, it is not clear whether a Transformer can actually
match this task complexity. In this section, we present em-
pirical evidence demonstrating that a standard Transformer
can indeed learn the sparse parity function with CoT using
Õ(d) training tasks. The paper’s GitHub repository can be
found online.

4.1. Experimental Setup: In-Context Learning

Our empirical setup is a refinement of the theoretical frame-
work presented in Section 3.3, and closely follows that
of (Garg et al., 2022; Bhattamishra et al., 2024). In this
setup, a sequence model M (such as Transformers) is
trained using N sequences, each sequence consisting of m
demonstration samples (x1,y1, . . . ,xm,ym). The model
is trained for the next token-prediction task, except that
we only consider yj in loss optimization: for each context
(x1,y1, . . . ,xj−1,yj−1,xj), the model predicts ŷj , and
the loss is given by 1

m

∑m
j=1 ℓ(ŷj ,yj). In our experiment,

we use cross-entropy loss to measure the discrepancy be-
tween the predicted output ŷj and the true output yj .

When Chain of Thought (CoT) is used, each yj is itself
a sequence of length k representing intermediate reason-
ing steps. In this case, the loss is the average on all these
intermediate steps.

Training Data Generation. We split both the task space
and input space into training and testing. In other words,
the parity tasks are split into Ftrain and Ftest; and the binary
sequences are split into Xtrain and Xtest. The split in the
input space helps us monitor the in-distribution training
process while as the split in the task space aims to measure
generalization to unseen parity functions.

To construct the ICL data, we sample m points x1, . . . ,xm

uniformly at random from Xtrain. Similarly, we sample a

function f uniformly at random from Ftrain, and generate
the sequence (x1, f(x1), . . . ,xm, f(xm)). This process is
repeated N times, each time with a fresh sample of m points
and a new function f .

Evaluating Task Generalization. For evaluation, we sam-
ple f randomly from the held-out tasks Ftest and sample
inputs uniformly at random from Xtest. We report the ac-
curacy of the prediction f(xm) given the demonstration
(x1, f(x1), . . . ,xm−1, f(xm−1),xm). This setting chal-
lenges the model to generalize to novel tasks beyond those
encountered during training.

4.2. Experimental Results

As discussed in Section 3.5, introducing CoT transforms the
parity problem class Parity(d, k) into an AutoRegressive
Compositional structure ARC(D,T ) with D = d and T =
k. A key empirical question is:

how does the number of training tasks scale with d and T
to achieve a fixed target accuracy on unseen task sets?

To investigate this, we conduct experiments on:

1. Scaling T (= k), i.e. the length of secret indices.

2. Scaling D(= d), i.e. the ambient dimension of input.

Scaling T for a Fixed D. We examine how the number
of training tasks affects test accuracy while keeping the am-
bient dimension fixed at d = 15. Specifically, we evaluate
test accuracy for k = {3, 4, 5, 6, 7} under varying numbers
of training tasks. As k increases, the size of the parity class
grows significantly—from approximately 500 for k = 3 to
around 6500 for k = 7.

Remarkably, despite this increase, the test accuracy follows
a similar trajectory. With just 3d ln(d) ≈ 122 training tasks,
the model generalizes to unseen cases with high accuracy (>
95%). For k = 7, this means training on 122 tasks enables
generalization to about 6,400 unseen ones! This empirical
results suggests that the required number of training tasks
remains roughly the same, regardless of k, consistent with
the theoretical scaling of Õ(d) tasks.

Scaling D for a fixed T . We examine the effect of increas-
ing d ∈ {10, 15, 20} while keeping k = 3 fixed. For each d,
we train on a total number of tasks proportional to d ln(d),
up to 4× d ln(d). Figure 2, Panel B, shows similar task gen-
eralization performance across different ambien dimension
of d, providing further evidence that Õ(d) i.i.d. training
tasks are sufficient for generalization to unseen tasks on
praity functions with CoT.

Scaling D and T together. We examine the ef-
fect of jointly increasing d and k, with (d, k) ∈
{(10, 5), (15, 7), (20, 10), (25, 12), (30, 15)}. For each d,
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Figure 2. Test accuracy on unseen tasks. For parity task: D = d as the ambient dimension and T = k as the number of secret indices.
We show that the empirical scaling closely follows the theoretical scaling of D ln(D). (A) For a fixed D = 15, as T increases, the
test accuracy on unseen tasks remains similar, even though the total number of tasks (∼ DT ) grows exponentially with T . (B) For a
fixed secret length is 3, as D increases, the number of tasks grows polynomially with D, yet the number of tasks required to generalize
reasonably to unseen tasks remains in ∝ D logD.

the model is trained on a total of 3 × d ln(d) i.i.d. tasks.
Table 1 shows that generalization performance remains con-
sistent across these settings, providing further evidence that
Õ(d) training tasks are sufficient to generalize to unseen
parity tasks using CoT prompting. As a concrete example,
for d = 30, k = 15, training on just 306 tasks enables
generalization to approximately 155 million unseen tasks.

d k #TrainingTasks #TotalTasks Accuracy (%)

10 5 69 252 98.51
15 7 121 6,400 99.12
20 10 180 185,000 98.67
25 12 241 3,200,000 98.60
30 15 306 155,000,000 98.10

Table 1. Task generalization performance as d and k increase.
Training on only Õ(d) tasks enables generalization to exponen-
tially many unseen tasks in the parity function family.

Subtask Identification via Linear Probing. Finally, we
probe the hidden representations of the Transformer (see
(Alain & Bengio, 2017)) to see if it identifies and then ex-
ecutes subtasks at the inference time, consistent with the
framework of Section 3. Specifically, we add a linear classi-
fier to the final attention layer’s hidden state when producing
the i-th token in the Chain-of-Thought, aiming to predict the
i-th secret index. Only the linear classifier is trained, while
all Transformer parameters remain frozen. Table 2 shows
that for d ∈ {10, 15, 20}, k = 3, the linear probe consis-
tently achieves high accuracy at all the coordinates. This
suggests that at each CoT step, the model indeed first infers
the relevant subtask (the secret index) from the in-context
examples and then executes that subtask to generate the
output token—an ability it acquires during training. Further
experimental details appear in Appendix D.

d Token 1 Token 2 Token 3

10 100.00% 99.83% 91.08%
15 95.42% 99.97% 98.73%
20 97.38% 95.54% 91.92%

Table 2. Validation accuracy (%) of linear probes trained to predict
each secret token position from the final hidden state.

5. Task Generalization Beyond i.i.d. Sampling
and Parity Functions

In this section, we extend our experiments beyond i.i.d. task
sampling and parity functions. We show an adversarial ex-
ample where biased task selection substantially hinders task
generalization for sparse parity problem. In addition, we
demonstrate that exponential task scaling extends to a non-
parity tasks including arithmetic and multi-step language
translation.

5.1. Task Generalization Beyond i.i.d. Task Sampling

In previous sections, we focused on i.i.d. settings, where the
set of training tasks Ftrain were sampled uniformly at ran-
dom from the entire classF . Here, we explore scenarios that
deliberately break this uniformity to examine the effect of
task selection on out-of-distribution (OOD) generalization.

How does the selection of training tasks influence a model’s
ability to generalize to unseen tasks? Can we predict which
setups are more prone to failure?

To investigate this, we consider two cases parity problems
with d = 10 and k = 3, where each task is represented by
its tuple of secret indices (s1, s2, s3):

1. Generalization with a Missing Coordinate. In this
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setup, we exclude all training tasks where the second
coordinate takes the value s2 = 5, such as (1, 5, 7). At
test time, we evaluate whether the model can generalize
to unseen tasks where s2 = 5 appears.

2. Generalization with Missing Pair. Here, we remove
all training tasks that contain both 4 and 6 in the tuple
(s1, s2, s3), such as (2, 4, 6) and (4, 5, 6). At test time,
we assess whether the model can generalize to tasks
where both 4 and 6 appear together.

If you had to guess. Which scenario is more challenging for
generalization to unseen tasks? We provide the experimental
result in Table 3.

In the first scenario, despite being trained on all tasks except
those where s2 = 5, which is of size O(DT ), the model
struggles to generalize to these excluded cases, with predic-
tion at chance level. This is intriguing as one may expect
model to generalize across position. The failure suggests
that positional diversity plays a crucial role in the task gen-
eralization of Transformers.

In contrast, in the second scenario, though the model has
never seen tasks with both 4 and 6 together, it has encoun-
tered individual instances where 4 appears in the second
position (e.g., (1, 4, 5)) or where 6 appears in the third po-
sition (e.g., (2, 3, 6)). This exposure appears to facilitate
generalization to test cases where both 4 and 6 are present.

As a result, when the training tasks are not i.i.d, an adver-
sarial selection such as exclusion of specific positional con-
figurations may lead to failure to unseen task generalization
even though the size of Ftrain is exponentially large.

5.2. Task Generalization Beyond Parity Problems

5.2.1. ARITHMETIC TASK

We introduce the family of Arithmetic task that, like
the sparse parity problem, operates on d binary inputs
b1, b2, . . . , bd. The task involves computing a structured
arithmetic expression over these inputs using a sequence of
addition and multiplication operations.

Formally, we define the function:

ArithmeticS : {0, 1}d → {0, 1, . . . , d},

where S = (op1, op2, . . . , opd−1) is a sequence of d − 1
operations, each opk chosen from {+,×}. The function
evaluates the expression by applying the operations se-
quentially from left-to-right order: for example, if S =
(+,×,+), then the arithmetic function would compute
ArithmeticS(b1, b2, b3, b4) = ((b1 + b2)× b3) + b4.

By introducing a step-by-step CoT, arithmetic class belongs
to ARC(2, d−1): this is because at every step, there is only

D = |Θt| = 2 choices (either + or ×) while the length is
T = d− 1, resulting a total number of 2d−1 tasks.

Task generalization for the arithmetic task with CoT. It has
d = 2 and T = d − 1 as the ambient dimension, hence
D ln(DT ) = 2 ln(2T ). We show that the empirical scaling
closely follows the theoretical scaling.

Notably, when scaling with T , we observe in the figure
above that the task scaling closely follow the theoretical
O(D log(DT )) dependency. Given that the function class
grows exponentially as 2T , it is truly remarkable that train-
ing on only a few hundred tasks enables generalization to an
exponentially larger space—on the order of 225 > 33 Mil-
lion tasks. This exponential scaling highlights the efficiency
of structured learning, where a modest number of training
examples can yield vast generalization capability.

5.2.2. MULTI-STEP LANGUAGE TRANSLATION TASK

In this task, we study a sequential translation process across
multiple languages (Garg et al., 2022). Given a set of D
languages, we construct a translation chain by randomly
sampling a sequence of T languages with replacement:
L1, L2, . . . , LT , where each Lt is a sampled language.
Starting with a word, we iteratively translate it through
the sequence:

L1 → L2 → L3 → · · · → LT .

For example, if the sampled sequence is EN → FR → DE
→ FR, translating the word ”butterfly” follows:

butterfly→ papillon→ schmetterling→ papillon.

This task follows an AutoRegressive Compositional struc-
ture by itself, specifically ARC(D,T − 1), where at each
step, the conditional generation only depends on the target
language, making D as the number of languages and the
total number of possible tasks is DT−1. This example illus-
trates that autoregressive compositional structures naturally
arise in real-world languages, even without explicit CoT.

We examine task scaling along D (number of languages)
and T (sequence length). As shown in Figure 4, empiri-
cal D-scaling closely follows the theoretical O(D lnDT ).
However, in the T -scaling case, we observe a linear depen-
dency on T rather than the logarithmic dependency O(lnT ).
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Table 3. Generalization Results for Scenarios 1 and 2 for d = 10, k = 3.
Scenario Tasks excluded from training Generalization accuracy

Generalization with Missing Pair {4, 6} ⊆ {s1, s2, s3} 96.2%
Generalization with Missing Coordinate s2 = 5 45.6%

Figure 4. Task generalization for language translation task: D is the number of languages and T is the length of steps.

A possible explanation is error accumulation across sequen-
tial steps—longer sequences require higher precision in
intermediate steps to maintain accuracy. This contrasts with
our theoretical analysis, which focuses on asymptotic scal-
ing and does not explicitly account for compounding errors
in finite-sample settings.

Despite this, the task scaling is still remarkable — training
on a few hundred tasks enables generalization to 410 ≈ 106

tasks!

6. Conclusions
In this work, we quantitatively investigated task general-
ization under the autoregressive compositional structure,
demonstrating both theoretically and empirically that expo-
nential task generalization to DT tasks can be achieved with
training on only Õ(D) tasks. To summerize:

• Theoretical Framework for Task Generalization.
We introduced the AutoRegressive Compositional
(ARC) framework to model structured task learning,
demonstrating that a model trained on only Õ(D) tasks
can generalize to an exponentially large space of DT

tasks.

• Formal Sample Complexity Bound. We established
a fundamental scaling law that quantifies the number
of tasks required for generalization, proving that expo-
nential generalization is theoretically achievable with
only a logarithmic increase in training samples.

• Empirical Validation on Parity Functions. We
showed that Transformers struggle with standard in-
context learning (ICL) on parity tasks but achieve
exponential generalization when Chain-of-Thought

(CoT) reasoning is introduced. Our results provide
the first empirical demonstration of structured learning
enabling efficient generalization in this setting.

• Scaling Laws in Arithmetic and Language Transla-
tion. Extending beyond parity functions, we demon-
strated that the same compositional principles hold for
arithmetic operations and multi-step language transla-
tion, confirming that structured learning significantly
reduces the task complexity required for generaliza-
tion.

• Impact of Training Task Selection. We analyzed how
different task selection strategies affect generalization,
showing that adversarially chosen training tasks can
hinder generalization, while diverse training distribu-
tions promote robust learning across unseen tasks.

We introduce a framework for studying the role of composi-
tionality in learning tasks and how this structure can signifi-
cantly enhance generalization to unseen tasks. Additionally,
we provide empirical evidence on learning tasks, such as the
parity problem, demonstrating that transformers follow the
scaling behavior predicted by our compositionality-based
theory. Future research will explore how these principles
extend to real-world applications such as program synthesis,
mathematical reasoning, and decision-making tasks.

By establishing a principled framework for task generaliza-
tion, our work advances the understanding of how models
can learn efficiently beyond supervised training and adapt
to new task distributions. We hope these insights will in-
spire further research into the mechanisms underlying task
generalization and compositional generalization.
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A. Proofs in Section 3
Notations For a distribution over finite class S , denote supp(P ) ⊆ S as the support of P . For two distributions P,Q over
finite set S, denote the cross entropy as

H(P,Q) = −
∑
x∈S

P (x) logQ(x),

and denote the KL divergence as

KL(P,Q) = −
∑
x∈S

P (x) log
Q(x)

P (x)
.

A.1. Proof of Theorem 3.3

To identify the true distribution θ̃ from Θ at inference time, we need the following lemma to provide a non-asymptotic
bound for distribution discrimination.
Lemma A.1 (Non-Asymptotic Discrimination of Two Distributions). Let S be any finite set and P,Q ∈ ∆(S) be two
distributions with total variation distance TV(P,Q) = c > 0. Suppose we observe n independent samples X1, . . . , Xn

from an unknown distribution Y , where Y is either P or Q. Then, there exists a testing algorithm that identifies Y with
probability at least 1− δ provided that

n ≥ 2 ln(1/δ)

c2
.

Proof. Testing Procedure. Define the testing statistic ϕ as follows:

ϕ =
1

n

n∑
i=1

(−1)1[P (Xi)<Q(Xi)].

Equivalently, ϕ can be written in terms of the empirical distribution Ŷn:

ϕ =
∑
x∈S

Ŷn(x) · (−1)1[P (x)<Q(x)],

where Ŷn(x) =
1
n

∑n
i=1 1[Xi = x].

Compute the expected values of ϕ under Y = P and Y = Q:

µP =
∑
x∈S

P (x) · (−1)1[P (x)<Q(x)], µQ =
∑
x∈S

Q(x) · (−1)1[P (x)<Q(x)].

The algorithm reports Ŷ = P if |ϕ− µP | < |ϕ− µQ|, and Ŷ = Q otherwise.

Proof of Correctness. Without loss of generality, assume Y = P . We analyze the probability of error:

Pr
(
Ŷ ̸= P

)
= Pr (|ϕ− µP | ≥ |ϕ− µQ|) .

Note that E[ϕ] = µP under Y = P . From the definition of total variation distance:

µQ − µP =
∑
x∈S

(Q(x)− P (x)) · (−1)1[P (x)<Q(x)] = 2 · dTV(P,Q) = 2c.

Thus, the error probability can be bounded as:

Pr (|ϕ− µP | ≥ |ϕ− µQ|) ≤ Pr (ϕ ≥ µP + c) .

Since ϕ is the average of n independent random variables taking values in {−1,+1}, by Hoeffding’s inequality:

Pr (ϕ ≥ µP + c) ≤ exp

(
−c2n

2

)
.

Setting exp
(
− c2n

2

)
≤ δ gives the required sample complexity n ≥ 2 ln(1/δ)

c2 .
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To prove Theorem 3.3, we introduce the following lemma:

Lemma A.2. Consider a compositional task class F satisfying Assumption 3.2. Suppose the training tasks Ftrain =
{fθi}nθ

i=1 satisfy the per-component coverage condition: for every timestep t ∈ [T ],

{Pθi
t
}nθ
i=1 = PΘt

.

Then there exists a learner A such that when trained on Dtrain = {Di}nθ
i=1 with Di

i.i.d.∼ Pθi where Di consists of nx i.i.d.
samples, and given ℓ ≥ 2 ln(100Tnθ)

c2 inference-time demonstration samples i.i.d. sampled from unseen task Pθ̃, denoted by
Dinfer, then it holds that:

lim
nx→∞

Pr
[
A(Dinfer;Dtrain) ̸= (Pθ̃1

, . . . , Pθ̃T
)
]
≤ 0.01,

where the probability is over the randomness in Dtrain and Dinfer.

Proof.

Step 1: Training Stage.

We construct a learning algorithm that recovers

fθi =
(
Pθi

1
, . . . , Pθi

T

)
from

Di = {(xi,j , yi,j)}nx
j=1

i.i.d.∼ Pθi(x,y),

which is part of the training set Dtrain. The procedure is shown below:

Algorithm 1 Training Stage
Require: Training set Dtrain = {Di}nθ

i=1

1: for i = 1 to nθ do
2: for t = 1 to T do
3: Observed Supportt ← {(xi,j , yi,j

1:t)}
nx
j=1

4: PΞ′
t
←

{
Pξt ∈ PΞt

: supp
(
Pθi

1:t−1, ξt

)
= Observed Supportt

}
5: θ̂it ← arg max

ξt ∈Ξ′
t

nx∑
j=1

logPθ̂i
1:t−1, ξt

(
xi,j , yi,j

1:t

)
6: end for
7: end for
8: return PΘ̂t

= {Pθ̂i
t
}nθ
i=1 for each t ∈ [T ].

We now show that, as nx →∞,
Pr

[
PΘ̂t

= PΘt
∀ t ∈ [T ]

]
→ 1.

Assume θ̂i1:t−1 = θi1:t−1. As nx →∞,

Pr
[
Observed Supportt ̸= supp

(
Pθi

1:t

)]
≤

∑
(x,y1:t)∈ supp

(
P

θi1:t

)Pr[(xi,j ,yi,j
1:t) ̸= (x,y1:t) ∀ j ∈ [nx]

]
→ 0.

Conditioned on Observed Supportt = supp
(
Pθi

1:t

)
, any Pξt in P ′

Ξt
must share the same support:

supp
(
Pθi

1:t−1, ξt

)
= supp

(
Pθi

1:t−1, θ
i
t

)
.

Thus the cross-entropy is finite. By the law of large numbers and Pinsker’s inequality, for Pξt ̸= Pθi
t

we have

13
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lim
nx→∞

 1

nx

nx∑
j=1

logPθi
1:t−1,θ

i
t
(xi,j ,yi,j

1:t)−
1

nx

nx∑
j=1

logPθi
1:t−1,ξt

(xi,j ,yi,j
1:t)


→KL(Pθi

1:t−1,θ
i
t
, Pθi

1:t−1,ξt
)

≥2TV(Pθi
1:t−1,θ

i
t
, Pθi

1:t−1,ξt
)
2

>0

almost surely. Thus,

Pr
[
Pθ̂i

t
̸= Pθi

t

]
≤

∑
ξt ∈Ξ′

t, Pξt ̸=P
θit

Pr
[

1
nx

nx∑
j=1

logPθi
1:t−1, ξt

(xi,j , yi,j
1:t) ≥ 1

nx

nx∑
j=1

logPθi
1:t−1, θ

i
t
(xi,j , yi,j

1:t)
]
→ 0.

Recursively applying this argument from t = 1 to T and taking a union bound over all i ∈ [nθ] and t ∈ [T ],

lim
nx→∞

Pr
[
∃ (t, i) : Pθ̂i

t
̸= Pθi

t

]
= 0.

Finally, by the assumption that {Pθ1
t
, . . . , Pθ

nθ
t
} = PΘt for each t, we conclude

Pr
[
PΘ̂t

= PΘt
∀ t ∈ [T ]

]
→ 1 as nx →∞.

Step 2: Inference Stage

Assume that, in the training phase, the learner identifies the true distribution sets

PΘ̂t
=

{
Pθ̂1

t
, . . . , Pθ̂

nθ
t

}
= PΘt for all t = 1, . . . , T.

We now construct an algorithm that, given ℓ ≥ 2 ln
(
100T nθ

)
c2 independent samples from the unseen composite task

fθ̃ =
(
Pθ̃1

, . . . , Pθ̃T

)
,

outputs the same distribution tuple
(
Pθ̃1

, . . . , Pθ̃T

)
with probability at least 0.99.

To achieve this, we leverage the distribution discrimination technique of Lemma A.1 to distinguish between candidates in
PΘ̂t

, given sufficiently many demonstration samples.
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Algorithm 2 Inference Stage
Require: Inference-time demonstration samples Dinfer = {(x̃j , ỹj)}ℓj=1 i.i.d. from Pθ̃, and the identified sets PΘ̂t

=
{Pθ̂1

t
, . . . , Pθ̂

nθ
t
} for each t ∈ [T ].

1: for t = 1 to T do
2: Initialize Pζt ← Pθ̂1

t
.

3: for i = 2 to nθ do
4: Compute

ϕ ← 1

ℓ

ℓ∑
j=1

(−1) 1
[
Pζ1:t−1, ζt (x̃

j ,ỹj
1:t) < P

ζ1:t−1, θ̂it
(x̃j ,ỹj

1:t)
]
.

5: if ∣∣∣∣∣∣ϕ −
∑

(x,y1:t)∈X×Yt

Pζ1:t−1, θ̂i
t
(x,y1:t) (−1)

1
[
Pζ1:t−1, ζt (x,y1:t)<P

ζ1:t−1, θ̂it
(x,y1:t)

]∣∣∣∣∣∣
<

∣∣∣∣∣∣ϕ −
∑

(x,y1:t)∈X×Yt

Pζ1:t−1, ζt(x,y1:t) (−1)
1
[
Pζ1:t−1, ζt (x,y1:t)<P

ζ1:t−1, θ̂it
(x,y1:t)

]∣∣∣∣∣∣ .
then

6: Update Pζt ← Pθ̂i
t
.

7: end if
8: end for
9: end for

10: return
(
Pζ1 , . . . , PζT

)
.

Error Analysis. Let Pζt be the chosen distribution at step t. Given Pζ1:t−1 = Pθ̃1:t−1
, Lemma A.1 ensures that any

incorrect candidate can be detected with high probability, as long as Pθ̃t
∈ PΘ̂t

. Specifically,

Pr
[
Pζt ̸= Pθ̃t

∣∣ Pζ1:t−1
= Pθ̃1:t−1

]
≤

nθ∑
i=2

Pr
[
distribution testing fails at step i

∣∣ ζt = θ̃t or θ̂it = θ̃t

]
≤ nθ exp

(
− c2 ℓ

2

)
.

A union bound over t = 1, . . . , T then implies

Pr
[
(Pζ1 , . . . , PζT ) ̸= (Pθ̃1

, . . . , Pθ̃T
)
]
≤ T nθ exp

(
− c2 ℓ

2

)
.

Since ℓ ≥ 2 ln
(
100T nθ

)
c2 , we get

T nθ exp
(
− c2 ℓ

2

)
≤ 0.01.

Step 3: Combining Training and Inference

From the results of Step 1 and Step 2, we have

lim
nx→∞

Pr
[
A(Dinfer; Dtrain) ̸= (Pθ̃1

, . . . , Pθ̃T
)
]

≤ lim
nx→∞

(
Pr

[
(Pζ1 , . . . , PζT ) ̸= (Pθ̃1

, . . . , Pθ̃T
)
∣∣ PΘ̂t

= PΘt
∀t
]
+ Pr

[
∃ t ∈ [T ] : PΘ̂t

̸= PΘt

])
= 0.01 + 0 = 0.01.
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Proof of Theorem 3.3. By Lemma A.2, it suffices to verify that per-component coverage condition holds for each timestep
with high probability when nθ = D ln

(
100DT

)
.

For each timestep t ∈ [T ], observe

Pr
[
{Pθi

t
}nθ
i=1 ̸= PΘt

]
≤

∑
Pθt∈PΘt

Pr
[
Pθi

t
̸= Pθt ∀ i ∈ [nθ]

]
= D

(
1− 1

D

)nθ

.

Hence,

Pr
[
∃ t ∈ [T ] : {Pθi

t
}nθ
i=1 ̸= PΘt

]
≤

T∑
t=1

Pr
[
{Pθi

t
}nθ
i=1 ̸= PΘt

]
≤ DT

(
1− 1

D

)nθ

< DT e−nθ/D = 0.01.

This completes the proof.

A.2. Proof of Corollary 3.5

Proof of Corollary 3.5. It suffices to verify that for the sparse parity problem, the constant c in Assumption 3.2 is 1
2 .

We denote Pi1,··· ,it(x,y<t) =
1
2d
× 1[y1 = xi1 ]

∏t
s=2 1[ys = ys−1 ⊕ xis ]. For any i1, · · · , it−1 ∈ [d], and it ̸= i′t ∈ [d]

and it holds that

TV(Pi1,··· ,it−1,it , Pi1,··· ,it−1,i′t
) =

1

2n

∑
x∈{0,1}d

1[xi1 ⊕ · · · ⊕ xit−1
⊕ xit ̸= xi1 ⊕ · · · ⊕ xit−1

⊕ xi′t
]

=
1

2n

∑
x∈{0,1}d

1[xit ̸= xi′t
]

=
1

2
.

This completes the proof.

B. Non-Asymptotic Analysis of Training-Time Demonstration Sample Complexity
In Theorem 3.3, we established only an asymptotic result, showing that as the number of demonstration samples per task at
training time nx →∞, the probability of correctly identifying subtask families PΘt

tends to one. However, by imposing an
additional assumption on the total variation gap between the true distributions and any other hypotheses, it is possible to
derive a non-asymptotic guarantee on how large nx must be for accurate subtask identification.

Although maximum-likelihood estimation (MLE) does not directly yield such a non-asymptotic bound in this setting, we
can use the same distribution discrimination approach introduced in the inference stage (Lemma A.1).
Assumption B.1 (Compositional Identifiability with fixed tv marigin). The autoregressive task class F satisfies:

1. Finite Subtask Families: For each t ∈ [T ], the hypothesis class PΞt
is of size at most H and the subtask conditional

distribution family PΘt ⊆ PΞt has size |PΘt | = D.

2. Task Identifiability: For any t ∈ [T ], θ1:t−1 ∈×t−1

s=1
Θs, and θt ∈ Θt, ζt ∈ Ξt, Pζt ̸= Pθt , the induced distributions

stasify:
TV

(
Pθ1:t−1,θt , Pθ1:t−1,ζt

)
≥ r > 0.

Furthermore, for any timestep t ∈ [T ], θ1:t−1 ∈×t−1

s=1
Θs, and θt ̸= θ′t ∈ Θt, the induced distributions satisfy:

TV
(
Pθ1:t−1,θt , Pθ1:t−1,θ′

t

)
≥ c > 0.
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Theorem B.2 (Exponential Task Generalization). Let F be an autoregressive compositional task class satisfying Assump-
tion 3.2. Then there exists a learner A with the following property: if during training, one samples nθ tasks uniformly and
independently from F , each provided with nx i.i.d. demonstration samples as the training dataset, and if at inference one
observes ℓ i.i.d. demonstration samples from a previously unseen task Pθ̃ ∈ F , then

Pr
[
A
(
Dinfer; Dtrain

)
̸=

(
Pθ̃1

, . . . , Pθ̃T

)]
≤ DTe−nθ/D + nθTe

−c2ℓ/2 + nθTHe−r2nx/2.

where Dtrain and Dinfer denote the training dataset and inference-time demonstration samples respectively, and the
probability is taken over the random selection of training tasks Ftrain ⊆ F , the training data Dtrain, and the inference time
demonstration samples Dinfer.

Proof. Denote the hypothesis class PΞt
= {Pξt,1 , · · · , Pξt,|Ξt|

}, we present the training stage of the learner.

Algorithm 3 Training Stage with Distribution Dislimination
Require: Training set Dtrain = {Di}nθ

i=1

1: for i = 1 to nθ do
2: for t = 1 to T do
3: Initialize Pθ̂i

t
← Pξt,1 .

4: for k = 2 to |Ξt| do
5: Compute

ϕ ← 1

nx

∑
(xi,j ,yi,j)∈Di

(−1) 1
[
P

θ̂1:t−1, θ̂it
(xi,j ,yi,j

1:t) < Pθ̂1:t−1, ξt,k
(xi,j ,yi,j

1:t)
]
.

6: if ∣∣∣∣∣∣ϕ −
∑

(x,y1:t)∈X×Yt

Pθ̂1:t−1, ξt,k
(x,y1:t) (−1)

1
[
P

θ̂1:t−1, θ̂it
(x,y1:t) < Pθ̂1:t−1, ξt,k

(x,y1:t)
]∣∣∣∣∣∣

<

∣∣∣∣∣∣ϕ −
∑

(x,y1:t)∈X×Yt

Pθ̂1:t−1, θ̂i
t
(x,y1:t) (−1)

1
[
P

θ̂1:t−1, θ̂it
(x,y1:t) < Pθ̂1:t−1, ξt,k

(x,y1:t)
]∣∣∣∣∣∣ .

then
7: Update Pθ̂i

t
← Pξt,k .

8: end if
9: end for

10: end for
11: end for
12: return PΘ̂t

= {Pθ̂i
t
}nθ
i=1 for each t ∈ [T ].

Using the same approach as in Step 2 of the proof of Theorem 3.3,

Pr[(Pθ̂i
1
, · · · , Pθ̂i

T
) ̸= (Pθi

1
, · · · , Pθi

T
)] ≤ THe−r2nx/2.

By union bound,

Pr[∃ t ∈ [T ] : PΘ̂t
̸= PΘt

] ≤ Pr[ ∃(t, i) : Pθ̂i
t
̸= Pθi

t
] ≤ nθTHe−r2nx/2.

The remainder of the proof then proceeds exactly as in Theorem 3.3.
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C. Extra experiments
Effect of Context Length. The theory assumes access to an infinite number of examples for each training task but does not
require infinite demonstrations during inference. However, in practice, we cannot train on an infinite number of examples.
Figure 5 shows that providing sufficient context length during both training and inference is crucial for strong performance.
Empirically, we observed that a context length of 40 works reasonably well across all experiments with dimensions up to
d = 20.

Figure 5. The effect of context length on performance.

ICL with no CoT fails in even in-distribution generalziation. We observe in Figure 6 that transformers with ICL and no
CoT struggle to generalize even in simpler in-distribution settings as the number of tasks increases. In the parity task, we
refer to in-distribution generalization as a setting where the model is trained on Ftrain tasks and Strain sequences, and then
evaluated on the same set of tasks Ftrain but with entirely new sequences Stest that were not seen during training.

Here, the setting is the same as in (Bhattamishra et al., 2024) for Parity(10, 2), but we used the same tasks during both
training and testing. We trained on half of the total sequences, 29 and tested on unseen sequences while keeping the tasks
unchanged.

Figure 6. ICL without CoT even fails to generalize in distribution.

D. Experiment Details
Model and optimization. We used the transformers library from Hugging Face (Wolf et al., 2020) to instantiate and train
our GPT-2 model from scratch. In all experiments, we used a 3-layer, 1-head configuration. We used the Wadam optimizer
(Kingma & Ba, 2015) with a learning rate of 8× 10−5 and a batch size of 64.
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Parity and arithmetic. In all experiments shown in Figures 2 and 3 for both parity and arithmetic tasks, we used a context
length of 40.

For the arithmetic problem, across all dimensions, we used a total of 25,000 training examples, equally distributed across
the training tasks.

For the parity problem, we used 20,000 training samples, equally distributed across the training tasks for dimensions up to
15. For dimension 20, we increased the total number of training samples to 50,000.

At testing time, we always randomly select the minimum between 200 subsets and all remaining tasks, each containing 500
different sequences with the same context length of 40.

Language experiments. For the translation experiments, we train a 2-layer Transformer with 3 heads and embedding
dimension 768. We use an Adam optimizer with betas being 0.9, 0.95 and learning rate 3e-4. We will keep the number of
total training samples to be 1e6 and train for 1 pass for 6250 steps. We choose the languages randomly from the following
set {English, French, Spanish,Chinese,German, Italian, Japanese,Russian,
Portuguese,Arabic} and meanings (in English) from {cat, dog, house, apple, sky, car, road
, tree, bed, water, sun,moon}. We use a GPT-2 tokenizer and in our demonstrations, we will prepend the language of the
corresponding word before each word in the following format like “English: cat”.

Linear Probing We append a linear classifier to the checkpoints of models of “Increasing D for a fixed T ” tasks, trained
on the hidden states of the final attention layer when generating the i-th token in the Chain-of-Thought, with the goal of
predicting the i-th ”secret index.” The models are trained on a total number of of 20, 000, 20, 000, and 50, 000 training
samples for d = 10, 15, and 20, respectively. The tasks used for training and validation are disjoint. Only the linear classifier
is trained, while the parameters of the transformer are frozen. We use the Adam optimizer with a learning rate of 4× 10−5,
and the batch size is set to be 32.

19


