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Abstract

We investigate the phenomenon of neuron universality in independently trained1

GPT-2 Small models, examining how these universal neurons—neurons with con-2

sistently correlated activations across models—emerge and evolve throughout3

training. By analyzing five GPT-2 models at three checkpoints (100k, 200k, 300k4

steps), we identify universal neurons through pairwise correlation analysis of acti-5

vations over a dataset of 5 million tokens. Ablation experiments reveal significant6

functional impacts of universal neurons on model predictions, measured via loss7

and KL divergence. Additionally, we quantify neuron persistence, demonstrat-8

ing high stability of universal neurons across training checkpoints, particularly9

in deeper layers. These findings suggest stable and universal representational10

structures emerge during neural network training.11

1 Introduction12

Large language models (LLMs) exhibit remarkable generalization but remain difficult to interpret13

[1]. However, neural networks are fully observable and deterministic, allowing us to record and14

manipulate internal components such as neuron activations [2]. This presents a rare opportunity to15

reverse-engineer their internal mechanism. An important open question regarding interpretability is16

whether models independently trained on the same task converge on similar internal structures—a17

notion termed the universality hypothesis [3]. Universality, if established, offers stable interpretability18

targets and aids transfer learning.19

We examine this hypothesis by analyzing five GPT-2 models trained from scratch, tracking when20

universal neurons—units with highly correlated activations across models [4]—emerge, their stability21

over training, and their causal role.22

Contributions:23

• Emergence Analysis: We provide the first systematic study of how universal neurons24

emerge during training, showing that they appear early and grow steadily, especially in25

deeper layers.26

• Persistence Quantification: We quantify the stability of universal neurons across training27

checkpoints, finding that over 80% remain universal in subsequent stages.28

• Functional Role via Ablation:We demonstrate that ablating universal neurons significantly29

increases loss and KL divergence, confirming their causal importance to model predictions.30

• Layer-wise Characterization: We show that first-layer universal neurons disproportionately31

affect output distributions, suggesting they encode critical low-level information.32
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2 Related Work33

Universality and Cross-Model Consistency. Early studies reported limited direct neuron matching34

[5]. However, recent work identifies universal neurons with consistent semantic features across35

independently trained GPT-2 models [4]. These universal neurons are also shown to correspond to36

interpretable, semantically meaningful features [4]. This provides evidence that some circuits are37

consistently discovered across training runs, supporting the hypothesis of shared representational38

scaffolding.39

Representation Similarity. Because neurons are often polysemantic [2], direct comparison is40

difficult. (author?) [6] addressed this by learning sparse features with autoencoders and found41

significant alignment of feature dimensions across models. Algorithmic behaviors also show cross-42

architecture consistency, indicating broader universality [7, 8].43

Emergence and Stability. Works such as the lottery ticket hypothesis [9] and canonical correlation44

studies [10] show that networks form persistent representational patterns within the first few training45

epochs. Theoretical analyses further support the idea that networks rapidly learn dominant features46

that are gradually refined [11]. These results motivate our focus on the emergence and persistence of47

universal neurons throughout training.48

3 Method49

We analyze five GPT-2 Small models at checkpoints 25%, 50%, and 75% of training(100k, 200k,50

300k steps). Neuron activations are extracted over 5M tokens from the Pile dataset [12].51

Identifying Universal Neurons via Correlation. Following (author?) [4], we compute Pearson52

correlations between neurons across model pairs. Let a(m,c)
k ∈ Rn denote the activation vector53

of neuron k in model m at checkpoint c over n token positions. The Pearson correlation between54

neurons defined by a
(m1,c)
k and a

(m2,c)
ℓ is:55

ρ
(m1,m2,c)
k,ℓ =

E
[
(a

(m1,c)
k − µk)(a

(m2,c)
ℓ − µℓ)

]
σkσℓ

where µk and σk are mean and standard deviations of the activation vector a(m,c)
k computed across a56

5 million token dataset of the uncopyrighted Pile HuggingFace dataset [12]. We compute the excess57

correlation for a neuron k with respect to a model m2 at checkpoint c as:58

ϱk,m2,c =

(
max

ℓ∈N(m2)
ρm1,m2,c
k,ℓ − max

ℓ∈NR(m2)
ρ̄m1,m2,c
k,ℓ

)
where ρ̄m1,m2,c

k,ℓ is the pearson correlation between neuron k in model m1 and neuron ℓ in a randomly59

rotated version of the layer from model m2, all at a checkpoint c. This rotation is constructed by60

multiplying the matrix of activations in that layer with a random Gaussian matrix, as described in61

(author?) [4]. The purpose of this transformation of activation vectors is to eliminate any privileged62

basis and establish a baseline for comparison [4]. Neurons exceeding an excess correlation of 0.563

for a model j are labeled universal. We also adjust this threshold to 0.4 and 0.6 to verify robustness.64

Tracking ϱi across checkpoints and models allows us to observe universality emerge over training.65

We used five GPT-2 Small models, models a through e 1. We selected model a as the reference and66

computed Pearson correlations between its neurons and those in each of the other models (b, c, d, e).67

This yields four distinct sets of universal neurons.68

1from stanford-crfm at HuggingFace
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Persistence Across Training Checkpoints. We evaluate whether neurons remain universal over69

time by computing:70

Ppersist = P (univ. at t2 | univ. at t1)

across training step intervals (e.g., 100k→200k, 200k→300k). To localize this further, we stratify by71

transformer layer ℓ:72

Ppersist(ℓ) = P (univ.t2 | univ.t1 , layer = ℓ)

Ablation Studies and Functional Role. To test functional significance, we ablate universal and73

control (non-universal) neurons during inference by zeroing their MLP outputs. We then measure74

changes in loss and KL divergence of the softmax distributions before and after ablation. We compute75

KL divergence as76

KL(P ||Q) =
1

|T |
∑
t∈T

∑
x∈V

Pt(x)log
Pt(x)

Qt(x)

where T is the set of token positions, V is the output vocabulary (set of all possible tokens), and P,Q77

are original and ablated softmax distributions of output logits at position t, respectively. We also78

perform a sensitivity analysis by repeating the experiment with relaxed thresholds for determining79

universality (e.g., 0.4 and 0.6).80

4 Results81

Emergence of Universal Neurons. Universal neurons emerge early, increasing consistently through82

training, notably in deeper layers (Table 1). At early checkpoints (100k steps), fewer than 5% of83

neurons meet the universality criterion (0.5 threshold), but this fraction increases steadily to nearly84

6% by 300k steps. Adjusting the universality threshold to 0.4 or 0.6 shows consistent trends.85

Persistence of Universal Neurons. We assess how consistently universal neurons remain universal86

as training progresses by computing their conditional persistence across three intervals: 100k→200k,87

200k→300k, and 100k→300k steps.88

Figure 1 shows layer-wise persistence rates across these intervals. We find that universal neurons89

are highly stable over time, especially in later layers. Layers 10 and 11 consistently exceed 90%90

persistence, while mid-layer neurons (e.g., layers 3–5) show greater volatility. Persistence from91

100k→300k is slightly lower overall than adjacent intervals, reflecting gradual representational drift.92

These results support the hypothesis that universal neurons, particularly in deeper layers, encode93

stable and task-relevant features that solidify as training proceeds. For completeness, we include94

detailed layer-wise persistence plots in Appendix A.1 that further proves the hypothesis.95

Ablating Universal Neurons. To test the functional importance of universal neurons, we ablate96

them by zeroing their MLP outputs during inference and measure the resulting change in model97

predictions using KL divergence.98

Figure 2 shows that ablating all universal neurons (with excess correlation > 0.5) leads to a substantial99

shift in the output distribution, indicating a significant disruption in the model’s predictions. In100

Threshold 100k 200k 300k
0.4 9.58 10.99 11.33
0.5 4.74 5.56 5.71
0.6 2.00 2.35 2.41

Table 1: Percentage of universal neurons at different thresholds and checkpoints, averaged across
models.
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Figure 1: Persistence of universal neurons aggre-
gated by layer (Y-axis begin from 60%).

Figure 2: KL divergence of ablated universal
(solid) vs. non-universal (dashed) neurons. Col-
ors indicate reference models.

contrast, ablating all non-universal neurons produces minimal change across all checkpoints and101

models.102

These results demonstrate that universal neurons are not only shared across models but also causally103

important to inference. Considering that only about 5% of all neurons are universal, our results104

strongly support their role as core components of the model’s learned algorithm.105

For completeness, we report supplementary ablation experiments in Appendix B. These include106

loss change and different thresholds (0.4 and 0.6). In addition to the above findings, layer-wise107

ablation(Appendix B.2) reveals that ablating universal neurons in the first layer causes a dispropor-108

tionately large increase in both KL divergence and loss—far exceeding the impact observed in deeper109

layers. This suggests that early-layer universal neurons play a particularly critical role in shaping the110

model’s final predictions.111

5 Discussion and Conclusion112

Findings In this paper, we explore how universal neurons - neurons with high correlations across113

models - emerge early on in training and persist throughout checkpoints. We found that universal114

neurons have high functional significance, as ablating them results in higher loss and KL divergence115

than non-universal neuron ablations. Neurons remain consistent across training checkpoints, with116

later layers having the higher persistence on average. Trends in universality continue to remain stable117

despite threshold adjustment (0.4 and 0.6).118

Limitations We only studied small models of a few hundred million parameters and monitored119

activations produced from a data subset of 5 million tokens, which is relatively small. Moreover, we120

only studied correlations between individual neurons as opposed to families of neurons or higher121

order circuits, which could offer more interpretable findings.122

Future Work To further gain understanding of the impact of universal neurons across families, it123

would be interesting to examine ablations for families of universal neurons and how the loss varies.124

A wider selection of experiments could lead to greater insight, for instance, monitoring the effects of125

activation patching over some training data.126
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A Persistence of Universal Neurons over Checkpoints193

A.1 Global Universal Neuron Persistence194

Figure 3: Layer-aggregated persistence of universal neurons across training checkpoints for each
model. Bars represent the percentage of universal neurons at the earlier checkpoint that remain uni-
versal at the later one. Later-stage intervals (e.g., 200k→300k) exhibit higher persistence, indicating
stabilization of universal features over training.

A.2 Detailed Layer-wise Universal Neuron Persistence195

All models exhibit a U-shaped trend: lower persistence in middle layers (2–5) and higher stability196

in both early and especially late layers. This suggests that early and late layers encode more stable,197

model-aligned features during training.

Figure 4: Layer-wise persistence of universal neurons from checkpoint 100k to 200k.

198
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Figure 5: Layer-wise persistence of universal neurons from checkpoint 200k to 300k.

Figure 6: Layer-wise persistence of universal neurons from checkpoint 100k to 300k.

B Ablation Experiment Results199

B.1 Loss Increase From Ablating All Universal/Non-universal Neurons200

The increase in loss is computed as the difference in model loss before and after neuron ablation.201

Across all training checkpoints, ablating universal neurons results in a substantially greater increase202

in loss compared to non-universal neurons. The accompanying bar graphs support the primary claim203

presented in Section 4.204

Figure 7: Loss increase from ablating universal neurons over training steps.
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Figure 8: Loss increase from ablating non-universal neurons over training steps.

B.2 Comparative Layer-Wise Effects of Universal vs. Non-Universal Neuron Ablation205

At each training checkpoint, we ablate all universal or non-universal neurons within a specific layer206

and evaluate the resulting change in model output using KL divergence and loss increase. Figures207

below present the average KL divergence and loss difference (ablated minus original) across five208

models for both universal and non-universal neuron ablations.209

Ablating universal neurons consistently leads to a greater increase in KL divergence and loss compared210

to non-universal neurons, indicating their stronger causal role in shaping model predictions. Notably,211

the first layer shows the most pronounced sensitivity to ablation, suggesting that early-layer universal212

neurons encode particularly critical information. In contrast, non-universal neuron ablation results in213

minor and often negligible effects across layers and checkpoints.

Figure 9: Layer-wise KL divergence from ablating universal neurons.
214

Figure 10: Layer-wise KL divergence from ablating non-universal neurons.
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Figure 11: Layer-wise loss increase from ablating universal neurons.

Figure 12: Layer-wise loss increase from ablating non-universal neurons.

C Robustness Analysis Under Varying Universality Thresholds(Excess215

Correlation of 0.4 and 0.6)216

Although the absolute values vary with different universality thresholds (0.4 and 0.6), the over-217

all trends remain consistent. These results support our primary claims regarding the functional218

importance of universal neurons.219

C.1 All Universal/Non-universal Neurons Ablation with 0.4 Thresholding220

Figure 13: KL divergence from ablating universal neurons over training steps.
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Figure 14: KL divergence from ablating non-universal neurons over training steps.

Figure 15: Loss increase from ablating universal neurons over training steps.

C.2 All Universal/Non-universal Neurons Ablation with 0.6 Thresholding221
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Figure 16: Loss increase from ablating non-universal neurons over training steps.

Figure 17: KL divergence from ablating universal neurons over training steps.

Figure 18: KL divergence from ablating non-universal neurons over training steps.
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Figure 19: Loss increase from ablating universal neurons over training steps.

Figure 20: Loss increase from ablating non-universal neurons over training steps.
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