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Abstract

We investigate the phenomenon of neuron universality in independently trained
GPT-2 Small models, examining these universal neurons—neurons with consis-
tently correlated activations across models—emerge and evolve throughout training.
By analyzing five GPT-2 models at five checkpoints, we identify universal neurons
through pairwise correlation analysis of activations over a dataset of 5 million
tokens. Ablation experiments reveal significant functional impacts of universal
neurons on model predictions, measured via cross entropy loss. Additionally, we
quantify neuron persistence, demonstrating high stability of universal neurons
across training checkpoints, particularly in early and deeper layers. These findings
suggest stable and universal representational structures emerge during language
model training.

1 Introduction

Large language models (LLMs) exhibit remarkable generalization but remain difficult to interpret
[L]. However, neural networks are fully observable and deterministic, allowing us to record and
manipulate internal components such as neuron activations [2]]. This presents a rare opportunity to
reverse-engineer their internal mechanism. An important open question regarding interpretability is
whether models independently trained on the same task converge on similar internal structures—a
notion termed the universality hypothesis [3l]. Universality, if established, offers stable interpretability
targets and aids transfer learning.

We examine this hypothesis by analyzing five GPT-2 models trained from scratch, tracking when
universal neurons—units with highly correlated activations across models [4]—emerge, their stability
over training, and their causal role.

Contributions:
* Emergence Analysis: We provide the first systematic study on the emergence of universal

neurons during training, showing that they appear early and grow steadily, especially in
early and deeper layers.

*Equal Contribution



* Persistence Quantification: We quantify the stability of universal neurons across training
checkpoints, finding that most remain universal in subsequent stages.

* Functional Role via Ablation:We demonstrate that ablating universal neurons significantly
increases loss, confirming their causal importance to model predictions.

* Layer-wise Characterization: We show that first-layer universal neurons disproportionately
affect output distributions, suggesting they encode critical low-level information.

2 Related Work

Universality and Cross-Model Consistency. Early studies reported limited direct neuron matching
[5]. However, recent work identifies universal neurons with consistent semantic features across
independently trained GPT-2 models [4]]. These universal neurons are also shown to correspond to
interpretable, semantically meaningful features [4]. This provides evidence that some circuits are
consistently discovered across training runs, supporting the hypothesis of shared representational
scaffolding.

Representation Similarity. Because neurons are often polysemantic [2]], direct comparison is
difficult. [[6] addressed this by learning sparse features with autoencoders and found significant
alignment of feature dimensions across models. Algorithmic behaviors also show cross-architecture
consistency, indicating broader universality [[7} 8]].

Emergence and Stability. Works such as the lottery ticket hypothesis [9] and canonical correlation
studies [[LO] show that networks form persistent representational patterns within the first few training
epochs. Theoretical analyses further support the idea that networks rapidly learn dominant features
that are gradually refined [11]. These results motivate our focus on the emergence and persistence of
universal neurons throughout training.

3 Method

We analyze five GPT-2 Small models at checkpoints 20%, 40%, 60%, 80%, and 100% of training(80,
160k, 240k, 320k, 400k steps). Neuron activations are extracted over SM tokens from the Pile dataset
[12].

Identifying Universal Neurons via Correlation. Following [4], we compute Pearson correlations

between neurons across model pairs. Let aém’c) € R™ denote the activation vector of neuron £ in

model m at checkpoint c over n token positions. The Pearson correlation between neurons defined

by a,(cml’c) and aémw) is:
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where i, and oy, are mean and standard deviations of the activation vector al™e) computed across a

5 million token dataset of the uncopyrighted Pile HuggingFace dataset [12]. We compute the excess
correlation for a neuron k with respect to a model ms at checkpoint c as:
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where is the pearson correlation between neuron £ in model m4 and neuron £ in a randomly
rotated version of the layer from model mso, all at a checkpoint c. This rotation is constructed by
multiplying the matrix of activations in that layer with a random Gaussian matrix, as described in
[4]]. The purpose of this transformation of activation vectors is to eliminate any privileged basis and
establish a baseline for comparison [4].
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We used five GPT-2 Small models, models a through e El We selected model a as the reference and
computed Pearson correlations between its neurons and those in each of the other models (b, c, d,
e). A neuron in model a is labeled universal if it averages an excess correlation above 0.5 across all
4 model pairs. We also adjust this threshold to 0.4 and 0.6 to verify robustness. Tracking p; across
checkpoints and models allows us to observe universality emerge over training.

Persistence Across Training Checkpoints. We evaluate whether neurons remain universal over
time by computing:

Prersist = P(univ. at to | univ. at ¢;)

across training step intervals (e.g., 80k— 160k, 240k—320k). To localize this further, we stratify by
transformer layer ¢:

Poerise(¢) = P(univ.y, | univ.,, layer = ¢)

Ablation Studies and Functional Role. To test functional significance, we ablate universal and
control (non-universal) neurons during inference by zeroing their MLP outputs. We then measure
changes in loss and change in loss per neuron ablated. We also perform a sensitivity analysis by
repeating the experiment with relaxed thresholds for determining universality (e.g., 0.4 and 0.6).

4 Results

Emergence of Universal Neurons. Universal neurons emerge early, increasing consistently through
training, notably in earlier layers (Figure[I). At early checkpoints (80k steps), fewer than 5% of
neurons meet the universality criterion (0.5 threshold), but this fraction increases steadily by 400k
steps. As shown in Appendix [A] adjusting the universality threshold to 0.4 or 0.6 shows consistent
trends.

Persistence of Universal Neurons. We assess how universal neurons remain universal consistently
as training progresses by computing their conditional persistence in five intervals: 80k— 160k,
160k— 240k, 240k— 320k, 320k—400k, and 80k—400k steps.

*from stanford-crfm at HuggingFace
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Figure 1: Percentage of Universal Neurons Across Layers. The graph shows an increasing trend of
Universal Neurons as training step increases.
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Figure 2: Universal Neuron Persistence Across Layers. Early and later layers show high Universal
Neuron persistence, while middle layers experience shifting dynamics of universal features.

Figure 2] shows layer-wise persistence rates across these intervals. We find that universal neurons are
mostly highly stable over time, especially in early and later layers. Layers 0, 1, 10, and 11 maintain
near or above 80% persistence, while mid-layer neurons (e.g., layers 3—8) show greater volatility. The
overall persistence of 80k—400k is in general lower than the adjacent intervals, reflecting a gradual
representational drift.

These results support the hypothesis that universal neurons, particularly in early and deeper layers,
encode stable and task-relevant features that solidify as training proceed. For completeness, we
include layer-wise persistence plots in Appendix [B|with different thresholds.

Ablating Universal Neurons. To test the functional importance of universal neurons, we ablate
them by zeroing their MLP outputs during inference and measure the resulting change in model
predictions using Cross Entropy Loss. We measure the loss value of ablating groups of neurons and
the ablation efficiency: change in loss per neuron ablated.

We perform four types of ablation experiments: ablating all universal neurons, ablating all non-
universal neurons, ablating a random set of neurons equal in number to the universal neurons, and
ablating five times as many random neurons. Figures [3|&/4]show that ablating all universal neurons
(with excess correlation > 0.5) leads to a substantial negative impact in the model’s predictions
compared to ablating random neurons. Ablating universal neurons causes around the same level of
disruption as ablating 5 times as many random neurons.

00020

0.0015

0.0010

Loss Increase per Neuron

0.0005

0.0000

100000 150000 200000 250000 300000 350000 400000 100000 150000 200000 250000 300000 350000 400000
Checkpoint Checkpoint

Figure 3: Absolute Loss Values After Ablat- Figure 4: Ablation Efficiency (Change in loss
ing(zeroing activations) Different Neurons. It per Neuron). The effect of universal neurons in-
takes around 5x the amount of random neurons creases along with training steps. Compared to
to achieve the same disruptive result of ablating Nonuniversal neurons, they are crucial to the func-
universal neurons. tionality of the language model.
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Figure 5: Layer-wise Ablation Efficiency Figure 6: Layer-wise Ablation Efficiency
(Change in loss per Neuron) on checkpoint 80k. (Change in loss per Neuron) on checkpoint 400k.

These results demonstrate that universal neurons are not only shared across models but also causally
important for inference. Considering that only about 4 to 5% of all neurons are universal, our results
strongly support their role as core components of the model’s learned algorithm.

In addition to the above findings, layer-wise ablation(Figures[5}&6)) reveals that,throughout the training
progress, ablating universal neurons in the first layer causes a disproportionately large increase in
loss—far exceeding the impact observed in deeper layers. This suggests that early-layer universal
neurons play a particularly critical role in shaping the model’s final predictions.

For completeness, we report comprehensive ablation experiments in Appendix [C&D} These include
global and layer-wise ablation results with different excess correlation thresholds (0.4 and 0.6).

5 Discussion and Conclusion

Findings In this paper, we explore how universal neurons - neurons with high correlations across
models - emerge early on in training and persist throughout checkpoints. We found that universal
neurons have high functional significance, as ablating them results in higher loss per neuron than non-
universal neuron ablations. These universal neurons remain consistent across training checkpoints,
with both early and later layers having higher persistence on average. Trends in universality continue
to remain stable despite threshold adjustment (0.4 and 0.6).

Limitations We only studied small models of a few hundred million parameters and monitored
activations produced from a data subset of 5 million tokens, which is relatively small. Moreover, we
only studied correlations between individual neurons as opposed to families of neurons or higher
order circuits, which could offer more interpretable findings.

Future Work To better understand the impact of universal neurons across families, it would be
interesting to examine ablations for families of universal neurons and how the loss varies. A wider
selection of experiments could lead to greater insight, for example, monitoring the effects of activation
patching on some training data.
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A

Layer-wise Universal Neuron Percentage for Different Thresholds

Changing the threshold for labeling universal neuron shows similar trends.

% Universal Neurons

6
Layer

Figure 7: Percentage of Universal Neu-
rons(Excess correlation > 0.4) Across Layers
throughout different checkpoints.

Layer

Figure 8: Percentage of Universal Neu-
rons(Excess correlation > 0.6) Across Layers
throughout different checkpoints.

B Persistence of Universal Neurons over Checkpoints for Different

Thresholds

All thresholds exhibit a U-shaped trend: lower persistence in middle layers (3—8) and higher stability
in both early and especially late layers. This suggests that early and late layers encode more stable,

model-aligned features during training.

Figure 9: Persistence of Universal Neurons (Ex-

cess correlation > 0.4) Across Layers throughout
different checkpoints.

Figure 10: Persistence of Universal Neurons (Ex-
cess correlation > 0.6) Across Layers throughout
different checkpoints.
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C Additional Universal Neuron Ablation Experiment Results

As confirmed in Figure [[T|8I3] universal neurons are more significant than nonuniversal neurons,
but the magnitude differed greatly. The impact of ablating universal neurons when thresholding with
0.4 is greatly overwhelmed by ablating 5x the amount of random neurons. Whereas the impact of
ablating universal neurons when thresholding with 0.6 is comparable to that of ablating the same

number of random neurons.

However, Figure [T2&{14] consistently prove the functional significance of universal neurons through

per-neuron metric.

C.1 Ablation Loss Increase with 0.4 Excess Correlation Thresholding
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Figure 11: Absolute Loss Values After Ablat-
ing(zeroing activations) Different Neurons. When
we lower the threshold from an excess correlation
of 0.5 to that of 0.4, ablating 5x the amount of
random neurons achieve more disruptive results
than ablating all universal neurons.
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Figure 12: Ablation Efficiency (Change in loss
per Neuron). The effect of universal neurons in-
creases along with training steps. Compared to
Nonuniversal neurons, they are crucial to the func-
tionality of the language model.

C.2 Ablation Loss Increase with 0.6 Excess Correlation Thresholding
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Figure 13: Absolute Loss Values After Ablat-
ing(zeroing activations) Different Neurons. It
takes around 5x the amount of random neurons
to achieve the same disruptive result of ablating
universal neurons.
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Figure 14: Ablation Efficiency (Change in loss
per Neuron). The effect of universal neurons in-
creases along with training steps. Compared to
Nonuniversal neurons, they are crucial to the func-
tionality of the language model.



D Additional Layer-Wise Universal Neuron Ablation Experiment Results

As shown in all figures below, the first layer of the model contains universal neurons that are the most

crucial.

D.1 Layer-wise Ablation Efficiency Across Checkpoints
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Figure 15: Layer-wise Ablation Efficiency
(Change in loss per Neuron) on checkpoint 80k.
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Figure 16: Layer-wise Ablation Efficiency
(Change in loss per Neuron) on checkpoint 160k.
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Figure 17: Layer-wise Ablation Efficiency
(Change in loss per Neuron) on checkpoint 240k.

Figure 18: Layer-wise Ablation Efficiency
(Change in loss per Neuron) on checkpoint 320k.
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Figure 19: Layer-wise Ablation Efficiency (Change in loss per Neuron) on checkpoint 400k.



D.2

Layer-wise Ablation Efficiency with 0.4 Excess Correlation Thresholding
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Figure 20: Layer-wise Ablation Efficiency
(Change in loss per Neuron) on checkpoint 80k.
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Figure 21: Layer-wise Ablation Efficiency
(Change in loss per Neuron) on checkpoint 160k.
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Figure 22: Layer-wise Ablation Efficiency

(Change in loss per Neuron) on checkpoint 240k.
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Figure 23: Layer-wise Ablation Efficiency
(Change in loss per Neuron) on checkpoint 320k.
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Figure 24: Layer-wise Ablation Efficiency (Change in loss per Neuron) on checkpoint 400k.
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D.3

Layer-wise Ablation Efficiency with 0.6 Excess Correlation Thresholding
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Figure 25: Layer-wise Ablation Efficiency
(Change in loss per Neuron) on checkpoint 80k.
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Figure 26: Layer-wise Ablation Efficiency
(Change in loss per Neuron) on checkpoint 160k.
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Figure 27: Layer-wise Ablation Efficiency

(Change in loss per Neuron) on checkpoint 240k.
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Figure 28: Layer-wise Ablation Efficiency
(Change in loss per Neuron) on checkpoint 320k.
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Figure 29: Layer-wise Ablation Efficiency (Change in loss per Neuron) on checkpoint 400k.
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