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A B S T R A C T
Remote Sensing Visual Question Answering (RSVQA) has gained significant research interest. However,
current RSVQA methods are limited by the imaging mechanisms of optical sensors, particularly under
challenging conditions such as cloud-covered and low-light scenarios. Given the all-time and all-weather
imaging capabilities of Synthetic Aperture Radar (SAR), it is crucial to investigate the integration of
optical-SAR images to improve RSVQA performance. In this work, we propose a Text-guided Coarse-
to-Fine Fusion Network (TGFNet), which leverages the semantic relationships between question text and
multi-source images to guide the network toward complementary fusion at the feature level. Specifically,
we develop a Text-guided Coarse-to-Fine Attention Refinement (CFAR) module to focus on key areas re-
lated to the question in complex remote sensing images. This module progressively directs attention from
broad areas to finer details through key region routing, enhancing the model’s ability to focus on relevant
regions. Furthermore, we propose an Adaptive Multi-Expert Fusion (AMEF) module that dynamically
integrates different experts, enabling the adaptive fusion of optical and SAR features. In addition, we
create the first large-scale benchmark dataset for evaluating optical-SAR RSVQA methods, comprising
6,008 well-aligned optical-SAR image pairs and 1,036,694 well-labeled question-answer pairs across 16
diverse question types, including complex relational reasoning questions. Extensive experiments on the
proposed dataset demonstrate that our TGFNet effectively integrates complementary information between
optical and SAR images, significantly improving the model’s performance in challenging scenarios. The
dataset is available at: https://github.com/mmic-lcl/.

1. Introduction
Visual question answering (VQA) [1] has emerged as a

promising research direction aimed at understanding image
scenes and reasoning out answers by integrating the language
information from the questions. RSVQA extends the capa-
bilities of traditional remote sensing analysis by enabling in-
tuitive, question-driven exploration of satellite and aerial im-
agery. This approach has broad applications in various do-
mains, including land use and land cover analysis [2], ur-
ban planning [3], environmental monitoring [4], and disas-
ter management [5]. By leveraging the power of VQA tech-
niques, RSVQA allows users to obtain valuable insights from
remote sensing data through interactive question-answering in-
terfaces. This not only enhances the accessibility and usability
of remote sensing technology but also facilitates more efficient
and targeted analysis of large-scale geospatial datasets.

However, despite its potential, RSVQA faces significant
challenges unique to remote sensing imagery. Remote sens-
ing images captured from satellite platforms are often subject
to conditions not typically encountered in natural scene im-
agery, presenting obstacles to effective analysis. As illustrated
in Fig.1, these adverse factors significantly hinder the perfor-
mance of existing RSVQA models [6, 7, 8, 9, 10, 11]. Fig.2
demonstrates that in challenging conditions such as cloud-
covered and low-light scenes, methods [6, 7, 8] relying solely
on optical images fail to extract universally meaningful fea-
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tures, resulting in incorrect answers. The limitations of these
models underscore the necessity of developing more robust
solutions that can maintain high performance across diverse
imaging conditions, thereby enhancing the reliability and ap-
plicability of RSVQA systems in real-world remote sensing
scenarios.

Recently, there has been significant progress in the field
of RSVQA, with numerous approaches being developed
to tackle various challenges. Representative methods in-
clude RSVQA [6], MAIN [7], FETH [12], SHRNet [13],
MQVQA [10], prompt-RSVQA [9], SAM-VQA [14], CD-
VQA [15] and FloodNet [16]. While these approaches have
shown promising results on existing datasets, they primarily
focus on daytime images captured under favorable conditions.
The robustness of these methods in challenging scenarios, such
as cloud occlusion and low illumination, remains largely unex-
plored. This gap underscores the need for innovative solutions
that leverage complementary data sources to enhance RSVQA
model performance across diverse environmental conditions.

Synthetic Aperture Radar (SAR), with its unique all-time
and all-weather imaging capabilities, offers a promising solu-
tion to mitigate the limitations of optical sensors. SAR’s ability
to penetrate cloud cover and capture high-quality images re-
gardless of lighting conditions [17, 18] makes it an ideal com-
plement to optical imagery. Optical-SAR fusion has the po-
tential to overcome single-sensor limitations in terms of scene
information content and resolution [19, 20, 21].

Recent advancements in optical-SAR feature-level fusion
have demonstrated significant improvements in applications
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(a) Cloud-covered scene (b) Low-light scene

Qesution: Is there a ditch in the top 
left of the image ? (presence)
Answer: Yes
Qestion: Are there more farmlands 
below the image than ditches overall ?
(compare)
Answer: Yes

Question: How many rivers are there 
in the image? (number)
Answer: 2
Question: Is the scene in the image 
suitable for farming? (deduce)
Answer: Yes

Question: What is the shape of the 
longest road in the image ? (shape)
Answer: Curve
Question: Where is the largest 
intersection in the picture ? 
(location)
Answer: Bottom Right

Question: In which type of modality is 
the river more clearly represented ? 
(quality)
Answer: SAR
Question: Is it suitable to cross the 
river in the top left of the image ? 
(deduce)
Answer: Yes

Figure 1: RSVQA applications are explored in (a) cloud-covered
and (b) low-light scenarios, using optical-SAR image pairs with
corresponding question-answer examples. Optical images de-
grade significantly in these conditions, while SAR images remain
robust, highlighting SAR’s potential to enhance RSVQA perfor-
mance in challenging environments. Blue and red indicate regions
associated with different questions within the same image pair.
The text in parentheses denotes the type of question.

such as land cover classification [22] and object detection [17,
23, 24]. These fusion techniques show particular promise in
addressing imaging challenges posed by cloudy occlusion and
low-light environments, potentially benefiting RSVQA models
through improved visual-textual understanding and reasoning.
Despite the promising advancements in optical-SAR fusion for
various remote sensing tasks, its application in the context of
RSVQA remains largely unexplored. This critical research
area offers an important opportunity to develop novel, task-
specific fusion approaches that could substantially advance the
field of RSVQA.

In this work, we propose a novel Text-guided Coarse-to-
Fine Fusion Network (TGFNet) that leverages high-level se-
mantic connections between question text and multi-source
images to guide the network towards learning complemen-
tary joint representations. Specifically, we develop a Text-
guided Coarse-to-Fine Attention Refinement (CFAR) module
to progressively focus on question-relevant regions while sup-
pressing background noise in complex remote sensing scenes.
Furthermore, we introduce an Adaptive Multi-Expert Fusion
(AMEF) module that dynamically integrates different experts,
enabling adaptive fusion of optical and SAR features. In
addition, this research field still lacks a large-scale bench-
mark dataset with well-labeled question-answer text and well-
aligned optical-SAR images, which is essential for the train-
ing and comprehensive evaluation of optical-SAR RSVQA

methods. To this end, we construct the OSVQA (Optical-
SAR Visual Question Answering) dataset, a new large-scale
benchmark dataset comprising 6,008 aligned optical-SAR im-
age pairs and 1,036,694 question-answer pairs across 16 di-
verse question types. Notably, we incorporate a unique cate-
gory of questions that require the model to assess the quality
and reliability of optical-SAR data for optimal source selec-
tion during reasoning. Extensive experiments on the OSVQA
dataset demonstrate that our TGFNet effectively fuses comple-
mentary information from optical and SAR modalities, result-
ing in significant performance improvements in challenging
scenarios such as low-light conditions and cloud occlusions.

In summary, the contributions of this article can be sum-
marized as follows:

• We propose a Text-guided Coarse-to-Fine Fusion Net-
work (TGFNet) that leverages high-level semantic re-
lationships between questions and multi-source images
to achieve a complementary fusion of key information
across these images. This novel approach significantly
enhances RSVQA performance under adverse imaging
conditions through effective optical-SAR fusion.

• We introduce two key modules: the Text-guided Coarse-
to-Fine Attention Refinement (CFAR) module, which
identifies question-relevant regions while suppressing
background noise, and the Adaptive Multi-Expert Fu-
sion (AMEF) module, which dynamically integrates fea-
tures from both optical and SAR images, enabling robust
feature fusion.

• To the best of our knowledge, the proposed OSVQA
dataset is the first large-scale and well-annotated optical-
SAR benchmark dataset. This dataset contains 6,008
image pairs and 1,036,694 question-answer pairs, with
each image pair averaging 172 complex questions across
16 different question types.

• Extensive experimental results on our proposed dataset
demonstrate that TGFNet effectively integrates the re-
spective advantages of optical and SAR images, signifi-
cantly enhancing the robustness of RSVQA under chal-
lenging imaging conditions.

2. Related work
This section presents an overview of recent advancements

in Visual Question Answering (VQA), Remote Sensing Vi-
sual Question Answering (RSVQA), and optical-SAR image
fusion, which constitute the foundation of our work.
2.1. Visual Question Answering

Visual Question Answering (VQA) [1] witnesses signif-
icant progress with the advent of deep learning techniques.
Early approaches focus on the joint embedding of visual and
textual features. Malinowski et al. [25] propose Neural-Image-
QA, utilizing recurrent neural networks for challenging image-
related tasks. Gao et al. [26] introduce the mQA model, treat-
ing VQA as a classification problem by feeding feature vectors
into a linear classifier. Introducing the Transformer [27] leads
to a paradigm shift toward attention-based methods. Shih et
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(a) Cloud covered scene 
Q1. Is there a wide road at the top of the image ? (presence)
Q2. Are there more wide roads than narrow roads ? (compare)       
Q3. What’s the amount of the intersections ? (number) 
Q4. Where is the intersection located in the image ? (location)                   
Q5. Is it a residential area ? (theme)                                            
Q6. What is the shape of the narrow road in the image ? (shape)
Q7. What is the distance between the wide road above and 
       the narrow road below ? (distance)   
Q8. Is it possible to swim here ? (deduce)      

(b) Low light scene 

Q1. Is it a residential area ? (theme)
Q2. What’s the amount of the agricultural lands ? (number)
Q3. Is there a wide road ? (presence)                   
Q4. Where is the longest river ? (location) 
Q5. Which type of land cover appears the most in the image ? (most) 
Q6. What is the length of the longest river ? (length)                                      
Q7. Is it a rural or urban area ? (urban)                                      
Q8. Is the scene in the image suitable for driving ? (deduce)     

Answers ( GT   :    RSVQA [6]    :     MAIN [7]      :      HRVQA [8] )Questions (Types)Optical Image

A1. yes                          no                      no                           yes
A2. yes                          yes                     no                           no
A3. 1                 non-residential area     1                             1
A4. top right               next to                 no                        beach
A5. yes        isolated distribution          no          isolated distribution
A6. straight              building              larger                4000-5000m2 
A7. 100-125m           shorter       22500-25000m2            beach

A8. no                            yes                     yes                         yes

A1. no          isolated distribution         yes             isolated distribution
A2. 8                  upper right        5000-6000m2           bare ground
A3.  no                          yes                  building                    no
A4. center         residential area            top              residential area
A5. agricultural area     left         agricultural area         straight
A6. 250-275m   residential area  residential area   residential area
A7. rural                      bottom                 3                            3
A8. no                            yes                    no                           no

Figure 2: Examples of state-of-the-art (SOTA) RSVQA models [6, 7, 8] are evaluated in (a) cloud-covered and (b) low-light scenarios,
relying solely on optical images. Question types are highlighted in green, correct answers are indicated in blue, and incorrect answers
in red.

al. [28] develop a model that learns to answer visual questions
by selecting image regions relevant to text-based queries. Yu et
al. [29] propose the Deep Modular Attention Network, employ-
ing self-attention units for intra-text interactions and guided at-
tention units for text-image interactions. Zeng et al. [30] intro-
duce X-VLM, a multi-granularity vision-language pre-training
approach that reconstructs existing datasets into visual con-
cepts and corresponding texts. To address complex and diverse
questions, Wang et al. [31] propose Ahab, a VQA method that
infers image content using large-scale knowledge bases. Wu
et al. [32] develop a method that constructs textual represen-
tations of image semantic content and merges them with tex-
tual information from knowledge bases, enhancing scene un-
derstanding and enabling broader question-answering capabil-
ities.

While these VQA methods show promising results, they
are primarily designed for natural scene images and often
struggle with the multi-scale features and complex semantics
inherent in remote sensing imagery.
2.2. Remote Sensing Visual Question Answering

RSVQA [6] extends VQA techniques to the domain of re-
mote sensing, aiming to efficiently interpret rich geospatial
information and relationships in satellite and aerial imagery.
However, RSVQA encounters unique challenges due to com-
plex backgrounds, significant scale variations, and sensitivity
to lighting conditions inherent in remote sensing data. To ad-
dress these challenges, researchers propose various solutions.
Zheng et al. [7] employ attention mechanisms to align image
regions with query words and use bilinear fusion to generate
joint representations of image-question pairs. Yuan et al. [12]
integrate regional and global information to obtain multi-
scale image representations and employ self-paced curriculum
learning to train models from easy to difficult questions. Re-
cent works leverage pre-trained models and multi-scale rea-
soning. Bazi et al. [11] utilize a pre-trained CLIP [33] net-
work for effective embedding of images and questions, captur-
ing intricate intra-modal and inter-modal connections. Zhang

et al. [13] propose a method that uses textual information to
guide visual-spatial reasoning across multiple scales. Zhang
et al. [10] introduce a multistep question-driven approach, re-
peatedly focusing on the image through an attention mecha-
nism for detailed inference. Additionally, new RSVQA tasks
are being proposed for specific scenarios. Sarkar et al. [14] in-
troduce a disaster assessment QA dataset, enhancing RSVQA
performance in disaster evaluation. Yuan et al. [15] explore
VQA applications in remote sensing change detection using
multi-temporal aerial imagery.

Despite these advancements, existing RSVQA methods
primarily rely on optical images captured under favorable con-
ditions. They often struggle with extreme imaging conditions
such as low-light and cloud-covered scenes, limiting their ap-
plicability in real-world scenarios.
2.3. Optical and SAR Image Fusion

Optical-SAR image fusion is a critical area in remote sens-
ing that aims to combine the complementary strengths of both
modalities, thereby enhancing information content and im-
proving the robustness of image analysis across diverse en-
vironmental conditions. Fusion methods can be broadly cat-
egorized into traditional approaches and deep learning-based
techniques. Deep learning methods, primarily utilizing Con-
volutional Neural Networks (CNNs) [34] and Generative Ad-
versarial Networks (GANs) [35], show promise in addressing
challenges such as large imaging discrepancies and spectral
mismatches between optical and SAR imagery. Li et al. [36]
and Ienco et al. [37] propose multi-channel, multi-branch net-
works for multi-scale feature extraction. He and Yokoya [38]
expand inputs to multi-temporal optical and SAR images, em-
ploying nonlinear residual networks for fusion. To bridge the
modality gap, several GAN-based approaches are proposed.
Gao et al. [39] employ GANs to transform SAR images into
an optical format to fill cloudy regions in optical images. Fu et
al. [40] introduce a multi-level cascaded residual connection
GAN framework for mutual transformations between optical
and SAR images. Grohnfeldt et al. [41] develop SAR-OPT-
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Figure 3: The overall framework of TGFNet is as follows: First, the CLIP [33] model fine-tuned on OSVQA dataset is employed for
initial feature extraction from both text and images. Next, we propose the Text-guided Coarse-to-Fine Attention Refinement (CFAR)
module, which consists of two identical structures, each comprising KRR, MCA, and IE. This module is designed to focus on the
image regions relevant to the given question. To effectively leverage the complementary strengths of SAR, optical, and fusion images
for answer prediction, we introduce the Adaptive Multi-Expert Fusion (AMEF) module, which includes the SAR Expert, OPT Expert,
Fusion Expert, RQAF, and AF.

CGAN, a conditional GAN specifically designed for SAR and
multispectral image fusion.

The fusion of optical and SAR images shows the potential
to enhance downstream remote sensing tasks. Li et al. [22]
achieve a 5% increase in land cover classification accuracy
using fused optical-SAR images compared to methods based
solely on optical images. Wang et al. [17] enhance SAR tar-
get detection by transferring location knowledge from optical
images through knowledge distillation.

While optical-SAR fusion demonstrates promising results
in various remote sensing applications, its potential in the con-
text of RSVQA remains largely unexplored. Leveraging the
complementary strengths of optical and SAR modalities could
potentially address the limitations of current RSVQA methods,
particularly under challenging imaging conditions.

3. Methodology
The overall framework of TGFNet is discussed in Section

3.1. The proposed CFAR and AMEF modules are presented
in Sections 3.2 and 3.3, respectively. The loss function of
TGFNet is detailed in Section 3.4.
3.1. Overall Framework

Visual information plays a crucial role in VQA tasks. How-
ever, optical images are prone to information loss under ad-
verse conditions, such as low-light or cloud-covered scenes,
which significantly impairs VQA performance. To address this

challenge, we propose TGFNet, a novel framework that lever-
ages the complementary strengths of optical and SAR images
through an effective Coarse-to-Fine fusion strategy, thereby
mitigating the impact of challenging imaging conditions on
VQA tasks. As illustrated in Fig.3, our TGFNet comprises
two main components:

(1) Text-guided Coarse-to-Fine Attention Refinement
(CFAR) Module. This module directs attention from broad
areas to finer details in the optical-SAR images based on the
semantic correlation between the question and the images. The
identified key regions are subsequently used to enhance the
optical-SAR images further.

(2) Adaptive Multi-Expert Fusion (AMEF) Module. To
leverage the unique strengths of different image modalities,
this proposed module processes SAR images, optical images,
and fused images through their respective specialized experts.

The processing flow of TGFNet begins with a pre-trained
CLIP [33] model, which is fine-tuned on our proposed OS-
VQA dataset. The model encodes text-based questions, opti-
cal images, and SAR images into a unified feature space. This
unified representation facilitates effective cross-modal interac-
tions in the subsequent stages. The CFAR module then iden-
tifies and enhances question-relevant regions in both optical
and SAR images. These enhanced regions are subsequently
fed into the AMEF module to integrate information from the
individual modalities and their fusion experts to generate the
final answer.
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Figure 4: The network structures of MCA and IE are illustrated
as follows. Panel (a) shows the structure of the MCA, which
consists of two LayerNorm layers, a multi-head cross-attention
layer, and a Multi-Layer Perceptron (MLP). It takes key regions of
optical or SAR images and the question representation as inputs,
outputting their fused results. Panel (b) depicts the structure
of the IE, which comprises two LayerNorm layers, a Multi-Head
Similarity Enhancement layer, and an MLP. The IE enhances the
input optical and SAR images using the output from the MCA,
highlighting regions relevant to the question.

By integrating these components, TGFNet effectively uti-
lizes complementary information from optical and SAR im-
ages, guided by question semantics. This progressive re-
finement approach enables robust performance in challenging
RSVQA scenarios by focusing on increasingly relevant and de-
tailed information throughout the processing pipeline.
3.2. Text-guided Coarse-to-Fine Attention

Refinement
Remote sensing images contain diverse ground object in-

formation, but only a subset is relevant for answering ques-
tions. To address this challenge, we propose a Text-guided
Coarse-to-Fine Attention Refinement (CFAR) module, which
consists of three essential components: Key Region Routing
(KRR), Multi-head Cross-Attention (MCA), and Image Fea-
ture Enhancement (IE).

The core idea of the proposed module is to filter out ir-
relevant region pairs at a coarse level, retaining only a small
subset of routed regions for further processing. Subsequently,
finer-grained token-level attention is applied to refine the im-
age details. This process can be summarized as follows:
3.2.1. Key Region Routing.

During the feature extraction stage, the question features,
SAR image features and optical image features obtained from
the CLIP Text Model and CLIP Vision Model are denoted as
𝐹𝑞 ∈ ℝ𝐵×𝑁×𝐷, 𝐹𝑠 ∈ ℝ𝐵×𝑀×𝐷 and 𝐹𝑜 ∈ ℝ𝐵×𝑀×𝐷, respec-
tively, where 𝐵, 𝑁 , 𝑀 and 𝐷 represent the batch size, ques-

tion length, number of image patches and feature embedding
dimensionality. The optical image 𝐹𝑜 is initially divided into
𝑇 regions, each containing 𝑃 patches. The average pooling of
these 𝑃 patch features represents the corresponding region, re-
sulting in a coarse region representation of the optical image,
denoted as 𝐹𝑜𝑟 ∈ ℝ𝐵×𝑇×𝐷. Next, by computing the correla-
tion between the question representation 𝐹𝑞 and each region in
the optical image representation 𝐹𝑜𝑟, we obtain the question-
region correlation scores 𝑆 ∈ ℝ𝐵×𝑇 as follows:

𝑆 = 𝑀𝑒𝑎𝑛(
(𝑊𝑇𝐹𝑞)(𝑊𝐼𝐹𝑜𝑟)𝑇

√

𝐷
) (1)

where the 𝑀𝑒𝑎𝑛 refers to taking the average along dimen-
sion 1, 𝑊𝑇 ∈ ℝ𝐷×𝐷 and 𝑊𝐼 ∈ ℝ𝐷×𝐷 are learnable matri-
ces. Using the correlation scores 𝑆, the top 𝑘 regions with
the highest scores are selected as key regions for the optical
image. The codebook, which maps regions to their patches,
is then used to retrieve the corresponding patch representa-
tions from 𝐹𝑜, resulting in key region representations denoted
as 𝐹𝑜𝑘 ∈ ℝ𝐵×𝐾×𝐷, where 𝐾 = 𝑃 × 𝑘. A similar procedure is
applied to the SAR image, yielding key region representations
denoted as 𝐹𝑠𝑘 ∈ ℝ𝐵×𝐾×𝐷.
3.2.2. Multi-head Cross-Attention.

The key region representation 𝐹𝑜𝑘 and the question repre-
sentation 𝐹𝑞 are first fed into the MCA. As shown in Fig.4,
the MCA consists of two LayerNorm layers, two residual con-
nections, a multi-head cross-attention layer, and a Multi-Layer
Perceptron (MLP). The MLP is a simple feedforward network
with two fully connected layers and a Gaussian Error Lin-
ear Unit (GELU) activation between them. In the multi-head
cross-attention layer, 𝐹𝑞 and 𝐹𝑜𝑘 are projected using the learn-
able weight matrices 𝑊𝑄, 𝑊𝐾 and 𝑊𝑉 , resulting in 𝑄 =
𝑊𝑄𝐹𝑞 , 𝐾 = 𝑊𝐾𝐹𝑜𝑘 and 𝑉 = 𝑊𝑉 𝐹𝑜𝑘. The multi-head cross-
attention layer uses eight parallel self-attention heads to com-
pute the scaled dot-product similarity between 𝑄, 𝐾 and 𝑉 ,
generating attention scores as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝐾𝑇
√

𝐷

)

𝑉 (2)

The outputs of all heads are concatenated and projected
through another learnable weight matrix. The resulting repre-
sentation 𝐹𝑞𝑜 is computed as follows:

𝐹𝑞𝑜 = 𝑀𝐿𝑃 (𝐿𝑁(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ))) (3)
Next, 𝐹𝑞𝑜 and the optical image representation 𝐹𝑜 are input

into the IE to produce the key region-enhanced optical image
representation 𝐹𝑂𝐸 ∈ ℝ𝐵×𝑀×𝐷.
3.2.3. Image Feature Enhancement.

The IE, similar to the MCA, replaces the multi-head cross-
attention layer with a Similarity Enhancement (SE) layer. The
SE layer, which also has eight independent heads, processes
𝐹𝑞𝑜 and 𝐹𝑜 to compute 𝑄, 𝐾 and 𝑉 as 𝑄 = 𝑊𝑄𝐹𝑞𝑜, 𝐾 =
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Figure 5: The network structure of RQAF comprises a LayerNorm
layer, two linear layers, a multi-head quality-aware patch fusion
layer, and an MLP. The question and optical-SAR images are
simultaneously fed into the RQAF model, where the high-level
semantics of the question guide the quality-aware fusion of the
optical and SAR images at each spatial location.

𝑊𝐾𝐹𝑜 and 𝑉 = 𝑊𝑉 𝐹𝑜. Each head first computes the similar-
ity between 𝑄 and 𝐾 , averages the similarity scores, and then
performs pointwise multiplication with 𝑉 as follows:

𝑆𝐸(𝑄,𝐾, 𝑉 ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑀𝑒𝑎𝑛

(

𝑄𝐾𝑇
√

𝐷

))

∗ 𝑉 (4)

The outputs of all heads are concatenated and projected
through an additional learnable weight matrix. Then, 𝐹𝑂𝐸 is
obtained as follows:

𝐹𝑂𝐸 = 𝑀𝐿𝑃 (𝐿𝑁(𝑆𝐸(𝑄,𝐾, 𝑉 )) (5)
By following the same procedure, but replacing the optical im-
age representation with the SAR image representation, the en-
hanced SAR image 𝐹𝑆𝐸 can be derived.
3.3. Adaptive Multi-Expert Fusion

To effectively leverage the complementary strengths of op-
tical and SAR images, we propose an Adaptive Multi-Expert
Fusion (AMEF) module that employs a novel two-stage adap-
tive fusion strategy: a Regional Quality-Aware Fusion (RQAF)
module for constructing the Fusion Expert, followed by an
adaptive modality experts fusion mechanism that leverages an
Adaptive Fusion (AF) network to integrate predictions from
the Optical Expert, SAR Expert and Fusion Expert to generate
a robust final prediction.
3.3.1. Regional Quality-Aware Fusion.

Questions provide more focused semantic information than
images, enabling the accurate identification of important parts
in complex image scenes. This capability can also be extended
to evaluate the importance of different image modalities. As
illustrated in Fig.5, the proposed RQAF module leverages this
advantage by utilizing question semantics to guide the fusion
of optical and SAR features.

Specifically, the enhanced SAR, optical, and question rep-
resentations are mapped using three learnable weight matrices.
For each spatial location 𝑖 ∈ [1, 2, ...,𝑀], the top 𝑅 patches
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Figure 6: The network structures of the SAR Expert, Optical
Expert, Fusion Expert, and Adaptive Fusion are described as fol-
lows. Panel (a) illustrates the structure of the three experts, each
of which shares an identical architecture. Each expert receives
a specific image modality representation and a text representa-
tion as inputs to predict an answer. Panel (b) illustrates the AF,
which adaptively generates fusion weights based on the predic-
tions of the three experts. These weights are subsequently used
to integrate the predictions, yielding the final answer.

with the highest feature similarity in both optical and SAR im-
ages are selected, forming two sets: 𝑆𝐸𝑇𝑠𝑖 and 𝑆𝐸𝑇𝑜𝑖. Uti-
lizing the question representation 𝐹𝑞 , the feature quality scores
𝑆𝑄𝑖 for the union of these sets are then computed. A softmax
operation is applied to compute the fusion weights 𝑊𝑖 for these
patches. Finally, a weighted sum of the patches is performed,
followed by normalization and an MLP, to generate the fused
representation at location 𝑖. Repeating this process across all
locations yields the complete fused image representation 𝐹𝑂𝑆 ,
which serves as the visual input for the Fusion Expert in the
next stage. The calculation of 𝑊𝑖 is as follows:

𝑊𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑀𝑒𝑎𝑛(
𝐹𝑞𝑆𝑒𝑡𝑇𝑖
√

𝐷
)) (6)

where 𝑆𝑒𝑡𝑖 is the union of 𝑆𝐸𝑇𝑠𝑖 and 𝑆𝐸𝑇𝑜𝑖.
3.3.2. Adaptive Fusion of Optical Expert, SAR Expert

and Fusion Expert.
Each expert consists of a vision-language fusion reasoning

module and a classification network, as shown in Fig.6. Given
the importance of fine-grained interactions in vision-language
fusion reasoning, we employ a two-layer Transformer Decoder
network as the vision-language fusion reasoning module. The
classification network is an MLP comprising two fully con-
nected layers, with a ReLU activation function applied between
them. The prediction process for each modality expert is math-
ematically expressed as follows:

𝑃 = 𝐹𝐶(𝑅𝑒𝐿𝑈 (𝐹𝐶(𝐺𝐴𝑃 (𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑄,𝐾, 𝑉 ))))) (7)
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where 𝑄, 𝐾 , and 𝑉 represent the Query, Key, and Value,
respectively. The Query(𝑄) is derived from the question rep-
resentation using a learnable weight matrix, while the Key(𝐾)
and Value(𝑉 ) are derived from the visual representations 𝐹𝑜,
𝐹𝑠 or 𝐹𝑂𝑆 . 𝐺𝐴𝑃 stands for the global average pooling oper-
ation. 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 represents the Transformer Decoder network.
The predictions of the Optical Expert, SAR Expert and Fusion
Expert are denoted as 𝑃𝑂𝐸 ∈ ℝ𝐵×1×𝐶 , 𝑃𝑆𝐸 ∈ ℝ𝐵×1×𝐶 and
𝑃𝑂𝑆 ∈ ℝ𝐵×1×𝐶 , respectively, where 𝐶 is the number of an-
swer classes.

The predictions from the Optical Expert, SAR Expert, and
Fusion Expert are subsequently integrated by the AF network
to produce the final answer. Initially, the predictions from the
three experts are concatenated to form the input for the AF net-
work. This input is then processed through a fully connected
layer, followed by a sigmoid function, to determine the fusion
weights for each expert. A weighted sum of all expert pre-
dictions is then calculated using these fusion weights. Finally,
this sum is passed through a softmax function to generate the
final predicted answer. The mathematical expression for this
process is as follows:

𝑊𝐴 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑
(

𝐹𝐶
(

𝐶𝑜𝑛𝑐𝑎𝑡2
(

𝑃𝑂𝐸 , 𝑃𝑆𝐸 , 𝑃𝑂𝑆
)))

𝑃𝑟𝑒 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑊𝐴
(

𝐶𝑜𝑛𝑐𝑎𝑡1
(

𝑃𝑂𝐸 , 𝑃𝑆𝐸 , 𝑃𝑂𝑆
))) (8)

where 𝑊𝐴 ∈ ℝ𝐵×1×3 denotes the adaptive fusion weights for
the Optical Expert, SAR Expert, and Fusion Expert. 𝑃𝑟𝑒 rep-
resents the final prediction result of the model and 𝐶𝑜𝑛𝑐𝑎𝑡𝑖denotes concatenation along the 𝑖 dimension.

This multi-expert network design, combined with our
adaptive fusion mechanism, enables our model to effectively
leverage complementary information from different image
types while dynamically adapting to diverse question types and
challenging image conditions. The specialized experts allow
for in-depth analysis of each image type, while the adaptive
fusion ensures optimal integration of their insights, leading to
more robust and accurate RSVQA performance.
3.4. Loss Function

We employ standard cross-entropy loss as the overall net-
work constraint, with batch-based training involving all three
experts and the AMEF module. During inference, however,
only the AMEF module’s output, which is a dynamically
weighted sum of the three experts’ predictions, is used for an-
swer prediction. The loss function for each expert, along with
their adaptive integration, is defined as follows:

̂ = − 1
𝑁𝑡𝑟𝑎𝑖𝑛

𝑁𝑡𝑟𝑎𝑖𝑛
∑

𝑖=1
𝑦𝑖𝑙𝑜𝑔𝑦𝑖 (9)

The total loss over the training set is given as follows:

 = 𝜆1̂𝑂𝐸 + 𝜆2̂𝑆𝐸 + 𝜆3̂𝑂𝑆 + +𝜆4̂𝑇𝐺𝐹 (10)
where ̂𝑂𝐸 , ̂𝑆𝐸 , ̂𝑂𝑆 and ̂𝑇𝐺𝐹 represent the prediction
losses of the Optical Expert, SAR Expert, Fusion Expert and
their integrated predictions, respectively. 𝜆1, 𝜆2, 𝜆3 and 𝜆4 are
regularization parameters that control the contribution of each
loss. In this study, all parameters are set to 0.5.

4. DATASET
This section presents an analysis of existing RSVQA

datasets, followed by a detailed description of the construc-
tion process, statistical analysis, and the challenges associated
with the proposed OSVQA dataset.
4.1. Existing Datasets

To advance the development of RSVQA, researchers intro-
duce a range of influential datasets, categorized into general-
purpose and special-purpose question-answer datasets. The
general-purpose datasets aim to enhance the understanding of
generic geospatial information and their relationships within
remote sensing images, while the special-purpose datasets are
designed to promote RSVQA research in specific remote sens-
ing scenarios, such as change detection and disaster assess-
ment. Below, we detail several of the most representative
RSVQA datasets.
RSVQA [6] addresses the scarcity of RSVQA datasets by
introducing RSVQA-LR and RSVQA-HR. Generated using
an automated template-based approach, RSVQA-HR contains
1,066,316 Q&A pairs, while RSVQA-LR includes 77,232
pairs, marking a significant advancement in this field.
RSIVQA [7] comprises 37,264 images and 111,134 Q&A
pairs, featuring 91 distinct questions and 574 unique answers.
This dataset is constructed using a combination of manual an-
notation and automated generation, contributing significantly
to scene understanding and object recognition in remote sens-
ing.
CRSVQA [10] is a manually annotated dataset containing
4,639 images across 30 scenes, with 4,644 questions (674
unique) and 327 distinct answers. Its complex question for-
mats are designed to enhance model inference capabilities and
improve understanding of intricate geospatial information.
FloodNet-VQA [16] focuses on VQA tasks related to build-
ings, roads, and overall image assessment in disaster scenar-
ios. It provides over 4,500 question-image pairs, averaging
3.5 questions per image, categorized into four types: sim-
ple counting, complex counting, overall condition recognition,
and yes/no questions.
CDVQA [15], designed for change detection in RSVQA, in-
cludes 2,968 pairs of pre- and post-change aerial images. It
contains over 122,000 automatically generated Q&A pairs cov-
ering five question types: change detection, increase/decrease,
extent of change, maximum/minimum change, and rate of
change.

While these datasets have advanced RSVQA research in
various domains, they primarily focus on well-imaged opti-
cal remote sensing data, neglecting the challenges posed by
adverse lighting and weather conditions. To address this lim-
itation, we propose OSVQA, an RSVQA dataset combining
optical and SAR images to enhance robustness in challenging
scenarios, as shown in Fig.7.
4.2. Dataset Construction

Image Collection. We construct the OSVQA based on
the existing QXS-SAROPT [42] and OGSOD-1.0 [17]. The
QXS-SAROPT, designed to advance deep learning in remote
sensing, contains 20,000 pairs of high-resolution (1-meter)
optical-SAR images, each 256×256 pixels. OGSOD-1.0,

Zhicheng Zhao et al.: Page 7 of 15



Text-Guided Coarse-to-Fine Fusion Network for Robust Remote Sensing Visual Question Answering

C
lo

ud
 c

ov
er

ed
 im

ag
es

SA
R

 im
ag

es
SA

R
 im

ag
es

Lo
w

-li
gh

t i
m

ag
es

Figure 7: Optical and SAR image pairs in OSVQA. The first two rows display optical and SAR pairs under cloud-covered conditions,
while the last two rows show optical and SAR pairs under low-light conditions. The scenes depicted in the optical and SAR images
within the same column are identical.

Table 1
Image attribute categories and levels used for dataset annotation.

Image Attributes Levels Attributes

Intrinsic Attributes

Image
Match, Mist-Dark or Not, Urban or Not

Residential or Not

Object

Land Cover, Subcategory, Number

Location, Shape, Area

Length, Distribution

Quality

Relational Attributes Relative Positions, Relative Distances

aimed at multi-target detection using optical-guided SAR im-
ages, includes 18,331 pairs with a resolution of 10 meters,
also 256×256 pixels each. From the aforementioned datasets,
we selected 3,008 and 3,000 pairs of approximately aligned
optical-SAR images, respectively, for further annotation.

Image Annotation. To combine the efficiency of
template-generated annotations with the accuracy of manual
annotations, we employ a two-stage semi-automatic method
to generate questions and answers. Initially, we use a custom
annotation tool for manually annotating each image, captur-
ing attributes such as land cover types, locations, relative posi-
tions, quantity, distributions, shapes, and overall scene descrip-
tions to ensure a comprehensive summary of the image con-

tent. Specific attribute categories are detailed in Table1. Based
on this attribute information, we then use predefined templates
to automatically generate a diverse set of complex reasoning
questions, including those about relative positions, quantities,
lengths, and areas. The following describes the processes for
generating questions and answers, as well as the methods for
image processing and dataset partitioning.

Question Generation. After completing the image at-
tribute annotation, we automatically generate questions based
on these attributes. For image-level intrinsic attributes, we es-
tablish four question categories: "match", "fog-dark", "urban"
and "theme". These questions address image alignment, the
presence of clouds or darkness, and whether the scene is urban
or residential, with answers derived directly from the annota-
tions.

For object-level attributes, we pose eight question cate-
gories regarding land cover and its associated subcategories:
"number", "presence", "location", "shape", "area", "length",
"distribution" and "quality" (unique optical-SAR modality
quality assessment category). Additionally, we generate com-
parative questions based on "number", "area" and "length".
To enhance model inference, we include manually annotated
reasoning questions ("deduce") to capture subtle, complex in-
ferences. Various question types in OSVQA are presented in
Fig.8. Ultimately, based on 6,008 optical-SAR image pairs,
we have created the OSVQA dataset with 16 question types
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Q. Is the scene in the image a 
residential area?(theme)                                      
A. No

Q.  Where is the largest 
parking lot in the picture? 
(location)                                      
A. Right

Q.  Is this area suitable for 
irrigating the fields? (deduce)                                      
A. Yes

Q. How many roads are there 
in total? (number)                                      
A. 3

Q.  Is this a rural area? (urban)
                                      
A. No

Q. What is the largest land cover 
category in the image? (most)                                      
A. Agricultural land

Q. Which modality is more 
suitable for analyzing tennis 
courts? (quality)                                      
A. SAR

Q. What is the shape of the 
lawn on the left side of the 
image? (shape)                                      
A. Round

Q. What is the total area of 
the parking lot? (area)    
                                  
A. 20,000 ~ 22,500

Q. Are there more parking 
lots here compared to soccer 
fields? (compare)                                      
A. No

Figure 8: Visualization examples from the generated OSVQA dataset. We present ten data samples, each consisting of a SAR
image on the left and the corresponding optical image under cloud-covered or low-light conditions on the right. A question and its
corresponding answer accompany each sample.

and 1,036,694 question-answer pairs.
Image Processing. The OSVQA dataset comprises both

real-world and simulated challenging conditions. To simu-
late adverse lighting and weather conditions, we selectively
adjust certain images through appropriate artificial modifica-
tions. For the simulated portion, we annotate the "fog-dark"
and "quality" attributes post-processing. This combination of
real and simulated data enhances the dataset’s utility for de-
veloping robust RSVQA models capable of performing well
under various environmental conditions.

Dataset Segmentation. For our dataset, we split the 6,008
optical-SAR image pairs into training, testing, and validation
sets in a 3:1:1 ratio, resulting in 3,602, 1,204, and 1,202 im-
ages, respectively. Correspondingly, the question-answer pairs
are distributed as 625,086 for training, 208,578 for testing, and
203,030 for validation. The proportions of rural and urban
scenes, as well as the distribution of challenges within these
two scene types, are consistent across the training, testing, and
validation sets.
4.3. Dataset Analysis

In this part, we present an analysis of the OSVQA dataset
to demonstrate its superiority.

Distribution of Question Types. The OSVQA dataset
contains 16 question types: "compare", "presence", "location",
"number", "area", "shape", "distribution", "most", "theme",
"fog-dark", "distance", "match", "urban", "length", "deduce"
and "quality". The number of questions per type ranges from
5,456 to 521,267. As shown in Fig.9, "compare", "presence",
"location" and "number" questions are the most prevalent, con-
stituting 50.3%, 14.2%, 7.9% and 7.5% of the dataset, respec-

521,267 

146,684 

81,430 

77,542 

33,788 
29,414 

25,949 
24,076 

17,989 

compare - 50.28%
presence - 14.15%

location - 7.85%
number - 7.48%
quality - 3.26%

area - 2.84%
shape - 2.50%
distribution - 2.32%
most - 1.74%

theme - 1.50%
fog-dark - 1.45%
distance - 1.25%

match - 1.02%
urban - 0.99%
length - 0.84%
deduce - 0.53%

Figure 9: Visualization of the distribution of all 16 question types.
Among them, the "compare" and "presence" question types have
the highest proportions, while the "length" and "deduce" ques-
tion types have the lowest proportions.

tively, while the "deduce" questions are the least common at
0.5%. This distribution highlights the richness and diversity of
the dataset.

Distribution of Answer Categories. The OSVQA dataset
includes a total of 140 distinct answer categories. Fig.10 shows
the distribution of the 30 most frequent answer categories,
which are grouped into nine types: Binary Answer, Compar-
ative Result, Quantity, Land Cover, Modality, Location De-
scription, Shape Description, Distribution Description, and
Other Answers. Notably, semantically opposite answers, such
as ‘yes/no’, ‘smaller/larger’, and ‘less/more’, generally have
equivalent counts. This balance highlights the even distribu-
tion of answers within the dataset.
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Table 2
Comparison of existing RSVQA datasets

Dataset
Number of Number Question Number of Number of Unique Ques- Questions per

Image Type
Images of Scenes Types Questions Answers tions Image

RSVQA-HR [6] 10,659 >7 4 1,066,316 98 - 100.04 Optical

RSVQA-LR [6] 772 >7 4 77,232 9 - 100.04 Optical

RSIVQA [7] 37,264 38 9 111,134 574 91 2.98 Optical

CRSVQA [10] 4,639 30 3 4,644 327 674 1.00 Optical

FloodNet-VQA [16] 2,188 8 4 7,355 41 15 3.36 Optical

FloodNet-VQA V2.0 [16] 2,348 9 7 10,480 49 43 8.47 Optical

OSVQA(Ours) 6,008 32 16 1,036,694 140 72,195 172.55 Optical&SAR

Best, 𝑆𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡. Higher metrics are better

Distribution of Question Lengths. The OSVQA dataset
contains a significant number of lengthy questions. The av-
erage question length is 16.1 words, with a maximum of 69
words and a minimum of 4 words. Notably, 84.6% of the
questions exceed 20 words in length, and 12.0% exceed 40
words. This underscores the complexity of the questions in
this dataset.

Category                  Subcategory         Count Category                   Count
Binary answer                  no 216443 Other answer 5748
Binary answer                  yes 207444 Distribution description 19100
Quantity 1 38,697 Shape description 20038
Quantity 0 17126 Location description 25378
Quantity 2 11895 Modal 27867
Quantity 3 5806 Landcover 51300
Compare                      smaller 58066 Quantity 73524
Compare                      larger 58063 Comparative result 243950
Compare almost same 47427 Binary answer 483338
Compare less 40197
Compare more 40197
Location                  left 6985
Location                  right 6944
Location                  top 5015
Location                  next to 6434
Area Type                  non-residential area 11934
Area Type                  agricultural area 6834
Area Type                  vegetation area 6793
Area Type                  rural 5942
Area Type                  water area 5895
Area Type road 8675
Area Type                      building 5227
Distribution Pattern      isolated distribution 11008
Distribution Pattern      clustered distribution 8092
Shape                      other shape 10202
Shape                      rectangle 4820
Shape                      straight 5016
Modal                      sar 16750
Modal                      rgb 11117
Other                      almost match 5748
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Figure 10: Visualization of the distribution of the top 30 most
frequent answer categories.

Comparisons with Other RSVQA Datasets. Table2
compares the proposed OSVQA dataset with the existing ma-
jor RSVQA datasets. OSVQA demonstrates an advantage over
these datasets in most comparison metrics: the number of
scenes, question types, question numbers, unique questions,
and average questions per image. Moreover, OSVQA is the
only dataset constructed from optical-SAR images, featuring
extensive quality assessment questions for both modalities,
making it suitable for VQA tasks involving optical, SAR, or
combined images. This highlights its diversity, complexity,
and large scale.

Overall, the OSVQA dataset comprises a total of 1,036,694
question-answer pairs, involving 16 types of questions. It in-
cludes 72,195 unique questions, 1,494 unique question words,
and 140 unique answers. A total of 6,008 optical-SAR image
pairs are annotated, each with an average of 172.55 questions.
By utilizing a semi-automatic annotation approach, OSVQA
effectively mines the geospatial information and its relation-
ships within the images, providing a rich and diverse high-
quality question-answer dataset for RSVQA tasks.
4.4. Dataset Challenges

Compared to existing RSVQA datasets, OSVQA intro-
duces significant advancements, offering unique challenges
and valuable contributions to the field:

• Multi-Modal Fusion for RSVQA: By integrating op-
tical and SAR imagery, OSVQA pioneers the explo-
ration of multi-modal data fusion in RSVQA. This ap-
proach enables the development of algorithms capable
of leveraging complementary information across modal-
ities, particularly under challenging conditions.

• RSVQA under Adverse Conditions: OSVQA incor-
porates both real and simulated challenging conditions,
including cloud cover and low-light scenarios. This
feature significantly enhances the dataset’s ecological
validity, enabling researchers to evaluate and improve
RSVQA model performance under a wide range of en-
vironmental conditions typically encountered in real-
world remote sensing applications.

• Comprehensive Question Design: With 16 diverse
question types, including novel categories for reasoning
and modality quality assessment, OSVQA offers a more
comprehensive evaluation framework. This expanded
typology enables the assessment of models across a
broader spectrum of cognitive tasks, ranging from sim-
ple recognition to complex inferential reasoning.

• Scale and Diversity: Comprising 6,008 optical-SAR
image pairs and 1,036,694 question-answer pairs, OS-
VQA substantially surpasses most existing datasets in
scale. The inclusion of 72,195 unique questions and 140
unique answers ensures a rich diversity of scenarios and
challenges, promoting the development of more gener-
alizable RSVQA models.

These characteristics establish OSVQA as a benchmark
dataset for advancing RSVQA research, particularly in ad-
dressing the complexities of multi-modal fusion, environmen-
tal variability, and complex inferential reasoning in remote
sensing applications.

5. EXPERIMENTS
In this section, we conduct experiments to verify the effec-

tiveness of TGFNet on the proposed OSVQA dataset. First, we
present the implementation details of the experiments in Sec-
tion 5.1 and then benchmark TGFNet against state-of-the-art
(SOTA) VQA models in Section 5.2. To further analyze the
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effectiveness of the core model designs, we conduct extended
ablation studies in Section 5.3.
5.1. Implementation Details

All experiments are conducted in the same PyTorch en-
vironment, utilizing an NVIDIA RTX 4090 GPU. The models
are trained using the Adam optimizer with parameters 𝛽1 = 0.9
and 𝛽2 = 0.999 for 100 epochs. The learning rate and batch
size are set to 0.00001 and 100, respectively.

For feature extraction, an adapter module was added before
the projection layer of the CLIP [33] (clip_vit_base_patch_16)
model, with other weights frozen, and fine-tuned on the OS-
VQA dataset using contrastive learning loss to enhance its suit-
ability for remote sensing tasks. Building on this fine-tuned
model, we utilize it for feature extraction by independently ob-
taining image and text features. Specifically, the input images
are scaled to a size of 224×224 pixels and the SAR images are
replicated along the channel dimension to form three-channel
images. Additionally, the input questions are embedded into
71×512 vectors to standardize the word length across all ques-
tions.

For evaluation, we use the mainstream metrics of overall
accuracy (OA) and average accuracy (AA). OA is defined as
the ratio of correctly predicted answers to all predicted an-
swers, while AA represents the average accuracy across all
categories. To ensure a fair comparison between models with
single-modality image input and those with optical and SAR
multi-modal image input, we exclude the question categories
"quality", "fog-dark", and "match", which involve both optical
and SAR images.

Furthermore, to compare the performance of different
methods using optical-SAR multi-source image input, we
modify VQA methods originally based solely on optical im-
ages. For these methods, we incorporate an identical image
encoder to extract features from SAR images. The optical and
SAR image features are then fused using an addition operation,
keeping the structure of the downstream network unchanged.
5.2. Quantitative and Qualitative Evaluation

To validate the effectiveness of our TGFNet, we build a
benchmark by conducting experiments on the proposed OS-
VQA dataset using 6 different VQA methods, which are de-
tailed as follows.

RSVQA. RSVQA [6] is a pioneering method designed for
remote sensing scenarios. It combines CNNs for visual feature
extraction with RNNs for natural language processing.

MAIN. MAIN [7] leverages convolutional features for spa-
tial information and word vectors for semantic representation.
It incorporates a mutual attention component and a bilinear
model for feature fusion.

FETH. FETH [12] applies a multi-level visual feature
learning approach to jointly extract language-guided holistic
and regional image features. It uses a self-paced curriculum
learning (SPCL) strategy with soft weighting to progressively
train the model from easy to hard, based on question difficulty.

Bi-Modal. Bi-Modal [11] uses the CLIP network to em-
bed image patches and question words. It employs attention
mechanisms via dual decoders to capture intra- and interde-
pendencies between visual and textual representations.

HRVQA. HRVQA [8] enhances the joint feature represen-
tation of images and questions in high-resolution aerial image
VQA through a gated attention mechanism and a mutual fusion
module.

TRAR. TRAR [43] employs a dynamic routing scheme
and a path controller module to optimize attention span selec-
tion in visual transformer layers, enhancing both global and
local dependency modeling.

RSAdapter. RSAdapter [44] introduces a parallel adapter
and an additional linear transformation layer inserted after each
FC layer within the adapter to enhance adaptability to pre-
trained multimodal models.

Quantitative Evaluation. Table3 presents the compara-
tive results of the aforementioned methods on the proposed
dataset. To highlight the performance of different methods
across specific question types, we separately present the results
of the models on four major and four minor question types.

The comparison results demonstrate that our model,
TGFNet, significantly outperforms all other models. Specif-
ically, TGFNet achieves the highest AA at 71.89% and OA at
65.12%, reflecting improvements of 1.92% (from 69.97% to
71.89%) and 0.97% (from 64.15% to 65.12%), respectively.
TGFNet delivers the best performance across various ques-
tion categories, including "compare", "presence", "number",
"shape", and "theme". Notably, for the "compare", "pres-
ence", and "number" types, TGFNet achieves significant accu-
racy increases of 1.97%, 1.46%, and 1.36%, respectively, rel-
ative to the second-best method. However, for the "location",
"deduce", and "length" question categories, TGFNet’s perfor-
mance is relatively average. Nonetheless, the gap compared to
the highest accuracy is not substantial.

Qualitative Evaluation. Our experiments reveal that
single optical and SAR image inputs each exhibit distinct
strengths across specific question categories. SAR images tend
to perform better in categories requiring spatial structure in-
formation, such as "location", "length" and "number". Con-
versely, optical images perform better in categories requiring
detailed texture information, such as "compare", "presence"
and "shape". This is likely because SAR images are less af-
fected by cloud cover and low-light conditions, making spa-
tial structure information (e.g., location and object boundaries)
clearer. Meanwhile, optical images contain richer detail and
texture information (e.g., color and contours), providing more
distinctive semantic information. This suggests that both opti-
cal and SAR images have their respective advantages.

Additionally, after fusing optical and SAR images, the
overall performance and performance on specific question cat-
egories for most methods are superior to either single op-
tical image input or single SAR image input, often outper-
forming both. For example, Bi-Modal [11], after fusing op-
tical and SAR images, improves OA and AA by 0.97% and
1.16%, respectively, compared to the best-performing single
input modality model. It also achieves improvements of 0.26%,
1.43%, 0.47%, 2.12%, and 1.03% in the "compare", "presence",
"number", "deduce" and "shape" question categories, respec-
tively, relative to the second-best modality. This indicates that
the complementary information from optical and SAR images
can be effectively fused, enhancing the model’s robustness in
VQA tasks.
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Table 3
Comparison of results between our proposed method and existing RSVQA methods on the
OSVQA dataset. SAR denotes using only SAR images as visual input, OPT denotes using
only optical images, and MUL denotes using both SAR and optical images as inputs.

Model Venue Modality OA AA Compare Precence Locat. Num. Deduce Length Shape Theme

RSVQA [6] TRGS’2020 SAR 64.13 57.41 65.26 76.67 38.37 68.67 62.98 47.69 55.29 81.30

MAIN [7] TRGS’2021 SAR 67.94 60.93 67.59 80.06 58.82 67.35 73.96 43.87 54.11 80.51

Bi-Modal [11] TRGS’2022 SAR 69.00 62.99 70.15 81.89 59.51 69.21 78.59 45.66 58.95 83.13

FETH [12] TGRS’2022 SAR 65.52 57.65 65.96 76.52 40.68 68.86 63.50 48.25 55.88 80.64

TRAR [43] ICCV’2021 SAR 69.11 62.89 70.52 81.56 59.77 68.44 78.71 45.66 57.27 83.40

RSAdapter [44] TRGS’2024 SAR 65.09 58.70 67.04 78.76 42.04 68.48 59.38 47.41 56.97 83.84

HRVQA [8] ISPRS’2024 SAR 68.54 62.26 69.84 81.28 59.75 68.93 77.79 46.25 54.54 83.06

RSVQA [6] TRGS’2020 OPT 64.53 57.81 65.81 76.97 38.77 68.58 64.00 47.64 56.88 82.62

MAIN [7] TRGS’2021 OPT 67.19 60.08 67.56 79.74 58.04 67.79 74.68 43.30 55.01 82.90

Bi-Modal [11] TRGS’2022 OPT 68.98 62.79 70.80 82.41 56.89 68.89 78.05 45.45 58.78 87.30

FETH [12] TGRS’2022 OPT 66.13 57.84 66.57 76.60 40.40 69.17 62.87 47.95 55.85 81.55

TRAR [43] ICCV’2021 OPT 69.87 63.33 71.30 83.26 59.62 69.51 79.01 45.72 57.85 85.88

RSAdapter [44] TRGS’2024 OPT 65.19 58.82 66.69 77.95 41.21 69.02 62.85 46.76 56.74 84.89

HRVQA [8] ISPRS’2024 OPT 68.60 61.88 70.08 81.61 59.43 68.78 77.09 44.39 54.76 85.91

RSVQA [6] TRGS’2020 MUL 60.50 53.43 61.73 71.60 35.47 67.82 60.54 48.64 53.04 73.54

MAIN [7] TRGS’2021 MUL 68.51 61.66 68.39 81.08 57.48 67.87 75.49 45.48 56.29 83.54

Bi-Modal [11] TRGS’2022 MUL 69.97 64.15 71.06 83.84 59.02 69.68 80.71 45.57 59.98 86.07

FETH [12] TGRS’2022 MUL 60.46 52.66 60.30 70.54 37.26 68.02 58.73 45.98 52.14 76.15

TRAR [43] ICCV’2021 MUL 69.28 62.46 70.96 81.54 59.30 69.23 78.87 46.63 56.56 82.49

RSAdapter [44] TRGS’2024 MUL 64.90 58.93 66.70 78.66 39.27 69.20 59.15 48.46 57.87 84.25

HRVQA [8] ISPRS’2024 MUL 68.65 62.18 69.59 81.65 60.44 68.73 77.89 45.63 55.45 82.90

Ours - MUL 71.89 65.12 73.27 85.30 59.35 71.04 79.37 48.08 60.41 87.81

Best, 𝑆𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡. Higher metrics are better

Despite the fusion of optical and SAR images, Bi-
Modal [11] fails to achieve the highest accuracy in the "lo-
cation", "length" and "theme" question categories. This may
be due to the simple addition operation failing to effectively
achieve the complementary fusion of optical and SAR images.
It also suggests that due to the limitations of the fusion net-
work, the fused features are not always effective. Therefore, it
is crucial to perform a more comprehensive integration of com-
plementary information from optical images, SAR images, and
fused images, ultimately improving the model’s robustness.

In summary, our experiments show that fusing optical and
SAR images generally improves performance compared to
single-modality inputs. However, the effectiveness of fused
features can be limited by the fusion methods and model ar-
chitectures. Our proposed method, TGFNet, addresses this by
focusing on relevant image content through a coarse-to-fine ap-
proach and adaptively integrating complementary information
from optical, SAR, and fused images. This allows TGFNet to
fully leverage the strengths of different modalities, achieving
superior performance on the proposed dataset and surpassing
SOTA methods in both AA and OA.
5.3. Ablation Experiments

To validate the effectiveness of the proposed modules and
fusion methods, we conduct several ablation studies.

Table 4
Ablation study of AMEF, CFAR, and RQAF. RQAF stands for
Regional Quality-Aware Fusion Network, AMEF stands for the
Adaptive Multi-Expert Fusion Module without RQAF, and CFAR
stands for the Text-guided Coarse-to-Fine Attention Refinement
Module.

AMEF CFAR RQAF OA AA
Exp1 - - - 70.38 62.45
Exp2

√

- - 70.72 64.60
Exp3

√ √

- 71.35 64.63
Exp4

√ √ √

71.89 65.12

Table 5
Ablation results for different fusion methods, where Add refers
to pixel-level summation and Concat refers to direct connection

Integration Method OA AA
OPT 68.83 60.61
SAR 68.46 61.02
Add 69.24 62.04

Concat 69.42 62.35
Transformer [27] 69.47 63.19

TGFNet 71.89 65.12

Effectiveness of Proposed Modules. The proposed
TGFNet consists of two main modules: the Text-guided
Coarse-to-Fine Attention Refinement (CFAR) module and the
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Adaptive Multi-Expert Fusion (AMEF) module. The AMEF
utilizes a two-stage fusion strategy to achieve a complemen-
tary fusion of optical and SAR images. In the first stage, the
Regional Quality-Aware Fusion (RQAF) network performs a
patch-level fusion of optical and SAR images. In the second
stage, the Adaptive Fusion (AF) network adaptively integrates
the prediction results from the OPT Expert, the SAR Expert,
and the Fusion Expert, producing the final prediction. To val-
idate the effectiveness of the proposed modules, including the
AMEF, CFAR, and RQAF within the AMEF, we designed a
series of TGFNet variants. Each variant is defined as follows:

• Exp1: In this experiment, both modules of TGFNet are
removed, and the fusion of optical and SAR images is
carried out using a simple addition operation.

• Exp2: This experiment retains only the AMEF, replac-
ing the RQAF module with a simple addition operation.

• Exp3: Building on Exp2, the CFAR is introduced. This
module is designed to identify regions relevant to the
query within complex remote sensing scenes.

• Exp4: Building on Exp3, the RQAF is integrated, final-
izing the TGFNet architecture. This module primarily
enhances patch-level complementary fusion of different
modality images by accounting for the quality of each
imaging modality.

Table4 presents the comparative performance of vari-
ous TGFNet variants on the proposed dataset. Notably, the
complete TGFNet (Exp4) surpasses all other variants, while
the baseline model (Exp1) registers the lowest performance.
Specifically, Exp2 achieves improvements of 0.34% in OA
and 2.15% in AA over Exp1. This suggests that the proposed
AMEF module can effectively facilitate the complementary fu-
sion of optical and SAR images, even in the absence of the
RQAF. Exp3 demonstrates further enhancements in OA and
AA by 0.63% and 0.03%, respectively, compared to Exp2. This
underscores the beneficial impact of incorporating the CFAR,
which contributes significantly to overall model performance.
Exp4 exhibits an additional increase of 0.54% in OA and 0.49%
in AA relative to Exp3. This result highlights the significant
performance gains realized by integrating the RQAF into the
AMEF, thereby substantiating the effectiveness of the RQAF.
Finally, all variant approaches demonstrate superior perfor-
mance relative to the baseline (Exp1), underscoring the suc-
cessful integration and utility of the proposed modules.

Effectiveness of Fusion Methods. To assess the effec-
tiveness of the proposed fusion methods, we conducted a
comparative analysis of different fusion strategies: add-based,
concat-based, and transformer-based. As illustrated in Table5,
TGFNet consistently delivers superior performance across all
fusion approaches, underscoring the efficacy of our fusion
method. It is evident that VQA models employing optical-
SAR fusion methods consistently outperform those relying on
a single image modality input, particularly in terms of OA
and AA. This suggests that the limitations of individual im-
age modalities can hinder the performance of VQA models.
When evaluating the alternative fusion methods, it is clear
that models utilizing the add-based fusion method achieve the

least favorable results, while those employing the concat-based
method show moderate improvement. Notably, models incor-
porating the transformer-based fusion method demonstrate the
most significant enhancements in both OA and AA. This im-
provement is likely attributable to the cross-attention mecha-
nism’s capability to effectively facilitate cross-modal feature
fusion.

6. Conclusion
In this paper, we address critical challenges in RSVQA

under adverse imaging conditions through several key contri-
butions. We introduce OSVQA, the first large-scale optical-
SAR alignment dataset for RSVQA, comprising 6,008 image
pairs and 1,036,694 question-answer pairs across diverse cat-
egories. This dataset serves as a comprehensive benchmark
for evaluating RSVQA methods under challenging conditions.
We propose TGFNet, a novel text-guided optical-SAR fusion
network that effectively leverages complementary information
from both modalities. TGFNet incorporates a Text-guided
Coarse-to-Fine Attention Refinement (CFAR) module, and an
Adaptive Multi-Expert Fusion (AMEF) module to enhance
performance in complex scenarios. Extensive experiments on
OSVQA demonstrate that TGFNet significantly outperforms
existing methods, achieving SOTA results in both Average Ac-
curacy and Overall Accuracy. These advancements highlight
the potential of multi-modal fusion in enhancing RSVQA ro-
bustness for real-world applications. Future work will focus on
exploring unsupervised annotation methods, investigating ad-
vanced fusion techniques, and developing open-ended, multi-
source RSVQA systems.
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