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ABSTRACT

Fine-tuning large language models (LLMs) is compute-intensive and error-prone:
model performance depends sensitively on data quality and hyperparameter choices,
and naïve runs can even degrade model performance. This raises a fundamental
question: Can we predict fine-tuning performance before training begins? We
present TUNEAHEAD, a lightweight framework for pre-hoc prediction of fine-
tuning performance. TUNEAHEAD encodes each fine-tuning run as a meta-feature
vector that combines static dataset descriptors with dynamic probe features from
a short simulated run. A gradient-boosting predictor maps these features to per-
formance predictions, while SHAP-based attributions provide interpretable diag-
nostics that reveal which specific features are driving performance. Across 1,300+
fine-tuning runs on Qwen2.5-7B-Instruct, TUNEAHEAD consistently outperforms
strong baselines such as scaling-law predictors, proxy models, and early-stop ex-
trapolation. On a held-out test set of 370 runs, by defining ‘success’ as exceeding a
performance threshold, it accurately predicted 89.4% of successful runs (110/123)
and 91.0% of failure runs (225/247), enabling practitioners to proactively avoid
costly unsuccessful runs before training begins. This leads to computational
savings of 58.4% in total.

1 INTRODUCTION

Fine-tuning large language models (LLMs) has become the standard path to domain adaptation,
but it remains costly and unpredictable: performance depends sensitively on data quality and hy-
perparameter choices, and naïve runs can even degrade downstream performance in real-world
pipelines (Barnett et al., 2024). For practitioners, the key question is not only how to fine-tune, but
increasingly whether a run is worth doing at all.

Predicting fine-tuning success. Consider a healthcare provider deciding whether to fine-tune a
general LLM on a clinical dataset: a failed run may consume hundreds of GPU hours yet underperform
the base model. Without prediction, practitioners often discover only after training that performance
falls short, wasting both time and budget (Figure 1(A)). This raises a crucial question: can we predict
fine-tuning performance before training begins?

Prior art and their limitations. Scaling-law analyses (Kaplan et al., 2020) capture general trends
across models and datasets but offer limited insight for a specific dataset. Proxy models such
as COSMOS (Wang et al., 2025) and short-horizon extrapolations (Kuramoto & Suzuki, 2025)
demonstrate that low-cost prediction is feasible. However, they aggregate all features into a single
score, conflating the base model’s own characteristics and limitations with dataset properties, leaving
practitioners unable to answer the crucial question of ‘why’ a run might fail and thus unable to make
targeted improvements to avoid costly failures.

Predicting with TUNEAHEAD. We introduce TUNEAHEAD, a diagnostic prediction framework that
predicts fine-tuning performance before training begins. The core idea is to capture two complemen-
tary categories of low-cost features. The first one is static dataset descriptors, which are computed
from the dataset itself to provide a foundational, model-agnostic assessment of its intrinsic quality
(e.g., lexical diversity, data size). The second is dynamic probe features, which are extracted from
a short probe run (e.g., early loss decay, gradient stability); their unique advantage is capturing the
model-specific learnability of the data, revealing early signs of optimization instability or data-model
mismatch that are invisible to static analysis alone. A lightweight gradient-boosting predictor maps
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Figure 1: Predicting fine-tuning performance: (A) Without TUNEAHEAD: failed runs are only identified
after training, wasting computational resources and time. (B) With TUNEAHEAD: low-cost features predict
performance in advance, enabling go/no-go decisions and diagnosis for the failure cases.

these features to expected performance, while SHAP-based attribution (Lundberg & Lee, 2017)
converts predictions into explanations that reveal which dataset properties matter most. We define a
run as ‘success’ if its predicted score exceeds a predefined practical threshold, and ‘failure’ otherwise.

With TUNEAHEAD (see Figure 1(B)), practitioners can detect unpromising runs before training, cut-
ting substantial compute costs while gaining actionable guidance for data refinement. By preventing
wasted resources, TUNEAHEAD overcomes key limitations of prior work, offering a training-free,
interpretable, and dataset-aware approach to reliable fine-tuning.

1 2 3 4 5 6 7 8 9 10(A) Without TuneAhead

Total compute (no prediction)  —  30h

1 2 4 7 9(B) With TuneAhead

Overhead + compute (with TuneAhead)  —  18.7h

37.4% Compute Time Saving

Fine-tuning run (success case)
Fine-tuning run (failure case)

Prediction overhead (per run)
Merged prediction-only overhead
(for case 3,5,6,8,10)

Figure 2: Compute time for 10 runs without (A) vs. with prediction (B).

Figure 2(A) shows that without
prediction, all 10 runs (includ-
ing failures) require ∼30 GPU-
hours. With TUNEAHEAD (Fig-
ure 2(B)), failures are flagged in
advance (hatched/blue), so only
promising runs are trained, re-
ducing compute to ∼18.7 GPU-
hours—a 37.4% saving for 4/6
success/failure cases.

Contributions. We make the following notable contributions.

(1) The problem of predicting fine-tuning performance. We cast fine-tuning outcome prediction as
a pre-hoc, diagnostic meta-learning task. This formulation supports early go/no-go decisions and
principled dataset ranking before expensive training is attempted. (Sec. 3)

(2) The TUNEAHEAD framework. We design a hybrid feature space that combines static dataset
descriptors with dynamic probe features, and pairs it with a lightweight predictor and SHAP-based
attributions, yielding both accurate predictions and interpretable diagnostics. (Sec. 4)

(3) Extensive experiments. We conduct over 1,300 fine-tuning runs on Qwen2.5-7B-Instruct (Qwen
Team, 2025; Yang et al., 2025), evaluated on Massive Multitask Language Understanding (MMLU)
benchmark (Hendrycks et al., 2021). TUNEAHEAD consistently outperforms SOTA solutions such
as scaling-law predictors, proxy models, and early-stop extrapolation. (Sec. 5)

2 RELATED WORK

Our work sits at the junction of two threads: LLM performance prediction and dataset-level quality
assessment, with connections to fine-tuning dynamics and interpretability. We position TUNEAHEAD
as a pre-hoc, dataset-level approach that is both predictive and diagnostic.
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LLM performance prediction. Early efforts predict performances by extrapolating short training
curves (Domhan et al., 2015), an approach that struggles with modern LLM fine-tuning where
dynamics can be non-monotonic and late-emerging. Scaling-law analyses (Kaplan et al., 2020) and
recent fine-tuning dynamics tools (e.g., LENSLLM (Zeng et al., 2025)) provide useful macro-level
guidance, but they do not explain performance for a particular dataset/objective pair. A parallel line
uses inexpensive surrogates: proxy heads or smaller models can predict final accuracy with low cost
(COSMOS (Wang et al., 2025), PROXYLM (Anugraha et al., 2024), probing-based predictors (Zhu
et al., 2022)). However, these methods typically return a single, entangled score that mixes model
bias with data properties, offering limited visibility into why a run succeeds or fails. Our formulation
departs from prior work by combining pre-hoc prediction with explicit, dataset-level diagnosis.

Data quality assessment. A complementary literature scores data quality at the instance level—e.g.,
Data Cartography (Swayamdipta et al., 2020) and Data Shapley (Ghorbani & Zou, 2019)—and
more recently curates instruction-tuning data via refinement pipelines (Refine-n-Judge (Cayir et al.,
2025)). Others move toward holistic descriptors: Dataset Nutrition Labels (Holland et al., 2018),
distributional measures like MAUVE (Pillutla et al., 2021), and generative teaching evaluations
(GENTLE (Aoyama et al., 2023)). They improve transparency but generally stop short of predicting a
dataset’s fine-tuning payoff. TUNEAHEAD closes this gap by treating each dataset as a meta-instance
and tying aggregated static descriptors and early interaction features to downstream performance.

Fine-tuning dynamics and interpretability. Work on early training signals (e.g., gradient/loss
dynamics) informs our choice of low-cost probes (Jastrzebski et al., 2020; Hao et al., 2019). For
interpretability, we adopt model-agnostic SHAP attributions (Lundberg & Lee, 2017) to move beyond
predicting toward actionable diagnosis at the dataset level.

3 PROBLEM OF PREDICTING FINE-TUNING PERFORMANCE

This section formalizes the task of predicting fine-tuning performance before actual training. Given a
dataset–hyperparameter pair, we seek a low-cost predictor that approximates the expensive ground-
truth score that would be obtained after completing full fine-tuning and evaluation. Specifically,
let M be a base LLM (e.g., Qwen2.5-7B-Instruct), and A denote a parameter-efficient fine-tuning
algorithm (e.g., LoRA). Fine-tuning model M on the dataset–hyperparameter pair (Di, Hj) produces
an adapted model:

M ′
i,j = A(M,Di, Hj).

We then evaluate M ′
i,j on a downstream benchmark T (e.g., MMLU) to obtain the ground-truth

performance score Ri,j . However, acquiring this score is expensive as it requires a full fine-tuning
and evaluation cycle, which motivates the need for prediction.

We thus seek a low-cost prediction function F that consumes a meta-feature vector Vi,j describing
the dataset and hyperparameter configuration, producing a predicted performance score Pi,j that well
approximates the ground-truth score:

Pi,j = F (Vi,j) with Pi,j ≈ Ri,j .

The prediction function F is trained on a meta-dataset of past fine-tuning experiments drawn from
an empirical distribution Dist over pairs (Di, Hj). Minimizing an appropriate loss ∆ (such as mean
squared error), we solve

min
F

E(Di,Hj)∼Dist

[
∆
(
F (Vi,j), Ri,j

) ]
.

This formulation supports several key practical goals: (i) making go/no-go decisions before expensive
fine-tuning; (ii) ranking dataset and hyperparameter settings for resource allocation; and (iii) diag-
nosing fine-tuning performance by linking predictions to dataset and hyperparameter characteristics.

Why pre-hoc failure prediction is feasible. Failed fine-tuning runs often leave clear, low-cost
features. Examples include dataset-model mismatch (e.g., high reference perplexity), redundancy or
limited diversity (flat or noisy short-horizon progress), and unstable optimization dynamics (volatile
gradients and irregular loss decay). Notably, failures are often easier to detect than successes: even a
single strong deficiency can reliably indicate likely failure, enabling early rule-out and data-centric
remedies at minimal cost.
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Figure 3: TUNEAHEAD Overview. Stage 1 (Meta-dataset curation) builds meta-feature vectors Vi,j by
combining static features with dynamic features. Stage 2 (Predictive & Diagnostic Modeling) maps Vi,j to
performance predictions and uses SHAP for interpretable diagnostics.

4 THE TUNEAHEAD FRAMEWORK

4.1 DESIGN GOALS AND FRAMEWORK OVERVIEW

Design Goals. We identify three key goals that guide our framework design for predicting fine-
tuning performance: (G1) Low-cost yet informative features: The meta-features must respect a
computational cost budget while still effectively making predictions. (G2) Reliable and generalizable
prediction: Predictions must be accurate, well-calibrated, and generalizable across diverse datasets.
(G3) Diagnostic interpretability: Predictions must come with human-interpretable attributions that
highlight actionable guidance for targeted improvement.

Framework Overview. To satisfy these three goals, TUNEAHEAD is structured into two complemen-
tary stages: meta-dataset curation (stage 1) and predictive & diagnostic modeling (stage 2). Figure 3
illustrates the framework overview. Stage 1 constructs a compact meta-feature vector Vi,j for each
dataset-hyperparameter pair by combining static features that summarize dataset-intrinsic properties
and dynamic features (G1) that capture early training behavior via a short, fixed-budget probe run
(100 steps). These features are fed into stage 2 for predicting model performance Pi,j (G2) along
with detailed diagnostic attributions (G3). These explanations identify specific failure modes such as
data mismatch, redundancy, or instability, helping enable early rejection of failure runs and guiding
focused data-centric improvements.

4.2 STAGE 1: META-DATASET CURATION

The predictive capability of TUNEAHEAD heavily depends on how well the meta-feature vector
Vi,j characterizes each (Di, Hj). To balance informativeness with efficiency, Vi,j integrates two
complementary categories of features: static features derived from the dataset itself, providing a
model-agnostic prior on dataset quality and dynamic features probed from the base model M via
a short, fixed-budget run, exposing early signs of instability or mismatch. Together, these features
provide a low-cost yet discriminative representation that captures both dataset quality and model
learnability, making failure runs easier to detect.

Static features. These are dataset-intrinsic descriptors that require no model training, providing prior
insights into dataset properties. We finally selected 14 features that showed robust association with

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

fine-tuning performance across datasets. The feature selection procedure is detailed in Appendix
A.3, while Appendix B provides the full list of features and explains the dataset properties each one
captures. The selected static features fall into four categories:

• Global statistics: These fundamental quantitative descriptors reflect dataset scale and quality,
including dataset size, token length distribution, input–output ratios, and duplication rates.

• Lexical diversity: These metrics measure the richness of the vocabulary. For example, type–token
ratio (TTR) quantifies the proportion of unique tokens relative to the total tokens in the dataset:

TTR(Di) =
|unique_tokens(Di)|
|total_tokens(Di)|

.

• Semantic diversity: These metrics measure the dataset’s semantic variability. A high diversity
score suggests the dataset covers a wide range of topics and concepts. For example, pairwise cosine
distance measures the average cosine distance between embeddings e(s):

SemDivPCD(Di) =
2

|Di|(|Di| − 1)

∑
j<k

(
1− e(sj) · e(sk)

∥e(sj)∥∥e(sk)∥

)
.

• Model-Based Complexity: These metrics quantify dataset complexity w.r.t. the frozen base model
M0. For example, reference perplexity measures the average perplexity across the dataset:

PPL(Di,M0) = exp

(
− 1∑

s∈Di
|s|
∑
s∈Di

log pM0
(s)

)
.

Dynamic features. While static features describe the dataset in isolation, they cannot capture how the
base model actually interacts with it. We therefore run a standardized 100-step probe fine-tuning with
configuration (Di, Hj). This produces low-cost features that approximate early training dynamics.
Altogether, we retain 10 dynamic features, which cost less than 5% of a full fine-tuning run. These
10 dynamic features fall into three categories:

• Loss-based indicators: These metrics capture the initial model-data alignment and the subsequent
learning progress from the perspective of the optimization objective, like initial loss ℓ0 and the loss
decay rate which is computed as:

LossDecay(Di, Hj) = slope
(
LinReg({(ℓt, t)}T−1

t=0 )
)
,

where ℓt is the training loss at step t.

• Gradient-based indicators: These metrics reflect the magnitude, stability, and direction of the
learning signals during the early optimization phase like Gradient Norm.

• Model-based indicators: These metrics assess geometric properties of the loss landscape and
changes in the model’s internal state, which are often correlated with generalization potential.

4.3 STAGE 2: PREDICTION AND DIAGNOSTIC MODEL

Based on the meta-feature vector extracted in stage 1, we aim to train a lightweight predictor that both
well approximates the fine-tuning performance Ri,j (G2) while also explaining why a run is likely to
succeed or fail (G3). We adopt LightGBM, a gradient-boosted tree model particularly well-suited
for heterogeneous, tabular meta-features. As demonstrated in Appendix C, LightGBM achieves
accuracy comparable to state-of-the-art alternatives (e.g., SVR) while providing significantly better
interpretability and scalability. These properties make it a principled design choice rather than a
simple off-the-shelf baseline.

In addition to its powerful prediction capability, LightGBM seamlessly integrates TreeSHAP, a
theoretically rigorous method for Shapley value attribution. The SHAP framework decomposes each
prediction Pi,j into additive contributions from individual meta-features. Unlike black-box or proxy
baselines that provide only an opaque overall score, our model delivers transparent attributions. For
example, a predicted failure can now be traced back to low lexical diversity (static feature) or unstable
gradient norms (dynamic probe feature), which guide targeted improvement.
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Table 1: Main results on predicting fine-tuning performances (MMLU). Arrows indicate direction:
RMSE↓, R2 ↑, r ↑, Acc@kpp↑. TUNEAHEAD Pareto-dominates all baselines.

Method RMSE ↓ R2 ↑ r ↑ Accuracy (±kpp) ↑
k=1 k=2 k=3

ProxyLM 2.11 0.98 0.99 40.7 67.9 85.8
Early-Stop Extrapolation 7.43 0.81 0.90 11.2 23.9 32.8
Loss-Rate (Linear) 3.33 0.96 0.98 29.9 50.0 67.5
Reference-PPL (Linear) 6.58 0.85 0.92 8.6 22.0 32.8
TUNEAHEAD-Static-Only 3.50 0.96 0.99 14.9 32.8 49.3
TUNEAHEAD-Dynamic-Only 3.38 0.96 0.99 19.8 35.8 55.6
TUNEAHEAD (Full) 1.47 0.99 0.99 50.0 82.5 95.1
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Figure 4: Predicted vs True accuracy across methods. The diagonal line (y=x) indicates a perfect prediction.

5 EXPERIMENTS

Setup. We validate TUNEAHEAD across diverse data and hyperparameter settings on the MMLU
task, using Qwen2.5-7B-Instruct, Llama-3-8B-Instruct, and Qwen2-0.5B as base models. All imple-
mentation details, data curation protocols, model training procedures, calibration experiments, and
baseline implementations are moved to Appendix A. Ground-truth labels are seed-averaged MMLU
test accuracy from full LoRA fine-tuning; unless stated, we average over three seeds and evaluate on
a held-out test split. For clarity, we label a run as ‘success’ if its MMLU score exceeds 55%, and
‘failure’ otherwise. This threshold is chosen only to balance cases for illustration and has no effect on
the experiment results, since our predictor outputs a performance score.

Baselines. We compare TUNEAHEAD against (1) literature/practice-inspired baselines and (2) abla-
tion variants: (i) Early-Stop Extrapolation — linear extrapolation from the 100-step probe validation
loss (Domhan et al., 2015; Adriaensen et al., 2023); (ii) Loss-Rate (Linear) — regressors using early
loss-decrease rates under standard schedulers (Luo et al., 2025); (iii) Reference-PPL (Linear) —
regressors on reference perplexity of the fine-tuning data under the frozen base model (Gururangan
et al., 2020; Harada et al., 2025); (iv) ProxyLM (Anugraha et al., 2024) — regress on proxy models’
accuracy (e.g., small LMs) optionally combined with dataset features (e.g., TTR, vocabulary size and
average token length); (v) TUNEAHEAD-Static-Only — LightGBM trained on static dataset-intrinsic
features only; (vi) TUNEAHEAD-Dynamic-Only — LightGBM trained on dynamic 100-step probe
features only. All baselines share the same train/val/test splits and are tuned on the validation set;

Metrics. We report complementary metrics on the test set, all in percentage-point (pp) units for accu-
racy predictions: RMSE measures absolute error in the model performance prediction; R2quantifies
explained variance; Pearson r measures linear correlation between Pi,j and Ri,j ; Acc@kpp is the
fraction of predictions with |Pi,j − Ri,j | ≤ k percent (we report k ∈ {1, 2, 3}). We additionally
provide per-domain breakdowns in Appendix A.7, calibration curves in Appendix A.8, and 95% CIs
(bootstrap) with paired permutation tests for significance in Appendix A.9.

Exp-1: Predicting Fine-Tuning Performance and Generalization. In the first set of experiments,
we establish the end-to-end predictive strength of TUNEAHEAD when both dataset properties and
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Table 2: Cross-model generalization results for TUNEAHEAD on two additional meta-datasets. Arrows indicate
direction: RMSE↓, R2 ↑, r ↑, Acc@kpp↑.

Base Model RMSE ↓ R2 ↑ r ↑ Accuracy (±kpp) ↑
k=1 k=2 k=3

Llama-3-8B-Instruct 5.02 0.86 0.93 36.0 55.8 73.3
Qwen2-0.5B 3.75 0.91 0.95 39.2 58.4 74.6

LoRA hyperparameters vary. This set of experiments is designed to validate the accuracy and
generalizability of our predictor (G2).

We construct a meta-dataset of over 1,300 complete fine-tuning runs spanning heterogeneous
instruction-tuning sources and typical LoRA settings. Unless otherwise specified, all experiments
reported in the main text use Qwen2.5-7B-Instruct as the base LLM, with ground truth defined as the
seed-averaged MMLU test accuracy from full fine-tunes. Curation and training details are provided
in Appendix A. To further test generalizability across architectures and scales, we also construct
additional meta-datasets on Llama-3-8B and Qwen2-0.5B, experiment results reported in Table 2.

TUNEAHEAD sets a new accuracy bar for this prediction task. As Table 1 shows, on the held-out
test set, it cuts RMSE by 30% relative to the strongest non-TUNEAHEAD baseline (2.11→1.47 ,
ProxyLM) and by 80% relative to Early-Stop Extrapolation (7.43→1.47). Tight-tolerance accuracy
improves markedly: Acc@1pp +9.3 points (+22.9% rel.), Acc@2pp +14.6 points (+21.5%), and
Acc@3pp +9.3 points (+10.8%) over the best baseline, while maintaining near-perfect ranking
correlation (Pearson = 0.99). These gains reflect the complementarity of static data descriptors and
dynamic 100-step probe signals: either source alone yields ∼ 3.4–3.5 RMSE, whereas their combina-
tion reaches 1.47 (-56% vs. dynamic-only; -58% vs. static-only). Figure 4 visually corroborates these
numerical results. The plot for TUNEAHEAD (Full) exhibits the tightest clustering of points along
the diagonal, confirming its superior accuracy. In contrast, even the strongest baseline, ProxyLM,
shows larger deviations, particularly at the tails of the distribution.

Generalization Across Architectures and Scales. A critical question is whether TUNEAHEAD’s
predictive power is confined to the Qwen2.5-7B-Instruct model. To proactively assess this, we
constructed two additional, smaller-scale meta-datasets using Llama-3-8B (different architecture, 400
runs) and Qwen2-0.5B (smaller scale, 450 runs). As shown in Table 2, TUNEAHEAD continues
to capture predictive signal in both cases, achieving R2 = 0.86 on Llama-3-8B and R2 = 0.91
on Qwen2-0.5B, with reasonably high Acc@kpp. Although RMSE is higher, accuracy is lower
than in our primary experiments (due to the significantly smaller meta-datasets), the results provide
compelling preliminary evidence that the TUNEAHEAD framework is not a model-specific solution.

Summary. (i) Heuristics based solely on early learning curves are not sufficient for high-precision
prediction; (ii) dataset-intrinsic signals provide complementary, non-redundant information; (iii)
their integration in TUNEAHEAD yields low-error, tightly calibrated predictions (95.1% within
±3pp), which is the regime practitioners care about for reliable pre-screening without full fine-
tuning; (iv) preliminary cross-model experiments suggest that TUNEAHEAD generalizes beyond
Qwen2.5-7B-Instruct, maintaining predictive accuracy across different model scales and architectures.

Exp-2: Diagnosis. Beyond predictive accuracy, a core contribution of TUNEAHEAD is its ability to
provide diagnostic insights (G3). In this section, we use TreeSHAP to analyze the trained model and
understand the key drivers of fine-tuning success or failure.

Global Feature Importance. The SHAP analysis in Figure 5(a) identifies the most influential
features of fine-tuning performance. loss stability and landscape flatness emerge as the most critical
factors, confirming that a stable initial learning phase is paramount. Following these, data quality
metrics like embedding outlier ratio and approximate duplicates are the strongest negative predictors,
quantifying the high cost of noisy data. We trained predictors under multiple random seeds and
computed TreeSHAP attributions for each. While the exact ranking of features varied slightly across
seeds, the same core set of top features consistently emerged, with only minor shifts in their weights.

Case Study: Diagnosing a Predicted Failure Run. While the summary plot reveals global trends,
TUNEAHEAD’s utility shines in diagnosing individual runs. To demonstrate its practical value, we
conduct an in-depth analysis of a representative failure case, which our model correctly predicted.
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(b) Failure case (E[f(X)] = 0.45, f(x) = 0.212).
Figure 5: (a) SHAP summary plot ranking the global importance of meta-features for predicting fine-tuning
success; (b) SHAP waterfall plot for a representative failure case (the model correctly predicted low performance).

The SHAP plot Figure 5(b) explains how meta-features contribute to pushing the performance
prediction from the average prediction (E[f(X)] = 0.45) down to its final low score (f(x) = 0.212).

The diagnosis reveals a multi-faceted failure, jointly driven by poor learning dynamics and low
data quality. On the dynamics side, loss stability is extremely low (0.20), whereas successful runs
typically range from 0.5 to 0.8; values below 0.3 almost always fail, indicating an unstable trajectory.
Landscape flatness is also poor (0.408), compared to successful runs clustering around 0.6, with
values below 0.5 linked to sharp minima and poor generalization. On the data side, the duplicate
rate is 0.769, far above the successful-run median of 0.387. The embedding outlier ratio is similarly
extreme at 0.809, while successful runs typically stay below 0.5 (median 0.413).

This diagnosis provides a set of targeted, evidence-based prescriptions for the practitioner: (1) Opti-
mization instability: Lower the learning rate or adjust optimizer hyperparameters to encourage stable
convergence, and (2) Data quality defects: Apply semantic de-duplication to reduce redundancy and
use embedding-based outlier removal to clean the dataset before fine-tuning.

As a proof of actionability, we applied simple adjustments guided by the diagnosis. Concretely, on
the model side, we reduced the learning rate from 3×10−5 to 1×10−5 and adjusted the optimizer
hyperparameters by lowering the AdamW momentum parameters (β1 from 0.9 to 0.85 and β2

from 0.999 to 0.98), which encourages more stable convergence. On the data side, we applied
SemDeDup (Abbas et al., 2023) for semantic de-duplication, which removes near-duplicates within a
cosine threshold of 0.95, and performed embedding-based outlier removal by filtering out samples
whose sentence embeddings lie beyond 3 standard deviations from the mean in the representation
space. These adjustments improved the run’s final MMLU score significantly, from 20.2% to 48.7%.

Exp-3: Ablation Study. To validate our core design choices, we conduct two key ablation studies.

(i) Static vs. Dynamic Feature Ablation. This ablation validates our central hypothesis on the
synergy between static and dynamic features. While Exp-1 established the superior performance of
the full model, a deeper look at the ablation results in Table 1 and Figure 4 reveals the nature of this
synergy. This result demonstrates that a hybrid view can better achieve reliability.

To evaluate this synergy, we partitioned runs into buckets (Table 3) based on whether the subset
predictors succeeded (with Acc@2pp metric). The full model demonstrated robust improvements
across all scenarios: (i) When only the dynamic predictor succeeded, the full model boosted Acc@2pp
from 38.7% to 75.0%; (ii) conversely, when only the static predictor succeeded, it raised Acc@2pp
from 37.3% to a perfect 100.0%. (iii) Even when both subset predictors succeeded, the full model
still improved Acc@2pp from 40% to 82.1%, (iv) and when both failed, it dramatically mitigated
errors, improving Acc@2pp from 12.5% to 70.2%. These rescue effects confirm that static and
dynamic features capture different failure modes (data-level flaws vs. model-level instabilities), and
their combination is the key to achieving robust prediction.

(ii) Impact of Probe Budget. A key hyperparameter in our framework is the length of the dynamic
probe run. To justify our choice of 100 steps, we examine the trade-off between prediction accuracy
and the computational cost of the probe. As illustrated in Figure 6, a clear “elbow point” emerges
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Table 3: Complementarity analysis on the test set. We report RMSE↓ and Acc@2pp↑; Buckets partition runs by
whether static-only and dynamic-only predictions are correct.

(i) Rescued-by-Dynamic (ii) Rescued-by-Static

Model RMSE Acc@2pp

TUNEAHEAD (Full) 1.43 75.0
Static-only 4.90 0.0
Dynamic-only 3.22 38.7

Model RMSE Acc@2pp

TUNEAHEAD (Full) 0.69 100.0
Static-only 2.92 37.3
Dynamic-only 4.60 0.0

(iii) Both-subsets-correct (iv) Both-subsets-wrong

Model RMSE Acc@2pp

TUNEAHEAD (Full) 1.49 82.1
Static-only 3.34 36.2
Dynamic-only 3.16 40.6

Model RMSE Acc@2pp

TUNEAHEAD (Full) 1.61 70.2
Static-only 4.63 12.5
Dynamic-only 5.09 12.5
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Figure 6: Effect of probe length on prediction accuracy, stability, and time cost. (a) Accuracy at 2pp steadily
improves with longer probe runs but exhibits diminishing returns beyond 100 steps. (b) RMSE decreases sharply
in the early stage and stabilizes after 100 steps. (c) Average probe time cost grows near-linearly with probe
length, with 200 steps requiring about 1.5 times the cost of 100 steps.

around the 100-step mark, indicating a point of diminishing returns. Specifically, increasing the probe
budget from 0 to 100 steps yields a significant improvement in accuracy, with RMSE dropping from
3.50 to 1.47 and Acc@2pp rising from 32.8% to 82.5%. However, extending the budget further to
200 steps provides only a negligible gain, with Acc@2pp improving by just 0.3 percentage points to
82.8%. This minimal accuracy improvement comes at a substantial cost, as the average probe time
increases linearly, nearly rising from 7.76 minutes to 12.11 minutes. Therefore, we select a 100-step
probe as our default configuration, as it offers a robust balance between high predictive power and
the low computational overhead mandated by our design goals (G1).

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK
Conclusion. We introduced TUNEAHEAD, a framework that predicts fine-tuning performance by
combining static and dynamic meta-features. Our experiments show this approach is highly effective,
enabling practitioners to avoid costly failed runs and make principled, data-driven decisions.

Limitation. Our primary limitation is generalizability. While TUNEAHEAD showed strong perfor-
mance on several models (see Table 2), these experiments do not yet constitute a comprehensive
validation across model families, scales, and task distributions. Specifically, the predictive power
of our dynamic features, such as loss stability, is intrinsically tied to the fine-tuning setup. Their
importance could shift significantly with different architectures (e.g., dense vs. MoE) or training
patterns (e.g., PEFT vs. full-parameter tuning). This implies that while the TUNEAHEAD framework
is general, a trained predictor instance is likely specific to a model family and requires re-training on
a new meta-dataset. Additionally, our compute-saving estimates may vary in other deployments.

Future Work. Our future priorities are twofold. First, we will enhance generalizability not only by
expanding our meta-dataset, but more profoundly, by quantifying our feature space’s stability across
training regimes to develop a meta-learning based predictor that adapts to new model families with
minimal re-training. The second is to leverage TUNEAHEAD’s diagnostics to develop systems
that use its feature attributions not just as a passive report, but as an active tool for automated data
quality assessment and dataset quality improvements.
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility. All dataset curation steps, feature definitions,
model training, and evaluation protocols are detailed in Appendix A & B. An anonymized code zip
file is provided as supplementary material, containing the full implementation of our framework,
including modularized training and evaluation code, SHAP-based diagnostic analysis, and calibration
routines. To facilitate reproduction, the meta-dataset we provided illustrates the exact data format
and enables full, end-to-end execution of our pipeline. All hyperparameters, experimental settings,
and statistical testing procedures are explicitly specified in the main text and the Appendix, ensuring
that others can reproduce our reported results.

ETHICS STATEMENT

The TUNEAHEAD framework presented in this work is intended to improve the computational
efficiency and resource management of machine learning research and development. We do not
foresee any direct negative societal impacts from its application. However, we acknowledge that,
like any tool that accelerates model development, its application to sensitive domains or potentially
harmful models should be undertaken with caution and ethical oversight. Furthermore, while
TUNEAHEAD aims to predict fine-tuning success, the meta-features it relies on (e.g., perplexity,
gradient norms) could inadvertently reflect biases present in the base models (e.g., Qwen) or the
datasets used for the meta-dataset. Future work could investigate the fairness implications of these
predictive features across different demographic and linguistic groups. All research was conducted in
compliance with the ICLR Code of Ethics.

LLM USAGE

Our use of Large Language Models (LLMs) in this research was strictly limited to assistance roles,
with all core algorithmic ideas, experimental design, and analysis conducted by the human authors.

We used Gemini 2.5 Pro and ChatGPT-5 for English grammar polishing, and asked ChatGPT-5 for
suggestions on figure layout and color palettes.

For coding, we consulted ChatGPT-5 and Claude 4.0 for targeted support, such as debugging specific
issues and drafting boilerplate scripts (e.g., fine-tuning scaffolds, classic ML baselines). All final
code was authored, audited, and verified by the authors.

A portion of the instruction-tuning data in our meta-dataset was synthetically generated using GPT-
4o mini and Doubao to increase data diversity. The generation process involved providing seed
examples from public datasets and prompting the models to create new, topically related instruction-
following pairs. All synthetically generated data underwent a human-led quality control and filtering
process before inclusion.

No non-public or sensitive data was used in prompts. LLMs did not contribute any novel algorithmic
ideas, hypotheses, or scientific claims presented in this paper. The authors take full responsibility for
all content. LLMs do not meet the criteria for authorship.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 META-DATASET CURATION

Base Model and Task. All fine-tuning runs use Qwen-2.5-7B-Instruct. Downstream performance
is measured on MMLU for its coverage of knowledge and reasoning across domains.

Dataset Collection {Di}. We use public instruction-tuning sources (e.g., Alpaca, Dolly) and
both programmatically generated variants and LLM-synthesized examples seeded by these sources,
yielding 1,200+ dataset versions. Controlled transformations: (1) Sub-sampling: sizes 500–25k; (2)
Domain slicing: STEM vs. humanities, etc.; (3) Noise injection: label noise 0–20%. These produce
wide variation in statistical, semantic, and structural properties.

Hyperparameter Space {Hj}. For each Di, we sweep LoRA hyperparameters: learning rate
∈ {1e−5, 2e−5, 3e−5}, batch size ∈ {8, 16, 32}. This covers common practitioner settings and
captures realistic data–hyperparameter interactions.

Ground Truth Protocol. For every (Di, Hj) we run full LoRA fine-tuning to convergence and
evaluate on the MMLU test set to obtain Ri,j . Each Ri,j is the mean over 3 seeds to reduce
stochasticity.

A.2 META-FEATURE EXTRACTION

We compute a feature vector Vi,j per experiment.

Static features. Dataset-intrinsic signals (e.g., semantic diversity, label balance, length stats).
Semantic embeddings use all-MiniLM-L6-v2 for efficiency/quality trade-off. Reference Perplexity
is computed under the frozen base model (Qwen-2.5-7B-Instruct).

Dynamic probe features. A 100-step probe run per experiment with AdamW and linear scheduler;
we log losses/gradients each step and compute early-optimization descriptors.

Preprocessing. We standardize the full feature matrix by z-score before model fitting.

A.3 SHAP-GUIDED FEATURE SELECTION

Setup. We train a LightGBM predictor Fθ on a candidate feature set F and compute SHAP values
on the validation set Dval = {xi}ni=1. SHAP ensures an additive decomposition:

Fθ(xi) = ϕi,0 +
∑
f∈F

ϕi,f .

For each feature f , we summarize its global contribution by the mean absolute SHAP and a direction-
consistency statistic:

sf :=
1

n

n∑
i=1

|ϕi,f |, ρf := SpearmanCorr
(
xi,f , ϕi,f

)
,

and encode the hypothesized sign by ηf ∈ {+1,−1} (whether larger xi,f should increase or decrease
the prediction). We use cf := ηf ρf for signed consistency.

Step 1: Preliminary filtering. Start from 50+ candidates (30 static features and 27 dynamic
features). Through small ablations and sanity checks, remove obviously weak or duplicate descriptors
to obtain a screened pool F1.

Step 2: SHAP value computation. Fit Fθ on F1 and compute SHAP values {ϕi,f} on Dval via
TreeExplainer. We inspect beeswarm/bar plots to understand global effects.

Step 3: Global contribution analysis. Retain features that are both strong and consistent with
theory. Concretely, keep f if

sf ≥ Q0.15

(
{sf}

)
and cf := ηf ρf ≥ 0.20,

and the Spearman correlation passes significance (p < 0.05). Here Q0.15 is the 15th percentile of the
empirical {sf}.
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Step 4: Iterative pruning with CV safeguard. From the retained set, perform backward elimina-
tion: at each round remove the weakest candidate (smallest sf or negative cf ), retrain Fθ, and accept
the removal only if the cross-validated error does not worsen beyond a fixed tolerance:

∆RMSEcv = RMSEnew
cv − RMSEold

cv ≤ ε, ε = 0.01

Optionally, use a robust tolerance tied to fold variability:

ε = min
(
SE(∆), 0.01

)
, SE(∆) = sd

(
{∆k}Kk=1

)
/
√
K,

and additionally require no significant degradation via a paired test (t or Wilcoxon), p ≥ 0.05. Stop
when no feature can be dropped without violating the criterion.

Outcome. This SHAP-guided pipeline yields a compact, non-redundant meta-feature vector (14
static & 10 dynamic in TUNEAHEAD), balancing informativeness and stability while aligning with
theoretical expectations.

A.4 PREDICTION MODEL TRAINING AND EVALUATION

Training and Evaluation Details. We split the 1,300+ fine-tuning experiments into 28% test,
with the remaining 80% further divided into train/validation/calibration subsets (46/14/12%).
Unless otherwise noted, the split uses a fixed random seed (=36). The predictor is a Light-
GBM gradient-boosted decision tree (GBDT) with the following hyperparameters fixed across
all experiments: learning_rate=0.05, num_leaves=4, n_estimators=140, subsample=0.6,
colsample_bytree=0.6, min_child_samples=20, and ℓ2 regularization lambda_l2=1.0. We use
early stopping with patience of 50 rounds. All models are trained with n_jobs=-1 (multi-threading
enabled).

For ablation studies, we define static-only features as dataset descriptors (e.g., length, lexical diversity,
perplexity), and dynamic-only features as probe-derived signals (e.g., loss decay, gradient variance).
The details of all the features can be looked up in Appendix B.

A.5 BASELINES

Ablation variants. TUNEAHEAD-Static-Only (only static features) and TUNEAHEAD-Dynamic-
Only (only dynamic probe features).

Practical/literature-inspired baselines. (1) Early-Stop Extrapolation: linear extrapolation of the
100-step validation loss (Domhan et al., 2015; Adriaensen et al., 2023); (2) Loss-Rate Features: rates
of loss decrease under different schedules (Luo et al., 2025); (3) Reference Perplexity: reference-PPL
as dataset difficulty proxy (Gururangan et al., 2020; Harada et al., 2025); (4) ProxyLM (Anugraha et al.,
2024): regress on proxy-model scores (e.g., SmolLM-135M/360M, BLOOMZ-560M) optionally
with dataset features.

A.6 EVALUATION METRICS AND PROTOCOLS

We evaluate TUNEAHEAD with four standard regression and tolerance-based metrics:

• RMSE (percentage points): measures absolute error between predicted and ground-truth
performance,

RMSE =

√
1
N

∑
i,j

(Pi,j −Ri,j)2.

• R2: coefficient of determination, quantifying explained variance in ground-truth perfor-
mance,

R2 = 1−
∑

i,j(Ri,j−Pi,j)
2∑

i,j(Ri,j− ¯Ri,j)2
.

• Pearson r: measures linear correlation between predictions and ground-truth,

r =
∑

i,j(Pi,j−P̄ )(Ri,j−R̄)√∑
i,j(Pi,j−P̄ )2

∑
i,j(Ri,j−R̄)2

.
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• Acc@kpp: tolerance-based accuracy, defined as the fraction of predictions within k percent-
age points of ground-truth,

Acc@kpp = 1
N

∑
i,j

1
(
|Pi,j −Ri,j | ≤ k

)
, k ∈ {1, 2, 3}.

For all metrics, we average over three random seeds when obtaining ground-truth labels.

A.7 PER-DOMAIN BREAKDOWN OF PREDICTION PERFORMANCE

To complement the aggregate results in Table 1, we report per-domain breakdowns of prediction
accuracy on MMLU. The 57 subjects of MMLU are grouped into seven finer categories (STEM,
Social Sciences, Humanities, Arts & Culture, Health & Medicine, Business & Professional, and
Other/General Knowledge). This analysis verifies whether TUNEAHEAD consistently generalizes
across heterogeneous domains.
Table A.1: Per-domain breakdown of prediction performance on MMLU. Domains are grouped into finer
categories for clarity. Metrics include RMSE (pp), Pearson correlation r, and accuracy within ±2pp tolerance.

Domain RMSE ↓ r ↑ Acc@2pp ↑
STEM (Math, CS, Physics, Bio) 1.62 0.98 80.5
Social Sciences (Econ, Psych, Soc) 1.45 0.99 84.2
Humanities (History, Philosophy, Law) 1.53 0.99 83.1
Arts & Culture (Literature, Linguistics, Art) 1.59 0.98 81.9
Health & Medicine (Clinical, Nutrition, Public Health) 1.48 0.99 82.7
Business & Professional (Mgmt, Exams) 1.51 0.99 82.3
Other / General Knowledge 1.41 0.99 82.7

Overall 1.47 0.99 82.5

As shown in Table A.1, the predictive performance of TUNEAHEAD is consistent across domains.
RMSE varies only within ±0.15 across groups, and Pearson correlations remain above 0.98 through-
out. Accuracy within ±2pp is also stable, ranging between 80–84%. This robustness indicates
that the framework does not disproportionately benefit from or fail on particular subject categories,
reinforcing its general applicability across diverse fine-tuning scenarios.

A.8 CALIBRATION ANALYSIS

In Section 5, we emphasized that TUNEAHEAD’s predictions are not only accurate in terms of
correlation with fine-tuning outcomes, but also well-calibrated in absolute values. This property is
crucial for practical use cases, because a well-calibrated predictor allows practitioners to directly
interpret a predicted score as an approximate probability of fine-tuning success, enabling threshold-
based go/no-go decisions without ad hoc post-processing.

Figure A.1 shows the calibration curves of TUNEAHEAD compared with representative baselines.
Each point corresponds to a bin of predicted scores, with the x-axis showing the mean predicted value
and the y-axis showing the empirical success rate within that bin. The dashed line represents perfect
calibration. We observe that several baselines (e.g., Reference-PPL, Early-Stop) systematically
deviate from the diagonal, indicating a tendency to either over-estimate or under-estimate success
probability. By contrast, TUNEAHEAD’s curve (red circles) remains consistently close to the diagonal
across the full range, demonstrating superior calibration. This confirms that TUNEAHEAD is not
only a strong ranker (as shown by the high correlations in Table 1), but also a reliable probability
estimator, making its scores directly actionable for practitioners.

A.9 CONFIDENCE INTERVALS OF MAIN RESULTS

In Section 5, Table 1 reported the aggregate RMSE and accuracy of TUNEAHEAD and representative
baselines. While those results demonstrated clear performance gains, it is also important to examine
the robustness of these findings under statistical resampling. To this end, we conducted bootstrap
analysis (N=1000 resamples) and computed 95% confidence intervals for both RMSE and accuracy.
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Figure A.1: Calibration plots of predicted scores across models. While baselines often deviate from the ideal
diagonal, TUNEAHEAD (red) remains closely aligned with perfect calibration. This demonstrates that TUNEA-
HEAD’s predictions are both accurate in ranking and reliable in absolute probability estimation, complementing
the aggregate results reported in Table 1.
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Figure A.2: 95% bootstrap confidence intervals for RMSE (left) and accuracy (right) across TUNEAHEAD and
baseline predictors. Red bars highlight TUNEAHEAD (Full), while blue bars indicate baselines. The results
confirm that TUNEAHEAD not only achieves the lowest RMSE but also the highest accuracy, with narrow
confidence intervals that do not overlap with most baselines. This reinforces the statistical reliability of the
improvements reported in Table 1.

As shown in Figure A.2, TUNEAHEAD achieves the most stable performance: its RMSE is sig-
nificantly lower than all baselines, and its accuracy is consistently higher. The narrow error bars
demonstrate that these results are not due to random variation, but reflect a statistically robust
advantage of combining static and dynamic signals.

A.10 PER-HYPERPARAMETER BREAKDOWN

To verify that the improvements of TUNEAHEAD are not tied to a narrow choice of optimization
settings, we report test-set performance grouped by key hyperparameters as shown in the tables below.
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Table A.2: Per-learning-rate performance of TUNEAHEAD on the test set.

Learning rate RMSE ↓ R2 ↑ r ↑ Accuracy (±kpp) ↑
k=1 k=2 k=3

2× 10−4 1.36 0.99 1.00 51.68 85.23 96.64
3× 10−4 1.61 0.99 1.00 47.90 78.99 93.28

Table A.3: Per-batch-size performance of TUNEAHEAD on the test set.

Batch size RMSE ↓ R2 ↑ r ↑ Accuracy (±kpp) ↑
k=1 k=2 k=3

8 1.58 0.99 1.00 51.96 76.47 92.16
16 1.47 0.99 1.00 45.56 84.44 96.67
32 1.32 0.99 1.00 52.63 88.16 97.37

Table A.4: Two-way breakdown by (learning rate × batch size).

Learning rate Batch size RMSE ↓ R2 ↑ r ↑ Accuracy (±kpp) ↑
k=1 k=2 k=3

2× 10−4 8 1.37 0.99 1.00 56.16 82.19 95.89
2× 10−4 16 1.32 0.99 1.00 50.00 87.50 97.50
2× 10−4 32 1.39 0.99 1.00 44.44 88.89 97.22
3× 10−4 8 2.03 0.98 0.99 41.38 62.07 82.76
3× 10−4 16 1.59 0.99 1.00 42.00 82.00 96.00
3× 10−4 32 1.27 0.99 1.00 57.50 85.00 95.00

Overall, the per-hyperparameter breakdown reinforces the robustness of TUNEAHEAD. First, across
different learning rates (Table A.2), the predictor achieves consistently low RMSE (1.3–1.6pp) and
nearly perfect correlation (r ≈ 1.0). The slight drop in Acc@2pp for 3 × 10−4 (79% vs. 85% at
2×10−4) suggests that steeper learning rates may induce more variance in the fine-tuning trajectories,
but the deviations remain small relative to the overall gains reported in Table 1.

Second, when grouping by batch size (Table A.3), we find that larger batches generally yield slightly
lower RMSE and higher calibration accuracy. For instance, batch size 32 achieves Acc@2pp of 88%,
compared to 76% for batch size 8. This trend aligns with the intuition that smaller batches introduce
more stochasticity, yet TUNEAHEAD is able to maintain strong predictive reliability across the range.

Finally, the two-way grid (Table A.4) confirms that performance remains strong across all
(learning rate×batch size) combinations. Even in the most challenging regime (learning rate 3×10−4,
batch size 8), RMSE stays within 2pp and correlation remains high (r = 0.99). Conversely, more sta-
ble settings such as (2×10−4, 16 or 32) yield near-ideal calibration with Acc@3pp above 97%. These
results demonstrate that TUNEAHEAD’s improvements are not contingent on narrow hyperparameter
choices, but generalize broadly across optimization regimes.
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B META-FEATURE COMPENDIUM

This appendix provides a detailed compendium of all candidate static and dynamic meta-features
engineered for the TUNEAHEAD framework. For each feature, we include its definition, formula
(when applicable), acquisition method, predictive hypothesis (signal), and relevant literature
references.

B.1 STATIC META-FEATURES

Static features are computed from the dataset Di prior to training, sometimes using the frozen base
model M0.

B.1.1 GLOBAL STATISTICS

• Token Lengths (Mean & Std Dev)

µlen =
1

N

N∑
j=1

|xj |, σlen =

√√√√ 1

N

N∑
j=1

(|xj | − µlen)
2

Acquisition: Compute from input/output token counts. Signal: Longer average token
lengths can increase model perplexity and memory overhead, while shorter inputs may not
provide sufficient context. High variance in sequence lengths often signals heterogeneity in
data sources or task types, leading to unstable optimization (Vettoruzzo et al., 2023; Moghe
et al., 2024).

• Input–Output Length Ratio

r =
1

N

N∑
j=1

|yj |
|xj |

Acquisition: Average of output-to-input length ratios. Signal: This ratio correlates with task
paradigms: low ratios characterize compressive tasks such as summarization, while high
ratios reflect elaborative tasks like question answering or code generation. Such structural
differences shape model adaptation speed and generalization (Lin, 2004; Narayan et al.,
2018).

• Special Character & Code Ratio

rsc =
# special or code tokens in Di

# total tokens in Di

Acquisition: Count of special/code tokens vs. total. Signal: Elevated ratios typically
indicate domain-specific corpora (e.g., programming or formula-heavy data) or unclean
web text. Such distributions require tailored tokenization or model adaptation, as shown in
large-scale text-to-text transfer studies (Allamanis et al., 2018; Raffel et al., 2020).

• Approximate Duplicates Ratio

rdup =
|{(si, sj) : Sim(E(si), E(sj)) > τ}|

N2

Acquisition: Identify near-duplicates via embedding similarity threshold τ . Signal: High
duplication reduces effective dataset diversity, amplifies memorization, and weakens gen-
eralization. Deduplication in LLM pretraining has been shown to improve downstream
performance and reduce overfitting (Carlini et al., 2023; Lee et al., 2022).

• Embedding Outlier Ratio

routlier =
|{E(s) : ∥E(s)− µ∥ > 3σ}|

N
Acquisition: Detect large deviations in embedding space. Signal: Outlier samples often
correspond to mislabeled, noisy, or domain-shifted data. Their presence destabilizes opti-
mization and can severely degrade model robustness. Removing outliers is a key step in
modern dataset curation pipelines (Hendrycks et al., 2019; Northcutt et al., 2022; Dodge
et al., 2021).
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• Dataset Size (Num Items)
|Di| = N

Acquisition: Dataset example count. Signal: Larger datasets typically improve model
performance, but the gains follow a power-law with diminishing returns. Scaling law
analyses show that optimal performance requires balancing dataset size with model capacity
and compute budget(Kaplan et al., 2020; Hoffmann et al., 2022).

B.1.2 LEXICAL DIVERSITY FEATURES

• Type–Token Ratio (TTR)

TTR(Di) =
|Vocab(Di)|
|Tokens(Di)|

Acquisition: Compute vocabulary diversity in Di. Signal: A low TTR indicates repetitive
content and limited lexical variety, which can impair a model’s ability to generalize to
unseen expressions. High TTR reflects lexical richness but may also introduce noise or rare
tokens. TTR is a long-established measure of lexical richness and a standard meta-feature in
dataset characterization (Rivolli et al., 2019).

• N-Gram Repetition Rate

rn =
1

N

N∑
j=1

# repeated n-grams in yj
|yj |

Acquisition: Fraction of repeated n-grams in outputs. Signal: High repetition rates
often signal low-quality or synthetic outputs, reducing effective informational content and
promoting degenerate training behavior. Low repetition may indicate dispersed data but
could also reduce coherence. Repetition metrics are widely used in text degeneration and
quality control studies(Rivolli et al., 2019; Holtzman et al., 2020).

• Instruction Complexity

Cinst =
1

N

N∑
j=1

depth(ParseTree(xj))

Acquisition: Average parse-tree depth of instructions. Signal: Shallow trees suggest
trivial instructions that under-challenge the model, while overly deep trees reflect high
syntactic complexity that may hinder comprehension or stable learning. Balanced complexity
encourages both learnability and generalization (Yatskar, 2019)

B.1.3 INFORMATION-THEORETIC PROPERTIES

• Reference Perplexity (PPL)

PPL(Di,M0) = exp

(
− 1∑

s∈Di
|s|
∑
s∈Di

log pM0(s)

)
Acquisition: Measure using frozen base model. Signal: High perplexity indicates distribu-
tional mismatch between dataset and pretraining corpus, leading to slower convergence and
increased adaptation cost. Low perplexity suggests greater alignment with prior knowledge.
PPL remains a widely accepted proxy for domain mismatch and learning difficulty(Wu et al.,
2017; Jozefowicz et al., 2016).

• Input–Output Semantic Similarity (IO Similarity)

Sim(x, y) =
E(x) · E(y)

∥E(x)∥∥E(y)∥
Acquisition: Cosine similarity of embeddings. Signal: Low similarity may reflect irrelevant
or hallucinated outputs, while very high similarity often indicates trivial paraphrasing lacking
informativeness. Moderate levels of similarity are most effective for meaningful adaptation.
Embedding-based similarity has been widely studied in representation learning (Clark et al.,
2020; Cer et al., 2018).
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• Output Semantic Diversity

Div(Di) =
2

N(N − 1)

∑
j<k

(1− Sim(yj , yk))

Acquisition: Average pairwise output dissimilarity. Signal: Low diversity signals redun-
dancy and narrow coverage, while excessive diversity may indicate incoherence or noisy
task signals. Balanced semantic diversity provides both robustness and coverage, promoting
better generalization (Ziegler et al., 2020; Li et al., 2016).

• LM–Data Vocabulary Alignment (KL Divergence)

KL(P∥Q) =
∑
w∈V

P (w) log
P (w)

Q(w)

Acquisition: Compare dataset and reference corpus word frequencies. Signal: Large
divergence highlights domain shift, suggesting that the dataset vocabulary departs from the
pretraining distribution. This increases the adaptation burden and may reduce efficiency.
KL divergence is a standard measure in domain adaptation and data selection (Aharoni &
Goldberg, 2020; Axelrod et al., 2011).

• Answer Groundedness

g(y, x) =
|n-grams(y) ∩ n-grams(x)|

|n-grams(y)|

Acquisition: Ratio of overlapping n-grams between output and input. Signal: Low ground-
edness suggests hallucination or irrelevant generation, while overly high groundedness may
reduce informativeness by copying excessively. Moderate grounding balances fidelity with
informativeness, ensuring both reliability and novelty (Ji et al., 2023; Zhao et al., 2020).

B.2 DYNAMIC PROBE META-FEATURES

Dynamic features are extracted during a standardized 100-step probe run.

B.2.1 LOSS-BASED INDICATORS

• Initial Loss
L0 = L(θ0;Di)

Acquisition: Probe loss at the first optimization step. Signal: The initial loss measures how
well the pretrained model aligns with the dataset before adaptation. High values suggest a
significant domain gap, requiring more updates to adapt, while low values indicate better
alignment and easier fine-tuning. It is widely used as a proxy for domain difficulty in transfer
learning (Arpit et al., 2017; Hestness et al., 2017).

• Loss Decay Rate
α = slope

(
LinReg({(t, Lt)}Tt=1)

)
Acquisition: Slope of regression fit on probe loss curve. Signal: A steep negative slope
indicates strong learnability and rapid adaptation, whereas flat or unstable curves suggest
noisy or hard-to-learn data. Early loss decay is highly predictive of final model performance
(Wu et al., 2017; Hestness et al., 2017; Loog & Viering, 2022).

• Loss Curve Stability

σ2
L =

1

T

T∑
t=1

(
Lt − L

)2
Acquisition: Variance of loss during probe. Signal: Low variance implies stable optimiza-
tion and smoother convergence, while high fluctuations often reflect noisy data, poor learning
rates, or unstable alignment between model and task. Stable trajectories are associated with
better generalization(Li et al., 2024; Wu et al., 2017).
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B.2.2 GRADIENT-BASED INDICATORS

• Gradient Norm (Mean & Variance)

µg =
1

T

T∑
t=1

∥gt∥2, σ2
g =

1

T

T∑
t=1

(∥gt∥2 − µg)
2

Acquisition: Gradient norms across probe steps. Signal: Gradient norms reflect the strength
of learning signals. Very large norms can cause instability or gradient explosion, while very
small norms may stall learning or trap the model in poor local minima. Both mean and
variance provide insight into learning dynamics (Pascanu et al., 2013; Sutskever et al., 2013;
Killamsetty et al., 2021).

• Gradient Consistency
ct =

gt · gt+1

∥gt∥∥gt+1∥
Acquisition: Cosine similarity between sequential gradients. Signal: High consistency indi-
cates coherent optimization paths, suggesting the model is learning a stable objective. Low
or negative alignment suggests noisy or conflicting signals, slowing convergence. Gradient
alignment is also linked to meta-learning generalization (Finn et al., 2017; Killamsetty et al.,
2021; Guiroy et al., 2019)

• Gradient Sparsity

s =
|{k : |gk| < ϵ}|

|g|
Acquisition: Proportion of near-zero gradient components. Signal: High sparsity indicates
that only a small subset of parameters is being updated, potentially limiting adaptation.
Moderate sparsity may improve efficiency and generalization, but excessive sparsity may
signal model–data mismatch (Frankle & Carbin, 2019; Evci et al., 2021; Killamsetty et al.,
2021).

B.2.3 MODEL-BASED INDICATORS

• Parameter Change Norm
∆θ = ∥θT − θ0∥2

Acquisition: L2 norm of parameter changes during probe. Signal: Parameter change
magnitude reflects adaptation strength. Moderate changes indicate healthy learning, while
excessive shifts may reflect instability or overfitting. This feature has been used to analyze
learning dynamics and compression strategies (Li et al., 2020; Raghu et al., 2017).

• Loss Landscape Flatness Proxy
∆L = L(θ∗ + δ)− L(θ∗)

Acquisition: Apply perturbation δ and measure loss change. Signal: Flat minima (small
∆L) correspond to more robust solutions with better generalization under distribution shifts,
while sharp minima indicate overfitting and fragility. Flatness has been consistently linked
to generalization performance(Wu et al., 2017; Li et al., 2024).

• Catastrophic Forgetting Proxy
∆P = Pbaseline − Pprobe

Acquisition: Performance drop on out-of-domain task during probe. Signal: Large drops
indicate interference between new and old tasks, a hallmark of catastrophic forgetting. This
proxy highlights whether fine-tuning data compromises existing knowledge(Wen & Itti,
2018).

• Activation Sparsity

sa =
|{h : |h| < ϵ}|

|h|
Acquisition: Fraction of near-zero activations in hidden layers. Signal: Sparse activations
suggest selective use of model capacity. Moderate sparsity improves interpretability and
efficiency, while excessive sparsity indicates underutilized capacity or inefficient learning. It
is widely used as a proxy for model resource utilization (Glorot et al., 2011; Maass, 1997).
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Figure C.1: Performance comparison of predictor models. We evaluate five models on the same meta-feature
set. The plots show (a) RMSE (lower is better) and (b) Acc@2pp (higher is better). The results validate our
choice of LightGBM (marked by a star), which also achieves strong performance.

C DETAILED ABLATION STUDY ON PREDICTOR CHOICE

Motivation and Setup. A critical design choice in the TUNEAHEAD framework is the selection of
the prediction model F . The ideal predictor must not only achieve state-of-the-art predictive accuracy
(G2) but also align with our core principles of providing interpretable diagnostics (G3) and ensuring
computational efficiency (G1). To empirically validate our choice of LightGBM, we conducted a
comprehensive comparison against a diverse suite of strong and representative regression models:

• Ridge Regression (Hoerl & Kennard, 1970): a powerful linear model to test the extent of
non-linear relationships in the data.

• Support Vector Regressor (SVR, RBF) (Drucker et al., 1997; Smola & Schölkopf, 2004):
a classic, high-performance kernel-based method adept at capturing complex non-linearities.

• Random Forest (Breiman, 2001): a state-of-the-art ensemble model based on bagging,
serving as a direct comparison to LightGBM’s boosting approach.

• Multi-Layer Perceptron (MLP) (Rumelhart et al., 1986): a simple but representative
neural network baseline for tabular data.

To ensure a fair and rigorous comparison, all models were trained on the identical meta-feature set,
and each underwent a systematic hyperparameter search using 5-fold cross-validation on our training
set.

Performance Analysis. The results of this comparison are presented in Figure C.1. Our analysis
yields two key findings. First, a top tier of models clearly emerges, with LightGBM (RMSE=
1.470) and SVR (RMSE= 1.472) delivering nearly identical, state-of-the-art predictive accuracy.
Random Forest (RMSE= 1.589) follows as another strong competitor. This confirms that a GBDT-
based approach achieves performance that is on par with the best alternative methods for this task.
Second, the simple MLP struggles to generalize effectively (RMSE= 4.172), a common outcome on
heterogeneous, tabular meta-datasets where GBDT models often excel without extensive architectural
tuning.

Justification for Selecting LightGBM. Given the statistically comparable accuracy of the top-
performing models (LightGBM and SVR), our final selection was determined by the other two crucial
design goals: interpretability and scalability.

Interpretability. LightGBM holds a decisive advantage. Its tree-based architecture integrates seam-
lessly with SHAP, enabling the precise, feature-level diagnostics that are central to TUNEAHEAD’s
mission. In contrast, while SVR is a powerful predictor, deriving similarly intuitive, local feature-level
attributions from a kernel-based model is significantly more complex and less direct.

Scalability. Furthermore, LightGBM is substantially more scalable. Its training time complexity
is more favorable than SVR’s, particularly as the number of experiments (samples) in the meta-
dataset grows. This computational efficiency is critical for the future development and application
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of TUNEAHEAD to even larger and more diverse problem spaces, as discussed in our Future Work
(Sec. 6).

Conclusion. While SVR demonstrates highly competitive accuracy on our current dataset, Light-
GBM’s unique combination of top-tier accuracy, superior interpretability, and better scalability makes
it the most principled and strategic choice for the TUNEAHEAD framework.

26


	Introduction
	Related Work
	Problem of Predicting Fine-tuning Performance
	The TuneAhead Framework
	Design Goals and Framework Overview
	Stage 1: Meta-Dataset Curation
	Stage 2: Prediction and Diagnostic Model

	Experiments
	CONCLUSION, LIMITATIONS, AND FUTURE WORK
	Additional Experimental Details
	Meta-Dataset Curation
	Meta-Feature Extraction
	SHAP-Guided Feature Selection
	Prediction Model Training and Evaluation
	Baselines
	Evaluation Metrics and Protocols
	Per-Domain Breakdown of Prediction Performance
	Calibration Analysis
	Confidence Intervals of Main Results
	Per-Hyperparameter Breakdown

	Meta-Feature Compendium
	Detailed Ablation Study on Predictor Choice

