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Figure 1: With ZeroPatcher, a text-to-video generative model can achieve video inpainting and video
editing without any finetuning.

Abstract

Video inpainting and editing have long been challenging tasks in the video genera-
tion community, requiring extensive computational resources and large datasets to
train models with satisfactory performance. Recent breakthroughs in large-scale
video foundation models have greatly enhanced text-to-video generation capa-
bilities. This naturally leads to the idea of leveraging the prior knowledge from
these powerful generators to facilitate video inpainting and editing. In this work,
we investigate the feasibility of employing pre-trained text-to-video foundation
models for high-quality video inpainting and editing without additional training.
Specifically, we introduce a model-agnostic denoising sampler that optimizes the
trajectory by maximizing the log-likelihood expectation conditioned on the known
video segments. To enable efficient dynamic object removal and replacement, we
propose a latent mask fuser that performs accurate video masking directly in latent
space, eliminating the need for explicit VAE decoding and encoding. We imple-
ment our approach in widely-used foundation generators such as CogVideoX and
HunyuanVideo, demonstrating the model-agnostic nature of our sampler. Compre-
hensive quantitative and qualitative evaluations confirm that our method achieves
outstanding video inpainting and editing performance in a plug-and-play fashion.

1 Introduction

Given an input video and a dynamic mask, video inpainting or editing tasks require models to render
the masked regions according to user specifications. As a long-standing challenge in video research,
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this problem has been approached through various paradigms, including transformers (445 [17)) and
diffusion models (42;15)). Recent advances in foundational video generators (335138 28)), particularly
through large diffusion transformers, have significantly improved video generation capabilities. This
progress naturally suggests leveraging these powerful foundation models to advance video inpainting
and editing. However, effectively utilizing their conditional generation abilities for these tasks
would typically demand substantial computational resources for training, given their massive scale.
Furthermore, as foundation models continue to evolve, traditional approaches relying on extensive
fine-tuning will face increasing challenges in adapting to new video generators. An alternative
solution is to employ these video generators as data priors, enabling task resolution in a training-free
manner.

Recent research has extensively explored methods for enabling conditional generation in image
diffusion models. For inpainting tasks where significant portions of the image are unavailable, current
approaches typically employ back-projection operations (32) to incorporate information from known
regions. However, this process does not directly estimate the conditional denoising distribution and
may fail when the generation trajectory substantially deviates from the known data (32)).

In this work, we introduce ZeroPatcher, a novel training-free approach that unlocks video inpainting
capabilities in text-to-video foundation models. Our method is theoretically model-agnostic and com-
patible with diffusion-based video generators. To approximate the conditional denoising distribution,
we propose conditional denoising expectation maximization (CD-EM), which formulates an EM
problem over the denoising trajectory conditioned on known data. The framework consists of an
expectation step implemented through Monte-Carlo sampling and a maximization step solved via
fixed-point iteration. We further establish the uniqueness of the fixed point in the maximization step
through theoretical analysis. While existing methods inject known information by pixel replacement
at each denoising step, this approach is incompatible with prevalent latent diffusion models that
cannot perform precise masking in latent space. To overcome this limitation, we present a mask fuser
- a lightweight convolutional architecture that enables accurate dynamic masking in latent space.

We perform extensive evaluations on the DAVIS (22) and YouTube-VOS (35)) datasets to assess both
the inpainting and editing capabilities of our method. By leveraging the generative power of modern
video foundation models, our approach achieves performance competitive with trained inpainting
models. Furthermore, we demonstrate ZeroPatcher’s video editing potential, showing superior ability
to modify object shapes while maintaining surrounding content compared to existing methods. Our
key contributions are:

* We introduce ZeroPatcher, a training-free framework that adapts video diffusion models
for video inpainting and editing. The proposed latent mask fuser enables dynamic video
masking directly in latent space.

* We present conditional denoising expectation maximization (CD-EM) to optimize sampling
trajectories using known video regions as guidance, accompanied by theoretical analysis
proving solution uniqueness and convergence.

* Comprehensive experiments demonstrate our method’s model-agnostic nature and compet-
itive performance against trained approaches across various video inpainting and editing
tasks.

2 Related Works

2.1 Video generative models

Recent advances in generative learning methods, including autoregressive models (29)), diffusion
models (32;26;21)), and flow matching models (19), have significantly enhanced video generation
capabilities. Early approaches focused on learning video distributions in pixel space, with Video
Diffusion Model (12) pioneering the application of diffusion denoising to this domain. Subsequent
works like Make-A-Video (25)), PYoCo (8), and Imagen Video (10) integrated large language models
to enable text-to-video generation. To address the high dimensionality of video data, recent research
has shifted toward latent space learning. VideoGPT (37)), combining VQ-VAE (6) with transformer-
based next-token prediction, established an early benchmark for latent video modeling. He et
al. further advanced this direction by employing diffusion models to approximate latent video
distributions, giving rise to latent video diffusion models (9; 43 134; 2; [1; 1315 13; 14). CogVideoX (38)



introduced diffusion transformers and temporal-compressed video VAEs, substantially improving
motion complexity. With growing datasets and computational resources, large-scale video generators
(28} 133)) are now achieving unprecedented video generation quality.

2.2 Video inpainting and editing

Video inpainting and editing represent crucial downstream applications in video generation research.
For video inpainting, E2FGVI (16) employs optical flow to guide the inpainting process, while
ProPainter (44) utilizes a transformer architecture to expand the perceptual field. More recently, Zhang
et al. (42) introduced diffusion models to video inpainting by training a UNet for masked conditional
denoising. The rapid advancement of foundation models has similarly propelled progress in video
editing. Approaches like FateZero (23) and VideoP2P (18) leverage diffusion inversion and attention
map control for content swapping while preserving backgrounds, whereas VideoComposer (30) trains
an editing-compatible generator. However, these methods rely on architecture-specific properties. In
this work, we investigate a model-agnostic approach that enables text-to-video generators to perform
inpainting and editing through theoretical sampling analysis.

3 Method

3.1 Preliminatry

Diffusion model Given a video x¢ ~ p(xg),xo € R¥*"*wX¢ where t, h,w are temporal and
spatial dimensions and c is the latent channel size. Generative models approximate this distribution
through a series of Markovian diffusion and denoising transitions (12} 26; 215 27). The forward and
backward diffusion processes are defined as:

q(xt[x0) = N (x¢|\/arxo, (1 — a)T) (0
q(xe—1]x¢,%0) = N (x¢—1|p(x4, %0), 07 1), 2
where x; denotes the noisy data at timestep ¢ = 1,2,--- , T, and the mean (X, Xo) is a linear combi-

nation of x; and x. A diffusion model is trained to iteratively denoise samples starting from Gaussian
noise x ~ N (xr|0, I). The model learns to approximate the reverse diffusion process conditioned
on y (e.g. textual prompts) through the distribution pg (x¢—1|Xt,y) = N (Xe—1| e (Xt, y), Lo (xt), y).
For notational simplicity, we will generally omit the explicit conditioning on y in subsequent sections.
The diffusion model is parameterized to predict the clean data fy(x;) ~ x. Using this trained model,
we can approximate the denoising distribution by substituting the ground truth xo with the model’s
prediction: pg(x;—1|x;) = q(X1—1|%¢, fo(x¢)). Specifically, the learned denoising distribution is

po(xi—11xe) = N(x¢-1|p(xt, fy (x1)), 07T). 3)

Training-free image inpainting The back-projection method (32;[7) has emerged as a prevalent
approach for zero-shot image inpainting. This method employs a linear degradation operator A,
where the degraded observation is given by x3 = AT Ax,. Common degradation operators include
masking, downsampling, and monochromatization. The complete image can be decomposed into
orthogonal components:

xo = ATAx +(I— ATA)xq, @
N—— ——
rangespace nullspace

where AT is the pseudo inverse of A such that AATA = A. The range space component represents
the preserved information in the degraded observation, while the null space component contains the
missing information to be recovered. In training-free inpainting, we assume access to x{ but not the
original x¢. The key idea is to leverage a pretrained diffusion model fy(-) to estimate the null space
component during denoising. DDNM (32) proposes a back-projection step that enforces consistency
with the observed data:

fo(xe) = (I— ATA)fy(x,) + ATxE. 5)

This formulation ensures the diffusion model only predicts in the null space of A while perfectly
preserving the range space component x§ in the final output.
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Figure 2: An illustration of the sampling process with conditional denoising expectation maximization
(CD-EM) and back-projection method. In each sampling step, we first use CD-EM to optimize the
sampling trajectory with the guidance of the known data. Then we inject known information through
back-projection method.

3.2 Formulation

Consider a data instance xg = {x¢, x5}, %o € R% composed of masked x and unmasked components
x¢, where the partitioning is defined by a binary mask m € Z¢ m; € {0,1},x¢ = {x}|m; =
0},x5 = {x}|m; = 1}. This mask-based partitioning extends naturally to noisy data x; at any
timestep ¢. Given a pretrained diffusion model fg(-) that estimates clean data from noisy inputs
£y (x;), our goal is to recover x through conditional denoising while preserving x¢ starting from xr.

3.3 Conditional denoising expectation maximization

For inpainting tasks, we observe the ground truth denoising trajectory for known segments x{.
Current back-projection methods sample from pg(x;_1|x%,x?) (32 [12)), where 2¥ represents noisy
inpainting results. However, this approach suffers from two key limitations:

* The estimation is biased from the true conditional denoising distribution pg(x;_1|x¢, X3).
While diffusion models approximate the unconditional distribution pg(x;—1|%). learning
the conditional variant requires additional training.

* The method only leverages information from x¢ at noise level ¢, ignoring less noisy versions
(e.g. ¢¢_;) that contain more reliable information.

Since pretrained text-to-video diffusion models lack explicit conditional generation capabilities,
we circumvent the need for pg(x;_1|x¢, x%) by reformulating the sampling process as a maximum
likelihood estimation problem. The pipeline of the method is presented in fig. 2. Our proposed
conditional denoising expectation maximization (CD-EM) method optimizes the sampling trajectory
to maximize the joint likelihood We aim to follow a sampling trajectory that maximizes the likelihood
po(x¢_1,x2 ,|x¢). Within this likelihood, ?_; denotes the unknown masked component. While
Xy 1 = y/a—1xg + /1 — ay_1€;1 represents the known unmasked ones. The expectation of the
log-likelihood is defined as:

Qalx?) = [ ol ) ooy xd bt ©
Xi—1

We use x9'4 to denote the old noisy latent in the previous EM step. In eq. (6), sampling from

po (x4 |xP19) requires neural network forward propagation and thus the integration is intractable.



We can approximate it with Monte-Carlo integration:

N
Qxe[x¢) ~ ) “log pu(xy_ 1, %, xe), ©)
7

where x%77 | is sampled from pg(x?_;|x9'4) and N is the number of samples. Since the likelihood

term is Gaussian. We analytically express the approximated expectation and our objective:

N
o 1 a b,i
Q(x[x{') =~ ~ 52 > Neefr ) = plxes Bo(x2)) 3 ®
t—1
x; = argmin ([T TGN AAC ) ©)

Given this, we can optimize the conditional denoising trajectory by iteratively computing and
maximizing the expectation. This method demonstrates two advantages:

* We does not need to spend additional training to approximate pg(x;—1|x¢, x§). Therefore,
our method is training-free and model-agnostic.

* Instead of using x¢ as the condition for the denoising step. CD-EM utilizes x7_; which is
less noisy and therefore provides a more reliable guidance.

3.4 Solving the maximization

In this section, we present our approach to maximize the expectation in eq. (9). The objective is to
find a x; that satisfies:

(X?—ungﬁ — po(x¢) = (Xg—lvxifl) + Ctl—lxt + Cf—lfe(xt) =0, (10)

where c;_y, c?_, are constant coefficients. Since this equation cannot be solved analytically due to
the neural network function fg(-). In alternative, we propose to employ fixed point iteration to obtain
an approximate solution. A special case is when /N = 1, the iteration formula becomes:

a b,1 2 !
x¢ 1,x, 1) +c;i_1fo(x
X, 7( -1 16)1 i—1fo( t). (11)
t—1

We find N = 1 is able to get plausible results while maintaining computational efficiency. The
complete deduction and the matrix formation when N > 1 are provided in the appendix. The
effectiveness of our fixed point iteration method depends on solution uniqueness and convergence.
We establish these properties if the used diffusion model is well trained and N = 1.

Theorem 3.1. Given a diffusion model £5(-), a noisy latent x4, and a future step known data x¢_,. If
the diffusion model is well trained with Lipschitz constant L. The score function s(-) is approximated
through sg(x;) =~ s(x¢|xq). The approximation satisfies

l[so(x¢) —so(xP)ll2 < Lsllx; — %72, (12)

where x; € RY and x? € R? are two arbitrary noisy samples. Then there is a noise schedule

{ag, -+ ,ar}, {00, -+ ,or} and an ending timestep to. For T > t > t,, the iteration x; <+

— ((ng17 xP) + 2 fo (Xt)) /ct_ converges to a unique fixed point.

The proof of theorem 3.1 is shown in the appendix. This theorem guarantees that CD-EM can
effectively optimize the noisy latent x; through fixed point iteration. Let K denote the number of
fixed point iterations and let P denote the number of EM iterations. While our method involves
both Monte Carlo integration and fixed point iteration, experiments demonstrate that high-quality,
consistent results can be achieved with N = 1, K = 1, P = 2 without significant computational
overhead. Notably, when using 1 step of fixed point iteration, no additional neural network forward
passes are required.

3.5 Sampling with CD-EM

Our method operates independently or with back projection techniques (32). As shown in fig. 2, back
projection follows CD-EM optimization. Let x; denote the CD-EM optimized latent. We then apply
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use two videos to be fused and the pixel space dynamic mask as the input. After encoding them with
the encoder, the latent mask fuser concatenates the three inputs in channel dimension and perform
video fusing in latent space.

denoising x;_1 ~ py(x¢—1|x;). For CD-EM only, we optimize x;_1 to x;_. Repeat this process
until we reach x. With back projection, we inject range space data during sampling. Mathematically,
the process is

Xy ~ Q(Xt71|xt;f9(xt)) Use back proj. a3
Po(Xi—1|x}) Others
fo(x}) = {x3. £ ()}, (14)

where f}(x}) = {fi(x})|m’ = 1} is the masked portion of fy(x}). CD-EM shows significant
improvements in early denoising stages when visual layouts are determined, with subtle effects in
later stages. We suspend CD-EM when ¢ < 7 to save computation (see appendix for algorithm).

3.6 Latent mask fuser

Pixel-space masks m € Z? are straightforward to apply, and can be represented via DDNM’s linear
degeneration matrix A (32). However, modern generators using VAEs {€, D} create compressed
latent representations where direct masking becomes non-trivial due to lost spatial correspondence.
Simple approaches like resizing pixel masks to latent space lose accuracy, while decoding to pixel
space introduces computational overhead and potential information loss.

We propose latent mask fuser M(-) to achieve fast video masking in video latent space. The module
leverages a light-weight convolutional architecture. Let 1t € Z! denote the mask in pixel space with
lengthl =T x H x W x 3, where the capital letters T, H, W are the video dimensions in pixel
space. Given two videos in the latent space x; € R%, x5 € RY, the latent mask fuser computes the
output via

x = M(x1, Xz, £(1h)) (15)
where £(m) is the encoded mask. With this, we can achieve fast and accurate video masking

and replacement in latent space. Let X; € R! %y € R? denote the videos in pixel space and
x1 = £(X1),x2 = E(X2). We aim to approximate the masking operation in pixel space

» i, ifm; =1
! (16)

X:{X17X2}7 X = ~i if i 07
X 1Irm,; =
29 7

where we use the superscript 7 to denote the element at the i-th entry. Then the training loss for the
latent mask fuser is
L =Eg, %, [||X — x| + X - LPIPS(%,x)]. (17)

we use a series of simplex noise generators to produce dynamic random masks m.

4 [Experiments
4.1 Details

We apply our method to a video diffusion models CogVideoX (13} [38), which uses a diffusion
transformer architecture. We also show ZeroPatcher can be used in HunyuanVideo, please see it in
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Figure 5: A visual comparison in video editing. We mark the changes in editing textual prompt using
red (source) and green (editing).

the appendix. With CogVideoX, we generate 49 x 720 x 480 videos using discrete euler sampler
(I1). To use dynamic video mask, we train the latent mask fuser on CogVideoX Video VAE using a
small subset including 20,000 smaples from Panda-70M(5). The video resolution used during the
training is 17 x 256 x 256. The exact inference hyperparameters, the training configuration of the
latent mask fuser, and a comprehensive computation and memory cost analysis can be found in the
appendix.

For video inpainting evaluation, we conduct experiments on DAVIS (22)) (50 videos) and YouTube-
VOS (33) (508 videos) using their original splits (44). As CogVideoX requires text guidance, we use
LLaVa-NeXt (41) to generate precise original prompts identifying main objects, then modify them
with GPT-4 mini ol by removing object descriptions to create inpainting prompts. Following (44)),
we evaluate using PSNR and SSIM for unmasked region similarity to source videos, VFID for visual
realism, and Fy,,p for temporal consistency, with all inputs center-cropped to model resolution.

For video editing evaluation, we test on 50 DAVIS videos following [18), using GPT-4 mini
ol to create editing prompts by modifying original video descriptions. We assess performance
using CLIP scores for text alignment, PSNR/SSIM for background preservation, and Ey,.p for
temporal smoothness. Additionally, we conduct human evaluation collecting 1,310 responses from
171 participants who compared results on DAVIS.



Youtube-VOS DAVIS

Model

PSNRT SSIM?t VFID| FEgapd PSNRT SSIM1T  VFID| Egarp |
Trained
FuseFormer 33.32 0.9681 0.053 1.053 32.59 0.9701 0.137 1.349
ISVI 30.34 0.9458 0.077 1.008 32.17 0.9588 0.189 1.291
FGT 32.17 0.9599 0.054 1.025 32.86 0.9650  0.129 1.323
E2FGVI 33.71 0.9700  0.046 1.013 33.01 0.9721 0.116 1.289

ProPainter 3443 09735  0.042 0.974 3447 09776  0.098 1.187

Training-free

SDEdit 26.41 0.8436  0.089 0.988 25.89  0.8266  0.203 1.266
DDNM 3413 09705  0.067 1.069 3397 09744  0.127 1.376
Ours 3433 09715  0.039 0.961 3413 09765  0.096 1.163

Table 1: Quantitative comparisons of video inpainting on Youtube-VOS (36) and DAVIS (22). Note
that we ensure the number of computation using the denoising network are 100 for all training-free
methods for a fair comparison. This indicates the computation cost for SDEdit, DDNM, and ours are
almost the same in this experiment.

Model Automatic metrics Human evaluation
CLIP score  PSNR  SSIM  FEyup BC TA
PF 0.3341 34.07 09684 1.513 30.6% 2.3 %
VideoComposer 0.3172 - - 1.361 - 12.8 %
Video-P2P 0.3313 30.47 09433 1.457 9.3% 153 %
DDNM 0.3267 3348 09649 1.264 29.2% 8.9 %
Ours 0.3543 3423 09712 1231 309% 60.7%

Table 2: Quantitative comparisons of editing performance. PF denotes per-frame video inpainting
using stable diffusion inpainting (24). BC represents back ground preservation. TA denotes text-video
alignment. We ignore PSNR, SSIM, and TA metrics in VideoComposer because it does not have the
ability to maintain the background.

4.2 Comparisons

We evaluate ZeroPatcher on both video inpainting and editing tasks, comparing against training-free
baselines and trained models.

Computation and memory cost We show the throughput and computation overhead of ZeroPatcher
in the appendix.

Video inpainting We compare against trained methods (FuseFormer (17), ISVI (40), FGT (39)),
E2FGVI (16)), ProPainter (44))) and training-free baselines (SDEdit (20), DDNM (32)). To use SDEdit
in video inpainting, we fill the main object with the mean colour of the video background. For a
fair comparison, the number of function evaluations (NFE) is 100 for all training-free methods. The
results are presented in table 1. ZeroPatcher achieves the state-of-the-art performance within the
training-free methods and is very competitive even compared with the training based counterparts.
Note that we achieved the best performance in Eya,p in Youtube-VOS among all the methods. A
visual comparison is provided in fig. 4. Our method has strong generation capability and can preserve
good consistency between the removed parts and the background. The generation ability is very
useful especially when the inpainting region is large and lack of references.

Video editing We compare ZeroPatcher with stable diffusion inpainting model (24), VideoCom-
poser (30), Video-P2P (18)) and DDNM (32). We rephrase our editing text prompts for Video-P2P,
because it only allows users to change a word from the original description. The quantitative results
are shown in table 2. ZeroPather achieves the state-of-the-art performance in quantitative metrics.
Notebly, VideoComposer uses depth to guide video editing, so we ignore the background similarity



Model PSNRT SSIM{T VFID| Eyarp )

Ours 3413 0.9765  0.106 1.213
w.o. CD-EM  33.89 09711 0.123 1.355
w.0. LMF 33.61 0.9673  0.125 1.361
w.o. BP 17.41 0.5351  0.116 1.224

Table 3: Ablation results on the technical components. We use BP to represent back projection and
use LMF to represent the latent mask fuser.
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Figure 6: Ablation experiment on choice of P, N, and K parameters.

for VideoComposer. A visual comparison is shown in fig. 5. Our method achieves the best text-video
alignment, video smoothness, and background similarity.

4.3 Ablation

We evaluated the individual technical components of ZeroPatcher to study their effectiveness. Specif-
ically, the ablation experiments are finished based on the pretrained CogVideoX (38) generator to
produce 49 x 720 x 480 videos. We measure the impact of technical components including CD-EM,
back projection, and latent mask fuser. The results are shown in table 3. Using CD-EM or back
projection alone cannot achieve an ideal performance. Incorporating both methods can exploit the
capability of the foundation model to the limit. When we are using dynamic video masks, the latent
mask fuser improves a lot in terms of visual fidelity compared with using resized masks. Meanwhile,
the visual comparison shows our method achieves accurate video masking with subtle reconstruction
loss.

A series of ablation experiments are conducted to validate the parameters in ZeroPatcher. We
make a grid search over the sample number of Monte-Carlo integration [V, the fixed point iteration
step number K, and the EM outer-loop iteration number P. The results are shown in fig. 6. We
perform video inpainting on DAVIS and compute VFID. The experiment suggests when N, K, and
P become larger, the performance of our method increases monotonically. Compared to the case
N =1, K =1, P = 2, the largest computation setting achieves approximately 3% improvement
on VFID. The iteration speed is shown in the appendix. Our method is able to achieve convincing
performance without considerably more computation.

5 Conclusion and limitation

In this paper, we present ZeroPatcher, a training-free plugin to introduce video inpainting and editing
capability for pre-trained video foundation models. Our method optimizes denoising trajectory given
the unmasked video through conditional denoising expectation maximization. To achieve the video
masking in video VAE features, we propose latent mask fuser to achieve fast and accurate video
masked fusing. ZeroPatcher is widely applicable to prevalent diffusion generators and demonstrates
satisfactory performance in inpainting and editing tasks. ZeroPatcher relies on the prior knowledge
of a pretrained text-to-video generation model to perform video inpainting and editing. As a result, if
the input data or textual prompts are beyond the domain of the pretrained model, our method may not
be able to correctly render the video.
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A Detailed deduction of the fixed point method

Below, we show the matrix formation for the fixed point iteration that soles CD-EM. To simplify
the equation, we use two constants c;_;,c?_; to represent the coefficients. c;_; and c?_; are
mathematically

c 1—Oét 1_Ut1 2 _\/Oétllfat 1*0[25 170t1 2% (18)
=17 1— oy Ct-1 7 l—at ’

We aim to make the equation holds:

(X?—1»X?f1) — po(xt) = (x?—hngl) + C%—lxt + c?—lfﬂ(xt)- (19)
We aim to find a x; that ensures
(X¢_1,x¢0y) + el + ¢ fa(xi) = 0 (20)

in order to maximize the expectation log-likelihood. Unluckily, this equation can not be solved
analytically since fg(+) is a neural function. In alternative, we propose to use fixed point iteration to
get an approximated solution. We rewrite eq. (20) to matrix formation. Mathmatically that is

((xf_1, Xg—;) + C%—lfe(xé)ﬁ 1

a s 2 "\\.
((thlvxtfl)'j’jctflf9(xt))7 :C%—1 I X 1)
(g1, %0 ) + 1 fo () I

non

. . . . . . .
to denote concatenation in column, and x, is X, at the previous fixed point iteration

step. We use H to denote the Nd X d matrixI=[I I --- I]T. The fixed point iteration follows a
formation of least square solution. Specifically, the solution is

where we use

(6, X + T )
a’n—'1 ((nghxt’—l)+C%71f9(xt)); ) (22)

- 1
< _
' C%—1

(xf 1vxt 1)+Ct 1f0(xt>)

B Proof of theorem 3.1
We show the proof in this section.

Proof. We first study what we need fy(-) to be like in order to ensure an unique fixed point. We use
g(-) to denote the iteration step

a b,1 2
x¢ % ) + e fa(x
i glxe), glx) = - X T EB0G) (23)
t—1

According to Banach’s fixed point theorem, we need g(-) to guarantee smaller than 1 Lipschitz
constant

lg(xi) = g(x)ll2 < 1+ % — %), (24)
for arbitrary x;, x7. Expanding ¢(-) to the fy(-) formation, we derive

(Xafhxbil )+ 0271f0(xl) (Xafhxbilﬂ + C2f1f0(X2)
ey e e <k -l (29)
Ci—1 Ci—1 )
2
Cy_
— Ci SIfo(xp) — fa(x7)[l2 < [Ix; — 7|2 (26)
t—1
ct
= 1£0(x;) — f(xt)H2< Hlxp = x7l2. @27)

t—1
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t—1

Therefore, we require the Lipschitz constant of fy(-) denoted by L to meet L <

C
that ¢;_; > 0 and ¢7_; > 0. The former one is obvious since we pre-define o, to satisfy
1 —ay_1 —o? ;> 0. Inadiffusion model, oy < a;—1,t € {1,---,T}. Therefore we also derive
V1i—ay > /1 —arq1 — Jt{l which makes the denominator of 0371 positive. We then relate the
Lipschitz constant £ to that of the real score function £,. The clean data estimant can be expressed

by

Xt — mEg(Xt) _ X + SG(Xt) (28)
\/at \/ Ot
We construct an inequality that can be the sufficient condition for to find the Lipschitz constant of
fo(-). Assume the following inequality is satisfied

f0 (Xt) =

Ctl—l\/at

14+ £, < =1 (29)
Ci—1
c
= |Ix; =X}z + Lslxi — xFll2 < %”th — 7|2 (30)

t—1

1
.(12) Ci_1y/Qt
S x) — X7z + lIsa(xt) = so(x7)ll2 < |Ix; — XFl|2 + Lallxt — x7]|2 < 7%5 Ixi — 7|2

t—1
(€29
tri 1
= |(xf = x7) + (s0(xt) = s0(x7))l2 <
inequality
1
Ci_14/0
lIx; = %712 + llsa(x;) — so(x7) 12 < 72% ;= %2 (32)
t—1
1 1 2 2 1
X; +so(x;)  Xi +8p(xf) 1 2 Ci—1 11 2
— = ||fp(x;) — fo(x7)]]2 < X; — X7 ||a. (33)
\/Oéit \/Oéit ) || ( t) ( t)” C?_ln t t||

1
Therefore, if 1 + L, < C"ZZ“/OTt is satisfied, we ensure an unique fixed point can be found. Then, the
t—1

Lipschitz constant of the real score function s(+) is computed below. The score function is defined as

X — /auXo (34)

s(xt[x0) = Vx, log p(x¢[x0) = 1—a

We derive the Lipschitz constant through

x! — Jogxg X2 — JogXo
Is(x{|x0) — s(x7|x0)[l2 = || — =" 2= : (35)
1 — Oy 1 — O 2
1
=7 Ixt — %7 ll2 < Lsllxi — %7 |2 (36)
o

Therefore, the Lipscthiz constant is £, = 1/(1 — o). Replacing this and the definition of ¢}_;,c7_;
to eq. (29) we have

2*0@ \/(1 — Q-1 _O't271)at

11— <
% aa (= a) /(- —of )y

(37)

AT (9 ) (m - \/(1 — Q1 — afl)at) <(1- at)\/(l —o 1 =07 )y

(38)

— 2-a)Var_1(1 —ay) < (3— Qat)\/at(l — i1 — 07 ) (39)

Knowing whether this inequality holds is not obvious. Instead of seeking what kind of noise
schedule makes the condition holds, we study the commonly used noise schedules. We use m(t) =
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Algorithm 1: Conditional denoising expectation maximization for diffusion model

Input: Known video segment x, pre-trained diffusion model f,(-), stopping criteria 7,
inference timesteps 1', EM iteration number P, Monte-Carlo sample number NV, fixed point
iteration step number K
Output: Rendered video segment ),
xrr ~ N(O, I)
fort =T to0do
forp=1to P do
9
fori=1to N do
‘ @iy ~ po(xy_,|x')
end
e ~N(0,T)
Te | — \/m:cg + /1 —ap_q¢€
for k =1to K do
| Apply eq. (22) to get x;
end

end
Tt—1 "~ Po (mt—l |ﬂ’3t)

end
return x
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Figure 7: The curve of m(t) under different settings of 7, The right curve zoom in the regions that
curves hit zero line.

(3—2a) \/at(l —ai_1 — 07 1)—(2—ay)\/ar—1(1 — ay) for simplification. Then the convergency
and uniqueness hold when m/(t) > 0. We plot m(t) curve for a series of diffusion schedules. The
results are shown in fig. 7. We plot the situation of CogVideoX scheduler with different choices of 7.
In most sampling timestep, we can ensure uniqueness and convergency. O

C CD-EM on flow matching generators

Our method is not only applicable to diffusion based generators. Instead, CD-EM is also applicable
to flow matching generative models. Consider a model that uses the following flows and velocity
fieldint € [0,T).

do(t

X = ¢1(x0) = o(t)xo + (1 —o(t))e,  w(d(x0)) = g@(xo) = W) “(x0—€), (40

t

where o(+) is the noise schedule, and € is a random gaussian noise. The velocity field u;(-) will
support a probability path

q(xtx0) = N (xe|o(t)x0, (1 — o(t))?T). (41)
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Solving the ODE in Eq.(4.1.1) produces the sampling result. Euler sampler is commonly used in
which the iteration is

Xs =X+ (s —tug(xt), 0<s<t<T (42)
To optimize the model throught flow matching, one usually use a neural network vy (-) to approximate
the scaled velocity field vg(x¢) ~ € — Xo, us(x¢) ~ —00(t)/0t - vo(x;). Replace the velocity in
Eq.(4.1.3) with the model estimation, we derive

xs =X + (o(t) — o(s))ve(xy). (43)
To optimize the trajectory with expectation maximization method, we need to know the sampling
posterior distribution g(x|x¢,%0),0 < s < t < T of the flow model. Applying bayes formula, we
get
q(x¢[xs,X0)q(xs[%0)
q(x¢/xo)
The distribution g(x4|xo) and q(x:|x¢) are already known. However, since a flow model is deter-
ministic, the term in the nominator ¢(x;|Xs, Xo) is specifically Dirac delta. Therefore, the sampling
distribution will also be Dirac delta that
1—o0(s) a(t) —o(s) x )
. X0 ) .

s ) =9 s
9(¢s 1, o) <x 1—ot) ' T1-0()
Meanwhile, we also derive the the modeled sampling distribution

po(Xs|x¢) =0 (x5 — x4 — (0(t) — a(8))ve(xy)) - (46)
Given this, we are able to maximize the expectation in Eq.(2.2.3)

Q(Xs|xta XO) = (44)

(45)

N
Q(x4|x0M) ~ Z log pg(x2, x%|x;)dx®, 47)

which requires pg (x%, x%%|x;) to be maximized. In this case, we expect the following equation set to
hold

@ xblhy = x a(t) — o(s))ve (x99
B J =Xt O = olIVBG ) e bl 4 (o(s) — () volx ] [T
(x5, x%) = x¢ + (0(t) = o(s))vo(xi™) | (xd,x0?) + (o(s) — o () ve(xp');| _ | T
x4 xb:N a(s) — o(t))ve(xod
() = 3+ (o(8) — o) voa) O X) o) m oL LE
(48)

I € R™*" is an identity matrix. We solve this equation set with least square and produces the fixed
point iteration step

(x3,x01) + (0(s) — o (t))ve (x7');
xe o (D)1 | (6 X%) (0 (8) = o)) ve(xt); | (49)
(x3,x3N) + (0 (s) — o (1)) vo(x{')
where we use I to denote the Nd x d matrix I =TI I --- I]T. Similarly, when N = 1, the
iteration step is implified to
x; — (x2,%X%) + (0(s) — o(t))ve(xp'd). (50)

To uniqueness and convergency of the fixed point iteration can be found using a similar way in
appendix B. We try this method on a flow matching video generator named HunyuanVideo (33)) to
perform video editing. Please see our supplementary material.

D Computation and memory cost

Ablation experiment The computation and memory cost of ZeroPathcer is shown in table 4.
The theoretical complexity considers the computation required for each denoising step. We let the
complexity for every function evaluation be O(1). P is the outer loop step number of the expectation
maximization. N denotes how many x?_, are sampled in order to compute the likelihood expectation.
K is the step number of the fixed point iteration. With a reasonable set of hyperparameters (i.e.
P =2,N =1,K = 1), ZeroPathcer will not introduce enormous computation compared to the
direct text-to-video inference. Meanwhile, we show that the ZeroPathcer does not use considerable
addition memory which is usually required for attention manipulation methods like Video-P2P (18))
and FateZero (23).
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Model Theoretical complexity Memory Speed

Inference params P=2N=1K=1

t2v model 0(1) 22,4890MB  2.61 s/it
+BP o(1) 22512MB  2.63 sfit
+ CD-EM O(1+ PN+ P(K —1)) 2256TMB  7.41 s/it
+LMF O(1+ PN + P(K —1)) 22.893MB  7.63 sfit

Table 4: Theoretical and practical computation cost analysis of our method. Theoretical complexity
and speed show the computation required for each denoising step. We use LMF to represent the latent
mask fuser. The speed is computed under seconds per iteration.

Method Resolution Memory  NFE Speed
Text-to-video

CogVideoX 49 x 720 x 480 22.488MB 30 78.3 s/sample
Inpainting

SDEdit 49 x 720 x 480 22.503MB 100  240.3 s/sample
DDNM 49 x 720 x 480 22.512MB 100  241.7 s/sample
Ours 49 x 720 x 480 22,567MB 100  250.9 s/sample
Editing

PF 8 x 512 x 512 4,279 MB 50 81.2 s/sample
VideoComposer 16 x 256 x 256  7,394MB 50  101.4 s/sample
VideoP2P 8 x 512 x 512  19,453MB 100  137.8 s/sample
DDNM 49 x 720 x 480 22.522MB 100  241.5 s/sample
Ours 49 x 720 x 480 22,569MB 100  249.4 s/sample

Table 5: A comparison over computation and memory usage.

Comparison with other methods We compare the memory and throughput among the methods.
The result is shown in table 5. Our method achieves remarkable improvements over the training-
free methods under similar computation cost. To achieve faster inference, one can choose to trade
performance for speed by letting N =1, K =1,P = 1.

E Algorithmic description of CD-EM

We show an algorithmic description of CD-EM in Algo.1. It provides the clean CD-EM without back
projection and latent mask fuser.

F Details of latent mask fuser

In this sector, we briefly introduce the architecture of our latent mask fuser. It is consists of 6 residual
blocks, a convolutional input layer, and a convolutional output layer. After the 3-th block, we use an
adaptive instance normalization layer (14)) to perform mask fusing. Each residual block is made up of
two convolution blocks (a concatenation of a GroupNorm layer, a SiL.U layer, and a 3D convolution
layer) and a skip connection layer achieved by a 1 x 1 x 1 3D convolution. During inference, we
concatenate three latent features from the two source video and the mask in channel dimension, and
then the feature is feed into the input layer. No upsampling and downsampling modules are used in
latent mask fuser. The model uses a channel size of 1536.

G Inference details and hyperparameters

The inference hyperparameters are shown in table 6. We use DDIM diffusion sampler with sampling
stochasticity factor n = 1.0. Our experiment shows using 7 = 1.0 can greatly increase video
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Hyperparameter CogVideoX

EM outer loop steps P 2
Number of samples in expectation N 1
Fixed point iteration steps K 1
Sampler DDIM
Inference steps 50
CD-EM stop step 25
NFEs 100
Classifier-free guidance scale 6
eta 1.0

Table 6: Hyperparameters use in inference.

consistency since the model will not follow the deterministic sampling trajectory. CD-EM is not
always required in all denoising timesteps. We find using CD-EM in early sampling stages can already
produce plausible results. Therefore, we add a stoping step for CD-EM at 25 to save computation
without losing noticeable performance. With CD-EM hypermarameters setto P =2, N =1, K =1,
we ensure every denoising step with CD-EM will only cost 3 NFEs. With the remaining 25 steps
using only 1 NFE, sampling through ZeroPatcher requires 100 NFEs in total. We use 8 NVIDIA
A100 80G GPUs to run in parallel during inference to get results faster.

H Additional visual results

We attach result videos in our supplementary material. We would appreciate it if you check them.

I Broader impact

The integration of pre-trained text-to-video foundation models into video inpainting and editing
workflows presents transformative opportunities alongside critical ethical challenges. By enabling
high-quality video manipulation without additional training, this approach democratizes access to
advanced editing tools, empowering independent creators and small studios to achieve professional-
grade results—potentially revitalizing archival restoration efforts and lowering costs for cultural
heritage preservation. However, the same capabilities raise significant concerns: the efficiency
of dynamic object removal and latent-space masking could streamline the creation of convincing
deepfakes, exacerbating misinformation risks in an era already plagued by synthetic media distrust.
The model-agnostic nature of the method further amplifies these risks, as it could be applied to any
foundation model, including those with fewer ethical safeguards.
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