
SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback

Anonymous ACL submission

Abstract001

Prompt quality plays a critical role in the per-002
formance of large language models (LLMs),003
motivating a growing body of work on prompt004
optimization. Most existing methods opti-005
mize prompts over a fixed dataset, assuming006
static input distributions and offering limited007
support for iterative improvement. We intro-008
duce SIPDO (Self-Improving Prompts through009
Data-Augmented Optimization), a closed-loop010
framework for prompt learning that integrates011
synthetic data generation into the optimization012
process. SIPDO couples a synthetic data gener-013
ator with a prompt optimizer, where the gener-014
ator produces new examples that reveal current015
prompt weaknesses and the optimizer incre-016
mentally refines the prompt in response. This017
feedback-driven loop enables systematic im-018
provement of prompt performance without as-019
suming access to external supervision or new020
tasks. Experiments across question answering021
and reasoning benchmarks show that SIPDO022
outperforms standard prompt tuning methods,023
highlighting the value of integrating data syn-024
thesis into prompt learning workflows.025

1 Introduction026

Large language models (LLMs) have demonstrated027

strong performance across a wide range of natural028

language tasks, including classification, question029

answering, and reasoning. However, their output030

quality is highly sensitive to prompt design—small031

changes in phrasing, structure, or formatting can032

lead to significant variations in performance (He033

et al., 2024; Spiess et al., 2025). This sensitivity034

has made prompt optimization a core challenge in035

adapting LLMs to downstream applications.036

Prior work in prompt optimization has explored037

manual tuning, discrete search, and gradient-based038

methods to improve model responses (Wang et al.,039

2023; Shin et al., 2020; Cui et al., 2024; Kwon et al.,040

2024; Zhang et al., 2024). While effective in some041

settings, these methods typically assume a fixed042

input distribution and treat prompt optimization 043

as a one-time procedure. As a result, they may 044

produce prompts that perform well on average but 045

offer limited support for iterative improvement or 046

adaptation to evolving failure modes. 047

In contrast, data augmentation is a long-standing 048

technique in supervised learning for improving 049

model robustness and generalization by expos- 050

ing models to diverse training conditions (Mikoła- 051

jczyk and Grochowski, 2018). In the context of 052

prompt learning, the ability of LLMs to generate 053

high-quality synthetic data opens the door to new 054

forms of self-improvement. However, most exist- 055

ing prompt optimization pipelines do not leverage 056

synthetic data in an adaptive or feedback-driven 057

manner (Singh et al., 2023; Gilardi et al., 2023; 058

Tang et al., 2023; Gao et al., 2023). 059

We propose SIPDO (Self-Improving Prompts 060

through Data-Augmented Optimization), a closed- 061

loop prompt optimization framework that inte- 062

grates synthetic data generation directly into the 063

learning process. SIPDO couples two components: 064

a synthetic data generator that produces inputs 065

designed to challenge the current prompt, and a 066

prompt optimizer that uses these examples to refine 067

the prompt iteratively. This feedback loop enables 068

prompts to improve over time by addressing their 069

own failures, without requiring access to new tasks 070

or external supervision. 071

Contributions. This paper makes the following 072

contributions: 073

• We introduce a feedback-driven framework 074

SIPDO that integrates synthetic data generation 075

into prompt optimization, providing a novel path- 076

way for improving prompt robustness. 077

• We develop a method to construct synthetic ex- 078

amples that dynamically stress-test prompts, re- 079

vealing failure modes and guiding refinement. 080

• We empirically demonstrate that augmenting 081

prompt optimization with synthetic data im- 082

proves performance across reasoning and QA 083

1

benchmarks, surpassing existing prompt tuning084

methods.085

2 Related Work086

Automatic Prompt Engineering: Automatically087

discovering optimal prompts has become a key088

challenge in the era of large language mod-089

els (LLMs). Automatic Prompt Engineering090

(APE) employs optimization-based, generative,091

and template-driven approaches. Optimization092

techniques include gradient-based search (Shin093

et al., 2020), reinforcement learning (Ouyang et al.,094

2022; Kwon et al., 2024), and evolutionary algo-095

rithms (Cui et al., 2024). Generative methods use096

models like GPT and Gemini to generate candi-097

date prompts, with StablePrompt (Kwon et al.,098

2024) optimizing prompts via reinforcement learn-099

ing. Additionally, PromptAgent (Wang et al., 2023)100

breaks down prompt creation into sub-goals, while101

template-driven approaches, like fill-in-the-blank102

formats, ensure clarity (Chen et al., 2024).103

Recent work has expanded on automatic prompt104

optimization techniques. AutoPDL (Spiess et al.,105

2025) automates the discovery of optimal con-106

figurations for agents which successive halving107

to explore the space of agentic and non-agentic108

prompting patterns. The sequential optimal learn-109

ing approach for automated prompt engineering110

(Wang et al., 2025) uses Bayesian regression and111

Knowledge-Gradient policies to efficiently identify112

effective prompt features. Progressively Automatic113

Prompt Optimization (Qu et al., 2025) introduces114

an evolution-based algorithm to optimize prompts115

for visual classification tasks.116

We propose a hybrid framework integrating117

LLM-driven rewriting with natural language feed-118

back (Pryzant et al., 2023), alongside self-reflection119

(Shinn et al., 2024) and planning (Wang et al.,120

2023), enhancing prompt adaptability and preci-121

sion.122

Data Synthesis: Using large language models123

(LLMs) for data synthesis is a relatively new and124

rapidly evolving approach. Recent advancements125

have shown that LLMs possess the capability to126

generate text with fluency and quality comparable127

to human output (Li et al., 2023; Mukherjee et al.,128

2023; Eldan and Li, 2023). For instance, prior129

work (Gao et al., 2022) has explored leveraging pre-130

trained language models (PLMs) to generate task-131

specific text data that can be used to train and eval-132

uate. Recent work Magpie (Xu et al., 2024) lever-133

ages the auto-regressive nature of aligned LLMs 134

to generate high-quality instruction data. Addition- 135

ally, Synthetic Text Generation for Training Large 136

Language Models via Gradient Matching (Nguyen 137

et al., 2025) proposes a novel approach to generate 138

synthetic text that matches the gradients of human 139

data. However, these studies have not fully incor- 140

porated advanced methodologies such as chain-of- 141

thought (CoT) reasoning, in-context learning, or 142

data synthesis driven by prompts that integrate task 143

descriptions and label information. 144

In this study, we systematically experimented 145

with a range of techniques, including in-context 146

learning and prompt-driven data synthesis, combin- 147

ing task descriptions and label information. Our 148

results indicate that integrating these approaches 149

produces high-quality synthetic data. To further 150

enhance the robustness and applicability of the syn- 151

thetic data, we introduced a difficulty tier, making 152

the generated data more challenging. These find- 153

ings highlight the potential of combining advanced 154

LLM capabilities with tailored prompting strategies 155

to improve data synthesis quality and reliability for 156

prompt optimization. 157

3 Method 158

SIPDO presents a two-agent system for optimiz- 159

ing prompts using data augmentation techniques. 160

The workflow has two cooperating agents: (i) Data 161

Generator creates synthetic data with increasing dif- 162

ficulty levels to expose weaknesses in the prompt, 163

and (ii) Auto Prompt Optimizer iteratively analyzes 164

errors and rewrites the prompt to maximize task 165

performance. The two agents advance in lock-step, 166

and together they grow a prompt that remains com- 167

pact across increasingly challenging samples .An 168

overview of SIPDO is shown in Fig 1. 169

Notation. We define the true data distribution as 170

S, which governs input-label pairs (x, y) ∈ X ×Y . 171

Let N denote the size of an i.i.d. dataset drawn 172

from S, denoted as {(xi, yi)}Ni=1 ∼ S. We con- 173

sider a fixed large language model equipped with 174

a prompt p ∈ P , and define its output function as 175

f(p, x) ∈ Y . Prediction accuracy is measured us- 176

ing a bounded surrogate loss L
(
f(p, x), y

)
, where 177

L ∈ [0, 1]. 178

To help improve the quality of prompts, we in- 179

troduce a synthetic data generator defined by a dis- 180

tribution qψ(x̃, ỹ), parameterized by ψ ∈ Ψ, which 181

produces synthetic samples forming a dataset D = 182

{(x̃i, ỹi)}Mi=1, where M is the number of gener- 183

2

Figure 1: Starting from true data distribution S, the Data Generator(left) produces a synthetic question-answer pair
at difficulty level c. The Auto Prompt Optimizer(right) evaluates the current prompt on this synthetic data via three
sub-modules-error analysis, recommendation, and refinement-and outputs a revised prompt. The revised prompt is
tested on present failures and all previously solved examples. If the prompt still makes errors, then return to the
Auto Prompt Optimizer for further refinement; if passes, move on to the next sample(with higher c). The cycle
repeats until no error remains or the budget is reached, yielding a self-improved prompt.

ated examples. To ensure that the synthetic labels184

remain realistic, we estimate the population label185

prior with p∗(y), and use this to regularize the gen-186

erator.187

3.1 Data Generator188

The Data Generator supplies fresh, well-targeted189

examples that expose the weakness by creating190

a new synthetic-pair whose difficulty is designed191

beyond prompt’s current reach.192

Sampling rule. The data generator first draws a193

target label ỹ ∼ p∗(y). By sampling a latent vari-194

able z ∼ gϕ(z|S) that captures the structure of few-195

shot S, the decoder qψ produces x̃ = qψ(z, ỹ, c)196

where c is a controlled difficulty tier.197

Learning objective. The parameters ψ are198

learned by minimizing a hybrid objective that bal-199

ances the KL penalty and the bounded surrogate200

loss:201

min
ψ

R(ψ) + λE(x̃,ỹ)∼qψ
[
L
(
f(p, x̃), y

)]
, (1)202

Note that, we penalize deviations from the true203

label distribution using the Kullback–Leibler diver-204

gence term R(ψ) = KL
(
qψ(y) ∥ p∗(y)

)
, scaled by205

a factor λ−1R(ψ) during training.206

Progressive complexity. To address tasks of207

varying complexity, we introduces a progressive208

complexity parameter c where c ∈ {1, ..., n} so209

that prompts could be tested on gradually more210

challenging examples. This allows the prompts to211

progressively improve and generalize effectively212

across task of increasing difficulty. Since qψ is con-213

ditioned on c, a single latent template (z, y) can214

therefore yield n difficulty-aligned variants 215

{x̃(1), · · · , x̃(n)} = {qψ(z, y, 1), · · · , qψ(z, y, n)} 216

For curriculum generation, an ordered sequence 217

c1 < · · · < cL is sampled and feeds the output of 218

the previous level back into the generator, 219

x̃(1) = qψ
(
z, y, c1

)
, 220

x̃(2) = qψ
(
hϕ

(
x(1)

)
, y, c2

)
, 221

... 222

x̃(L) = qψ
(
hϕ

(
x(L−1)

)
, y, cL

)
. 223

where hϕ is a summarizer that distills the previous 224

sample into a new latent cue, allowing semantic 225

depth to accumulate across levels. The sequence 226

c1 < c2 < · · · < cL guarantees monotone growth 227

of problem complexity, providing a rich gradient 228

of difficulty for the prompt to learn from. 229

3.2 Auto Prompt Optimizer 230

After each new synthetic instance is calibrated, the 231

Auto Prompt Optimizer probes the current prompt, 232

identifies the weaknesses, and repairs them before 233

the next instance is drawn. This stage avoids hard- 234

to-diagnose failures and builds a prompt that is 235

both robust and suitable for specific tasks. 236

Accuracy score. At iteration t ∈ {1, . . . ,M}, 237

the optimizer improves the current prompt p(t) 238

using the feedback collected from synthetic log 239

Dt = {(x̃j , ỹj)}tj=1 ⊆ X × Y . For any prompt p 240

and set A ⊆ X × Y , we define 241

sA(p) =
1

|A|
∑

(x̃,ỹ)∈A

I
[
f(p, x̃) = ỹ

]
, (1) 242

3

I[·] is the indicator function that evaluates to 1 if243

the prompt’s output matches the target label, and 0244

otherwise.245

Step 1: Error analysis. We first evaluate p(t) on246

the whole set and collect the current error slice247

E(t) =
{
(x̃, ỹ)∈D

∣∣ f(p(t), x̃) ̸= ỹ
}
.248

If E(t) = ∅, the prompt already "covers" all unseen249

cases, therefore, we terminate and return p∗ = p(t);250

otherwise, we proceed to the next step.251

Step 2: Recommendation. A reflection module252

Rφ inspects E(t) and produces a textual-patch sug-253

gesting how to modify the prompt:254

∆(t) = Rφ
(
p(t), E(t)

)
.255

This summarizes why the prompt failed and how256

it can be amended(e.g., add boundary cases, clar-257

ify/revise instructions, drop distracting details).258

Step 3: Targeted refinement. A prompt editor259

Uθ applies the patch ∆(t) to a revised prompt p̃(t)260

in order to fix the current error261

p̃(t) = Uθ
(
∆(t), p(t), E(t)

)
.262

Local confirmation. We then test revised prompt263

p̃(t) only on the current errors: if sE(t)(p̃(t)) < 1,264

some errors still remain. In this case, we make the265

revised prompt as new baseline prompt by setting266

p(t) ← p̃(t), updating E(t), and repeating Step 2267

to generate more sufficient patch ∆(t); otherwise,268

proceed to global confirmation.269

Global confirmation. Solving the local error270

slice is not enough-we must ensure that revised271

prompt "covers" all seen cases. Therefore, we272

evaluate p̃(t) on the entire synthetic history col-273

lected seen so far by sDt
(
p̃(t)

)
. During evaluation,274

if E(t) ̸= ∅ at any previous data, we treat them275

as new error set and sent them back to step 2 with276

new E(t) to fix the current error. If E(t) = ∅, we277

accept the revision, set p(t+1) = p̃(t), draw the next278

synthetic example, and restart from Step 1 until279

t =M .280

Convergence guarantee. Because sD(p
(t)) is281

non-decreasing and bounded above by 1, the pro-282

cess stops at most M successful corrections or the283

user-chosen cap Tmax. The final output284

p∗ = arg max
0≤t≤T

sD
(
p(t)

)
285

achieves perfect coverage (sDT (p
∗) = 1) when- 286

ever it is attainable within the budget. 287

This revised loop mirrors practical prompt- 288

debugging: it first addresses specific failure case, 289

then confirms that the updated prompt continues to 290

perform correctly on all previously solved exam- 291

ples. By iteratively applying this feedback-driven 292

process, the system systematically refines prompts 293

to improve clarity, adaptability, and overall perfor- 294

mance, making the framework highly generalizable 295

across diverse tasks and domains. 296

3.3 Theoretical Guarantee 297

Since one of our goals in SIPDO is to demonstrate 298

that, data augmentation, a popular branch of per- 299

formance improvement in deep learning, can also 300

be used in prompt optimization context, we aim to 301

offer similiar performance guarantees as done in 302

previous data augmentation literature (Wang et al., 303

2022; Chen et al., 2020; Dao et al., 2019). 304

Assumptions. We first offer the assumptions that 305

we need for the theoretical guarantees. 306

A1 (Label-preservation) For all ψ ∈ Ψ and for 307

any (x, y), the generator’s conditional satisfies 308

Prqψ [ỹ = y | x̃ g← (x, y)] = 1. 309

We require the generator never flips the 310

ground-truth label of the base example it is 311

derived from (it may, however, hallucinate novel 312

inputs as long as their labels match the intended 313

classes). 314

A2 (Approximate maximizer). Let 315

ψ⋆ = argmax
ψ∈Ψ

EqψL(f(p, x̃), ỹ)− λ
−1R(ψ), 316

The inner-loop training of the generator attains a 317

value at most ε below this supremum. 318

A perfect maximizer would be ideal but is infea- 319

sible; we only need the learned generator to be 320

good enough—within ε of optimal. The residual ε 321

directly appears in the bound. 322

A3 (Uniform convergence). (Wang et al., 2022) 323

For every prompt p, the empirical loss deviates from 324

its population counterpart by at most q(|P|, n, δ) 325

with probability 1− δ., where a standard form of 326

q(|P|, n, δ) is Õ
(√

log |P|+log(1/δ)
N

)
. 327

PAC(probably approximately correct) guarantee: 328

empirical performance generalizes provided n is 329

large enough. 330

4

A4 (Alignment of risks). For any prompt p and331

generator ψ,332

EqψL(f(p, x̃), ỹ) ≤ ESL(f(p, x), y)+λ−1R(ψ).333

The KL penalty controls how far the generator may334

wander: if it manufactures rare-label outliers, R(ψ)335

increases and the bound tightens. We can verify336

that qψ(y) is always absolutely-continuous w.r.t.337

p∗(y); KL is then finite and the inequality follows338

from the classical Donsker–Varadhan variational339

formula.340

A5 (Surrogate link). The 0–1 loss is341

upper-bounded by the surrogate loss:342

1{f(p, x) ̸= y} ≤ L(f(p, x), y).343

This is needed in order to translate guarantees on344

the differentiable training loss to the classification345

error(e.g. cross-entropy, hinge, logistic).346

Theorem 3.1 Regularised Worst-case Data Gen-347

eration Under Assumptions B1, B2, B4–B6, for348

any fixed prompt p ∈ P , with probability at least349

1− δ over the draw of the training set, we have350

sup
ψ∈Ψ

Eqψ1{f(p, x̃) ̸= ỹ}︸ ︷︷ ︸
population

worst-case error

≤ 1
n

n∑
i=1

L
(
f(p, xi), yi

)
︸ ︷︷ ︸

empirical risk

+ λ−1R(ψ⋆)︸ ︷︷ ︸
KL penalty of

hardest generator

+ ε+ q
(
|P|, n, δ

)
.

(2)

351

Practical implication The inequality states that352

if the empirical loss of the prompt is low, and no353

generator can inflate that loss without paying a high354

KL tax, then even a hypothetically all-powerful355

adversary (generator) cannot cause the prompt to356

misclassify more than the RHS. Selecting a larger357

λ tightens the KL tax, thus lowering the worst-case358

error but potentially harming accuracy—precisely359

the robustness–performance trade-off observed em-360

pirically in Section 4.361

4 Experiments362

We test SIPDO on four main datasets to measure its363

resilience across different domains and reasoning364

tasks. We include all 4689 instances from six BIG-365

Bench tasks(Tables of Penguins, Geometric Shapes,366

Epistemic Reasoning, Object Counting, Temporal 367

Sequences, and Causal Judgment(Srivastava et al., 368

2022)). To assess logical reasoning, we sample 600 369

examples from the depth-5 subset of ProofWriter 370

with a balanced label distribution (Tafjord et al., 371

2021), use 204 test examples from FOLIO that re- 372

quire first-order inference over short passages (Han 373

et al., 2024), and select the 500 most challenging 5- 374

hop scenarios from the fictional-character version 375

of PrOntoQA (Saparov and He, 2022). 376

4.1 EXPERIMENTAL SETUP 377

4.1.1 Baselines 378

We compare SIPDO with four existing prompt op- 379

timization strategies: 380

Chain of Thought (CoT) (Suzgun et al., 2022) im- 381

proves LLM reasoning by explicitly guiding mod- 382

els through step-by-step decomposition of complex 383

tasks. 384

Automatic Prompt Engineer(APE) (Wang et al., 385

2023) automatically generates and refines prompts 386

using a Monte Carlo search based on model feed- 387

back, improving instruction quality with minimal 388

human intervention. 389

PromptAgent (Zhou et al., 2022b) formulates 390

prompt optimization as a strategic planning task, 391

using Monte Carlo Tree Search (MCTS) to ex- 392

plore the prompt space. It refines prompts based 393

on model errors and feedback, aiming to generate 394

prompts with expert-level quality through system- 395

atic trial-and-error refinement. 396

Neuro-Symbolic (Pan et al., 2023) combines neu- 397

ral networks with symbolic rule-based reasoning 398

by transforming LLM outputs into structured sym- 399

bolic representations. It enables models to handle 400

complex logical inference tasks by integrating nat- 401

ural language understanding with robust symbolic 402

processing, offering a more versatile and human- 403

like approach. 404

REVOLVE (Zhang et al., 2024) tracks the way an 405

LLM’s responses evolve over successive iterations 406

and updates the prompt with this trajectory-aware 407

signal, giving the optimizer a second-order-style 408

view of progress. By looking beyond the most 409

recent feedback, it avoids local optima and usually 410

reaches a higher-quality prompt in fewer steps. 411

4.2 Results and analyze 412

4.2.1 Synthetic Data Generation 413

We fix the difficulty budget at c = 10 for all bench- 414

marks except Penguins and Geometry from BIG- 415

5

Bench, where we double it to c = 20 to accom-416

modate the intrinsically harder structure of these417

tasks. For every dataset, we also tie the number418

of training iterations to the difficulty level by set-419

ting t = c; the optimiser therefore sees one harder420

tier at each pass. A sample of synthetic Causal-421

Judgement data produced by SIPDO at difficulty422

level 8(on a 1-10 scale) is shown in the text box423

below with additional examples in Appendix D.424

These data ensure a highly consistent format with425

a well-organized structure and clear hierarchical426

distinctions. Each output adheres strictly to pre-427

defined standards, guaranteeing data stability and428

integrity while significantly reducing the cost of429

subsequent cleaning and adjustments. Addition-430

ally, the structured format enhances readability and431

parsability, streamlining analysis and processing432

while improving data reusability and reliability.433

Generated Question: In a small town, there is
a bakery that makes the best pastries. Every
morning, the bakery opens at 7:00 am, and a line
of customers forms outside. The bakery owner
has a rule that only one person can enter at a
time to maintain order. One day, two customers,
Alice and Bob, arrive at the same time. Alice
follows the rule and waits outside, but Bob
ignores the rule and enters the bakery while
another customer is still inside. The bakery
becomes overcrowded, and a shelf of pastries
falls over, ruining the day’s batch. Did Bob
cause the pastries to be ruined?

Generated Answer: Yes434

By generating complex and challenging scenar-435

ios gradually, the data stresses the current prompt436

and express fresh failure modes, improving its abil-437

ity to handle a wide range of difficulties effectively.438

This ensures that the prompt becomes more adapt-439

able and robust as it reaches the hardest tiers. These440

results strongly validate the effectiveness of struc-441

tured output in standardizing data generation and442

improving overall data quality, while fostering con-443

tinuous advancements in prompt optimization.444

4.2.2 Implementation445

Geometry data generation and prompt im-446

provement. Constructing complex and irregular447

shapes, including irregular shapes and polygons,448

cannot be effectively achieved using few-shot meth-449

ods, so we introduce three measures specifically450

for SVG(Scalable Vector Graphics) path genera-451

tion in geometry task: (1) precision normaliza-452

tion: every coordinate produced by the generator453

is rounded to two decimal places, eliminating the454

floating-point drift that causes downstream parsers455

to miscount line (L) and arc (A) instructions. (2) 456

template-guided retrieval: before generation, a re- 457

triever selects a canonical path template whose in- 458

struction pattern matches the target shape (e.g., “4 459

L” for a rectangle, “1 A” for a sector). The gen- 460

erator then perturbs only the vertex coordinates, 461

guaranteeing syntactic correctness while still expos- 462

ing the prompt to unseen geometries. (3) reverse- 463

generation check: because the label (shape name) 464

is known a prior, we parse the produced SVG with 465

a deterministic rule-based decoder that counts L 466

and A commands; if the inferred label disagrees 467

with the intended one, the sample is rejected and 468

regenerated. The generated SVG path example is 469

shown below. For further prompt refinement, we 470

provide prompt templates in Appendix C. 471

Generated SVG Path: <path d="M 23.45,45.78
L 78.32,45.78 L 78.32,78.56 L 23.45,78.56 L
23.45,45.78"/>

Generated Answer:
"target_scores": {
"rectangle": 1,
"sector": 0,
"triangle": 0,
"circle": 0,
"heptagon": 0,
"hexagon": 0,
"kite": 0,
"line": 0,
"octagon": 0,
"pentagon": 0 }

472

4.2.3 Comparison with prompting baselines 473

We tested SIPDO by different LLMs such as GPT- 474

4o, GPT-4o-mini, Gemini-1.5-flash, and Gemini- 475

1.5-pro on different datasets, including BIG-Bench, 476

FOLIO, PrOntoQA, and ProofWriter. 477

BIG-Bench. We evaluated SIPDO on six BIG- 478

Bench tasks. As shown in Table 1, GPT-4o and 479

GPT-4o-mini demonstrate particularly strong per- 480

formance in Temporal Reasoning, Object Counting, 481

and Causal Judgment. While Geometry exhibits 482

comparable accuracy across GPT-4o and GPT-4o- 483

mini, SIPDO achieves the highest overall accuracy 484

for GPT-4o-mini, Gemini-1.5-flash, and Gemini- 485

1.5-pro. For GPT-4o, SIPDO performs at a near- 486

best level, trailing PromptAgent by only 0.01, yet 487

still demonstrating that LLMs benefit from syn- 488

thetic data generation for reasoning improvements, 489

whereas other methods primarily rely on existing 490

datasets. These results further highlight the ad- 491

vantages of LLM-driven data augmentation in en- 492

hancing logical, numerical, and causal reasoning 493

capabilities. 494

6

Table 1: Results on BIG-Bench tasks across multiple LLMs. SIPDO consistently outperforms standard prompting
baselines (CoT, APE, PromptAgent) across most tasks and models, demonstrating generalization and effectiveness
of the optimization.

Model Method Accuracy (%) Avg.
(Comparative Acc.)

Penguins Geometry Epistemic Obj. Count Temporal Causal

GPT-4o

CoT 79.8 79.1 79.3 85.2 98.0 67.8 81.5(↓ 7.6)
APE 84.8 65.3 84.8 86.0 99.2 74.0 82.4(↓ 6.7)

PromptAgent 96.1 83.0 91.6 88.2 98.4 77.8 89.2(↑ 0.1)
SIPDO 96.4 82.2 86.3 91.1 99.3 79.0 89.1

GPT-4o-mini

CoT 75.8 68.6 85.2 81.5 94.9 63.6 78.3(↓ 9.0)
APE 83.7 44.5 81.6 86.3 97.2 75.6 78.2(↓ 9.1)

PromptAgent 89.8 72.0 86.0 84.3 94.6 84.6 85.2(↓ 2.1)
SIPDO 92.1 73.2 85.1 87.5 98.0 88.0 87.3

Gemini-1.5-flash

CoT 70.4 68.3 85.5 90.1 94.0 66.8 79.2(↓ 3.7)
APE 37.6 49.4 88.8 84.7 99.4 69.4 71.6(↓ 11.3)

PromptAgent 67.4 70.3 81.6 86.3 94.2 67.9 78.0(↓ 4.9)
SIPDO 77.3 68.9 87.0 92.3 98.4 73.2 82.9

Gemini-1.5-pro

CoT 81.8 59.1 82.6 92.8 98.9 61.5 79.5(↓ 3.9)
APE 40.2 56.6 88.7 78.6 86.0 65.7 69.3(↓ 14.1)

PromptAgent 73.6 58.3 83.8 72.6 98.4 74.2 76.8(↓ 6.6)
SIPDO 79.3 64.3 89.3 91.3 98.0 78.3 83.4

FOLIO, PrOntoQA, and ProofWriter. We eval-495

uated SIPDO, REVOLVE, CoT, Neuro-Symbolic,496

and a plain baseline prompt on FOLIO, PrOntoQA,497

and ProofWriter with both GPT-4o and GPT-4o-498

mini, assessing the methods’ ability to perform499

structured logical reasoning. As shown in Table 2,500

SIPDO achieves the highest average accuracy score501

and outperforms all approaches on FOLIO and502

PrOntoQA. In PrOntoQA, SIPDO surpasses all503

methods, demonstrating its capability to generate504

structured logical proofs. Similarly, for FOLIO,505

SIPDO outperforms Neuro-Symbolic, CoT, and506

REVOLVE, further validating its effectiveness in507

formal logic inference.508

While neuro-symbolic reasoning remains the509

best performer on ProofWriter, SIPDO achieves510

highly competitive results on ProofWriter, trail-511

ing by only 0.004 on GPT-4o-mini and 0.02 on512

GPT-4o, underscoring its strong adaptability to513

structured reasoning tasks. Crucially, unlike neuro-514

symbolic approaches that rely on predefined rule-515

based datasets, SIPDO is trained entirely on gener-516

ated synthetic data, demonstrating the effectiveness517

of LLM-driven data augmentation for enhancing518

logical inference across diverse reasoning bench-519

marks.520

4.2.4 Prompt generalization521

The whole process of the prompt improvement522

on the Penguin data is shown in Appendix C.523

Follow the three modules-error analysis, recom-524

mendation, and refinement-and outputs a revised525

prompt. The prompts generated by SIPDO out-526

perform other baselines, validating the effective- 527

ness of SIPDO in optimizing prompt design and 528

enhancing overall performance. By employing a 529

LEAST-TO-MOST(Zhou et al., 2022a) approach 530

in prompt generation, the LLM to reason in a struc- 531

tured and incremental manner. After each iteration, 532

the prompts are evaluated using real datasets. If 533

the accuracy falls below a predefined threshold, the 534

prompt is refined based on incorrectly answered 535

questions to enhance its effectiveness. All prompts 536

can be viewed in Appendix A 537

4.3 Ablation Study 538

Difficulty Gradient. To assess the contribution 539

of the difficulty gradient, we conduct an ablation 540

study by comparing without difficulty gradient. As 541

Table 3 shows, every BIG-Bench sub-task suffers 542

when the difficulty gradient is absent. On average, 543

GPT-4o loses 20.8% accuracy, while the weaker 544

GPT-4o-mini drops 32.1%, confirming that smaller 545

models depends even more on the difficulty gradi- 546

ent. The steepest declines appear on tasks Object 547

Counting (-69.3 % and -119.3 %) and Geometric 548

Shapes (-20.7 % and -54.1 %). Even comparatively 549

simple tasks—Temporal Sequences and Epistemic 550

Reasoning—still lose up to 6 %. These findings 551

underline that a progressive difficulty gradient is 552

essential: it systematically uncovers a prompt’s 553

blind spots and lets the optimizer repair them be- 554

fore moving on to harder examples. The gener- 555

ated prompts tend to be easier and shorter without 556

difficulty gradient placed, often failing to capture 557

complex reasoning patterns(details in Appendix 558

7

Table 2: Results on ProofWriter, FOLIO, and PrOntoQA by Neuro-Symbolic, CoT, REVOLVE, SIPDO, and
Baseline Prompting methods across GPT-4o and GPT-4o-mini.

GPT-4o GPT-4o-mini
Tasks Baseline Neuro-S CoT REVOLVE SIPDO Baseline Neuro-S CoT REVOLVE SIPDO

ProofWriter 58.5 81.6 72.3 54.0 79.6 52.6 79.7 61.8 48.6 79.3
FOLIO 71.2 79.2 72.6 65.7 83.2 51.2 73.2 69.3 62.8 81.1
PrOntoQA 80.4 85.2 95.6 85.4 96.3 74.6 79.3 89.3 83.4 91.3

Average 70.0 82.0 80.2 68.4 86.4 59.5 77.4 73.5 64.9 83.9

Table 3: Accuracy (%) after removing the difficulty gradient. Numbers in parentheses show the absolute drop (↓)
relative to the performance with difficulty gradient placed.

Model PENGUINS GEOMETRY EPISTEMIC OBJ.CNT. TEMPORAL CAUSAL Avg.

GPT-4o 73.2
(↓ 31.7%)

68.1
(↓ 20.7%)

81.9
(↓ 5.4%)

53.8
(↓ 69.3%)

97.0
(↓ 2.4%)

68.4
(↓ 15.5%)

73.7
(↓ 20.8%)

GPT-4o-mini 69.6
(↓ 32.3%)

47.5
(↓ 54.1%)

80.0
(↓ 6.4%)

39.9
(↓ 119.3%)

92.1
(↓ 6.4%)

67.4
(↓ 30.6%)

66.1
(↓ 32.1%)

B).559

One-Shot Extremes. We experimented with re-560

placing the step-wise difficulty gradient by a one-561

shot extremes sampler that tells the generator to562

create the most unusual examples. On our syn-563

thetic suites this shortcut delivered no measurable564

gain. The “extreme” samples were either solved in-565

stantly or only slight perturbations of original cases,566

leaving the optimizer with no fresh errors to exploit.567

We suspect the idea will pay off in real-world cor-568

pora—financial statements, medical notes, legal569

filings—where genuine edge cases abound and can570

expose blind spots that our synthetic tasks do not571

capture.572

Reflection Check. We also inserted a reflection573

check that re-parses each synthetic pair and dis-574

cards it if the generator’s answer does not match a575

rule-based output. Because our generator is already576

conditioned on the ground-truth label (Assump-577

tion A1) and draws heavily on templated examples,578

most outputs are self-consistent. We, therefore, dis-579

able the check in the main pipeline for efficiency,580

but note that it would be prudent to re-enable it581

when moving to noisier domains.582

5 Conclusion583

In summary, we introduce SIPDO, a method that584

transforms data augmentation into a real-time feed-585

back signal to enhance prompt optimization. By586

integrating a data generator that synthesizes pro-587

gressively more difficult examples with an auto-588

prompt optimizer that refines prompts, SIPDO sys-589

tematically identifies and resolves prompts’ weak- 590

nesses. This iterative feedback-driven loop im- 591

proves prompt robustness and performance across 592

diverse reasoning tasks and benchmarks. Empirical 593

evaluations show that SIPDO achieves significant 594

accuracy gains, outperforming several prompt opti- 595

mization baselines. Additionally, we provide the- 596

oretical backing by demonstrating bounded worst- 597

case error once training reaches stability, further 598

supporting SIPDO’s reliability in practice. By 599

enabling LLM systems to autonomously recog- 600

nize and correct their own shortcomings, SIPDO 601

presents a scalable and efficient strategy toward 602

adaptive, self-improving models capable of gener- 603

alizing reliably across unseen domains and increas- 604

ingly complex challenges. 605

Limitations 606

Although our multi-agent framework shows clear 607

gains on standard reasoning benchmarks, two prac- 608

tical gaps remain. First, all experiments were run 609

on clean public datasets; we have not yet tested 610

SIPDO on messier, domain-specific collections 611

such as financial filings or clinical notes, where 612

labeling rules and text quality vary widely. Second, 613

the current loop relies on repeated calls, which can 614

be slow and costly at scale. Evaluating on real- 615

world data and exploring lighter generator/critic 616

models are therefore important directions for fu- 617

ture work. 618

8

References619

Shuxiao Chen, Edgar Dobriban, and Jane H Lee. 2020.620
A group-theoretic framework for data augmentation.621
Preprint, arXiv:1907.10905.622

Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang,623
Nicholas Roy, and Chuchu Fan. 2024. Prompt op-624
timization in multi-step tasks (promst): Integrat-625
ing human feedback and heuristic-based sampling.626
Preprint, arXiv:2402.08702.627

Wendi Cui, Jiaxin Zhang, Zhuohang Li, Hao Sun,628
Damien Lopez, Kamalika Das, Bradley Malin, and629
Sricharan Kumar. 2024. Phaseevo: Towards unified630
in-context prompt optimization for large language631
models. arXiv preprint arXiv:2402.11347.632

Tri Dao, Albert Gu, Alexander J. Ratner, Virginia Smith,633
Christopher De Sa, and Christopher Ré. 2019. A634
kernel theory of modern data augmentation. Preprint,635
arXiv:1803.06084.636

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How637
small can language models be and still speak coherent638
english? Preprint, arXiv:2305.07759.639

Jiahui Gao, Renjie Pi, Yong Lin, Hang Xu, Jiacheng640
Ye, Zhiyong Wu, Weizhong Zhang, Xiaodan Liang,641
Zhenguo Li, and Lingpeng Kong. 2022. Self-guided642
noise-free data generation for efficient zero-shot643
learning. arXiv preprint arXiv:2205.12679.644

Jiahui Gao, Renjie Pi, Yong Lin, Hang Xu, Jiacheng645
Ye, Zhiyong Wu, Weizhong Zhang, Xiaodan Liang,646
Zhenguo Li, and Lingpeng Kong. 2023. Self-guided647
noise-free data generation for efficient zero-shot648
learning. Preprint, arXiv:2205.12679.649

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli.650
2023. Chatgpt outperforms crowd workers for651
text-annotation tasks. Proceedings of the National652
Academy of Sciences, 120(30):e2305016120.653

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent-654
ing Qi, Martin Riddell, Wenfei Zhou, James Coady,655
David Peng, Yujie Qiao, Luke Benson, Lucy Sun,656
Alex Wardle-Solano, Hannah Szabo, Ekaterina657
Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu,658
Brian Wong, Malcolm Sailor, and 16 others. 2024.659
Folio: Natural language reasoning with first-order660
logic. Preprint, arXiv:2209.00840.661

Jia He, Mukund Rungta, David Koleczek, Arshdeep662
Sekhon, Franklin X Wang, and Sadid Hasan. 2024.663
Does prompt formatting have any impact on llm per-664
formance? Preprint, arXiv:2411.10541.665

Minchan Kwon, Gaeun Kim, Jongsuk Kim, Haeil Lee,666
and Junmo Kim. 2024. Stableprompt: Automatic667
prompt tuning using reinforcement learning for large668
language models. arXiv preprint arXiv:2410.07652.669

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,670
Jian-Guang Lou, and Weizhu Chen. 2023. Making671
language models better reasoners with step-aware672

verifier. In Proceedings of the 61st Annual Meet- 673
ing of the Association for Computational Linguistics 674
(Volume 1: Long Papers), pages 5315–5333. 675

Agnieszka Mikołajczyk and Michał Grochowski. 2018. 676
Data augmentation for improving deep learning in 677
image classification problem. In 2018 international 678
interdisciplinary PhD workshop (IIPhDW), pages 679
117–122. IEEE. 680

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa- 681
har, Sahaj Agarwal, Hamid Palangi, and Ahmed 682
Awadallah. 2023. Orca: Progressive learning from 683
complex explanation traces of gpt-4. arXiv preprint 684
arXiv:2306.02707. 685

Dang Nguyen, Zeman Li, Mohammadhossein Bateni, 686
Vahab Mirrokni, Meisam Razaviyayn, and Baharan 687
Mirzasoleiman. 2025. Synthetic text generation for 688
training large language models via gradient matching. 689
Preprint, arXiv:2502.17607. 690

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 691
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 692
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1 693
others. 2022. Training language models to follow in- 694
structions with human feedback. Advances in neural 695
information processing systems, 35:27730–27744. 696

Liangming Pan, Alon Albalak, Xinyi Wang, and 697
William Yang Wang. 2023. Logic-lm: Empower- 698
ing large language models with symbolic solvers 699
for faithful logical reasoning. arXiv preprint 700
arXiv:2305.12295. 701

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen- 702
guang Zhu, and Michael Zeng. 2023. Automatic 703
prompt optimization with "gradient descent" and 704
beam search. Preprint, arXiv:2305.03495. 705

Xiangyan Qu, Gaopeng Gou, Jiamin Zhuang, Jing Yu, 706
Kun Song, Qihao Wang, Yili Li, and Gang Xiong. 707
2025. Proapo: Progressively automatic prompt 708
optimization for visual classification. Preprint, 709
arXiv:2502.19844. 710

Abulhair Saparov and He He. 2022. Language models 711
are greedy reasoners: A systematic formal analysis of 712
chain-of-thought. arXiv preprint arXiv:2210.01240. 713

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, 714
Eric Wallace, and Sameer Singh. 2020. Auto- 715
prompt: Eliciting knowledge from language mod- 716
els with automatically generated prompts. Preprint, 717
arXiv:2010.15980. 718

Noah Shinn, Federico Cassano, Ashwin Gopinath, 719
Karthik Narasimhan, and Shunyu Yao. 2024. Re- 720
flexion: Language agents with verbal reinforcement 721
learning. Advances in Neural Information Process- 722
ing Systems, 36. 723

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh 724
Anand, Piyush Patil, Xavier Garcia, Peter J Liu, 725
James Harrison, Jaehoon Lee, Kelvin Xu, and 1 oth- 726
ers. 2023. Beyond human data: Scaling self-training 727

9

https://arxiv.org/abs/1907.10905
https://arxiv.org/abs/2402.08702
https://arxiv.org/abs/2402.08702
https://arxiv.org/abs/2402.08702
https://arxiv.org/abs/2402.08702
https://arxiv.org/abs/2402.08702
https://arxiv.org/abs/1803.06084
https://arxiv.org/abs/1803.06084
https://arxiv.org/abs/1803.06084
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2205.12679
https://arxiv.org/abs/2205.12679
https://arxiv.org/abs/2205.12679
https://arxiv.org/abs/2205.12679
https://arxiv.org/abs/2205.12679
https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2502.17607
https://arxiv.org/abs/2502.17607
https://arxiv.org/abs/2502.17607
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2502.19844
https://arxiv.org/abs/2502.19844
https://arxiv.org/abs/2502.19844
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2010.15980

for problem-solving with language models. arXiv728
preprint arXiv:2312.06585.729

Claudio Spiess, Mandana Vaziri, Louis Mandel,730
and Martin Hirzel. 2025. Autopdl: Automatic731
prompt optimization for llm agents. Preprint,732
arXiv:2504.04365.733

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,734
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,735
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià736
Garriga-Alonso, and 1 others. 2022. Beyond the737
imitation game: Quantifying and extrapolating the738
capabilities of language models. arXiv preprint739
arXiv:2206.04615.740

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-741
bastian Gehrmann, Yi Tay, Hyung Won Chung,742
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny743
Zhou, and 1 others. 2022. Challenging big-bench744
tasks and whether chain-of-thought can solve them.745
arXiv preprint arXiv:2210.09261.746

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter747
Clark. 2021. Proofwriter: Generating implications,748
proofs, and abductive statements over natural lan-749
guage. Preprint, arXiv:2012.13048.750

Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao751
Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and Chao752
Zhang. 2023. Salmonn: Towards generic hearing753
abilities for large language models. arXiv preprint754
arXiv:2310.13289.755

Haohan Wang, Zeyi Huang, Xindi Wu, and Eric Xing.756
2022. Toward learning robust and invariant represen-757
tations with alignment regularization and data aug-758
mentation. In Proceedings of the 28th ACM SIGKDD759
Conference on Knowledge Discovery and Data Min-760
ing, pages 1846–1856.761

Shuyang Wang, Somayeh Moazeni, and Diego Klab-762
jan. 2025. A sequential optimal learning approach763
to automated prompt engineering in large language764
models. Preprint, arXiv:2501.03508.765

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai,766
Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P767
Xing, and Zhiting Hu. 2023. Promptagent:768
Strategic planning with language models enables769
expert-level prompt optimization. arXiv preprint770
arXiv:2310.16427.771

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-772
tian Deng, Radha Poovendran, Yejin Choi, and773
Bill Yuchen Lin. 2024. Magpie: Alignment data774
synthesis from scratch by prompting aligned llms775
with nothing. Preprint, arXiv:2406.08464.776

Peiyan Zhang, Haibo Jin, Leyang Hu, Xinnuo Li, Liying777
Kang, Man Luo, Yangqiu Song, and Haohan Wang.778
2024. Revolve: Optimizing ai systems by tracking779
response evolution in textual optimization. arXiv780
preprint arXiv:2412.03092.781

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, 782
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 783
Claire Cui, Olivier Bousquet, Quoc Le, and 1 others. 784
2022a. Least-to-most prompting enables complex 785
reasoning in large language models. arXiv preprint 786
arXiv:2205.10625. 787

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, 788
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy 789
Ba. 2022b. Large language models are human-level 790
prompt engineers. arXiv preprint arXiv:2211.01910. 791

10

https://arxiv.org/abs/2504.04365
https://arxiv.org/abs/2504.04365
https://arxiv.org/abs/2504.04365
https://arxiv.org/abs/2012.13048
https://arxiv.org/abs/2012.13048
https://arxiv.org/abs/2012.13048
https://arxiv.org/abs/2012.13048
https://arxiv.org/abs/2012.13048
https://arxiv.org/abs/2501.03508
https://arxiv.org/abs/2501.03508
https://arxiv.org/abs/2501.03508
https://arxiv.org/abs/2501.03508
https://arxiv.org/abs/2501.03508
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464

A Optimzed Prompts for different tasks 792

In this section, we demonstrate optimized prompts by Chain-of-Thought (CoT), Automatic Prompt 793

Engineering (APE), PromptAgent, and our method with Accuracys respectively. 794

Table 4: Comparison of Optimized Prompts for Object Counting task, including CoT, APE, PromptAgent, and our
method

Approach Optimized Prompt Accuracy

CoT Your task is to count the total number of objects mentioned in the question.
Follow these simple steps to ensure accurate counting:
Steps to Follow: 1. **Identify Items**: Read the question carefully
and list all objects mentioned. 2. **Count Quantities**: For each item,
check if a quantity is provided. If no quantity is mentioned, assume it is
one. 3. **Add Totals**: Add up the quantities of all items to calculate
the total count. 4. **Verify the Total**: Double-check to ensure no item
is missed or counted twice.
Example: - Question: "Count the apples, oranges, and bananas.
There are 2 apples, 1 orange, and 3 bananas." - Step 1: Identify items:
apples, oranges, bananas. - Step 2: Count quantities: 2 apples, 1 orange,
3 bananas. - Step 3: Add totals: 2 + 1 + 3 = 6. - Step 4: Verify: All items
are accounted for, total is 6. - **Output**: "The total count is 6."
Use this step-by-step method for every question to ensure accurate and
clear results.

0.928

APE Calculate the overall total of all items even those spoken in groups. 0.863
PromptAgent Carefully examine the provided information. Identify and catalog each

mentioned item, ensuring that explicitly stated quantities are accurately
recorded. If no quantity is specified for an item, assume it as a single unit.
However, for items with defined quantities, count each unit separately
and include it in the total. If collective terms or categories are mentioned,
break them down into their individual components and associate each
with its stated count. When computing the total for such categories, en-
sure that the sum reflects all individual units rather than just the number of
groups or types. Each item should be counted independently, but related
items belonging to a common category should be grouped together, with
their specific quantities contributing precisely to the final total. Avoid
assumptions regarding the classification or nature of items—adhere to
standard, widely accepted definitions. Finally, summarize the count by
explicitly listing the quantity of each identified item or category, and
provide a comprehensive total of individual units rather than just category
counts, unless otherwise specified.

0.882

(Continued on next page)

11

(Continued from previous page)

Approach Optimized Prompt Accuracy

Our Task Requirements:
The task involves counting the total number of objects listed in a question.
Each distinct object should be considered as part of the total count,
regardless of its type or variation. The output should be formatted
correctly as specified. Problem Rule Application:
Identify all items listed in the question. Count each item exactly once,
regardless of type, to determine the total number of objects. Ensure
accuracy by verifying that all listed items have been included in the
final count. Provide the final result in the required format: The number
should be presented in both word form and numerical form, separated by
a comma (e.g., "nine, 9"). No extra symbols, characters, or explanations
should be included. Judgment Criteria: (Strictly follow these rules)
Complete Identification:
Extract and recognize all objects in the given list. Do not overlook any
item mentioned in the question. Accurate Counting:
Each item must be counted exactly once. Ensure no items are omitted or
double-counted. Verification Process:
Double-check the list to confirm that all objects are included. Cross-
verify the final count to avoid errors.

0.923

Table 5: Comparison of Optimized Prompts for Penguins In A Table task, including CoT, APE, PromptAgent, and
our method

Approach Optimized Prompt Accuracy

CoT You are tasked with answering questions about a table of penguins
and their attributes. Use step-by-step reasoning to ensure accuracy in
calculations and comparisons.
The table is as follows: “‘ Name, Age, Height (cm), Weight (kg) Louis,
7, 50, 11 Bernard, 5, 80, 13 Vincent, 9, 60, 11 Gwen, 8, 70, 15 “‘
Reasoning Steps for Each Question: 1. Identify the target attribute
(age, height, or weight) and the type of operation (comparison, ranking,
filtering). 2. Extract the relevant rows or columns based on the question’s
requirements. 3. Perform the required operation step-by-step using the
extracted data. 4. Clearly summarize the answer based on the operation’s
result.
Example Workflow: - Question: "Who is the tallest penguin?" - Step 1:
Identify the target attribute: Height. - Step 2: Extract the height values
and corresponding names: [(Louis, 50), (Bernard, 80), (Vincent, 60),
(Gwen, 70)]. - Step 3: Find the maximum height: Bernard (80 cm). -
Step 4: Output the result: "Bernard is the tallest penguin with a height of
80 cm."
Follow this workflow for every question to ensure clarity and correctness.

0.818

APE Carefully scrutinize the provided table or tables. Understand the query
in relation to the information given. Pinpoint the pertinent data and carry
out the vital computations or comparisons to determine the right answer
from the given choices.

0.848

(Continued on next page)

12

(Continued from previous page)

Approach Optimized Prompt Accuracy

PromptAgent Answer questions about a table of penguins and their attributes, consid-
ering both the penguin table and any additional relevant tables. Please
provide step-by-step reasoning for your answers, and ensure to clarify
any criteria used for filtering or sorting data. Here is a table where the
first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg) Louis, 7, 50, 11 Bernard, 5, 80, 13
Vincent, 9, 60, 11 Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the
height of Bernard is 80 cm. What is the name of the last penguin sorted
by alphabetic order? Options: (A) Louis (B) Bernard (C) Vincent (D)
Gwen (E) James
Instructions: 1. List the names of the penguins. 2. Sort the names
alphabetically and present the sorted list clearly. 3. Identify the last name
in the sorted list and indicate the corresponding option letter from the
provided options. 4. If the last name does not match any of the options,
select the name that is closest to the last name in the original list of
penguins.
At the end, show the answer option bracketed between <answer> and
</answer>.

0.961

Our Answer questions about a dynamic, comprehensive table of penguins and
their attributes that allows penguins and other animals to be added and
removed. Perform calculations and comparisons based on the questions
asked. Read the question carefully to determine which attribute is being
compared (age, height, weight). When comparing an attribute, extract the
name and that attribute, and then compare, ignoring the other attributes.
Ensure the extracted value is from the correct column corresponding
to the requested attribute. When using the table, align the data so that
the first number is age, the second is height, and the third is weight.
Understand the question correctly, find the key words from it, and then
perform calculations or comparisons based on the key words
The current table is as follows:
Name, Age, Height (cm), Weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
Question Rules to Apply:
- Identify the rows or columns that meet the specified conditions.
- Retrieve the value of the required attribute from the identified rows or
columns.
When we modify this table (by adding new penguins or removing existing
penguins or adding giraffes), we first confirm whether the information we
added is a penguin or a giraffe, and then solve the problem of comparing,
ranking, and filtering based on attributes between penguins or giraffes,
depending on the problem.

0.964

13

Table 6: Comparison of Optimized Prompts for Geometric Shapes task, , including CoT, APE, PromptAgent, and
our method

Approach Optimized Prompt Accuracy

CoT Your task is to identify the geometric shape represented by the given
SVG path data. Follow these steps to ensure accuracy:
Steps to Identify the Shape: 1. **Check for ’A’ Instructions**: - If
the path contains ’A’, determine: - **Circle**: 2 or more ’A’ instructions.
- **Sector**: 1 ’A’ instruction. 2. **Count ’L’ Instructions**: - If there
are no ’A’ instructions, count the ’L’ instructions to determine the poly-
gon’s shape: - **Line**: 2 ’L’. - **Triangle**: 3 ’L’. - **Rectangle**:
4 ’L’. - **Pentagon**: 5 ’L’. - **Hexagon**: 6 ’L’. - **Heptagon**:
7 ’L’. - **Octagon**: 8 ’L’. - **Kite**: 4 ’L’. 3. **Provide the Shape
Name**: Output only the name of the shape (e.g., "circle", "triangle",
"hexagon").
Example: - Input: ‘"M 10 10 L 20 10 L 20 20 L 10 20 Z"‘ - Step
1: No ’A’ instructions. - Step 2: Count ’L’ instructions: 4 ’L’. - Step 3:
Shape is a **Rectangle**. - **Output**: "rectangle".
Use this step-by-step process for all inputs to determine the correct shape.

0.791

APE Determine the shape each SVG path element is drawing, then pair it
with the corresponding letter from the available choices. In this case, C
symbolizes hexagon, G is for pentagon, I signifies sector, and B stands
for heptagon.

0.650

(Continued on next page)

14

(Continued from previous page)

Approach Optimized Prompt Accuracy

PromptAgent Analyze the SVG path data to identify the geometric shape it repre-
sents. Follow these comprehensive and refined steps to ensure accurate
identification:
1. **Holistic Path Closure**: Determine if the path forms a closed
shape by checking if the last point connects back to the starting point. If
multiple ‘M‘ commands are present, analyze the segments collectively
to identify any closed loops. Treat the entire path as a single entity for a
thorough analysis.
2. **Segment and Side Analysis**: Identify the types of segments used
in the path: - **Line Segments**: Count the number of distinct line
segments to determine the number of sides. Ensure accurate counting by
considering all segments collectively. - **Arc Segments**: For paths
using the ‘A‘ command, note that these represent elliptical arcs. Pay
attention to the parameters to distinguish between circles and ellipses.
3. **In-depth Geometric Properties**: - For line segments, analyze the
relative lengths of sides and angles between them. Consider properties
such as parallel sides, equal side lengths, and right angles to distinguish
between different types of polygons. Evaluate the overall shape formed
by all segments. - For arc segments, examine the parameters of the ‘A‘
command: - Check if the radii are equal, which indicates a circle. - If the
radii differ, consider the shape as an ellipse.
4. **Shape Identification and Classification**: Use the geometric prop-
erties to classify the shape: - For polygons, identify specific types like
rectangles, kites, and trapezoids based on their properties. Pay special
attention to the number of sides and the relationships between them. Con-
sider the entire path as a single shape to ensure accurate classification. -
For arcs, determine if the shape is a circle or an ellipse based on the radii.
5. **Options Selection and Interpretation**: Choose the most appro-
priate shape from the given options. Consider multiple interpretations
of the path data, especially when multiple ‘M‘ commands are present,
to ensure accurate classification. If the path represents multiple shapes,
prioritize the most complex or relevant shape.
6. **Ambiguity Resolution**: In cases where the path data could repre-
sent multiple shapes, provide a rationale for selecting the most complex
or relevant shape. Consider the context and any additional information
that might influence the classification.
7. **Visual Verification**: If possible, visualize the path to confirm the
identified shape. This step can help resolve any remaining ambiguities
and ensure the accuracy of the classification.
8. **Iterative Refinement**: If the initial classification is uncertain,
revisit the analysis steps to refine the identification. Consider alternative
interpretations and re-evaluate the geometric properties.
9. **Contextual Considerations**: Take into account any contextual in-
formation or additional data that might influence the shape classification,
especially in ambiguous cases.
Provide your answer by selecting the correct option and enclosing it
within <answer> and <answer> tags.
Example: - SVG Path: ‘path d="M 8.10,55.86 L 1.74,25.57 L
12.08,23.40 L 18.44,53.69 L 8.10,55.86"‘ - Analysis: The path forms a
closed quadrilateral with opposite sides parallel and equal, indicating a
rectangle. - Answer: <answer>H</answer>
- SVG Path: ‘path d="M 16.33,5.98 A 8.87,8.87 275.02 1,0 14.78,23.64
A 8.87,8.87 275.02 1,0 16.33,5.98"/‘ - Analysis: The path uses elliptical
arcs with equal radii, forming a closed loop, indicating a circle. - Answer:
<answer>A</answer>

0.830

(Continued on next page)

15

(Continued from previous page)

Approach Optimized Prompt Accuracy

our Given the following SVG path data: "input" and options, identify the
geometric shape it represents and provide ONLY the name of the shape
as the ’target’.
Task Requirements: 1. Count the instructions in the SVG path 2.
Judge the shape of the graphic according to the judgment criteria 3.
Provide the exact name of the shape as output.
You need to count how many instructions L are in the SVG path:
Problem Rule Application: 1. Visualize the path data to understand
the overall structure. 2. Find out whether there is instruction A in the
instruction. If so, determine whether it is a circle or a sector according to
the number of instructions A. If not, determine how many sides it is 3.
For polygons, pay attention to the number of edges to identify the shape.
The following are the number of instructions corresponding to different
shapes: # - **triangle**: 3 L # - **rectangle**: 4 L # - **hexagon**:
6 L # - **pentagon**: 5 L # - **octagon**: 8 L # - **heptagon**: 7
L # - **kite**: 4 L # - **line**: 2 L # - **circle**: 2 or more A # -
sector: 1 A
Judgment criteria:(Please strictly abide by this rule) No need to
pay attention to "M" instructions !! First identify whether there is an
instruction "A" in the SVG path. If so, first determine whether it is a
circle or a sector. !! If there is no instruction "A", determine the number
of sides of the polygon based on the instruction "L". A polygon with n
sides requires n "L" instructions.(Please strictly abide by this rule)

0.822

Table 7: Comparison of Optimized Prompts for Causal Judgment tasks, including CoT, APE, PromptAgent, and
our method

Approach Optimized Prompt Accuracy

CoT Task: Respond to inquiries about causal attribution by identifying the key
causes and their contributions to the outcome. Follow the steps below to
ensure accurate and clear reasoning:
Steps to Analyze Causation: 1. **Identify Key Entities**: Read
the question carefully and highlight the specific entities or factors being
discussed. 2. **Determine Relevant Causes**: Analyze the context to
identify immediate and incidental causes contributing to the outcome.
- Immediate causes: Directly lead to the outcome. - Incidental causes:
Indirectly influence the outcome but may still contribute. 3. **Eval-
uate Interactions**: Consider how multiple causes might interact to
produce the observed effect (e.g., synergy or independent contributions).
4. **Provide the Answer**: Clearly state the primary and secondary
causes, as well as their roles in creating the outcome. Avoid unsupported
assumptions.
Use this structured reasoning approach to analyze each inquiry and
provide a clear and logical explanation.

0.678

(Continued on next page)

16

(Continued from previous page)

Approach Optimized Prompt Accuracy

APE For each situation, decide if the result was caused deliberately or not. If
the individual or party behind the event was aware of the potential result
and chose to go ahead, select ’Yes’. If they didn’t intend the result to
happen, even if they knew it could possibly occur, select ’No’.

0.756

PromptAgent When addressing questions about causal attribution, ensure a comprehen-
sive analysis by considering both individual and collective actions that
contribute to an outcome. Clearly differentiate between necessary and
sufficient causes, and recognize that multiple causes can simultaneously
contribute to an outcome. Emphasize the importance of understanding
both general and specific intentions, especially when outcomes are unin-
tended. Define "intentional" actions as those where the actor or group
had control over maintaining or altering the conditions necessary for the
outcome, even if the specific result was not desired. Address scenar-
ios where unintended consequences arise from intentional actions, and
provide answers that reflect a nuanced understanding of how different
elements interact to produce a result. Use diverse examples to illustrate
key concepts like "direct causation," "simultaneity," and "unintended
consequences," ensuring a balanced consideration of necessary and suffi-
cient causes. Simplify complex scenarios by breaking them down into
clear, manageable components, and provide definitions or examples of
key terms to guide your analysis. Additionally, clarify definitions of key
terms such as "necessary," "sufficient," "intentional," and "unintended
consequences" to ensure precise understanding. Highlight the impor-
tance of interactions between multiple causes, especially in complex
scenarios, and offer strategies for analyzing scenarios where simultaneity
is crucial. Explore the nuances of intentional actions and unintended
consequences more deeply, and encourage the use of diverse examples
to illustrate different aspects of causation. Pay special attention to the
role of individual actions in maintaining necessary conditions and the
distinction between collective and individual causation. Emphasize that
in collective decision-making, the outcome can be intentional if it aligns
with the group’s goals, even if individual members disagree. Reinforce
the distinction between necessary and sufficient causes, ensuring the
model understands that necessary causes alone do not determine the
outcome. Clarify that following a protocol does not remove intentionality
if the outcome aligns with organizational priorities. Highlight that inten-
tionality can be attributed if the outcome was a foreseeable consequence
of the action, regardless of individual opposition.

0.846

(Continued on next page)

17

(Continued from previous page)

Approach Optimized Prompt Accuracy

Our Task Requirements Determine whether a given event (cause) directly
leads to another event (effect). Assess the causal relationship based
on logical reasoning, ensuring a clear and definitive answer. The final
output must be only "Yes" or "No", strictly adhering to the required
format. Problem Rule Application Identify the cause and effect within
the question. Assess necessity: Determine if the cause is essential for
the effect to occur. Evaluate causation: If the cause did not happen,
would the effect still occur? If the effect only happens when the cause
is present, then the cause directly leads to the effect. If the effect can
still happen independently, then the relationship is not causal. Judgment
Criteria Direct Causation: If the cause directly leads to the effect and is a
necessary condition, answer "Yes". If the effect would not have occurred
without the cause, answer "Yes". Example: "Dropping a glass caused it
to shatter." → Yes. No Direct Causation: If the effect can occur without
the cause, answer "No". If the cause is only correlated but not necessary,
answer "No". Example: "Wearing a red shirt caused the stock market
to rise." → No. Verification Process: Check whether the absence of the
cause results in the absence of the effect. Ensure logical consistency in
the causal assessment.

0.880

Table 8: Comparison of Optimized Prompts for Epistemic task, including CoT, APE, PromptAgent, and our
method

Approach Optimized Prompt Accuracy

CoT Task: Analyze the logical relationship between a given premise and
hypothesis. Your goal is to determine if the premise guarantees the truth
of the hypothesis. Choose one of the following answers: ’entailment’ or
’non-entailment’.
Steps to Follow: 1. **Understand the Premise and Hypothesis**:
Carefully read the premise and hypothesis to identify the key information
in both statements. 2. **Analyze the Logical Relationship**: Determine
whether the information in the premise confirms the truth of the hypoth-
esis. - If the premise logically supports and guarantees the hypothesis,
choose ’entailment’. - If the premise does not confirm the hypothesis,
or if there is uncertainty, choose ’non-entailment’. 3. **Provide the An-
swer**: Based on your analysis, output the correct answer (’entailment’
or ’non-entailment’).
Use this step-by-step approach for all premise and hypothesis pairs to
ensure accurate reasoning.

0.855

APE Determine whether the hypothesis is directly implied by the premise
or not. If the premise’s statement is a direct claim or conviction of the
individual mentioned in the hypothesis, choose ’entailment’. However, if
the premise is formed on the belief or supposition of someone other than
the subject in the hypothesis, opt for ’non-entailment’.

0.888

(Continued on next page)

18

(Continued from previous page)

Approach Optimized Prompt Accuracy

PromptAgent Determine the relationship between two sentences by evaluating whether
the first sentence provides direct or logically implied evidence for the
second. Choose from the options ’entailment’ or ’non-entailment’.
Consider the following: - **Entailment**: The first sentence directly
or through logical implication confirms the truth of the second sentence,
even if it involves a chain of beliefs or perceptions, as long as the chain
logically supports the hypothesis. - **Non-entailment**: The first sen-
tence does not confirm the truth of the second sentence, often involving
unsupported assumptions, beliefs, or suspicions that do not logically lead
to the hypothesis.
Guidelines for Analysis: 1. **Clarify Belief Chains and Logical Impli-
cations**: Understand how belief chains work and when they logically
support the hypothesis. Pay attention to verbs indicating beliefs, assump-
tions, or suspicions (e.g., "thinks," "assumes," "suspects") versus those
indicating direct evidence (e.g., "learns," "knows," "remembers"). Con-
sider how these verbs interact in belief chains and what they imply about
the subject’s own beliefs. 2. **Evaluate Direct and Implied Evidence**:
Determine if the premise provides direct or logically implied evidence
for the hypothesis, considering how belief chains can logically support
the hypothesis. Recognize that indirect beliefs about another person’s
recognition can imply one’s own belief about a situation, especially when
the belief chain is logical and straightforward. 3. **Consider Perspec-
tive and Source of Information**: Note any differences in perspective
or source of information (e.g., who remembers or assumes something)
and how these perspectives contribute to the logical implication of the
hypothesis. 4. **Conduct a Comprehensive Analysis**: Use a step-by-
step approach to ensure all relevant details and logical implications are
considered in the analysis. Balance the emphasis on direct evidence with
the recognition of logical implications from indirect beliefs.
Example: Premise: "Charlotte thinks that Richard recognizes that a boy
is standing in a pool getting splashed with water." Hypothesis: "Charlotte
thinks that a boy is standing in a pool getting splashed with water."
Options: (A) entailment (B) non-entailment
Analysis: 1. **Understanding the Premise**: The premise indicates
that Charlotte thinks Richard recognizes a specific situation involving a
boy in a pool. 2. **Understanding the Hypothesis**: The hypothesis
states that Charlotte thinks a boy is in a pool getting splashed with water.
3. **Assessing the Relationship**: The premise implies that Charlotte
has a belief about the situation (through Richard’s recognition), which
logically supports the hypothesis. Charlotte’s belief about Richard’s
recognition suggests she also believes in the situation’s occurrence. 4.
Conclusion: The relationship is one of entailment because Char-
lotte’s belief about Richard’s recognition logically implies her belief in
the situation.
Therefore, the correct answer is:
<answer>A</answer>
Identify the relation between the following premises and hypotheses,
choosing from the options ’entailment’ or ’non-entailment’. At the end,
show the answer option bracketed between <answer> and </answer>.

0.916

(Continued on next page)
19

(Continued from previous page)

Approach Optimized Prompt Accuracy

our Task Requirements:
Analyze a given premise (primary sentence) and determine whether it
fully supports the truth of a hypothesis (subsequent sentence). Clas-
sify the relationship as either "Entailment" or "Non-Entailment" based
on the logical and factual connections between the two. Provide the
classification only as the final output. Problem Rule Application:
Entailment:
The premise explicitly confirms the hypothesis with clear, direct evidence.
No additional information, assumptions, or interpretations are required
to validate the hypothesis. Non-Entailment:
The premise does not fully or explicitly confirm the hypothesis. If
there is ambiguity, uncertainty, or missing logical links, label it as Non-
Entailment. Judgment Criteria: (Strictly follow these rules)
Language of Uncertainty:
Words like "assumes," "believes," "thinks," "feels," "suspects" indicate
subjectivity and should not be considered definitive proof. These terms
suggest a possibility rather than an explicit factual connection. Specific
vs. General Statements:
A specific premise (e.g., mentioning a “full face mask”) does not nec-
essarily contradict a general hypothesis (e.g., referencing a “mask” in
general). However, if the premise is too general to confirm the specific
claim, classify as Non-Entailment. Objective Reasoning:
Only use the logical and factual ties within the given statements. Do
not rely on external knowledge, assumptions, or interpretations unless
directly supported by the premise. Decision Process:
Determine whether the premise fully supports the hypothesis without
needing extra inference → Entailment. If the premise only partially
supports or fails to confirm the hypothesis → Non-Entailment.

0.893

Table 9: Comparison of Optimized Prompts for Temporal task including CoT, APE, PromptAgent, and our method.

Approach Optimized Prompt Accuracy

CoT Your task is to determine the available time slot for an event, based on a
schedule of occupied times. Follow these steps to ensure accuracy:
Steps to Identify Free Time Slots: 1. **List Occupied Periods**:
Organize all occupied time slots in chronological order. 2. **Find
Gaps**: Identify gaps between the occupied periods where no activities
are scheduled. 3. **Check Constraints**: Ensure that the free time
slots fall within operational constraints (e.g., facility closing times). 4.
Select the Slot: Choose the correct free time slot that satisfies all
criteria.
Output Result Format: - Present the selected free time slot in a clear
format, such as "Xpm to Ypm" or "Xam to Yam".
Use this step-by-step method to ensure that the identified time slot is
accurate and does not overlap with any occupied periods.

0.989

(Continued on next page)

20

(Continued from previous page)

Approach Optimized Prompt Accuracy

APE Identify the period when the individual was unnoticed and had the possi-
bility to visit the specified place before its closing time.

0.994

PromptAgent Analyze the timeline of events to determine possible time frames during
which certain events could have occurred, even if they were not explicitly
observed. Start by constructing a comprehensive timeline, clearly listing
all observed and unobserved time slots. Identify gaps where the subject
is unobserved, ensuring these gaps fit within any given constraints, such
as opening and closing times. Emphasize the importance of constraints
by verifying them after identifying potential gaps. Use a step-by-step
reasoning approach to systematically evaluate all available information,
and include a final review to check for potential errors or overlooked
details before finalizing the answer. Define key terms like "unobserved"
and "constraints" to ensure clarity in the task requirements. Provide
examples to illustrate the reasoning process and expected output format,
guiding the model in analyzing timelines and identifying possible time
frames for unobserved events. Additionally, incorporate a checklist to
ensure all steps are followed, and highlight common pitfalls to avoid
during the analysis. Finally, include a summary of the reasoning process
to reinforce understanding and ensure the model’s conclusions are well-
supported.
To further enhance the model’s performance, include additional examples
that cover a wider range of scenarios and constraints, such as overlapping
time slots or multiple constraints. Provide explicit guidance on handling
complex constraints and ambiguous information. Incorporate interac-
tive feedback mechanisms to help the model learn from mistakes and
improve over time. Ensure the prompt is concise and focused, avoiding
unnecessary repetition while maintaining clarity and comprehensiveness.
Additionally, introduce a section for handling exceptions or unusual
cases, offering strategies for dealing with incomplete or conflicting data.
This will help the model adapt to a broader range of real-world scenarios
and improve its robustness in timeline analysis tasks.

0.984

(Continued on next page)

21

(Continued from previous page)

Approach Optimized Prompt Accuracy

our **Task Requirements:** Determine the possible time period during
which an event could have occurred, based on a detailed schedule of
occupied times. Your goal is to identify the correct time slot that fits all
the provided criteria without any overlap.
Problem Rule Explanation: 1. Analyze the schedule to identify
all time slots during which the person is occupied. 2. Determine the
available time slots by identifying gaps between these occupied periods.
3. Consider any additional constraints, such as closing times, that may
limit the available time slots.
Problem Rule Application: - List all the occupied time slots chrono-
logically. - Identify gaps between these occupied slots where the person
is free. - Ensure that the free time slots do not conflict with constraints
like closing times.
Result Verification: - Confirm that the identified time slot is com-
pletely free and adheres to any constraints. - Double-check against all
occupied periods to ensure there is no overlap. - Avoid selecting time
slots that are partially occupied or overlap with any scheduled activities.
Output Result Format: - Present the correct time slot in a straight-
forward manner, using the format "Xpm to Ypm" or "Xam to Yam"
as appropriate. - Ensure the output is clear and free of any extraneous
symbols or text.
Common Mistakes to Avoid: - Do not include time slots that extend
beyond the closing time of the facility. - Avoid selecting time slots that
overlap with any scheduled activities. - Ensure the selected time slot is
entirely free and does not partially overlap with any occupied period.
General Rules and Analysis: - Identify all occupied periods and list
them chronologically. - Look for gaps between these periods where the
person is not scheduled for any activity. - Verify that these gaps fall
within any operational constraints, such as closing times. - Ensure the
selected time slot is entirely free and does not overlap with any occupied
periods.
By following these guidelines, you can accurately determine the available
time slot for the event in question. Avoid errors by ensuring that the
selected time slot is entirely free and does not overlap with any occupied
periods.

0.993

22

B Optimized Prompts Without Difficulty Scaling in Synthetic Data 795

Table 10: Optimized Prompts Without Difficulty Scaling in Synthetic Data

Tasks Optimized Prompt Accuracy

Penguins You are provided with two tables containing data about penguins and
giraffes. Your task is to focus solely on the giraffe data to answer a
specific question regarding the tallest giraffe.
Penguin Data:
| Name | Age | Height (cm) | Weight (kg) | |———-|—–|————–|——
——-| | Louis | 7 | 50 | 11 | | Bernard | 5 | 80 | 13 | | Vincent | 9 | 60 | 11 | |
Gwen | 8 | 70 | 15 | | James | 12 | 90 | 12 |
Giraffe Data:
| Name | Age | Height (cm) | Weight (kg) | |——–|—–|————–|———
—-| | Jody | 5 | 430 | 620 | | Gladys | 10 | 420 | 590 | | Marian | 2 | 310 | 410
| | Donna | 9 | 440 | 650 |
Task Requirements: 1. Identify the tallest giraffe based on the height
provided in the Giraffe Data table. 2. Provide the weight of the tallest
giraffe in kilograms.
Problem Rule Explanation: - Review the height values for each
giraffe listed in the Giraffe Data table. - Compare these height values to
determine which giraffe is the tallest.
Problem Rule Application: - Examine the height values for the
giraffes: - Jody: 430 cm - Gladys: 420 cm - Marian: 310 cm - Donna:
440 cm - Identify that Donna is the tallest giraffe at 440 cm. - Retrieve
the corresponding weight of Donna, which is 650 kg.
Result Verification: - Ensure that you have considered all entries in
the Giraffe Data table. - Confirm that the weight you provide corresponds
to the giraffe identified as the tallest.
Output Result Format: - Provide your answer in the following format:
- "Weight of the tallest giraffe: [Weight in kg]"
—
Example Output: - "Weight of the tallest giraffe: 650"
—

0.732

Geometry " Given the following input: ""input"", you must provide ONLY the
correct value for the ’target’.
Rules: 1. Do NOT provide any explanations. 2. Do NOT provide
any sentences, text, or words other than the ’target’ value. 3. The answer
must be the exact value contained in the ""target"" and any unauthorized
additions are prohibited."

0.681

(Continued on next page)

23

(Continued from previous page)

Tasks Optimized Prompt Accuracy

Object Counting "**Task Requirements:** - Determine the total number of fruits by
accurately identifying and counting each type listed in the question.
Problem Rule Explanation: - The task involves listing and counting
each fruit mentioned. - Each fruit should be counted as one unless a
specific quantity is provided.
Problem Rule Application: - Carefully read through the list to iden-
tify all items that are fruits. - Count each fruit once unless otherwise
specified with a different quantity. - Avoid including any non-fruit items
or miscounting due to misinterpretation of the list.
Result Verification: - Re-examine the list to ensure all fruits have
been correctly identified and counted. - Verify that the total count reflects
only the fruits listed, with no errors in inclusion or exclusion.
Output Result Format: - Provide the total number of fruits in both
word and numeral forms, such as: [""ten"", ""10""]. - Ensure the output
is clear and free from special symbols or formatting errors."

0.538

Causal Judgment Analyze the scenario to determine if the described action directly caused
the outcome. Provide a definitive ’Yes’ or ’No’ answer based on a logical
assessment of the causal relationship as described in the scenario.
Problem Rule Explanation: A causal relationship exists when an
action directly leads to an outcome without other factors influencing
the result. The outcome should not occur without the action. Avoid
assumptions and base your analysis solely on the information provided.
Problem Rule Application: - Identify the key action and the resulting
outcome within the scenario. - Determine if the outcome is a direct result
of the action, ensuring no additional factors are at play. - Evaluate
whether the outcome would still occur without the initial action, focusing
on the explicit roles, responsibilities, and conditions mentioned. - Avoid
external assumptions and concentrate on the details provided in the
scenario.
Result Verification: - Confirm that the action directly causes the
outcome, with no interference from other factors. - Ensure the outcome
logically follows from the action, considering the context and rules
provided. - Review the scenario for any overlooked details that could
affect the causal link, ensuring a comprehensive analysis.
Output Result Format: - Answer ’Yes’ if the action directly causes
the outcome, with the outcome being a direct consequence of the action.
- Answer ’No’ if there is no direct causal relationship or if other factors
could have contributed to the outcome.

0.684

(Continued on next page)

24

(Continued from previous page)

Tasks Optimized Prompt Accuracy

Temporal **Task Requirements:** Determine the available time slots for an un-
scheduled activity within a given daily schedule, ensuring these slots do
not conflict with scheduled events and comply with any facility operating
hours.
Problem Rule Explanation: 1. Review the entire schedule to identify
all events and their specific time frames. 2. Identify gaps between these
events or after the last scheduled event to find potential time slots for
the unscheduled activity. 3. Consider any additional constraints, such as
facility operating hours, to ensure the proposed time slot is feasible.
Problem Rule Application: - List all scheduled events with their
respective time frames. - Identify gaps between these events or available
time after the last scheduled event. - Ensure that the identified time slots
comply with any additional constraints, like facility operating hours.
Result Verification: - Confirm that the identified time slots do not
overlap with any scheduled events. - Verify that the time slots fall within
the facility’s operating hours.
Output Result Format: Present the time range in a clear and concise
format, such as "Xpm to Ypm" or "Xam to Yam", ensuring clarity and
precision.
Example Application: Given the schedule: - Breakfast: 8am to 9am
- Business meeting: 9am to 11am - Art gallery: 11am to 1pm - Lunch:
1pm to 2pm - Cinema: 3pm to 5pm - Dinner party: 6pm to 8pm - Gym
closes at 10pm
Determine the available time for the gym: - Identify the gaps: 5pm to
6pm and 8pm to 10pm. - Ensure these time slots do not overlap with
scheduled events and are within the gym’s operating hours. - The correct
answer is "5pm to 6pm" and "8pm to 10pm", as they fit within the gym’s
operating hours and do not overlap with any scheduled events.

25

C Prompt Self-improvement796

C.1 Error Analysis: Prompt Template797

1. Misinterpretation of the Question: The model may have misinterpreted the question, focusing on the798

structure of the data rather than the specific request for the height of the tallest penguin. This could lead to799

confusion and an irrelevant answer.800

801

2. Inattention to Numerical Data: The model might have overlooked the numerical values provided802

in the table, failing to recognize that it needed to compare the heights of the penguins to determine the803

tallest one.804

805

3. Irrelevant Output Generation: The answer "rectangle" does not relate to the context of the806

question. This suggests that the model may have generated a response based on unrelated patterns or807

associations rather than the specific data presented.808

809

4. Lack of Contextual Understanding: The model may not have fully grasped the context of the data810

table, leading to a failure in recognizing that the question was asking for a specific value derived from the811

table.812

813

5. Failure to Process Tabular Data: The model might struggle with processing tabular data ef-814

fectively, which can lead to incorrect conclusions or irrelevant outputs when asked to analyze such formats.815

816

C.2 Improvement Recommendation: Prompt Template817

- Clarify the question to emphasize the need for numerical comparison.818

- Provide explicit instructions to focus on extracting specific values from the data.819

- Ensure the model is trained to recognize and process tabular data more effectively.820

- Avoid ambiguity in the question to prevent misinterpretation of the request.821

822

C.3 Improvement Recommendations: Revised Prompt823

Here is a table of penguins with their respective attributes:824

name, age, height (cm), weight (kg)825

Louis, 7, 50, 11826

Bernard, 5, 80, 13827

Vincent, 9, 60, 11828

Gwen, 8, 70, 15829

Task Requirements:830

Analyze the table to identify the tallest penguin based on the ’Height (cm)’ column.831

832

Problem Rule Explanation:833

Compare the numerical values in the ’Height (cm)’ column to determine the maximum height.834

835

Problem Rule Application:836

Identify the maximum value from the ’Height (cm)’ column.837

838

Result Verification:839

Ensure that the identified height corresponds to the tallest penguin.840

841

26

D Examples of Generated Data 842

Table 11: Examples of Generated Data for BIG-Bench tasks

Tasks Generated Data

Causal Judgment In a small town, there is a bakery that makes the best pastries. Every
morning, the bakery opens at 7:00 am, and a line of customers forms
outside. The bakery owner has a rule that only one person can enter at a
time to maintain order. One day, two customers, Alice and Bob, arrive at
the same time. Alice follows the rule and waits outside, but Bob ignores
the rule and enters the bakery while another customer is still inside. The
bakery becomes overcrowded, and a shelf of pastries falls over, ruining
the day’s batch. Did Bob cause the pastries to be ruined?

Geometry Generated question: This SVG path element This SVG path element
<path d="M 50.00,30.00 L 66.18,35.09 L 72.45,50.00 L 66.18,64.91 L
50.00,70.00 L 33.82,64.91 L 27.55,50.00 L 33.82,35.09 L 50.00,30.00"/>

Object Counting Generated question: I have two violins, a drum, a piano, a flute, and a
trumpet. Additionally, I have a cat, a rabbit, a dog, a chicken, and a goat.
How many musical instruments do I have?

Epistemic Premise: Olivia suspects that Ethan recognizes that a group of musicians
gather in a park, tuning their instruments as the sun sets behind the city
skyline. Hypothesis: Ethan recognizes that a group of musicians gather
in a park, tuning their instruments as the sun sets behind the city skyline.

Temporal Today, Alex attended several events. Between what times could he have
gone to the gym? We know that: Alex had breakfast at 8am. He attended
a meeting from 9am to 11am. He was seen at the art gallery from 11am
to 1pm. He had lunch with friends from 1pm to 2pm. He was at the
cinema from 2pm to 4pm. He visited his grandmother from 4pm to 6pm.
The gym closes at 10pm. Between what times could Alex have gone to
the gym?

Penguins Generated question: Here is a table where the first line is a header and
each subsequent line is a penguin:
name, age, height (cm), weight (kg) Louis, 7, 50, 11 Bernard, 5, 80, 13
Vincent, 9, 60, 11 Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the
height of Bernard is 80 cm. What is the age of Vincent?

27

E Detailed proof of Theorem 3.3843

1. Surrogate domination. Because the surrogate loss upper-bounds the 0–1 loss point-wise,844

sup
ψ∈Ψ

Eqψ
[
1{f(p, x̃) ̸= ỹ}

]
≤ sup

ψ∈Ψ
Eqψ

[
L
(
f(p, x̃), ỹ

)]
= sup

ψ∈Ψ
J(ψ),845

where we abbreviated J(ψ) :=EqψL
(
f(p, x̃), ỹ

)
.846

2. Reduce to the near-optimal generator. Let ψ⋆ be any generator that ε-maximises the regularised847

objective,848

ψ⋆ = argmax
ψ∈Ψ

{
J(ψ)− λ−1R(ψ)

}
s.t. J(ψ⋆)− λ−1R(ψ⋆) ≥ sup

ψ∈Ψ

(
J(ψ)− λ−1R(ψ)

)
− ε.849

Rearranging, J(ψ) ≤ J(ψ⋆) + λ−1
(
R(ψ)−R(ψ⋆)

)
+ ε for every ψ, hence850

sup
ψ∈Ψ

J(ψ) ≤ J(ψ⋆) + ε.851

3. Bound the hard generator via KL. Applying the risk-alignment inequality to ψ⋆,852

J(ψ⋆) ≤ E(x,y)∼PL
(
f(p, x), y

)
+ λ−1R(ψ⋆).853

4. Sample–population substitution. With probability at least 1− δ over the draw of the training set,854

E(x,y)∼PL
(
f(p, x), y

)
≤ 1

n

n∑
i=1

L
(
f(p, xi), yi

)
+ q

(
|P|, n, δ

)
.855

Combine. Chaining 1-4 we obtain856

sup
ψ∈Ψ

Eqψ1{f(p, x̃) ̸= ỹ} ≤ 1

n

n∑
i=1

L
(
f(p, xi), yi

)
+ λ−1R(ψ⋆) + ε + q

(
|P|, n, δ

)
,857

which is exactly the bound claimed in Theorem 3.3. □858

28

	Introduction
	Related Work
	Method
	Data Generator
	Auto Prompt Optimizer
	Theoretical Guarantee

	Experiments
	EXPERIMENTAL SETUP
	Baselines

	Results and analyze
	Synthetic Data Generation
	Implementation
	Comparison with prompting baselines
	Prompt generalization

	Ablation Study

	Conclusion
	Optimzed Prompts for different tasks
	Optimized Prompts Without Difficulty Scaling in Synthetic Data
	Prompt Self-improvement
	Error Analysis: Prompt Template
	Improvement Recommendation: Prompt Template
	Improvement Recommendations: Revised Prompt

	Examples of Generated Data
	Detailed proof of Theorem 3.3

